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A very simple example

For fixed N P N, consider the usual discrete time random walk
pXtqtPZ`

on J0,NK, with holding at 0 and N. The invariant (and
reversible) probability measure is the uniform distribution η.

Qualitative result: whatever the initial condition LpX0q, LpXtq
converges to η as t P Z` goes to infinity.

Quantitative result:

}LpXtq ´ η}tv ď
a

2 expp´sq

for

t ě 1

4
pN ` 1q2p1 ` sq



Total variation

Let us recall the definition of the total variation norm: for any
signed measure m on a discrete space,

}m}tv ≔ 2 sup
AĂS

|mpAq|

“ sup
f PF , }f }

8
ď1

mpf q

“
ÿ

xPS

|mpxq|

Mixing time associated to pLpXtqqtPZ`
:

Tmix ≔ sup
LpX0q

inftt P Z` : }LpXtq ´ η}tv ď 1u



Absorption

In the previous example: Tmix ď pN ` 1q2p1 ` lnp2qq{4. This is a
refined bound using the whole spectral decomposition (in particular
the boundedness of the eigenvectors). If just the spectral gap is
used: Tmix ď pN ` 1q2p1 ` lnpN ` 1qq{4.
What happens if 0 is absorbing?
Then LpXtq Ñ δ0. This can be quantified also, using the first
Dirichlet eigenvalue. Our interest here:

τ ≔ inftt P Z` : Xt “ 0u
µt ≔ LpXt |τ ą tq

Then (if LpX0q ­“ δ0!), qualitative result:

lim
tÑ`8

µt “ ν



Quasi-stationary measure

where the probability ν on J1,NK is called the quasi-stationary

distribution and is given by

νpxq ≔ Z´1 cos

ˆp2N ` 1 ´ 2xqπ
2p2N ` 1q

˙

with Z´1
≔ 2 tan

´
π

2p2N`1q

¯
, the normalizing constant.

If LpX0q “ ν, then µt “ ν for all t ě 0 and

Prτ ą ts “
ˆ
cos

ˆ
π

2N ` 1

˙˙t

(geometric distribution)

Our purpose: to obtain corresponding quantitative results, for
instance Tquasi´mix ď cst N2 lnpNq in the above case.
We will rather work in the continuous time setting, where results
are simpler to state.
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The framework

The whole finite state space is S̄ ≔ S \ t0u, where 0 is the
absorbing point. It means that S̄ is endowed with a Markov
generator matrix L̄ ≔ pL̄px , yqqx ,yPS̄ whose restriction to S ˆ S is
irreducible and which is such that

@ x P S̄ , L̄p0, xq “ 0

D x P S : L̄px , 0q ą 0

If µ0 is an initial distribution on S , we can associate a Markov
process X ≔ pXtqtě0. The absorbing time τ and conditional
distribution µt , for t ě 0, are constructed as before. There exists a
quasi-stationary distribution ν such that

lim
tÑ`8

µt “ ν

We want to quantify this convergence.



Notations

Let K be the S ˆ S minor of L̄. It can be written under the
Schrödinger form L ´ V where V pxq “ L̄px , 0q, L an irreducible
Markov generator on S . Let η be the invariant probability for L.
Perron-Frobenius theory: there are λ0 ą 0 and a positive function
ϕ such that

K rϕs “ ´λ0ϕ

Adjoint L˚ of L in L
2pηq: still a Markov generator given by

@ x , y P S , L˚px , yq “ ηpyq
ηpxqLpy , xq

K˚ “ L˚ ´ V and there is a positive function ϕ˚ such that

K˚rϕ˚s “ ´λ0ϕ
˚



Quasi-stationary distribution

Different normalizations: ηrϕ˚s “ 1 and ηrϕϕ˚s “ 1.
We have ν “ ϕ˚ ¨ η: it can be easily checked that for any function
f on S , νrK rf ss “ ´λ0νrf s. As a consequence, for any t ě 0,

ν expptK q “ expp´λ0tqν

namely, if LpX0q “ ν, then

LpXtq “ expp´λ0tqν ` p1 ´ expp´λ0tqqδ0

In particular

Pνrτ ą ts “ PνrXt P Ss “ expp´λ0tq

(exponential distribution).
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Doob transform

