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A very simple example

For fixed N € N, consider the usual discrete time random walk
(Xt)tez, on [0, N], with holding at 0 and N. The invariant (and
reversible) probability measure is the uniform distribution 7.

Qualitative result: whatever the initial condition £(Xp), £(X¢)
converges to 1 as t € Z goes to infinity.

Quantitative result:
I£(Xe) = nle, < /2exp(—s)
for

1
t > 2N+ 1)2(1 +s)



Total variation

Let us recall the definition of the total variation norm: for any

signed measure m on a discrete space,

[ml

= 2sup|m(A)]

AcS
= sup m(f)
feF, |f|,<1

= D Im(x)]

xeS

Mixing time associated to (L(Xt))tez, :

Tmix

sup inf{t € Zy : |L(Xe) — nll, < 1}

L(Xo)



In the previous example: T < (N 4+ 1)%(1 +1In(2))/4. Thisis a
refined bound using the whole spectral decomposition (in particular
the boundedness of the eigenvectors). If just the spectral gap is
used: Tonix < (N + 1)2(1 + In(N + 1)) /4.

What happens if 0 is absorbing?
Then L£(X¢) — do. This can be quantified also, using the first
Dirichlet eigenvalue. Our interest here:

|nf{t € Z+ . Xf = 0}
L(X¢|T > t)

T

1223

Then (if £L(Xp) = do!), qualitative result:

[im t = UV
t.‘—>-i-00'u



Quasi-stationary measure

where the probability v on [1, N] is called the quasi-stationary
distribution and is given by

o 2N +1—2x)7
v(x) = Z 1cos< 20N T 1) >

with Z71 = 2tan (W) the normalizing constant.
If £L(Xp) = v, then puy = v for all t = 0 and

Plr>t] = <cos<2Nﬂ+1>>t

(geometric distribution)

Our purpose: to obtain corresponding quantitative results, for
instance Tguasi—mix < CSt NZIn(N) in the above case.

We will rather work in the continuous time setting, where results
are simpler to state.
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The framework

The whole finite state space is S := S 1 {0}, where 0 is the
absorbing point. It means that S is endowed with a Markov
generator matrix L := ([(X,y))x7yeg whose restriction to S x S is
irreducible and which is such that

VxeS§, L(0,x) = 0
IxeS: L 0

If 1o is an initial distribution on S, we can associate a Markov
process X = (X;)t=0. The absorbing time 7 and conditional
distribution iy, for t = 0, are constructed as before. There exists a
quasi-stationary distribution v such that

lim = v
t—>+oout

We want to quantify this convergence.



Let K be the S x S minor of L. It can be written under the
Schrodinger form L — V where V(x) = L(x,0), L an irreducible
Markov generator on S. Let 1 be the invariant probability for L.
Perron-Frobenius theory: there are A\g > 0 and a positive function
 such that

Klp] = —dop

Adjoint L* of L in L?(n): still a Markov generator given by

Vxy€S, L*(Xay) = %L(yax)

K* = L* — V and there is a positive function ¢* such that

K[p*] = —og*



Quasi-stationary distribution

Different normalizations: n[¢*] = 1 and n[pe*] = 1.
We have v = ¢* - n: it can be easily checked that for any function
fon S, v[K[f]] = —Xov[f]. As a consequence, for any t > 0,

vexp(tK) = exp(—Aot)v
namely, if £(Xo) = v, then
L(X¢) = exp(—Aot)v + (1 — exp(—Aot))do
In particular
P,[r > t] = P,[X; € S] = exp(—Aot)

(exponential distribution).
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Doob transform

Consider the Markovian operator L on S defined by its off-diagonal
entries via

~

VX:yGS, L(X7}/) = L(Xay)

~—

(v
(x

S

S

(the diagonal entries are such the row sums vanish).
It is called the Doob transform of L through ¢. We have for any

function f,
1
[f] = ;(L — V + Xol)[pf]

L is irreducible and its invariant measure 7] is given by

r~¢

VxeS, nx) = ex)e*(x)n(x)
Indeed:
e M (L= V +X)ef]] = nle*(L—V + Xo)[ef]]

= nlpf(L* =V + Xo)[¢*]]
=0



Reduction to ergodicity

Let (IBt)t;o the ergodic semi-group generated by L. Its interest:

