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Discrete Heisenbeg group

For n P Nzt1, 2u, let

Hpnq ≔

$
&
%

¨
˝

1 x z
0 1 y
0 0 1

˛
‚ : x , y , z P Zn

,
.
-

Denoting px , y , zq the above matrix, the matrix multiplication can
be written

px , y , zqpx 1, y 1, z 1q “ px ` x 1, y ` y 1, z ` z 1 ` xy 1q

Consider the symmetric generating set

S ≔ tp1, 0, 0q, p´1, 0, 0q, p0, 1, 0q, p0,´1, 0qu

and Q the uniform distribution on S .



Random walk

The random walk associated consists in sampling independent
elements according to Q and in multiplying them. At any time
k P Z`, the resulting distribution is Q˚k and if n is odd, it
converges for k large to the uniform distribution U on Hpnq.
Quantitatively order n2 steps are necessary for convergence:

Theorem

There exists constants A ă B such that

A expp´2π2k{n2q ď
›››Q˚k ´ U

›››
tv

ď B expp´2π2k{n2q

These estimates were first proved by Diaconis and Saloff-Coste
[94-96], using geometric analysis on nilpotent groups (Nash
inequalities, moderate growth conditions, ...). Related results can
be found in Stong [94-95], Alexopoulos [02], Breuillard [04-05],
Diaconis [10] or Peres and Sly [13].



An interesting matrix

The goal of the talk is to present an alternative approach based on
Fourier analysis (representation theory). In particular to quantify
the fact that the convergence of the z-coordinate should be faster
(order n lnpnq, but it should be n) than that of the x- and
y -coordinates (order n2).
Everything boils down to bounding the spectrum of the matrix
Mpcq ≔ pP ` Dpcqq{2, with c P Zn, where P is the transition
kernel of the random walk on Zn and Dpcq is the diagonal matrix
with entries

@ j P Zn, Dj ,jpcq ≔ cosp2πcj{nq

Surprisingly, these simple matrices come up in a variety of solid
state physics and ergodic theory problems, such as Harper’s
Operators, Hofstader’s Butterfly or the Ten Martinis Problem of
Simon. They are also connected to the fast Fourier transform and
to the Lévy’s area of Brownian motions.



Basic formulas (1)

Let G be a finite group with pG the irreducible unitary
representations. For Q a probability on G and ρ P pG , define the
Fourier transform

pQpρq ≔
ÿ

gPG

Qpgqρpgq

The Fourier Inversion Theorem enables to reconstruct Q from
these matrices:

@ g P G , Qpgq “
1

|G |

ÿ

ρP pG
dρtrp pQpρqρpgq˚q

where dρ is the dimension of the representation ρ.



Basic formulas (2)

The Fourier transform takes convolutions into products, thus
{Q ˚ Qpρq “ p pQpρqq2. It can also be shown (Schur’s lemma) that if
U is the uniform distribution on G , then pUpρq “ 0, except for the
trivial representation 1 of pG .
Diaconis [88] has deduced the following upper bound: for any
k P N,

›››Q˚k ´ U
›››
2

tv

ď
1

4

ÿ

ρP pGzt1u

dρ

›››pQkpρq
›››
2

where the norm of a matrix M is given by }M}2 ≔ trpMM˚q.



Representation theory for Hpnq

Fix an integer m dividing n and let V ≔ tf : Zm Ñ Cu. Consider
a, b P Zn{m and c P Zm which is prime with m. Denote

qm “ e2πi{m, qn “ e2πi{n and define ρa,b,c P GLpV q via

@ f P V , @ j P Zm,

ρa,b,cpx , y , zqf pjq ≔ qax`by
n q

cpyj`zq
m f pj ` xq

It can be checked that such ρa,b,c are distinct irreducible

representations of Hpnq. For fixed m their number is
`
n
m

˘2
φpmq

where φ is the Euler phi function. Since

ÿ

m|n

´ n

m

¯2

φpmqm2 “ n3 “ |Hpnq|

they form a complete set of irreducible representations of Hpnq.



Exemples (1)

‚ When m “ 1, this gives n2 1-dimensional representations (or
characters):

ρa,b,1px , y , zq ≔ qax`by
n

‚ Consider the uniform probability Q on S and let us compute
pQpa, b, cq. When m “ 1, we get

pQpa, b, 1q “
1

2
cos

ˆ
2πa

n

˙
`

1

2
cos

ˆ
2πb

n

˙

When m “ 2 (so n is even), we get

pQpa, b, 1q “
1

2

ˆ
cos

`
2πb
n

˘
cos

`
2πa
n

˘

cos
`
2πa
n

˘
´ cos

`
2πb
n

˘
˙



Exemples (2)

More generally, for m ě 3,

@ l , k P Zm, pQpa, b, cql ,k “
1

4

$
’’&
’’%

2ℜpqbnq
lc
mq , if l “ k

qan , if k “ l ` 1
q´a
n , if k “ l ´ 1

0 , otherwise

Conjugating with the diagonal matrix p1, qan , q
2a
n , ..., q

pm´1qa
n q

produces a matrix with 1 on the super and sub diagonals (and
q´ma
n and qma

n in the “special corners”).
‚ When n is prime, there are n2 one-dimensional 1-dimensional
representations and n ´ 1 n-dimensional representations, with
pQp0, 0, cq conjugate to Mpcq.