Consider the Markovian operator rL on S defined by its off-diagonal
entries via

@ x ­“ y P S , rLpx , yq ≔ Lpx , yqϕpyq
ϕpxq

(the diagonal entries are such the row sums vanish).
It is called the Doob transform of L through ϕ. We have for any
function f ,

rLrf s “ 1

ϕ
pL ´ V ` λ0I qrϕf s

rL is irreducible and its invariant measure rη is given by

@ x P S , rηpxq “ ϕpxqϕ˚pxqηpxq
Indeed:

rηrϕ´1pL ´ V ` λ0qrϕf ss “ ηrϕ˚pL ´ V ` λ0qrϕf ss
“ ηrϕf pL˚ ´ V ` λ0qrϕ˚ss
“ 0



Reduction to ergodicity

Let prPtqtě0 the ergodic semi-group generated by rL. Its interest:

Theorem

For any probability measure µ0 on S and for any t ě 0, we have

ϕ^

2ϕ_

›››rµ0
rPt ´ rη

›››
tv

ď }µt ´ ν}tv ď 2
ϕ_

ϕ^

›››rµ0
rPt ´ rη

›››
tv

where rµ0 is the probability on S whose density with respect to µ0

is proportional to ϕ. In particular the asymptotic exponential rate

of convergence of }µt ´ ν}tv and
›››rµ0

rPt ´ rη
›››
tv

are the same.

We used the notation

ϕ_ ≔ max
xPS

ϕpxq ϕ^ ≔ min
xPS

ϕpxq



Amplitude

Thus it appears that the first Dirichlet eigenfunction ϕ is the main
ingredient needed to reduce the quantitative study of the
convergence to quasi-stationarity to that of the convergence to
equilibrium. A crucial quantity seems to be the amplitude of ϕ:

aϕ ≔

ϕ_

ϕ^

The convergence to equilibrium has been intensively investigated,
through various approaches: Lyapounov functions, coupling, strong
stationary times, isoperimetry, spectral theory, functional
inequalities... The above bounds enable to recycle them for
convergence to quasi-stationarity.
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Symmetrization

The simplest of these methods: the L
2 approach.

Let pL be the additive symmetrization of rL in L
2prηq: it is

prL ` rL˚q{2, where rL˚ is the adjoint operator of rL in L
2prηq. By

self-adjointness, pL is diagonalizable in R. Let pλ ą 0 stand for the
smallest non-zero eigenvalue (spectral gap) of ´pL.

Theorem

For any t ě 0, we have

sup
µ0PP

}µt ´ ν}tv ď
d

1

pϕϕ˚ηq^

ϕ_

ϕ^
expp´pλtq

where P stands for the set of probability measures on S.



Logarithmic Sobolev inequality

It is possible to improve the pre-exponential factor in the above
result, but at the expense of the rate pλ, via the logarithmic

Sobolev inequalities associated to pL.
Let pα ą 0 be the largest constant such that for all f P F ,

pα
ÿ

xPS

f 2pxq ln
ˆ
f 2pxq
rηrf 2s

˙
ϕ˚pxqϕpxqηpxq

ď
ÿ

x ,yPS

pf pyq ´ f pxqq2 ϕ˚pxqϕpyqηpxqLpx , yq

Then we have

sup
µ0PP

}µt ´ ν}tv ď
d

2 ln

ˆ
ηrϕϕ˚s

pϕϕ˚ηq^

˙
ϕ_

ϕ^
expp´ppα{2qtq

This is interesting for not too large t and when pα can be computed
(e.g. by tensorization).



Reversible case

Assume that η is reversible for L:

@ x , y P S , ηpxqLpx , yq “ ηpyqLpy , xq

Then ´K “ V ´ L is diagonalizable in R, we have already met its
smallest eigenvalue λ0. Let λ1 ą λ0 be the second eigenvalue. The
spectral gap bound can be rewritten:

Theorem

Under the reversibility assumption, for any t ě 0, we have

sup
µ0PP

}µt ´ ν}tv ď
d

1

pϕ2ηq^

ϕ_

ϕ^
expp´pλ1 ´ λ0qtq

ď
d

1

η^

ˆ
ϕ_

ϕ^

˙2

expp´pλ1 ´ λ0qtq

(In this situation ϕ˚ “ ϕ).
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A finite birth and death example with λ0 „ λ1 ´ λ0 (1)

The 3 first examples are birth and death processes on
S̄ ≔ J0,NK, with N P N, absorbing at 0. So L gives positive rates
only to the oriented edges px , x ` 1q and px ` 1, xq where
x P J1,N ´ 1K and admits a reversible probability η. Assume that
the killing rate at 1 is 1, namely V p1q “ L̄p1, 0q “ 1. The other
values of V are taken to be zero.

