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Abstract
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1 Introduction

Intertwining of Markov processes is an old subject, coming back to Rogers and Pitman [17] (or
even to the book of Dynkin [8] for the deterministic version), which lately has attracted a renewed
interest, see for instance the paper of Pal and Shkolnikov [15] and the references therein. Very
recently, Patie and Savov [16] have used intertwinings between reversible Laguerre diffusions and
certain non-local and non-reversible Markov processes to get information on the spectral decompo-
sitions of the latters. This arises a natural question: when are two Markov processes intertwined?
To avoid a trivial answer, we will introduce a notion of Markov-similarity, where a Markovian re-
quirement is imposed on the relation of similitude. Indeed, we will begin by investigating its links
with the usual similarity in the framework of general finite Markov processes. Next we will discuss
the consequences for the comparison of mixing speeds of Markov-similar finite ergodic Markov
processes. Then we will only scratch the surface of the corresponding question in the non-finite
setting, in particular by checking that a weak Markov-similarity holds for isospectral Riemannian
manifolds.

As announced, we first study the finite state space situation. Let V be a finite set, endowed
with a Markov generator L: it is a V ˆ V matrix pLpx, yqqx,yPV whose off-diagonal entries are
non-negative and whose row sums vanish:

@ x P V,
ÿ

yPV

Lpx, yq “ 0

Consider rL another Markov generator on a finite set rV (more generally, all objects associated to rL
will receive a tilde). A Markov kernel Λ from V to rV is a V ˆ rV matrix pΛpx, rxqq

px,rxqPV ˆ rV whose

entries are non-negative and whose row sums are all equal to 1. We say that L is intertwined
with rL, if there exists a Markov kernel Λ from V to rV such that LΛ “ ΛrL. If furthermore there
exists a Markov kernel rΛ from rV to V such that rLrΛ “ rΛL, then L and rL are said to be mutually
intertwined. This notion is not very interesting, because any finite Markov generators L and
rL are always mutually intertwined. Indeed, any finite Markov generator L admits an invariant
probability measure µ, namely satisfying µrLrf ss “ 0 for all functions f defined on V (where
we used the traditional matrix notations: any measure is seen as a row vector and any function as
a column vector). Let rµ be an invariant measure for rL and define two Markov kernels Λ and rΛ by

@ px, rxq P V ˆ rV , Λpx, rxq ≔ rµprxq

@ prx, xq P rV ˆ V, rΛprx, xq ≔ µpxq

By using these Markov kernels, it is immediate to check that L and rL are mutually intertwined.
So let us add a more stringent requirement. A Markov kernel Λ from V to rV is said to be a

link, if it is invertible (as a matrix). Here we depart from the terminology introduced by Diaconis
and Fill [5], since for them a link is just a Markov kernel. In particular, V and rV have the same
cardinality, which will be denoted |V |. The Markov generators L and rL are said to be Markov-
similar if there exist two links Λ and rΛ, respectively from V to rV and from rV to V such that

LΛ “ ΛrL and rLrΛ “ rΛL (1)

The first motivation of this paper stems from the natural question: when are two finite Markov
generators Markov-similar?

Of course, two finite Markov-similar Markov generators are linked by a similitude relation,
so they are similar in the usual sense, namely they have the same eigenvalues (in C) and the
corresponding Jordan blocks have the same dimensions. But despite the results presented in this
introduction, the reverse implication is not always true, as we will see in Section 3.

Recall the usual notion of transience for the points of V relatively to L. Let x, y P V , we say
that x leads to y, if there exists a finite sequence x “ x0, x1, x2, ..., xl “ y, with l P Z`, such that
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Lpxk´1, xkq ą 0 for all k P JlK ≔ t1, 2, ..., nu. A point x P V is said to be transient, if there exists
y P S such that x leads to y but y does not lead to x. The finite Markov generator L is said to
be non-transient, if there is no transient point. In particular, if L is irreducible (namely, any
point x P V leads to any point y P S), then L is non-transient.

Theorem 1 Two non-transient Markov generators L and rL are Markov-similar if and only if they
are similar.

It is well-known that the number of irreducible classes (whose definition will be recalled in the
beginning of Section 3) of a non-transient Markov generator is an information included into the
spectrum of L, since it is the multiplicity of the eigenvalue 0. So according to the above result, two
finite Markov-similar non-transient Markov generators have the same number of irreducible classes.
Nevertheless the cardinalities of these classes can be different. This may first sound strange (but
this is the deep reason behind the aggregation (8) considered in the transient setting, see Section 3)
and is illustrated by the example below.

Example 2 Assume that the finite set V is partitioned into V “ \nPJnKCn, with n P N. For
n P JnK, let be given µn a probability measure whose support is Cn. On each Cn, consider the
generator Ln ≔ µn ´ ICn where ICn is the Cn ˆ Cn identity matrix and where µn stands for the
matrix whose rows are all equal to µn. The spectrum of ´Ln consists of the simple eigenvalue 0
and of the eigenvalue 1 with (geometric) multiplicity |Cn| ´ 1. Next, define the generator L on
V which acts as Ln on Cn for all n P JnK, namely L ≔ ‘nPJnKLn. Then the spectrum of ´L has
the eigenvalue 0 with multiplicity n and the eigenvalue 1 with multiplicity |V | ´ n. Thus L is
diagonalizable and its similarity class is the set of diagonalizable matrices which are isospectral to
L. In particular a generator rL defined in a similar fashion will be Markov-similar to L if and only
if |rV | “ |V | and rn “ n. It follows that t|Cn| : n P JnKu can be different from t| rCn| : n P JnKu (as
multisets), for instance we can have n “ 2, |C1| “ 1, |C2| “ 3, | rC1| “ 2 and | rC2| “ 2.

˝

Proposition 18 of Section 3 gives an extension of Theorem 1 to subMarkov generators, which
corresponds to Markov processes which can be absorbed.