Proof of the theorem when n is prime (1)

When n is prime, one thus gets, for any k P N,

4
›››Q˚k ´ U

›››
2

tv

ď
ÿ

pa,bq­“p0,0q

ˆ
1

2
cos

ˆ
2πa

n

˙
`

1

2
cos

ˆ
2πb

n

˙˙2k

`
n´1ÿ

c“1

n
›››Mpcqk

›››
2

For the first sum, consider for instance the case a “ 0 and b “ 1.
If k is of order n2, say k “ ηn2, it appears the

ˆ
1

2
`

1

2
cos

ˆ
2π

n

˙˙2k

“

ˆ
1 ´

π2

n2
` O

ˆ
1

n4

˙˙2ηn2

„ expp´2π2ηq

The other terms can be similarly bounded so that in the end, the
whole first sum is of order expp´2π2ηq up to an universal factor.



Proof of the theorem when n is prime (2)

For the second sum, consider the eigenvalues of Mpcq:

1 ą β1pcq ě β2pcq ě ¨ ¨ ¨ ě βnpcq ą ´1

and denote β˚pcq ≔ maxpβ1pcq,´βnpcqq. The following bounds
enable to end the proof of the theorem, taking into account that
β˚pcq “ β˚pn ´ cq.

Proposition

There exists an universal constant θ ą 0 such that: for
0 ă c ă n{ lnpnq,

β˚pcq ď 1 ´
θ

n4{3

for n{ lnpnq ď c ă n{2,

β˚pcq ď 1 ´
3

4

´c

n

¯2



Symmetries and inclusions

More generally, consider for n, c P N and α P R, the diagonal
matrix Dpn, c , αq with entries

cos

ˆ
2πc

n
pj ` αq

˙
, 0 ď j ď n ´ 1

and the matrix Mpn, c , αq ≔ pP ` Dpn, c , αqq{2. Let Spn, c , αq be
the spectrum of Mpn, c , αq.
We have the following properties:

(a) @ k P N, Spn, c , αq Ă Spkn, kc , αq
(b) If n is even, Spn, c , αq “ ´S

`
n, c , α ` n

2c

˘

(c) If n is odd, Spn, c , αq Ă ´S
`
2n, 2c , α ` n

2c

˘

(a) comes from a juxtaposition of the eigenvectors, (b) from the
multiplication of an eigenvector by pp´1qj q0ďiďn´1 and (c) from
(b) and (a) with k “ 2.



Path arguments: principle

Consider on K a transition kernel on S̄ “ S \ t8u where
‚ K is irreducible on the finite set S and reversible with respect to
a positive measure µ.
‚ 8 is an absorbing point which is reachable from S .

Let be given for any x P S a path

γx ≔ px0 “ x , x1, x2, ..., x|γx | “ 8q

going from x to 8 with K pxl , xl`1q ą 0 for 0 ď l ď |γx | ´ 1. Then
the largest eigenvalue of K is bounded above by 1 ´ 1{A where

A ≔ max
xPS, yPS̄

2

µpxqK px , yq

ÿ

zPS : px ,yqPγz

|γz |µpzq



Path arguments (1)

The matrix Mpcq can be transformed into a subMarkov kernel by
considering

Kc ≔ pI ` 2Mpcqq{3

We come back to the previous situation by taking S ≔ Zn and
completing Kc into an absorbed kernel (with
Kcpx ,8q ≔ p1 ´ cosp2πcx{nqq{3). Thus it remains to find
convenient paths in order to prove:

Lemma

There exists an universal constant θ ą 0 such that for all positive
integer n and 1 ď c ď n{ lnpnq, we have

β1pcq ď 1 ´ θ
´c

n

¯4{3



Path arguments (2)

The idea is to use paths exiting Zn where the probability to go in
one step to 8 is no longer negligible (it is the weakest at 0 mod
(n{c)). So to get out of the “bad positions” (where the chain is
not sufficiently killed!), we use paths of length pn{cq2{3 to join the
nearest “good positions”. From the latter ones, just go directly to
8. For a good x , we have

Kc px ,8q ě
1

3

˜
1

2

ˆ
2πc

n

´n

c

¯2{3
˙2

` O

ˆ
2πc

n

´n

c

¯2{3
˙4

¸

„
2π2

3

´c

n

¯2{3

The wanted bound follows easily (after an appropriate optimization
which led to the exponent 2{3).



Path arguments (3)

For n
logpnq ď c ď n

2
, we get a similar bound:

β1pcq ď 1 ´
3

4

´c

n

¯2

The proof is the same, except that to join good positions from bad
ones, use paths of length rtn{cu{4s.