Theorem

For any probability measure pg on S and for any t = 0, we have

@A

S B
20, HoFe — 1

~ 8 ¥
foPe—i1| < ue—vl,, < 22
tv (20N tv

where [ig is the probability on S whose density with respect to g
is proportional to . In particular the asymptotic exponential rate

of convergence of || — v, and Hﬁoﬁt - ﬁH are the same.
tv

We used the notation

pv = maxp(x) @ = minp(x)

x€eS x€S



Amplitude

Thus it appears that the first Dirichlet eigenfunction ¢ is the main
ingredient needed to reduce the quantitative study of the
convergence to quasi-stationarity to that of the convergence to
equilibrium. A crucial quantity seems to be the amplitude of :

Pv

a -—
%2
P A

The convergence to equilibrium has been intensively investigated,
through various approaches: Lyapounov functions, coupling, strong
stationary times, isoperimetry, spectral theory, functional
inequalities... The above bounds enable to recycle them for
convergence to quasi-stationarity.
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Symmetrization

The simplest of these methods: the L2 approach.

Let L _be the additive symmetrization of Lin L2(7): itis

(L + L*)/2, where L* is the adjoint operator of L in L2(7j). By
self-adjointness, Lis diagonalizable in R. Let X > 0 stand for the
smallest non-zero eigenvalue (spectral gap) of ~L.

Theorem

For any t = 0, we have

sup [pe — vy —eXP
1P (0p*n) A

where P stands for the set of probability measures on S.




Logarithmic Sobolev inequality

It is possible to improve the pre-exponential factor in the above
result, but at the expense of the rateA)\, via the logarithmic
Sobolev inequalities associated to L.

Let @ > 0 be the largest constant such that for all f € F,

) P\
&Y 2601 <WZ]> * (X))

< QL (F) = F))? " ()ely)n(x)L(x, y)

x,y€S

Then we have

nlee*] \ e ~
sup |ur — v, < 2|n< > exp(—(a/2)t
sup =, \/ k) S en(-(@/2))

This is interesting for not too large t and when & can be computed
(e.g. by tensorization).



Reversible case

Assume that 7 is reversible for L:

Vx,yeS, nx)Llxy) = nly)Lly,x)

Then —K = V — L is diagonalizable in R, we have already met its
smallest eigenvalue A\g. Let A1 > A\g be the second eigenvalue. The
spectral gap bound can be rewritten:

Theorem

Under the reversibility assumption, for any t > 0, we have

1 o,
sup —v < ————exp(— (A1 — Ao)t
e ”/11' Htv (30277)/\ R ( ( 1 0) )

\/UIA <z—z>2exp(—()\1 —Xo)t)

(In this situation ¢* = ).
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A finite birth and death example with Ay ~ A\; — A (1)

The 3 first examples are birth and death processes on

S := [0, N], with N € N, absorbing at 0. So L gives positive rates
only to the oriented edges (x,x + 1) and (x + 1, x) where

x € [1, N — 1] and admits a reversible probability 7. Assume that
the killing rate at 1 is 1, namely V(1) = L(1,0) = 1. The other
values of V are taken to be zero.

Specifically for the first example, we choose

Vxe[l,N-2], L(x,x+1) = L(x+1,x) =1
LN—1,N) = 1 and L(N,N—1) = 2

The reversible probability 77 is almost the uniform distribution on
S =[1,N] (N has a weight divided by 2). The function ¢ is
defined by
1
VxeS, p(x) = > sin(mx/(2N))

where Z is the renormalization constant such that n[¢?] = 1.