Remark 3 (a) A more stringent requirement in (1) would impose that the links Λ and rΛ are
inverse of each other: ΛrΛ “ I, the identity kernel, as in the usual similarity relation. But this
implies that Λ is a deterministic kernel, in the sense there exists a bijection σ : V Ñ rV such
that

@ px, rxq P V ˆ rV , Λpx, rxq “ δσpxqprxq

(see for instance [14]). The link rΛ is then the deterministic kernel associated to σ´1. It follows
that

@ px, yq P V 2, Lpx, yq “ rLpσpxq, σpyqq

namely, L can be identified with rL, up to a permutation of the state space.
Under this form, it would correspond to a discrete and non symmetric version of the question

“can one hear the shape of a drum?” popularized by Kac in [12], where Laplace operators on two-
dimensional compact domains with Dirichlet condition on the boundary (assumed to be smooth
or polygonal), should be replaced by finite Markovian generators.

(b) Consider links Λ, rΛ such that (1) is satisfied with respect to some Markov generators L, rL.
Then ΛrΛ is an invertible Markov kernel from V to V which commutes with L:

LΛrΛ “ ΛrLrΛ “ ΛrΛL
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and symmetrically, rΛΛ is an invertible Markov kernel from rV to rV commuting with rL. In [14], the
convex set of Markov kernels commuting with a given Markov generator was studied, in particular
in correlation with the notion of weak hypergroup, on which we will come back at the end of
Section 4.

˝

One of the interest of Markov-similarity of two generators is that it should enable the comparison
between their speeds of convergence to equilibrium or to absorption. Assume that L is a finite
irreducible Markov generator and let µ be its unique invariant probability. If m0 is a given initial
probability on V , define for any t ą 0, mt ≔ m0 expptLq, the distribution at time t of the Markov
process starting from m0 and whose evolution is dictated by L. As t goes to infinity, mt converges
toward µ and there are several ways to measure the discrepancy between mt and µ. Let ψ : R` Ñ
R` be a convex function such that ψp1q “ 0. The set of such functions will be denoted Ψ. For
ψ P Ψ, the ψ-entropy of a probability measure m with respect to µ is given by

Eψrm|µs ≔
ÿ

xPV

ψ

ˆ
mpxq

µpxq

˙
µpxq

Consider the worst cases over the initial conditions, namely

@ ψ P Ψ, @ t ě 0, Epψ, tq ≔ suptEψrm0 expptLq|µs : m0 P PpV qu

where PpV q stands for the set of all probability measures on V . Then we have:

Proposition 4 Let L and rL be two Markov-similar generators. Then there exists a constant T ě 0
such that

@ ψ P Ψ, @ t ě 0, Epψ, T ` tq ď rEpψ, tq and rEpψ, T ` tq ď Epψ, tq

where rEpψ, tq is defined as Epψ, tq, but with L replaced by rL and µ by rµ.

So in some sense, after the warming up time T , the convergences to equilibrium are similar for
the Markov processes generated by L and rL. More precise results in this direction will be given in
Section 4, in particular for some initial distributions no warming up period is necessary, but the
crucial quantitative estimation of T will remain to be investigated.

To extend the previous considerations to infinite state spaces, one must begin by choosing an
appropriate notion of “non degeneracy” of the links. Recall that in general, a Markov kernel Λ
from a measurable space pV,Vq to a measurable space prV , rVq, is a mapping from V ˆ rV such that:
‚ for any x P V , Λpx, ¨q is a probability measure on prV , rVq,
‚ for any A P rV, Λp¨, Aq is a pV,Vq-measurable mapping.
When V and rV are finite (it is then understood that they are endowed with their full σ-algebras),
one recovers the above definition, namely Λ can be identified with a V ˆ rV matrix whose entries
are non-negative and whose row sums are all equal to 1.

Let B (respectively rB) the vector space of bounded measurable functions on pV,Vq (resp. prV , rVq).
A Markov kernel Λ from pV,Vq, to prV , rVq induces an operator from rB from B via

@ x P V, @ rf P rB, Λr rf spxq ≔

ż
rfprxqΛpx, drxq (2)

The Markov kernel is then said to be a weak link if it is a one-to-one operator.
Let L be a Markov generator on pV,Vq, in the sense that it is defined on a subspace DpLq of

B such that the corresponding martingale problems are well-posed for any initial condition (for a
thorough exposition of these concepts, see e.g. the book of Ethier and Kurtz [9]). If V is finite, it
corresponds to the definition given in the beginning of this introduction. The Markovian generators
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L and rL are said to be weakly Markov-similar, if there exist two links, Λ from pV,Vq to prV , rVq
and rΛ from prV , rVq to pV,Vq, such that (1) is satisfied, in particular, these relations require that
ΛpDprLqq Ă DpLq and ΛpDpLqq Ă DprLq.

In these general definitions, we did not mention invariant probabilities, since when V is infinite,
they may not exist. Nevertheless, if we are given a probability µ invariant for L, in the sense that

@ f P DpLq, µrLrf ss “ 0

then the above notions can be slightly modified to be given a L
2 flavor: the Markov operator

defined in (2) can be extended into an operator from L
2pµq to L

2prµq, with rµ ≔ µΛ and pDpLq, Lq
can be replaced by its L2pµq-closure. The operator Λ is then Markovian, in the abstract sense that
it preserves non-negativity and the functions taking only the value 1 (respectively µ- and rµ-a.s.).
Conversely, if the measurable spaces pV,Vq and prV , rVq are the Borelian spaces associated to Polish
topological spaces, then any abstract Markovian operator from L

2prµq to L
2pµq corresponds to a

Markov kernel. We are thus led naturally to the notions of weak (abstract) L2pµq-link and of weak
(abstract) L2-Markov-similarity between L and rL, when rµ is left invariant by rL. Despite the fact
that this subject would deserve a general investigation, here we restrict our attention to a very
particular situation. We say that the Markov generator L with invariant probability µ is nice, if:

‚ The measurable space pV,Vq is the Borelian space associated to a Polish topological space.
‚ The operator L admits a unique invariant probability µ, which is in fact reversible, in the

sense that

@ f, g P DpLq, µrfLrgss “ µrgLrf ss (3)

This assumption enables to consider the (Friedrich) minimal extension of L as a self-adjoint oper-
ator on L

2pµq, with DpLq as new domain.
‚ The spectral decomposition of ´L only consists of eigenvalues, say pλlqlPZ`

, with multiplicities.
‚ It is possible to choose a family pϕlqlPZ`

of eigenvectors associated to the eigenvalues pλlqlPZ`
,

such that for any l P Z`, the function ϕl is bounded (this is always true for the eigenvalue 0, since
by the preceding point, its eigenspace is the set of the constant functions).