Specifically for the first example, we choose

@ x P J1,N ´ 2K, Lpx , x ` 1q ≔ Lpx ` 1, xq ≔ 1

LpN ´ 1,Nq “ 1 and LpN,N ´ 1q “ 2

The reversible probability η is almost the uniform distribution on
S “ J1,NK (N has a weight divided by 2). The function ϕ is
defined by

@ x P S , ϕpxq ≔ 1

Z
sinpπx{p2Nqq

where Z is the renormalization constant such that ηrϕ2s “ 1.



A finite birth and death example with λ0 „ λ1 ´ λ0 (2)

We compute that λ0 and λ1 ´ λ0 are of the same order (as
N Ñ 8), meaning that absorption and convergence to
quasi-stationarity happen at similar rates:

λ0 “ π2

4N2
p1 ` OpN´2qq

λ1 ´ λ0 “ 2
π2

N2
p1 ` OpN´2qq

Furthermore, we have

aϕ “ 2N

π
p1 ` OpN´2qq

It follows from the previous bound that for any given s ą 0, if

t “ 5

4π2
N2 lnpNq ` s

2π2
N2

then

sup
µ0PP

}µt ´ ν}tv ď 4

π2
p1 ` OpN´1qq expp´sq



A finite birth and death example with λ0 ! λ1 ´ λ0 (1)
It is similar to the previous example, except that for some r ą 1,
we take

@ x P J1,N ´ 2K,

"
Lpx , x ` 1q ≔ r
Lpx ` 1, xq ≔ 1

LpN ´ 1,Nq “ r and LpN,N ´ 1q “ 1 ` r

The reversible probability η is given by

@ x P S , ηpxq “
#

r2´1
2rN´r´1

r x´1 , if x P JN ´ 1K
r´1

2rN´r´1
rN´1 , if x “ N

More involved computations are needed to get information on the
eigenvalues and eigenfunctions, but finally we get, for large N,

λ0 „ 1

2
pr ` 1qpr ´ 1q2 1

rN`1

aϕ “ r

r ´ 1
p1 ` Opr´Nqq



A finite birth and death example with λ0 ! λ1 ´ λ0 (2)

λ1 ą p1 ´
?
rq2

It implies that

λ1 ´ λ0 „ λ1 " λ0

meaning that convergence to quasi-stationarity happens at a much
faster rate than absorption. It follows that for any fixed s ě 0, if
for N large enough we consider the time

t ≔
1

2p1 ´ ?
rq2 plnprqN ` 2sq

then

sup
µ0PP

}µt ´ ν}tv ď r2

pr ´ 1q5{2
p1 ` ˝p1qq expp´sq

It can be shown that the relaxation time to quasi-stationarity is at
least of order N, so the order is optimal here.



A finite birth and death example with λ0 " λ1 ´ λ0 (1)

The setting is as in the previous example, except that now r ă 1.
But the behavior of our quantities of interest are very different for
large N:

aϕ ď 2N

p1 ´ rqr pN´1q{2
p1 ` ˝p1qq

λ0 „ p1 ´
?
rq2

and

p1 ´ rq2?
r

2N2
p1 ` ˝p1qq ď λ1 ´ λ0 ď 16π2 ´ p1 ´ rq2

4N2

?
rp1 ` ˝p1qq

In particular absorption happens at a much faster rate than
convergence to quasi-stationarity, since λ0 " λ1 ´ λ0.



A finite birth and death example with λ0 " λ1 ´ λ0 (2)

Taking furthermore into account that η^ „ p1 ´ rqrN´1, we get

sup
µ0PP

}µt ´ ν}tv ď 4
?
1 ` rN2

p1 ´ rq5{2r3pN´1q{2
p1 ` ˝p1qq

exp

ˆ
´p1 ´ rq2?

r

2N2
p1 ` ˝p1qqt

˙

In particular, for any given ǫ ą 0, if we consider

tN ≔ 3p1 ` ǫq lnp1{rq
p1 ´ rq2?

r
N3

then

lim
NÑ8

sup
µ0PP

}µtN ´ ν}
tv

“ 0



A non-reversible example

For fixed N P N, consider S “ ZN endowed with the (turning)
generator L

@ x , y P ZN , Lpx , yq ≔

$
&
%

1 , if y “ x ` 1
´1 , if y “ x
0 , otherwise

whose invariant probability measure η is the uniform distribution.
The potential V takes the value 1 at 0 and 0 otherwise.
We can show that

sup
µ0PP

}µt ´ ν}tv ď 2
?
Np1 ` ˝p1qq exp

ˆ
2π2

N2
p1 ` ˝p1qqt

˙

In particular, for any given ǫ ą 0, if we consider

tN ≔ p1 ` ǫqN
2 lnpNq
4π2

then

lim
NÑ8

sup
µ0PP

}µtN ´ ν}
tv

“ 0
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Probabilistic interpretation of aϕ