A finite birth and death example with Ay ~ A\; — A (2)

We compute that A\g and A; — Ao are of the same order (as
N — o0), meaning that absorption and convergence to
quasi-stationarity happen at similar rates:

2

_ -2
Ao = 4N2(1—|—(’)(N )
72 o
A — X = 2m(1+O(N ))
Furthermore, we have
2N _
2 = (1+ON)

It follows from the previous bound that for any given s > 0, if
s

2
272 N

5 2
then

4 ~
sup e — vy, < —(1+O(N))exp(—s)
HoEP m



A finite birth and death example with \g « A\; — Ag (1)

It is similar to the previous example, except that for some r > 1,
we take

Lix,x+1) = r
Lix+1,x) =1
LIN-=1,N) = r and L(N,N—-1) = 1+

v xe[1,N-2], {

The reversible probability 7 is given by

=1 ,x—1 ;
r JifxeN—-1
VxeS, — nx) = { o v e :[[N ]]

2rN —r—1

More involved computations are needed to get information on the
eigenvalues and eigenfunctions, but finally we get, for large N,

1 1
Ao~ §(f+1)(f—1)2m
2, = ——=(1+0(r ")

r—1



A finite birth and death example with A\g < A\; — g (2)

A1 > (1 — \/7)2
It implies that
)\1 —)\0 ~ )\1 > )\0

meaning that convergence to quasi-stationarity happens at a much
faster rate than absorption. It follows that for any fixed s > 0, if
for N large enough we consider the time

1
then
r2
sup, lpe = vl < ro1) (140(1)) exp(—s)

It can be shown that the relaxation time to quasi-stationarity is at
least of order N, so the order is optimal here.



A finite birth and death example with A\g > A; — g (1)

The setting is as in the previous example, except that now r < 1.
But the behavior of our quantities of interest are very different for
large N:

a, < . ’j:\(IN 72 (1+0(1))
X~ (1=+/r)
and
A—DPVT o)) < a— o< 20202 2 o)
2N2 4N2

In particular absorption happens at a much faster rate than
convergence to quasi-stationarity, since A\g > A1 — Ap.



A finite birth and death example with A\g > A; — g (2)

Taking furthermore into account that 1, ~ (1 — r)rV=1, we get
44/1 + rN?
sup ”:ut - VHtv < (1 . r)5/2r3(/\/_1)/2 (1 + O(l))

Ho€EP

— r 2 r
e

In particular, for any given ¢ > 0, if we consider

In(1/r)
tN = 3(1 =+ €)mN3
then
lim sup [pey —v[,, = O
—00

Ho€EP



A non-reversible example

For fixed N € N, consider S = Zy endowed with the (turning)
generator L
1 Jify=x+1
V x,y € Zp, L(x,y) = -1 ,ify=x
0 , otherwise
whose invariant probability measure 7 is the uniform distribution.

The potential V takes the value 1 at 0 and 0 otherwise.
We can show that

272
sup s — vl < 2VAL+o()esp (1 + ol1)e)
HoEP

In particular, for any given ¢ > 0, if we consider

NZIn(N)
ty = (1 _
N (1+¢) 472
then
lim sup ey — vl = O

D poeP
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Probabilistic interpretation of a,

How to estimate a, in practice?

First resort to the following probabilistic interpretation due to
Jacka and Roberts [1995]. For any x,y € S, denote by 7, the
reaching time of y by X*, the Markov process starting from x:

T, = inf{t>0: X =y} € Ry u{+0}

Proposition

For any x,y € S, we have

(x)
y)

S

= Elexp(lo7y)Llrx<r]

5

In particular, with O = {x € S : L(x,0) > 0}, we have

a, = Xe?,ay)éoE[eXp(AOT;)lTqufT]




A path method

This result leads to two methods of estimating a,.
The first one is through a path argument.
If v = (v0,71,-..,7) is a path in S, denote

Z(’Ykafyk-i-l)
P() = s
kE[[](s,_i[—l}] ‘L(/Yk7f)/k)| - A0

Proposition

Assume that for any y € O and x € S, we are given a path vy,
going from y to x. Then we have

-1
a, < ( min P(’y%x))

ye0, xeS




An example for the path method

Let G be the oriented graph induced by L on S, denote by d its
maximum outgoing degree and by D its “oriented diameter”. Let
0 < p« < p* be such that

Vx=yeS§, Lix,y) € {0} u[psp*]

* D
—e
P
In the previous finite birth and death examples, it gives a bound on
a, exploding exponentially in D = N, which is the true behavior
only if 0 < r < 1. The second method based on spectral estimates

enables to recover the fact that ¢y explodes linearly in N for r =1
and is bounded if r > 1.