The interest of this notion is:

Proposition 5 Two nice Markov generators L and rL are weakly L
2-Markov-similar if and only

if they are isospectral.

A typical example of a nice Markov generator is that of a reversible elliptic diffusion with regular
coefficients on a compact manifold V . In this situation, one can endow V with a Riemannian
structure and find a smooth function U , such that the underlying Markov generator L has the
following form (known as Witten Laplacian)

L ¨ “ △ ¨ ´ x∇U,∇ ¨ y

where △ is the Laplace-Beltrami operator, x¨, ¨y is the scalar product and ∇ is the gradient oper-
ator (see e.g. the book of Ikeda and Watanabe [11]). The corresponding reversible probability µ
admits as density with respect to the Riemannian measure the one proportional to expp´Uq. The
compactness of V implies that the spectrum of ´L consists only of non-negative eigenvalues with
finite multiplicities and without accumulation point. Denote them by

0 “ λ0 ă λ1 ď λ2 ď . . .

As solutions to elliptic equations, the corresponding eigenvectors are smooth and thus bounded.
Let rL be another diffusion generator of the same kind (i.e. associated to a compact Riemannian

manifold rV and to a potential rU). Let 0 “ rλ0 ă rλ1 ď rλ2 ď . . . be its eigenvalues. As a consequence
of Proposition 5, L and rL are L

2-Markov-similar if and only if we have λn “ rλn for all n P Z`.
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In particular, the Laplace-Beltrami operators corresponding to isospectral compact Riemannian
manifolds are L

2-Markov-similar. This result enables the coupling by intertwining (generalizing
the coupling constructed by Diaconis and Fill [5] for discrete time finite Markov chains) of the
Brownian motions on such manifolds, suggesting that the question of isospectrality for compact
Riemannian manifolds (see e.g. the review of Bérard [1] and references therein) could be revisited
from a probabilistic point of view. The study of the links between the mixing speed of such
Brownian motions, as in Proposition 5, is out of the scope of this paper.

The paper is organized as follows: the next section contains the proof of Theorem 1. Section 3
investigates the transient situation, where the characterization of Markov-similarity is not complete.
The subMarkovian case will also be dealt with there. Section 4 collects the considerations about
mixing speeds. The proof of Proposition 5 is given in the final section.

2 The finite non-transient setting

This section is devoted to the proof of Theorem 1. It will be shown gradually, starting with the
case of irreducible and reversible generators and ending with the general non-transient case.

Recall that a finite Markov generator L is said to be reversible with respect to a probability
measure µ on V , if

@ x, y P V, µpxqLpx, yq “ µpyqLpy, xq

This property is equivalent to the symmetry of L in L
2pµq mentioned in (3) for the general case.

We begin by assuming that the generator L is irreducible and reversible. By irreducibility, the
invariant measure µ is unique and positive on V . The reversibility of L with respect to µ implies
that L is diagonalizable. Denote the eigenvalues (with multiplicities) of ´L by

0 “ λ1 ă λ2 ď λ3 ď ¨ ¨ ¨ ď λ|V | (4)

(the strict inequality comes from irreducibility).
Consider another irreducible and reversible Markov generator rL. In this case, the similarity of

L and rL reduces the fact that L and rL are isospectral, i.e. V and rV have the same cardinality and

@ k P J|V |K, rλk “ λk

Here is the first step in the direction of Theorem 1, it corresponds to Proposition 5 in the finite
case.

Lemma 6 Two finite, irreducible and reversible Markov generators are Markov-similar if and only
if they are similar.

Proof

Let L and rL be finite, irreducible and reversible Markov generators. If they are Markov-similar,
there is a similarity relation between them, for instance rL “ Λ´1LΛ, so they are similar.

Conversely, assume that L and rL are similar. Denote by (4) the common spectrum of ´L
and ´rL. Let pϕkqkPJ|V |K and p rϕkqkPJ|V |K be orthonormal bases of L2pµq and L

2prµq consisting of

corresponding eigenvectors. Without loss of generality, we can assume that rV “ V and that
ϕ1 “ rϕ1 “ 1 (the function always taking the value 1). To construct an invertible Markov kernel Λ
from V to V such that LΛ “ ΛrL, consider the operator A defined by

@ k P J|V |K, Ar rϕks ≔

"
ϕk , if k ě 2
0 , if k “ 1
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For ǫ P R, we are interested in the operator

Λ ≔ rµ` ǫA (5)

where rµ is again interpreted as the matrix whose rows are all equal to the probability rµ. It is
immediately checked that

@ k P J|V |K, Λr rϕks ≔

"
ǫϕk , if k ě 2
ϕ1 , if k “ 1

since by orthogonality, rµr rϕks “ rµr rϕ1 rϕks “ 0. It implies the relation LΛ “ ΛrL and that Λ is
invertible as soon as ǫ “ 0.

From the relation Λr1s “ 1, it appears that the row sums of Λ are all equal to 1. Thus it
remains to find ǫ “ 0 such that all the entries of Λ are non-negative. It is sufficient to take

0 ă |ǫ| ď min
x,yPV

|Apx, yq|

rµpyq
(6)

By exchanging the roles of L and rL, one constructs an invertible Markov kernel rΛ such that
rLrΛ “ rΛL and this ends the proof of the lemma.

�

To extend the above lemma to all finite irreducible Markov generators, we need to recall more
precisely the characteristic invariants for the similarity relation and to introduce the corresponding
notation. Let R be a N ˆ N real finite matrix. Seen as a complex matrix, it is similar to a
block matrix, whose blocks are of Jordan type pλ1, n1q, pλ2, n2q, ..., pλr, nrq, where λ1, λ2, ..., λr P
C are the eigenvalues of R (with geometric multiplicities) and r P N, n1, n2, ..., nr P N with
n1 `n2 ` ¨ ¨ ¨ `nr “ N . Recall that a Jordan block of type pλ, nq is a nˆn matrix whose diagonal
entries are equal to λ, whose first above diagonal entries are equal to 1 and whose other entries
vanish. The set tpλk, nkq : k P JrKu is a characteristic invariant for the similarity class of R
and will be called the characteristic set of R. Note that this characteristic set of R is equal
to tpλk, nkq : k P JrKu, if and only if one can find a (complex) basis pϕpk,lqqpk,lqPS of CN , where
S ≔ tpk, lq : k P JrK and l P JnkKu, such that

@ pk, lq P S, Rrϕpk,lqs “ λkϕpk,lq ` ϕpk,l´1q

where by convention, ϕpk,0q “ 0 for all k P JrK. Such a basis will be said to be adapted to R.
Lemma 6 extends into:

Lemma 7 Two finite and irreducible Markov generators are Markov-similar if and only if they
are similar.