How to estimate aϕ in practice?
First resort to the following probabilistic interpretation due to
Jacka and Roberts [1995]. For any x , y P S̄ , denote by τ xy the
reaching time of y by X x , the Markov process starting from x :

τ xy ≔ inftt ě 0 : X x
t “ yu P R` \ t`8u

Proposition

For any x , y P S, we have

ϕpxq
ϕpyq “ Erexppλ0τ

x
y q1τ xy ăτ x0

s

In particular, with O ≔ tx P S : L̄px , 0q ą 0u, we have

aϕ “ max
xPS, yPO

Erexppλ0τ
x
y q1τ xy ăτ x0

s



A path method

This result leads to two methods of estimating aϕ.
The first one is through a path argument.
If γ “ pγ0, γ1, ..., γl q is a path in S , denote

Ppγq ≔
ź

kPJ0,l´1K

L̄pγk , γk`1qˇ̌
L̄pγk , γkq

ˇ̌
´ λ0

Proposition

Assume that for any y P O and x P S, we are given a path γy ,x
going from y to x. Then we have

aϕ ď
ˆ

min
yPO, xPS

Ppγy ,xq
˙´1



An example for the path method

Let G be the oriented graph induced by L on S , denote by d its
maximum outgoing degree and by D its “oriented diameter”. Let
0 ă ρ˚ ď ρ˚ be such that

@ x ­“ y P S̄ , L̄px , yq P t0u \ rρ˚, ρ
˚s

Then we get

aϕ ď
ˆ
ρ˚d

ρ˚

˙D

In the previous finite birth and death examples, it gives a bound on
aϕ exploding exponentially in D “ N, which is the true behavior
only if 0 ă r ă 1. The second method based on spectral estimates
enables to recover the fact that ϕN explodes linearly in N for r “ 1
and is bounded if r ą 1.



Spectral estimates

Assume that η is reversible for L. The operator ´K is then
diagonalizable, denote λ0 ă λ1 ď λ2 ď ¨ ¨ ¨ ď λN´1 its eigenvalues
(N “ cardpSq). For any x P S , let λ0pSztxuq be the first
eigenvalue of the pSztxuq ˆ pSztxuq minor of ´K . Finally, consider

λ1
0 ≔ min

xPO
λ0pSztxuq

Proposition

Under the reversibility assumption, we have

aϕ ď

¨
˝

ˆ
1 ´ λ0

λ1
0

˙ ź

kPJN´1K

ˆ
1 ´ λ0

λk

˙˛
‚

´1

Under appropriate assumptions, it can be extended to denumerable
state spaces.
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Denumerable birth and death (1)

Consider S ≔ N and S̄ ≔ Z`, endowed with a birth and death

generator L̄: namely of the form

@ x ­“ y P S̄ , L̄px , yq “

$
’’&
’’%

bx , if y “ x ` 1
dx , if y “ x ´ 1
´dx ´ bx , if y “ x
0 , otherwise

where pbx qxPZ`
and pdxqxPN are the positive birth and death rates,

except that b0 “ 0: 0 is the absorbing state and the restriction of
L̄ to N is irreducible.
The boundary point 8 is said to be an entrance boundary for L̄
if the following conditions are met:

8ÿ

x“1

1

πxbx

xÿ

y“1

πy “ `8 (1)

8ÿ

x“1

1

πxbx

8ÿ

y“x`1

πy ă `8 (2)



Denumerable birth and death (2)

where

@ x P N, πx ≔

#
1 , if x “ 1
b1b2¨¨¨bx´1

d2d3¨¨¨dx
, if x ě 2

The probabilistic meanings: (1): for x P Z`, X
x , does not explode

to 8 in finite time, (2): these processes “go down from infinity”.
One consequence of (2):

ř
xPN πx ă `8 and η is the

normalization of π into a probability measure.
(1) and (2) imply that the operator ´K has only eigenvalues of
multiplicity 1, say the pλnqnPZ`

in increasing order, and Gong,

Mao and Zhang [2012] have shown that they are well
approximated by the eigenvalues of the Neumann restriction of L̄
to J0,NK for large N P N. Finally, define

λ1
0 ≔ λ0pNzt1uq



Extension of the spectral estimate

Theorem

Under the assumptions (1) and (2), we have

ˆ
1 ´ λ0

λ1
0

˙ ź

nPN

ˆ
1 ´ λ0

λn

˙
ą 0

The eigenvector ϕ is bounded and its amplitude satisfies:

supxPN ϕpxq
infyPN ϕpyq “ limxÑ8 ϕpxq

ϕp1q

ď
˜ˆ

1 ´ λ0

λ1
0

˙ ź

nPN

ˆ
1 ´ λ0

λn

˙¸´1

There is a somewhat converse statement, via the Lyapounov
function approach.