Then we get




Spectral estimates

Assume that 7 is reversible for L. The operator —K is then
diagonalizable, denote A\g < A1 < Ao < -+ < Ay_1 its eigenvalues
(N = card(S)). For any x € S, let A\o(S\{x}) be the first
eigenvalue of the (S\{x}) x (S\{x}) minor of —K. Finally, consider

Xo = mindo(S\{x})

Proposition

Under the reversibility assumption, we have

Under appropriate assumptions, it can be extended to denumerable
state spaces.
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Denumerable birth and death (1)

Consider S := N and S := 7., endowed with a birth and death
generator L: namely of the form

by Jify=x+1

) B d, Jify=x-1
Vx=ye€eSs, L(X,}/) = —d.— b ifi//:X
0 , otherwise

where (by)xez, and (dx)xen are the positive birth and death rates,
except that by = 0: 0 is the absorbing state and the restriction of

L to N is irreducible.

The boundary point o is said to be an entrance boundary for [

if the following conditions are met:

0 1 X
= 1
= 7TXbX ;1 Ty +00 ( )
0 1 0
Z Z T, < 40 (2)
x=1 TrXbX y=x+1



Denumerable birth and death (2)

where

1 Jifx =1

V xe N, Ty = b1by-+-by_1 x>0
hdsd, T X=Z

The probabilistic meanings: (1): for x € Z,, X*, does not explode
to oo in finite time, (2): these processes “go down from infinity”.
One consequence of (2): >, . 7x < +00 and 7 is the
normalization of 7 into a probability measure.

(1) and (2) imply that the operator —K has only eigenvalues of
multiplicity 1, say the ()\,,),,ez+ in increasing order, and Gong,
Mao and Zhang [2012] have shown that they are well
approximated by the eigenvalues of the Neumann restriction of L
to [0, N] for large N € N. Finally, define

Ao = Ao(N\{1})



Extension of the spectral estimate

Under the assumptions (1) and (2), we have

Ao Ao
(-)I(-5) = o
neN

The eigenvector o is bounded and its amplitude satisfies:

SUpxen (X)  limy o0 0(x)

infyen () v(1)

(6-2)mG-2))°

There is a somewhat converse statement, via the Lyapounov
function approach.

N




Toward Hardy's bounds

The drawback: not really quantitative! Here is a more relevant

bound:
We have
Ao\ Ao
390 < 1-— )\—/ H 1-— W
0/ neN\{1} Ao
-1
< (1 Y ) I (-
0 neN\[L,m] Ao
for any given m € N, where for any ne Z.,
A= Xo(Z4\[0, A)




Hardy's bounds

The advantage of the latter inequality, are the Hardy bounds on
the A("). Define

VneZs, A, = sup Z L Zﬂ'(/)

m=n ke[[n+1,m] ﬂ-(k)dk I=Zm

It is known that

VneZy,  A7l4 < A < At (3)

n

so m € N is chosen so that A, < 2Ag for all n > m, then

)\0 1+m An

neN\[1,m]

-1




Assume that there exists p > 1 such that the rates satisfy

b1 < pby
V keN, 4
{ der1 = pdx *)

Under the additional assumptions (1) and (2), we get

% < <(1—p—2)2ﬂ(1—p‘”>>_1

n=2

As a true example, with p > 1:

. 1 ,ifn>1
by = {0 ,ifn=20
n—1 .
B P cifn>1
dn = {0 L if n=0.
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Some references

There is a huge literature on quasi-stationarity, with recent surveys
provided by Méléard and Villemonais [2012], Van Doorn and
Pollett [2013] or by the book of Collet, Martinez and San
Martin [2013]. All of these review the history (Yaglom, Bartlett,
Darroch-Seneta, ...). An annotated online bibliography is kept up
to date by Pollett at

http://www.maths.uf.edu.au/~pkp/papers/qgsds.html.

But the quantitative aspect was not fully investigated, usually only
the asymptotical rate A; — A\¢ was identified, but without the
pre-exponential factor. See nevertheless Van Doorn and Pollett
[2013], Barbour and Pollett [2010, 2012] or recent preprints of
Cloez and Thai and of Champagnat and Villemonais.