Note that these path arguments are quite robust, e.g. by real shift
of the diagonal, namely if pcosp2πcj{nqqjPZn is replaced by
pcosp2πcpα ` jq{nqqjPZn where α P R. With the inclusion
Spn, c , 0q Ă ´S

`
2n, 2c , n

2c

˘
, this the key for the minoration of the

lowest eigenvalue:



Lowest eigenvalue

Lemma

There exists an universal constant θ ą 0 such that for all positive
integer n and 1 ď c ď n{ lnpnq, we have

βnpcq ě ´1 ` θ
´c

n

¯4{3

and for n
logpnq ď c ă n

2
,

βnpcq ě ´1 `
3

4

´c

n

¯2

p1 ` op1qq

It ends the proof of the announced proposition.



More precise asymptotics (1)

So we got an order n´4{3 for the spectral gap of the matrix
M ≔ Mp1q. In fact the right order is n´1 and one can go further:

Theorem

For n large, the k-th largest eigenvalue βk of M, k P N, behaves
like

βk “ 1 ´
µk

n
` o

ˆ
1

n

˙

where µk “ p2k ´ 1qπ is the k-th smallest eigenvalue of the
(harmonic oscillator) Schrödinger operator on R:

´
1

4

d2

dx2
` π2x2



More precise asymptotics (2)

This is proven by showing the convergence of the corresponding
eigenfunctions, appropriately renormalized (via classical Fourier
transform analysis).
There is a similar result for the lowest eigenvalues: for n large, the
k-th smallest eigenvalue βn´k`1 of M, k P N, behaves like

βn´k`1 “ ´1 `
µk

n
` o

ˆ
1

n

˙



Scrambled diagonals

In the previous examples the diagonal was quite regular, what does
happen if one shuffles it by replacing pcosp2πcj{nqqjPZn by
pcosp2πcσpjq{nqqjPZn , where σ belongs to the permutation group
Sn?
Consider the case c “ 1. Heuristically the non-scrambled diagonal
should be the worst case, because it is constructing the safer place
for the particle not to be killed. We have not been able to prove
that, but here is a result in this direction: there exists a universal
constant c ą 0 such that for all n P Nzt1, 2u, whatever σ P Sn, the
corresponding largest eigenvalue is bounded above by 1 ´ c{n.



Quality of a niche (1)

The proof is based on a probabilistic estimate of the quality of a
niche. Consider pXtqtě0 the continuous-time random walk on Z,
with jump rates 1 between neighbors. Make it starts from 0. Fix
n P Z` and denote

τn ≔ inftt ě 0 : |Xt | “ n ` 1u

Let puxqxPJ´n,nK be some killing rates and E be an independent
exponential variable of parameter 1. An associated absorption time
τ̄ P r0,`8s is defined by

τ̄ ≔ inf

"
t ě 0 :

ż t

0

uXs
ds ě E

*

Using Ray-Knight type ideas in a discrete context, we get:



Quality of a niche (2)

Proposition

We have for n ě 1,

Prτ̄ ą τns ď Gnpvq ≔

¨
˝ ź

yPJ0,n´1K

1

1 ` pn ` 1qpn ` 1 ´ yqvy

˛
‚
1{pn`1q

where v ≔ pvy qyPJ0,nK ≔ minpu´y , uy q

The functional Gn has nice monotonicity properties:

v ď v 1 ñ Gnpvq ě Gnpv 1q

Gnpvq ď Gnpv̄q

where v̄ is the non-decreasing ordering of the entries of v . It
enables to compare niches and to prove the announced result on
the scrambled diagonals.



Convergence of the center (1)
The previous improved bounds are the key to good estimates on
the speed of convergence of the center of Hpnq, which is
tp0, 0, zq : z P Znu. Let us consider the case where n is prime. the
Fourier inversion theorem implies that for any k P Z` and z P Zn,

PrZk “ zs “
1

n
`

1

n

n´1ÿ

c“1

e
´2πicz

n

nÿ

l“1

p pQp0, 0, cqk q1,l

where pXk ,Yk ,ZkqkPZ`
is the underlying random walk.

Indeed, a priori we have for any k P Z` and px , y , zq P Hpnq,

PrXk “ x ,Yk “ y ,Zk “ zs “
1

n3

ÿ

ρP pHpnq

dρtr
´

pQpρqqkρppx , y , zq´1q
¯

Using the explicit description of pHpnq, we get that
ÿ

x ,yPZn

ρppx , y , zq´1q “ 0

if ρ is one of the non-trivial representations of dimension 1 and



Convergence of the center (2)

ÿ

x ,yPZn

ρppx , y , zq´1qq “ ne
´2πicz

n

¨
˚̋

1 0 . . . 0
...

...
...

1 0 . . . 0

˛
‹‚

for the n-dimensional representations p0, 0, cq, with c P Znzt0u.

Corollary

There exists a universal constant θ ą 0 such that for any prime n
and any time k P Z`,

}LpZkq ´ U}
tv

ď ne´θk{n

It is an immediate consequence of the previous results, using for
any k P Z`, c P Znzt0u and l P J1, nK, the rough bound

ˇ̌
ˇp pQp0, 0, cqk q1,l

ˇ̌
ˇ ď β˚pcqk ď p1 ´ θ{nqk
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