Toward Hardy’s bounds

The drawback: not really quantitative! Here is a more relevant
bound:

Corollary

We have

aϕ ď

¨
˝

ˆ
1 ´ λ0

λ1
0

˙2 ź

nPNzt1u

˜
1 ´ λ0

λ
pnq
0

¸˛
‚

´1

ď

¨
˝

ˆ
1 ´ λ0

λ1
0

˙1`m ź

nPNzJ1,mK

˜
1 ´ λ0

λ
pnq
0

¸˛
‚

´1

for any given m P N, where for any n P Z`,

λpnq
≔ λ0pZ`zJ0, nKq



Hardy’s bounds

The advantage of the latter inequality, are the Hardy bounds on
the λpnq. Define

@ n P Z`, An “ sup
mąn

ÿ

kPJn`1,mK

1

πpkqdk
ÿ

lěm

πplq

It is known that

@ n P Z`, A´1
n {4 ď λ

pnq
0 ď A´1

n (3)

so m P N is chosen so that An ď 2A0 for all n ą m, then

aϕ ď

¨
˝

ˆ
1 ´ λ0

λ1
0

˙1`m ź

nPNzJ1,mK

ˆ
1 ´ An

4A0

˙˛
‚

´1



Example

Assume that there exists ρ ą 1 such that the rates satisfy

@ k P N,

"
bk`1 ď ρbk
dk`1 ě ρdk

(4)

Under the additional assumptions (1) and (2), we get

aϕ ď
˜

`
1 ´ ρ´2

˘2 ź

ně2

`
1 ´ ρ´n

˘
¸´1

As a true example, with ρ ą 1:

bn ≔

"
1 , if n ě 1
0 , if n “ 0

dn ≔

"
ρn´1 , if n ě 1
0 , if n “ 0.
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Some references

There is a huge literature on quasi-stationarity, with recent surveys
provided by Méléard and Villemonais [2012], Van Doorn and

Pollett [2013] or by the book of Collet, Mart́ınez and San

Mart́ın [2013]. All of these review the history (Yaglom, Bartlett,
Darroch-Seneta, ...). An annotated online bibliography is kept up
to date by Pollett at

http://www.maths.uf.edu.au/„pkp/papers/qsds.html.
But the quantitative aspect was not fully investigated, usually only
the asymptotical rate λ1 ´ λ0 was identified, but without the
pre-exponential factor. See nevertheless Van Doorn and Pollett

[2013], Barbour and Pollett [2010, 2012] or recent preprints of
Cloez and Thai and of Champagnat and Villemonais.
The amplitude aϕ was used by Jacka and Roberts [1995] to
investigate the process conditioned to have never been absorbed.
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Discrete Heisenbeg group

For n P Nzt1, 2u, let

Hpnq ≔

$
&
%

¨
˝

1 x z
0 1 y
0 0 1

˛
‚ : x , y , z P Zn

,
.
-

Denoting px , y , zq the above matrix, the matrix multiplication can
be written

px , y , zqpx 1, y 1, z 1q “ px ` x 1, y ` y 1, z ` z 1 ` xy 1q

Consider the symmetric generating set

S ≔ tp1, 0, 0q, p´1, 0, 0q, p0, 1, 0q, p0,´1, 0qu

and Q the uniform distribution on S .



Random walk

The associated random walk consists in sampling independent
elements according to Q and in multiplying them. At any time
k P Z`, the resulting distribution is Q˚k and if n is odd, it
converges for k large to the uniform distribution U on Hpnq.
Quantitatively order n2 steps are necessary for convergence:

Theorem

There exists constants A ă B such that

A expp´2π2k{n2q ď
›››Q˚k ´ U

›››
tv

ď B expp´2π2k{n2q

These estimates were first proved by Diaconis and Saloff-Coste
[94-96], using geometric analysis on nilpotent groups (Nash
inequalities, moderate growth conditions, ...). Related results can
be found in Stong [94-95], Alexopoulos [02], Breuillard [04-05],
Diaconis [10] or Peres and Sly [13].