Proof

It is sufficient to adapt the arguments given in the reversible situation. Again we just need to
show the direct implication. Let L and rL be two finite and irreducible Markov generators which
are similar. Up to a permutation, we identify the index set rS with S in the above notation (with
R “ ´rL or R “ L). Let pϕpk,lqqpk,lqPS and p rϕpk,lqqpk,lqPS be adapted bases associated to ´L and

´rL. By irreducibility, 0 is an eigenvalue of multiplicity 1, so we can assume that pλ1, n1q “ p0, 1q
and ϕp1,1q “ 1. We begin by proving that

@ pk, lq P Sztp0, 1qu, µrϕpk,lqs “ 0

Indeed, for any k P JrK, we have Lrϕpk,1qs “ ´λkϕpk,1q with λk “ 0. Integrating the previous
relation with respect to µ, we obtain

λkµrϕpk,1qs “ 0
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so that µrϕpk,1qs “ 0. Next we show that

µrϕpk,lqs “ 0 (7)

by iteration on l, with k P JrK fixed. If (7) is true for some l P Jnk ´ 1K, then integrating with
respect to µ the relation

Lrϕpk,l`1qs “ ´λkϕpk,l`1q ` ϕpk,lq

we get λkµrϕk,l`1s “ 0, namely (7) with l replaced by l ` 1.
Let F be the vector space generated by the family pϕpk,lqqpk,lqPSztp0,1qu, i.e. the vector space of

functions f defined on V such that µrf s “ 0. Define similarly rF and an operator B from rF to F

by

@ pk, lq P Sztp0, 1qu, Br rϕpk,lqs ≔ ϕpk,lq

Consider two bases of F and rF made up of real functions, a priori the entries of the matrix
(still denoted B) associated to B in these bases are complex numbers. But we have that B is
invertible and that on rF , LB “ BrL. Since the entries of L and rL are real numbers, it follows that
LℜpBq “ ℜpBqrL and LℑpBq “ ℑpBqrL, where ℜ and ℑ stands for the real and imaginary parts.
Furthermore, there exists a real number s such that the rank of A ≔ ℜpBq ` sℑpBq is |V | ´ 1 (use
e.g. the polynomial mapping C Q z ÞÑ detpℜpBq ` zℑpBqq). Extend A into an operator from L

2prµq
to L

2pµq by imposing Ar1s “ 0 and note that LA “ ArL and that in the the usual basis p1xqxPV

formed of the indicator functions of the points, the entries of A are real numbers. For ǫ “ 0, we
consider again the operator Λ given by (5). The proof goes on as before, Λ being an invertible
Markov kernel if (6) is satisfied.

�

It remains to relax the irreducibility assumption to prove Theorem 1. Recall that a finite
Markov generator is non-transient, if and only if it admits a invariant probability measure which
gives positive weights to all the points of V . This state space can then be partitioned into parts
which ignore themselves two by two and are of the type considered in Lemma 7. Nevertheless,
Example 2 suggests that Theorem 1 cannot be a direct consequence of Lemma 7.

Proof of Theorem 1

The difference with the proof of Lemma 7 is that the eigenvalue 0 of a finite and non-transient
Markov generator is no longer necessarily simple. Its multiplicity is the number n P N of irreducible
classes and the dimension of the Jordan blocks associated to each of the eigenvalue(s) 0 is 1. The
arguments of the proof of Lemma 7 can be adapted by doing the following. If L and rL are two
finite and non-transient Markov generators, begin by choosing corresponding positive invariant
probabilities measures µ and rµ. Next choose an orthonormal (in L

2pµq) basis pϕ1, ϕ2, ..., ϕnq of the
kernel of L, with ϕ1 “ 1 and similarly an orthonormal (in L

2prµq) basis p rϕ1, rϕ2, ..., rϕnq of the kernel
of rL with rϕ1 “ 1. Complete these families of vectors into adapted bases for L and rL, with the
convention that the index associated to the eigenvectors ϕ1 and rϕ1 is p1, 1q. The argument goes
on as before, since both ϕ1 and rϕ1 are orthogonal to all the other eigenvectors in their respective
bases.

�

3 On the finite transient setting

As alluded to in the introduction, in general similarity does not imply Markov-similarity. Remain-
ing in the finite state space framework, we investigate here in more detail the transient situation
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where this phenomenon appears, by obtaining a necessary condition, of spatial-spectral nature,
for Markov-similarity. On a example, we will check that this condition is not sufficient. Thus
the problem of finding characterizing invariants for Markov-similarity is still open and seems quite
challenging.

We begin by recalling a traditional classification of the points of V according to L, refining the
notion of transience defined in the introduction. Consider x, y P V , if x leads to y and y to x, we
say that x and y communicate. This defines an equivalence (irreducibility) relation.

Let C1, C2, ..., Cn, with n P N, be the associated equivalence classes. For k, l P JnK, we write
Ck ĺ0 Cl if there exist x P Cl and y P Ck such that x leads to y. The relation ĺ0 defines a partial
order on C0 ≔ tC1, ..., Cnu. Consider

A1 ≔ ta P JnK : Ca is minimal for ĺ0u

B1 ≔ JnKzA1

V1 ≔

ğ

aPA1

Ca

From a probabilistic point of view, V1 is the maximal subset of V supporting an invariant probability
for L and V zV1 is the set of transient points. If V1 “ V , the construction stops here and L is non-
transient. Otherwise, consider C1 ≔ tCa : a P B1u and denote by ĺ1 the restriction of the partial
order ĺ0 to C1. Define