The amplitude a, was used by Jacka and Roberts [1995] to
investigate the process conditioned to have never been absorbed.
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Discrete Heisenbeg group

For n e N\{1, 2}, let

1 x z
H(n) = 01 vy |:xyz€eZy,
0 01
Denoting (x,y, z) the above matrix, the matrix multiplication can
be written
(X7y7z)(xlaylaz/) = (X+X/,y+y',z+z'+xy')

Consider the symmetric generating set
S = {(1,0,0),(-1,0,0),(0,1,0),(0,—1,0)}

and @ the uniform distribution on S.



Random walk

The associated random walk consists in sampling independent
elements according to @ and in multiplying them. At any time
k € 7, the resulting distribution is @** and if n is odd, it
converges for k large to the uniform distribution U on H(n).
Quantitatively order n? steps are necessary for convergence:

There exists constants A < B such that

Aexp(—212k/n?) < HQ*k—UHt < Bexp(—212k/n?)

These estimates were first proved by Diaconis and Saloff-Coste
[94-96], using geometric analysis on nilpotent groups (Nash
inequalities, moderate growth conditions, ...). Related results can
be found in Stong [94-95], Alexopoulos [02], Breuillard [04-05],
Diaconis [10] or Peres and Sly [13].



An interesting matrix

The goal of this part is to present an alternative approach based
on Fourier analysis (representation theory) and absorption
estimates. In particular to quantify the fact that the convergence
of the z-coordinate should be faster (order nIn(n), but it should be
n) than that of the x- and y-coordinates (order n?).

Everything boils down to bounding the spectrum of the matrix
M(c) == (P + D(c))/2, with ¢ € Z,, where P is the transition
kernel of the random walk on Z, and D(c) is the diagonal matrix
with entries

V j€ZLp, Djj(c) = cos(2mcj/n)

Surprisingly, variants of these simple matrices come up in a variety
of solid state physics and ergodic theory problems, such as
Harper's Operators, Hofstader's Butterfly or the Ten Martinis
Problem of Simon. They are also connected to the fast Fourier
transform and to the Lévy's area of Brownian motions.
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Basic formulas (1)

Let G be a finite group with G the irreducible unitary
representations. For @ a probability on G and p € G, define the
Fourier transform

Qp) = Y Qg)r(e)

geG

The Fourier Inversion Theorem enables to reconstruct @ from
these matrices:

Ve Qe = g X duR0e))
peG

where d, is the dimension of the representation p.



Basic formulas (2)

Mourier t@nsform takes convolutions into products, thus

Q * Q(p) = (Q(p))?. It can also be shown (Schur's lemma) that if
U is the uniform distribution on G, then U(p) = 0, except for the
trivial representation 1 of G.

Diaconis [88] has deduced the following upper bound: for any
ke N,

oo

Ll afeuf

peG\(1)

where the norm of a matrix M is given by [M|? = tr(MM*).



Representation theory for H(n)

Fix an integer m dividing n and let V = {f : Z,, — C}. Consider
a,b€Zymand c € Zp which is prime with m. Denote
Gm = €2™/m g, = e2™/" and define Pabc € GL(V) via

VeV, Vj€lm,

Pabc(6, v, 2)F() = g T E( 4 x)

It can be checked that such p, . are distinct irreducible

representations of H(n). For fixed m their number is (%)2 B(m)

where ¢ is the Euler phi function. Since

m|n

they form a complete set of irreducible representations of H(n).



Exemples (1)

e When m = 1, this gives n? 1-dimensional representations (or
characters):

papi(X,y,z) = q>»

e Consider the uniform probability @ on S and let us compute
Q(a,b,c). When m =1, we get

~ 1 2 1 2wb
Q(a,b,1) = 5 Cos (?) + 5 cos (%)

When m = 2 (so n is even), we get

o - 42 %)

2 \ cos (2’””)



Exemples (2)

More generally, for m > 3,

2R(qnqm) . if 1=k

~ 1] ¢? Jifk=1+1
VI,k€Zm Qabl)x = 1) q.° Jifk=1-1
0 , otherwise

Conjugating with the diagonal matrix (1, g2, ¢%?, ..., q,(,m_l)a)
produces a matrix with 1 on the super and sub diagonals (and
g, ™ and ¢ in the “special corners").

e When n is prime, there are n? one-dimensional 1-dimensional
representations and n — 1 n-dimensional representations, with

Q(0,0, ¢) conjugate to M(c).