An interesting matrix

The goal of this part is to present an alternative approach based
on Fourier analysis (representation theory) and absorption
estimates. In particular to quantify the fact that the convergence
of the z-coordinate should be faster (order n lnpnq, but it should be
n) than that of the x- and y -coordinates (order n2).
Everything boils down to bounding the spectrum of the matrix
Mpcq ≔ pP ` Dpcqq{2, with c P Zn, where P is the transition
kernel of the random walk on Zn and Dpcq is the diagonal matrix
with entries

@ j P Zn, Dj ,jpcq ≔ cosp2πcj{nq

Surprisingly, variants of these simple matrices come up in a variety
of solid state physics and ergodic theory problems, such as
Harper’s Operators, Hofstader’s Butterfly or the Ten Martinis
Problem of Simon. They are also connected to the fast Fourier
transform and to the Lévy’s area of Brownian motions.
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Basic formulas (1)

Let G be a finite group with pG the irreducible unitary
representations. For Q a probability on G and ρ P pG , define the
Fourier transform

pQpρq ≔
ÿ

gPG

Qpgqρpgq

The Fourier Inversion Theorem enables to reconstruct Q from
these matrices:

@ g P G , Qpgq “ 1

|G |
ÿ

ρP pG
dρtrp pQpρqρpgq˚q

where dρ is the dimension of the representation ρ.



Basic formulas (2)

The Fourier transform takes convolutions into products, thus
{Q ˚ Qpρq “ p pQpρqq2. It can also be shown (Schur’s lemma) that if
U is the uniform distribution on G , then pUpρq “ 0, except for the
trivial representation 1 of pG .
Diaconis [88] has deduced the following upper bound: for any
k P N,

›››Q˚k ´ U
›››
2

tv
ď 1

4

ÿ

ρP pG zt1u

dρ

››› pQkpρq
›››
2

where the norm of a matrix M is given by }M}2 ≔ trpMM˚q.



Representation theory for Hpnq

Fix an integer m dividing n and let V ≔ tf : Zm Ñ Cu. Consider
a, b P Zn{m and c P Zm which is prime with m. Denote

qm “ e2πi{m, qn “ e2πi{n and define ρa,b,c P GLpV q via

@ f P V , @ j P Zm,

ρa,b,cpx , y , zqf pjq ≔ qax`by
n q

cpyj`zq
m f pj ` xq

It can be checked that such ρa,b,c are distinct irreducible

representations of Hpnq. For fixed m their number is
`
n
m

˘2
φpmq

where φ is the Euler phi function. Since

ÿ

m|n

´ n

m

¯2
φpmqm2 “ n3 “ |Hpnq|

they form a complete set of irreducible representations of Hpnq.



Exemples (1)

‚ When m “ 1, this gives n2 1-dimensional representations (or
characters):

ρa,b,1px , y , zq ≔ qax`by
n

‚ Consider the uniform probability Q on S and let us compute
pQpa, b, cq. When m “ 1, we get

pQpa, b, 1q “ 1

2
cos

ˆ
2πa

n

˙
` 1

2
cos

ˆ
2πb

n

˙

When m “ 2 (so n is even), we get

pQpa, b, 1q “ 1

2

ˆ
cos

`
2πb
n

˘
cos

`
2πa
n

˘

cos
`
2πa
n

˘
´ cos

`
2πb
n

˘
˙



Exemples (2)

More generally, for m ě 3,

@ l , k P Zm, pQpa, b, 1ql ,k “ 1

4

$
’’&
’’%

2ℜpqbnqlcmq , if l “ k
qan , if k “ l ` 1
q´a
n , if k “ l ´ 1

0 , otherwise

Conjugating with the diagonal matrix p1, qan , q2an , ..., q
pm´1qa
n q

produces a matrix with 1 on the super and sub diagonals (and
q´ma
n and qma

n in the “special corners”).
‚ When n is prime, there are n2 one-dimensional 1-dimensional
representations and n ´ 1 n-dimensional representations, with
pQp0, 0, cq conjugate to Mpcq.



Proof of the theorem when n is prime (1)

When n is prime, one thus gets, for any k P N,

4
›››Q˚k ´ U

›››
2

tv
ď

ÿ

pa,bq­“p0,0q

ˆ
1

2
cos

ˆ
2πa

n

˙
` 1

2
cos

ˆ
2πb

n

˙˙2k

`
n´1ÿ

c“1

n
›››Mpcqk

›››
2

For the first sum, consider for instance the case a “ 0 and b “ 1.
If k is of order n2, say k “ ηn2, it appears the

ˆ
1

2
` 1

2
cos

ˆ
2π

n

˙˙2k

“
ˆ
1 ´ π2

n2
` O

ˆ
1

n4

˙˙2ηn2

„ expp´2π2ηq

The other terms can be similarly bounded so that in the end, the
whole first sum is of order expp´2π2ηq up to an universal factor.