A2 ≔ ta P B1 : Ca is minimal for ĺ1u

B2 ≔ B1zA2

For each a P A2, consider LCa , the Ca ˆ Ca matrix extracted from L (also named the Dirichlet
restriction of L to Ca), it is a subMarkovian generator, in the sense that the off-diagonal
entries are non-negative and the row sums are non-positive. The Perron-Frobenius’ theorem can
be applied to show that ´LCa admits a smallest eigenvalue (in modulus), λ1pCaq ě 0, called
the first Dirichlet eigenvalue of LCa . Order the elements of the set tλ1pCaq : a P A2u into
λ2,1 ă λ2,2 ă ¨ ¨ ¨ ă λ2,κ2 , with κ2 P J|A2|K. For l P J2, 1 ` κ2K ≔ t2, 3, ..., 1 ` κ2u, we denote

Vl ≔
ď

aPA2 :λ1pCaq“λ2,l´1

Ca (8)

so that V2 \ V3 \ ¨ ¨ ¨ \ Vκ2 forms a partition of
Ů
aPA2

Ca. It was not necessary to explicit such a
partition in our first step (defining V1), because for any a P A1, one has that LCa is still a Markov
generator, so that λ1pCaq “ 0 and we would have end up with the unique set V1 (i.e. κ1 “ 1). The
procedure goes on by iteration, in the second step (if B2 is not empty), we construct some disjoint
non-empty subsets Vκ2`1, Vκ2`2, ..., Vκ2`κ3 , for some κ3 P J|A3|K, where A3 is the set of minimal
elements of B2 for the restriction of ĺ1, and so on. At the end of the construction, we have disjoint
non-empty subsets V1, V2, ..., Vm, with m P JnK, such that V “ V1 \ V2 \ ¨ ¨ ¨ \ Vm, as well as a
finite sequence of positive integers κ ≔ pκ1, κ2, ..., κηq, where η is the number of iterations of the
previous procedure, in particular κ1 ` κ2 ` ¨ ¨ ¨ ` κη “ m. For m P JmK, let Lm be the Vm ˆ Vm
submatrix of L, it is a subMarkovian generator.

Consider another generator rL and construct as above the subMarkovian generators rL1, rL2, ..., rLrm,
as well as the finite sequence rκ ≔ prκkqkPJrηK. We say that L and rL satisfy Condition (C) if rκ “ κ

(in particular rη “ η and rm “ m) and if for any l P JmK, Ll and rLl are similar. Example 19 at the
end of this section shows that Condition (C) does not imply similarity in general. So let us call
Hypothesis (H) the conjunction of (C) with similarity.

Proposition 8 If two Markov generators L and rL are Markov-similar then they satisfy (H).

9



The following very simple example (which nevertheless played an important role in the study of
certain Markov intertwinings in [6] and [13]) illustrates the above construction and the difference
between Hypothesis (H) and the similarity relation.

Example 9 Consider on V ≔ J|V |K a finite Markov generator L ≔ pLpx, yqqx,yPV which is lower
diagonal, whose diagonal entries are all different and such that the first lower diagonal is positive
(namely, for all k P J2, |V |K, Lpk, k´1q ą 0). Then in the above decomposition, we have n “ m “ |V |
and for all k P J|V |K, Vk “ tku and Lk is reduced to the real number Lpk, kq, which is also its
unique eigenvalue (note furthermore that necessarily, L1 “ 0). We have η “ |V | and κk “ 1 for all
k P J|V |K. Consider another Markov generator rL. The generators L and rL satisfy Condition (C) if
and only if rL is of the same type (up to a permutation of the state space) and if for any k P J|V |K,
rLpk, kq “ Lpk, kq. As a consequence L and rL are similar, since they are diagonalizable, the Lpk, kq,
for k P J|V |K, being their distinct eigenvalues. Nevertheless, the mere similarity of L and rL is a
much weaker requirement, it does not imply that rL is of the same type, and even if it is, it only
asks for the equality of the spectra, i.e. of the sets tLpk, kq : k P J|V |Ku “ trLpk, kq : k P J|V |Ku.

Another example in the same spirit is obtained by considering a finite Markov generator L
satisfying

@ x P J|V |K, Lpx, x ´ 1q “ ´Lpx, xq ą 0

(with Lp1, 0q “ 0 “ Lp1, 1q), so that all the entries outside the main and first lower diagonals vanish.
Any eigenvalue λ of ´L is geometrically simple, because a corresponding eigenvector ϕ is completely
determined by λ and by the value ϕp|V |q (by iteration on k P J|V |K, one computes ϕp|V | ´ k ` 1q
via the relation Lp|V | ´ k ` 1, |V | ´ kqpϕp|V | ´ kq ´ ϕp|V | ´ k ` 1qq “ ´λϕp|V | ´ k ` 1q). The
dimension of the corresponding Jordan block is the cardinal of the set tx P J|V |K : Lpx, xq “ λu.
As above, another Markov generator rL and L satisfy Condition (C) if and only if rL is of the same
type (up to a permutation of the state space) and if for any k P J|V |K, rLpk, kq “ Lpk, kq. Again
(C) implies (H), due to the previous observation on the dimension of the Jordan blocks. The same
remark about the mere similarity is equally valid, except that the last equality tLpk, kq : k P
J|V |Ku “ trLpk, kq : k P J|V |Ku must be understood in the sense of multi-sets.

˝

In the definition of Condition (C), it is important not to forget the equality of the finite sequences
κ “ rκ, as shown by

Example 10 On V ≔ t1, 2, 3u, consider the two generators

L ≔

¨
˝

0 0 0
1 ´1 0
0 2 ´2

˛
‚ and rL ≔

¨
˝

0 0 0
1 ´1 0
2 0 ´2

˛
‚

With the notation of the above decomposition, we have, for all k P J3K, Vk “ tku “ rVk and
Lk “ pk ´ 1q “ rLk. So the fact that L and rL are not satisfying Condition (C) comes from
κ “ p1, 1q “ p2q “ rκ. This also provides a very simple example of Markov generators which are
similar but not Markov-similar.

˝

Here is a simple consequence of Proposition 8:

Corollary 11 Let the two Markov generators L and rL be Markov-similar. If L is non-transient,
then the same is true for rL.

Proof

10



Indeed, the non transience of a Markov generator L is equivalent to the fact that κ “ pκ1q “ p1q.
�

As an extension of the observation made after the statement of Theorem 1, note that two fi-
nite Markov-similar Markov generators have the same number of irreducible classes. Indeed, for
a general Markov generator L, this number is the sum of the multiplicities of the first Dirich-
let eigenvalues of the subMarkovian generators L1, L2, ..., Lm, with the notation of the above
decomposition (which will be enforced for the remaining part of this section).