Proof of the theorem when n is prime (1)
When n is prime, one thus gets, for any k € N,

’ < Z 1cos & —l—lcos @ :
v ) 2 n 2 n

(a,b)=(0,0

+§nHM(c)kH2

4@ —u

For the first sum, consider for instance the case a =0 and b = 1.
If k is of order n?, say k = nn?, it appears the

11 2\ 2K 72 1\\2""
(5*5°°S<7>> (17“)(?))

~ exp(—27%1)
The other terms can be similarly bounded so that in the end, the
whole first sum is of order exp(—2727) up to an universal factor.



Proof of the theorem when n is prime (2)

For the second sum, consider the eigenvalues of M(c):
1> pi(c) = fac) = -+ = Bp(c) > —1

and denote $*(c) := max(B1(c), —Bn(c)). The following bounds
enable to end the proof of the theorem, taking into account that

B*(c) = B*(n— o).

Proposition

There exists an universal constant @ > 0 such that: for
0 < c < n/In(n),
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Symmetries and inclusions

More generally, consider for n,c € N and o € R, the diagonal
matrix D(n, ¢, ) with entries

2
cos<£(j+a)>, 0<j<n-1
n

and the matrix M(n, c,a) = (P + D(n,c,a))/2. Let S(n,c,a) be
the spectrum of M(n, c, ).
We have the following properties:

(a) VkeN, S(n,c,a) c S(kn, ke, a)

(b) If nis even, S(n,c,a) = =S (n, c,a+ 2_”6)

(c) If nis odd, S(n,c,a) € =S (2n, 2¢, a0+ 2_"C)

(a) comes from a juxtaposition of the eigenvectors, (b) from the

multiplication of an eigenvector by ((—1))o<i<n_1 and (c) from
(b) and (a) with k = 2.



Path arguments: principle

Consider on K a transition kernel on S = S (s {00} where

e K is irreducible on the finite set S and reversible with respect to
a positive measure .

e o0 is an absorbing point which is reachable from S.

Let be given for any x € S a path
Y 1= (X0 = X, X1, X2, 05 X|y | = 0)

going from x to o0 with K(x;,x/41) > 0 for 0 </ < |yx| — 1. Then
the largest eigenvalue of K is bounded above by 1 — 1/A where

2
A max ———— |’Yz| ,U'(Z)
xeS$, yeS ,u(x)K(X,}’) zeS:g}’)E'ﬁ



Path arguments (1)

The matrix M(c) can be transformed into a subMarkov kernel by
considering

Ko = (I+2M(c))/3

We come back to the previous situation by taking S := Z,, and
completing K into an absorbed kernel (with

Kc(x,00) := (1 — cos(2mex/n))/3). Thus it remains to find
convenient paths in order to prove:

There exists an universal constant § > 0 such that for all positive
integer n and 1 < ¢ < n/In(n), we have

Bi(c) < 1—9<£>4/3

n




Path arguments (2)

The idea is to use paths exiting Z, where the probability to go in
one step to oo is no longer negligible (it is the weakest at 0 mod
(n/c)). So to get out of the “bad positions” (where the chain is
not sufficiently killed!), we use paths of length (n/c)%3 to join the
nearest “good positions”. From the latter ones, just go directly to
00. For a good x, we have

e = S CEE) o (07)
2m2 1cN\2/3
3 ()

~

n

The wanted bound follows easily (after an appropriate optimization
which led to the exponent 2/3).



Path arguments (3)

For @ < ¢ < 3, we get a similar bound:
3 /c\2
,8]_((:) 4 \n

The proof is the same, except that to join good positions from bad
ones, use paths of length [|n/c|/4].