Proof of the theorem when n is prime (2)

For the second sum, consider the eigenvalues of Mpcq:

1 ą β1pcq ě β2pcq ě ¨ ¨ ¨ ě βnpcq ą ´1

and denote β˚pcq ≔ maxpβ1pcq,´βnpcqq. The following bounds
enable to end the proof of the theorem, taking into account that
β˚pcq “ β˚pn ´ cq.

Proposition

There exists an universal constant θ ą 0 such that: for
0 ă c ă n{ lnpnq,

β˚pcq ď 1 ´ θ

n4{3

for n{ lnpnq ď c ă n{2,

β˚pcq ď 1 ´ 3

4

´c

n

¯2
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Symmetries and inclusions

More generally, consider for n, c P N and α P R, the diagonal
matrix Dpn, c , αq with entries

cos

ˆ
2πc

n
pj ` αq

˙
, 0 ď j ď n ´ 1

and the matrix Mpn, c , αq ≔ pP ` Dpn, c , αqq{2. Let Spn, c , αq be
the spectrum of Mpn, c , αq.
We have the following properties:

(a) @ k P N, Spn, c , αq Ă Spkn, kc , αq
(b) If n is even, Spn, c , αq “ ´S

`
n, c , α ` n

2c

˘

(c) If n is odd, Spn, c , αq Ă ´S
`
2n, 2c , α ` n

2c

˘

(a) comes from a juxtaposition of the eigenvectors, (b) from the
multiplication of an eigenvector by pp´1qj q0ďiďn´1 and (c) from
(b) and (a) with k “ 2.



Path arguments: principle

Consider on K a transition kernel on S̄ “ S \ t8u where
‚ K is irreducible on the finite set S and reversible with respect to
a positive measure µ.
‚ 8 is an absorbing point which is reachable from S .

Let be given for any x P S a path

γx ≔ px0 “ x , x1, x2, ..., x|γx | “ 8q

going from x to 8 with K pxl , xl`1q ą 0 for 0 ď l ď |γx | ´ 1. Then
the largest eigenvalue of K is bounded above by 1 ´ 1{A where

A ≔ max
xPS, yPS̄

2

µpxqK px , yq
ÿ

zPS : px ,yqPγz

|γz |µpzq



Path arguments (1)

The matrix Mpcq can be transformed into a subMarkov kernel by
considering

Kc ≔ pI ` 2Mpcqq{3

We come back to the previous situation by taking S ≔ Zn and
completing Kc into an absorbed kernel (with
Kcpx ,8q ≔ p1 ´ cosp2πcx{nqq{3). Thus it remains to find
convenient paths in order to prove:

Lemma

There exists an universal constant θ ą 0 such that for all positive
integer n and 1 ď c ď n{ lnpnq, we have

β1pcq ď 1 ´ θ
´c

n

¯4{3



Path arguments (2)

The idea is to use paths exiting Zn where the probability to go in
one step to 8 is no longer negligible (it is the weakest at 0 mod
(n{c)). So to get out of the “bad positions” (where the chain is
not sufficiently killed!), we use paths of length pn{cq2{3 to join the
nearest “good positions”. From the latter ones, just go directly to
8. For a good x , we have

Kc px ,8q ě 1

3

˜
1

2

ˆ
2πc

n

´n

c

¯2{3
˙2

` O

ˆ
2πc

n

´n

c

¯2{3
˙4

¸

„ 2π2

3

´c

n

¯2{3

The wanted bound follows easily (after an appropriate optimization
which led to the exponent 2{3).



Path arguments (3)

For n
logpnq ď c ď n

2 , we get a similar bound:

β1pcq ď 1 ´ 3

4

´c

n

¯2

The proof is the same, except that to join good positions from bad
ones, use paths of length rtn{cu{4s.

Note that these path arguments are quite robust, e.g. by real shift
of the diagonal, namely if pcosp2πcj{nqqjPZn is replaced by
pcosp2πcpα ` jq{nqqjPZn where α P R. With the inclusion
Spn, c , 0q Ă ´S

`
2n, 2c , n

2c

˘
, this the key for the minoration of the

lowest eigenvalue:



Lowest eigenvalue

Lemma

There exists an universal constant θ ą 0 such that for all positive
integer n and 1 ď c ď n{ lnpnq, we have

βnpcq ě ´1 ` θ
´c

n

¯4{3

and for n
logpnq ď c ă n

2 ,

βnpcq ě ´1 ` 3

4

´c

n

¯2
p1 ` op1qq

It ends the proof of the announced proposition.
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More precise asymptotics (1)