The proof of Proposition 8 asks for several steps. We start with

Lemma 12 Let two Markov generators L, rL and a link Λ be such that LΛ “ ΛrL. Then we have
|V1| ě |rV1| and Λ

V1ˆ rV1 (the submatrix of Λ indexed by V1 ˆ rV1) is a Markov kernel.

Proof

Consider µ an invariant probability for L whose support is V1 (constructed as a mixture with
positive weights of the invariant probabilities associated to the irreducibility classes forming V1).
The intertwining relation implies that µΛrL “ 0, namely rµ ≔ µΛ is an invariant probability for rL.
The support of rµ is included into rV1, since it is the largest subset of rV supporting an invariant
probability for rL. The equality

@ rx R rV1,
ÿ

xPV

µpxqΛpx, rxq “ rµprxq “ 0

implies that Λ
V1ˆp rV z rV1q “ 0, namely Λ

V1ˆ rV1 is a Markov kernel. Another consequence of the fact

that Λ
V1ˆp rV z rV1q vanishes is that |V1| ě |rV1|, otherwise Λ could not be invertible.

�

In particular, we get

Corollary 13 Assume that the two Markov generators L and rL are Markov-similar. Then the
two Markov generators L1 and rL1 are Markov-similar.

Proof

Applying the previous lemma to the two intertwining relations (1), we get that |V1| “ |rV1|, namely

Λ
V1,rV1 can be seen as a square matrix. Denote W1 ≔ V zV1 and ĂW1 ≔ V zrV1. Since LV1,W1

“

0, rLrV1,ĂW1

“ 0 and Λ
V1,ĂW1

“ 0, we deduce from the intertwining LΛ “ ΛrL that L1ΛV1,rV1 “

LV1,V1ΛV1,rV1 “ Λ
V1,rV1

rLrV1,rV1 “ Λ
V1,rV1

rL1. Furthermore Λ
V1,rV1 must be invertible, if we want Λ to be

invertible. Applying the same considerations to the intertwining rLrΛ “ rΛL, it follows that L1 and
rL1 are Markov-similar.

�

To extend by iteration the above result to all the subMarkov generators Ll and rLl, for l P JmK,
we must adapt the arguments to the subMarkovian setting. First note that the decomposition of
the state space into the partition V “ V1\V2\¨ ¨ ¨\Vm can be applied verbatim to a subMarkovian
generator L (with the difference that the first step can already produce several subset V1, V2, ...,
Vκ1 , with κ1 P N). The probabilist interpretation of V1 has to be slightly modified, with respect to
the strict Markovian case:

Lemma 14 Consider L a subMarkovian generator and let L be the set of real numbers λ such
that there exists a probability measure µ with µL “ ´λµ (then λ is necessarily non-negative). We
have L “ tλ1pCaq : a P A1u. Denote λ1 ă λ2 ă ¨ ¨ ¨ ă λκ1 the elements of L. For any k P Jκ1K, Vk
is the largest subset of V supporting a probability measure satisfying µL “ ´λkµ.

11



Proof

Since the classes C1, C2, ..., Cn are irreducible, we can apply to each of them the Perron-Frobenius’
theorem, to get for a P JmK, a probability measure µa (called the quasi-stationary measure associ-
ated to LCa) whose support is Ca and which is such that µaLCa “ ´λ1pCaqµa, where λ1pCaq ě 0
is the first Dirichlet eigenvalue of LCa . The particularity of the set of indices A1 is that for each
a P A1 and for any probability measure ν whose support is included in Ca, we have νL “ νLCa

(with the identification of a measure whose support is included into Ca with a measure on Ca). It
follows that for a P A1, we have µaL “ ´λ1pCaqµa, so that

tλ1pCaq : a P A1u Ă L

Conversely, consider λ P L and a probability measure µ satisfying µL “ ´λµ. Let us first check
that supppµq Ă \aPA1

Ca. We begin by remarking that if x, y P V are such that µpxq ą 0 and
Lpx, yq ą 0, then µpyq ą 0. Indeed, otherwise in the equality

ÿ

zPV ztyu

µpzqLpz, yq “ ´µpyqLpy, yq ´ λµpyq

the l.h.s. would be positive and the r.h.s. would vanish. It follows by iteration that if µpxq ą 0 and
if x leads to y, then µpyq ą 0. In particular, the support of µ is an union of irreducibility classes
and at least one of them is included into \aPA1

Ca. If all the irreducibility classes forming supppµq
are included into \aPA1

Ca, we get that supppµq Ă \aPA1
Ca. Otherwise, we can find a P A1 and

b R A1, with Ca \ Cb Ă supppµq and there exist x0 P Cb and y0 P Ca with Lpx0, y0q ą 0. The
restriction to Ca of µL “ ´λµ writes down µCaLCa “ ´λµCa , where µCa is the restriction of µ to
Ca. Since µCa is positive, it follows from the uniqueness statement in Perron-Frobenius’ theorem,
that µCa is proportional to the quasi-stationary measure µa associated to LCa and λ “ λ1pCaq.
Due to the property satisfied by x0, y0, we have that µpx0q ą 0 and ppµ ´ µCaqLqpy0q ą 0. We
deduce that

´λµpy0q “ pµLqpy0q

“ ppµ´ µCa ` µCaqLqpy0q

“ ppµ´ µCaqLqpy0q ` pµCaLqpy0q

ą pµCaLqpy0q

“ ´λµpy0q

which is a contradiction.
The above arguments also show that µ is a mixture of the quasi-stationary measures associated

to the irreducible classes included into \aPA1
Ca. Furthermore, the classes Ca, with a P A1, which

are such that µpCaq ą 0 must satisfy λ1pCaq “ λ. It follows that if µL “ ´λ1µ, then the support
of µ is included into Vk, where k P Jκ1K is such that λ “ λk, and is equal to Vk if µ is chosen
to be a non-degenerate convex combination of the quasi-stationary measures associated to the Ca
included into Vk.

�

This result allows us to adapt the proof of Lemma 12 and Corollary 13 to get the following
generalization, where a sublink stands for an invertible subMarkov kernel (i.e. a matrix with non-
negative entries whose row sums are bounded above by 1). We also say that two subMarkovian
generators L and rL are subMarkov-similar if there exist two sublinks Λ and rΛ such that (1) is
valid.