Note that these path arguments are quite robust, e.g. by real shift
of the diagonal, namely if (cos(27¢j/n))jez, is replaced by
(cos(2mc(av + j)/n))jez, where o € R. With the inclusion
S(n,c,0) c =S (2n,2c, 2—”C) this the key for the minoration of the
lowest eigenvalue:



Lowest eigenvalue

Lemma

There exists an universal constant § > 0 such that for all positive
integer n and 1 < ¢ < n/In(n), we have
c\4/3
Ba(c) = —1+6 (E)

n n
andforwéc<§,

Balc) = —1+%<%)2(1+o(1))

It ends the proof of the announced proposition.
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More precise asymptotics (1)

So we got an order n—%/3 for the spectral gap of the matrix
M := M(1). In fact the right order is n=* and one can go further:

Theorem

For n large, the k-th largest eigenvalue 3 of M, k € N, behaves

like
1
B = 1-E 4o (—)
n n
where py = (2k — 1)m is the k-th smallest eigenvalue of the

(harmonic oscillator) Schrédinger operator on R:

1 d?
—=— +mx°




More precise asymptotics (2)

This is proven by showing the convergence of the corresponding
eigenfunctions, appropriately renormalized (via classical Fourier
transform analysis).

There is a similar result for the lowest eigenvalues: for n large, the
k-th smallest eigenvalue 8,_x.1 of M, k € N, behaves like

1
Boksn = —1+%% 40 <n>



Scrambled diagonals

In the previous examples the diagonal was quite regular, what does
happen if one shuffles it by replacing (cos(27¢j/n))jez, by
(cos(2mco(j)/n))jez,, where o belongs to the permutation group
Sn?

Consider the case ¢ = 1. Heuristically the non-scrambled diagonal
should be the worst case, because it is constructing the safer place
for the particle not to be killed. We have not been able to prove
that, but here is a result in this direction: there exists a universal
constant ¢ > 0 such that for all n € N\{1,2}, whatever o € S,, the
corresponding largest eigenvalue is bounded above by 1 — ¢/n.



Quality of a niche (1)

The proof is based on a probabilistic estimate of the quality of a
niche. Consider (X;):=>0 the continuous-time random walk on Z,
with jump rates 1 between neighbors. Make it starts from 0. Fix
ne€ Zy and denote

T = inf{t =0 :|X¢| =n+1}

Let (Ux)xe[—n,n be some killing rates and £ be an independent
exponential variable of parameter 1. An associated absorption time
7 € [0, +00] is defined by

t
T o= inf{t>0 : j qudSZS}
0

Using Ray-Knight type ideas in a discrete context, we get:



Quality of a niche (2)

Proposition
We have for n > 1,

1/(n+1)
1
]P)['?_— > Tn] < Gn(v) = H
yelon1] 1+ (n+1)(n+1-y)y
where v = (vy)yefo,n] = min(u—y, uy)

The functional G, has nice monotonicity properties:

vV = Guv) = G,(V)
Gn(v) < Gn(V)
where V is the non-decreasing ordering of the entries of v. It

enables to compare niches and to prove the announced result on
the scrambled diagonals.



Convergence of the center (1)

The previous improved bounds are the key to good estimates on
the speed of convergence of the center of H(n), which is

{(0,0,z) : z€ Zp}. Let us consider the case where n is prime. the
Fourier inversion theorem implies that for any k € Z, and z € Z,,

n

P[Z = z] = —+ Ze‘23’CZZ Q(0,0, c)%)1,

I=1

where (Xi, Yi, Zk)kez, is the underlying random walk.
Indeed, a priori we have for any k € Z4 and (x,y,z) € H(n),

PXe = Ye=y.Ze=2) = = O dytr (Qo)ol(xy.2)))
peH(n)

Using the explicit description of ltl(n) we get that

Z p((X,y,Z)_l) =0

X,Y€Zn

if p is one of the non-trivial representations of dimensiecn 1 and



Convergence of the center (2)

Z p((x,y,z)_l) = nhe - Do :
XY€Ln 10 ...0

for the n-dimensional representations (0,0, ¢), with ¢ € Z,\{0}.

There exists a universal constant 6 > 0 such that for any prime n
and any time ke Z,

1£(Z) = Uly, < ne "

It is an immediate consequence of the previous results, using for
any k€ Z,, c€ Z,\{0} and | € [1, n], the rough bound

(Q(0,0,¢)%)1,| < B*(c)k < (1—6/n)*



	Convergence to quasistationarity
	Qualitative versus quantitative convergence
	Finite quasi-stationarity
	A reduction by comparison
	Approach by functional inequalities
	Some examples
	Estimates on the amplitude a
	Birth and death processes with  as entrance boundary
	Some references

	Heisenberg random walks
	Motivations and main result
	Representation theory
	Eigenvalues bounds
	Further results