So we got an order n´4{3 for the spectral gap of the matrix
M ≔ Mp1q. In fact the right order is n´1 and one can go further:

Theorem

For n large, the k-th largest eigenvalue βk of M, k P N, behaves
like

βk “ 1 ´ µk

n
` o

ˆ
1

n

˙

where µk “ p2k ´ 1qπ is the k-th smallest eigenvalue of the
(harmonic oscillator) Schrödinger operator on R:

´1

4

d2

dx2
` π2x2



More precise asymptotics (2)

This is proven by showing the convergence of the corresponding
eigenfunctions, appropriately renormalized (via classical Fourier
transform analysis).
There is a similar result for the lowest eigenvalues: for n large, the
k-th smallest eigenvalue βn´k`1 of M, k P N, behaves like

βn´k`1 “ ´1 ` µk

n
` o

ˆ
1

n

˙



Scrambled diagonals

In the previous examples the diagonal was quite regular, what does
happen if one shuffles it by replacing pcosp2πcj{nqqjPZn by
pcosp2πcσpjq{nqqjPZn , where σ belongs to the permutation group
Sn?
Consider the case c “ 1. Heuristically the non-scrambled diagonal
should be the worst case, because it is constructing the safer place
for the particle not to be killed. We have not been able to prove
that, but here is a result in this direction: there exists a universal
constant c ą 0 such that for all n P Nzt1, 2u, whatever σ P Sn, the
corresponding largest eigenvalue is bounded above by 1 ´ c{n.



Quality of a niche (1)

The proof is based on a probabilistic estimate of the quality of a
niche. Consider pXtqtě0 the continuous-time random walk on Z,
with jump rates 1 between neighbors. Make it starts from 0. Fix
n P Z` and denote

τn ≔ inftt ě 0 : |Xt | “ n ` 1u

Let puxqxPJ´n,nK be some killing rates and E be an independent
exponential variable of parameter 1. An associated absorption time
τ̄ P r0,`8s is defined by

τ̄ ≔ inf

"
t ě 0 :

ż t

0
uXs

ds ě E

*

Using Ray-Knight type ideas in a discrete context, we get:



Quality of a niche (2)

Proposition

We have for n ě 1,

Prτ̄ ą τns ď Gnpvq ≔

¨
˝ ź

yPJ0,n´1K

1

1 ` pn ` 1qpn ` 1 ´ yqvy

˛
‚
1{pn`1q

where v ≔ pvy qyPJ0,nK ≔ minpu´y , uy q

The functional Gn has nice monotonicity properties:

v ď v 1 ñ Gnpvq ě Gnpv 1q
Gnpvq ď Gnpv̄q

where v̄ is the non-decreasing ordering of the entries of v . It
enables to compare niches and to prove the announced result on
the scrambled diagonals.



Convergence of the center (1)
The previous improved bounds are the key to good estimates on
the speed of convergence of the center of Hpnq, which is
tp0, 0, zq : z P Znu. Let us consider the case where n is prime. the
Fourier inversion theorem implies that for any k P Z` and z P Zn,

PrZk “ zs “ 1

n
` 1

n

n´1ÿ

c“1

e
´2πicz

n

nÿ

l“1

p pQp0, 0, cqk q1,l

where pXk ,Yk ,ZkqkPZ`
is the underlying random walk.

Indeed, a priori we have for any k P Z` and px , y , zq P Hpnq,

PrXk “ x ,Yk “ y ,Zk “ zs “ 1

n3

ÿ

ρP pHpnq

dρtr
´

pQpρqqkρppx , y , zq´1q
¯

Using the explicit description of pHpnq, we get that
ÿ

x ,yPZn

ρppx , y , zq´1q “ 0

if ρ is one of the non-trivial representations of dimension 1 and



Convergence of the center (2)

ÿ

x ,yPZn

ρppx , y , zq´1q “ ne
´2πicz

n

¨
˚̋

1 0 . . . 0
...

...
...

1 0 . . . 0

˛
‹‚

for the n-dimensional representations p0, 0, cq, with c P Znzt0u.

Corollary

There exists a universal constant θ ą 0 such that for any prime n
and any time k P Z`,

}LpZkq ´ U}tv ď ne´θk{n

It is an immediate consequence of the previous results, using for
any k P Z`, c P Znzt0u and l P J1, nK, the rough bound

ˇ̌
ˇp pQp0, 0, cqk q1,l

ˇ̌
ˇ ď β˚pcqk ď p1 ´ θ{nqk
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