Lemma 15 Let L, rL be two subMarkov generators and Λ a sublink such that LΛ “ ΛrL. Then
we have L Ă rL. Assume furthermore that L and rL are subMarkov-similar. Then L “ rL and the

12



subMarkov generators Lm and rLm are subMarkov-similar, for m P Jκ1K, as well as the subMarkov

generators LW ≔ LW,W and rLĂW ≔
rLĂW,ĂW , where W ≔ V zpV1 \ ¨ ¨ ¨ \ Vκ1q and ĂW ≔ rV zprV1 \ ¨ ¨ ¨ \

rVκ1q.

Proof

With the notation of Lemma 14, consider λ P L and a probability measure µ on V such that
µL “ ´λµ. The measure µΛ is non-negative and cannot be 0, because Λ is invertible. We can thus
define the probability measure rµ ≔ µΛ{µΛprV q. By multiplying on the left the relation LΛ “ ΛrL
by µ, we get that rµrL “ ´λrµ, so that λ P rL.

So if L and rL are subMarkov-similar, we get L “ rL. The arguments of the proofs of Corol-
lary 13 and Lemma 12 can now be repeated, with the notion of invariant measure replaced by
that of eigen-probability measure associated to λ P L (with respect to ´L and ´rL). Indeed, the
subMarkov-similarity of the subMarkov generators LW and rLĂW is also valid in Corollary 13, using

the sublinks Λ
W,ĂW and rΛĂW,W

. It was not asserted there, just because the subMarkov-similarity
between subMarkov generators had not yet been defined.

�

Remark 16 From the above proof, it also follows that for all m P JmK, we have ΛVm,V̄m “ 0, where

V̄m ≔

ğ

mPJm

Vm

Jm ≔ Jκ1 ` ¨ ¨ ¨ ` κjm ` 1,mKztmu

where jm P J0, η ´ 1K is such that m P Jκ1 ` ¨ ¨ ¨ ` κjm ` 1, κ1 ` ¨ ¨ ¨ ` κjm`1K.
˝

Proposition 8 is now a simple consequence of the previous lemma. Indeed, extending naturally
Conditions (C) and (H) to subMarkovian generators, we get:

Proposition 17 Consider two subMarkov generators L and rL. If they are subMarkov-similar,
then they satisfy Hypothesis (H).

Proof

Applying iteratively Lemma 15, we end up with the conclusion that for l P JmK, Ll is subMarkov-
similar to rLl and Ll “ rLl. SubMarkov-similarity implying similarity, we conclude to the announced
validity of Hypotheses (C) and (H).

�

Let us now mention an extension of Theorem 1 to the present subMarkov framework. In some
sense, the following result is the “Dirichlet condition” analogue of Theorem 1 (whose “Neumann
condition” corresponds to the fact that Markov processes are conservative). We say that a sub-
Markov generator L is isotransient, if L “ L1 (this appellation amounts to non-transcience for
Markov generators). Note in particular that for any subMarkov generator L, Lm is isotransient for
all m P JmK.

Proposition 18 Two isotransient subMarkov generators L and rL are subMarkov-similar if and
only if they are similar.

Proof

As usual, the direct implication is obvious. We begin by showing the subMarkovian extension of
Lemma 7, namely that two finite and irreducible subMarkov generators are similar if and only if
they are subMarkov-similar. Consider two similar and irreducible subMarkov generators L and rL.
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By Perron-Frobenius’ theorem, there a exists positive eigenvector ψ associated to the first Dirichlet
eigenvalue λ1 of L. The operator L:¨ ≔ ψ´1pL´ λ1Iqrψ¨s is a Markov generator (sometimes called
the Doob transform of L, see e.g. [7]). Its spectrum is the spectrum of L shifted by λ1. If rL: is
constructed similarly for rL, it appears that L: and rL: are similar irreducible Markov generators,
so from Lemma 7, there exist two links Λ: and rΛ: such that

L:Λ: “ Λ: rL: and rL: rΛ: “ rΛ:L:

It remains to define the non-negative kernels

Λr¨s ≔ ψΛ:

„
1

rψ
¨



rΛr¨s ≔ rψrΛ:

„
1

ψ
¨



to ensure that (1) is satisfied. To get sublinks, divide Λ and rΛ by a sufficiently large constant.
When L and rL are isotransient subMarkov generators, let C1, C2, ..., Cn, with m P N, be the

irreducibility class(es) of L and let λ1 be the common first Dirichlet eigenvalue of the corresponding
restrictions LCl

. For l P JnK, let ψl be a positive eigenvector on Cl associated to λ1. Let ψ the
function on V coinciding with these eigenvectors on each of the Cl, for l P JnK. Do the same with
rL, remarking that rλ1 “ λ1 by similarity. The previous arguments are then still valid.

�

We end this section with an example on four points illustrating that Hypothesis (H) is not
sufficient for Markov-similarity.

Example 19 On V ≔ J4K, consider for any p P r0, 1q, the Markov generator

Lppq
≔

¨
˚̊
˝

0 0 0 0
2 ´2 0 0
0 1 ´1 0
0 2p 2p1 ´ pq ´2

˛
‹‹‚

and we denote L ≔ Lp0q.
For all p P r0, 1q, ´Lppq has three eigenvalues: λ1 ≔ 0, λ2 ≔ 1 and λ3 ≔ 2. The similarity class

of Lppq depends on the geometric multiplicity of λ3, which is either 2 or 1 (with then a Jordan
block of dimension 2 associated to λ3). Computing the eigenspace of λ3, it appears that there is a
Jordan block of dimension 2 associated to λ3 if and only if p “ 1{2.

Moreover the spatial decomposition of Lppq is immediate to obtain for all p P r0, 1q: for all

k P J4K, we have Vk “ tku, L
ppq
k “ Lpk, kq and κppq “ p1, 1, 1, 1q. It follows that if rL ≔ Lppq, with

p P r0, 1q, then L and rL satisfy Condition (C). In particular (C) does not imply similarity for
p “ 1{2 and Hypothesis (H) is true if and only if p “ 1{2. From now on, we assume that rL ≔ Lppq,
with a fixed p P r0, 1qzt1{2u and we are wondering if L and rL are Markov-similar. We show below
that this is the case if and only if p P r0, 1{2q.

Denote A ≔ p0, 0, 2q, rA ≔ p0, 2p, 2p1 ´ pqq and

K ≔

¨
˝

0 0 0
2 ´2 0
0 1 ´1

˛
‚

so we can write

L “

ˆ
K 0
A ´2

˙
and rL “

ˆ
K 0
rA ´2

˙

14



Let Λ a link such that LΛ “ ΛrL, then necessarily it can be written under the form

Λ “

ˆ
Q 0
B d

˙

where Q is a link, B “ pa, b, cq and d “ 1´a´ b´ c, with a, b, c, d P r0, 1s. Indeed, rL1t4u “ ´21t4u,
so that Λ1t4u is an eigenfunction associated to the eigenvalue ´2 of L. Since p “ 1{2, such an
eigenfunction is proportional to 1t4u, which amounts to the above form of Λ. This form can also
be deduced from Remark 16, which enables to see a priori that Q must be lower diagonal.

The intertwining relation LΛ “ ΛrL is then equivalent to

KQ “ QK and AQ´ 2B “ BK ` d rA (9)

Define

ϕ1 ≔

¨
˝

1
1
1

˛
‚, ϕ2 ≔

¨
˝

0
1

´1

˛
‚, ϕ3 ≔

¨
˝

0
0
1

˛
‚

which are eigenvectors of K associated respectively to the eigenvalues 0, ´2, ´1. The intertwining
relation is equivalent to the existence of x, y, z P R such that

Qϕ1 “ xϕ1, Qϕ2 “ yϕ2, Qϕ3 “ zϕ3

and this means that

Q “

¨
˝

x 0 0
x´ y y 0

x` y ´ 2z z ´ y z

˛
‚

The fact that Λ is required to be an invertible Markov kernel is then equivalent to the constraints

x “ 1, 0 ă y ď 1, y ď z ď p1 ` yq{2

It follows that Condition (9) is equivalent to
$
&
%

1 ` y ´ 2z “ 2a
2pz ´ yq “ c ` 2dp
2z ´ c “ 2p1 ´ pqd

itself equivalent to
$
&
%

a “ p1 ` y ´ 2zq{2
b “ p1 ` y ´ 2zq{2
c “ 2

2p´1
pp1 ´ pqy ` p2p´ 1qzq

Summing these equations, we get

a` b` c “ 1 `
1

2p´ 1
y

so the requirement a ` b ` c ď 1 is equivalent to p ă 1{2 (recall that y ą 0). Conversely, if
p P r0, 1{2q, taking e.g. z “ 1{4 and y ą 0 small enough leads to a solution for the link Λ.

Similar considerations show that there exists a link rΛ such that rΛL “ rLrΛ if and only if
p P r0, 1{2q.

˝

Remark 20 In addition to Remark 16, in general the link Λ is not such that ΛVm,Vm is itself a
link, for m P JmK. Indeed, in the above example under this restriction, we would have end up with
Λ “ I, the identity matrix, which does not enable to intertwine L and Lppq for p P p0, 1{2q.

˝
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4 Comparisons of mixing speeds

The goal of this section is to discuss the consequences of Markov-similarity on speeds of convergence
to equilibrium, and especially to prove Proposition 4. We introduce some sets of and Markov kernels
and probability measures associated to finite Markov-similar generators which play a crucial role.

More precisely, if L and rL are finite Markov-similar generators as in the introduction, denote
KpL, rLq the set of Markov kernels Λ from V to rV such that LΛ “ ΛrL and PpL, rLq ≔ PpV qKpL, rLq,
namely the set of probability measures rm on rV such that there exists m P PpV q (recall that PpV q
stands for the set of all probability measures on V ) and Λ P KpL, rLq such that rm “ mΛ. The
sets KprL,Lq and PprL,Lq are defined symmetrically, by inverting the roles of L and rL. Here is the
advantage of Markov-similarity:

Lemma 21 Assume furthermore that L is irreducible. Then the set PpL, rLq is a neighborhood of
rµ the invariant measure of rL, which is necessarily also irreducible.

We don’t know if PpL, rLq is always convex.

Proof

Since L and rL are Markov-similar, we deduce from Corollary 11 that the non-transience of L implies
that of rL. Furthermore the number of irreducible class(es) of rL is that of L, so rL is irreducible.
It follows that rL has a unique invariant measure and it is given by rµ “ µΛ, for all Λ P KpL, rLq.
Note that µ belongs to the interior of PpV q (as a subset of the space of all signed measures on V ),
because it gives a positive weight to all the points. By Markov-similarity, we can find a link Λ in
KpL, rLq. Its invertibility implies that it transforms a neighborhood of µ into a neighborhood of rµ.
So PpL, rLq is a neighborhood of rµ.

�

Remark that PpL, rLq is left invariant by the Markov semi-group pexpptLqqtě0 generated by L.
Indeed, for any initial conditions m0 P PpV q, rm0 P PprV q and any time t ě 0, denote

mt ≔ m0 expptLq and rmt ≔ rm0 expptrLq

the marginal distribution at time t obtained respectively through the evolutions generated by L
and rL. Assume rm0 P PpL, rLq, so there exist m0 P PpV q and Λ P KpL, rLq such that rm0 “ m0Λ.
For any t ě 0, we get

rmt “ rm0 expptrLq

“ m0ΛexpptrLq

“ m0 expptLqΛ

“ mtΛ

This implies that rmt P PpL, rLq, as announced. Since we also have rµ “ µΛ, it follows that

Eψp rmt|rµq “ EψpmtΛ|µΛq

ď Eψpmt|µq (10)

because ψ-entropies decrease under the action of Markov kernels, for any ψ P Ψ. This well-known
property, which holds on general measurable spaces (see e.g. Proposition 1.1 of [4]), is an important
reason behind our interest in considering intertwining kernels which are Markovian. Thus, seen
through the ψ-entropy, the convergence of rmt toward rµ for large t ě 0 is dominated by that of mt

toward µ. In particular we deduce that

rm0 P PpL, rLq ñ @ t ě 0, @ ψ P Ψ, Eψp rmt|µq ď Epψ, tq

Proposition 4 is now a simple consequence of

16



Lemma 22 Under the assumption of Lemma 21, there exists T ě 0, such that for any rm0 P PprV q,
rmT P PpL, rLq.

Of course in practice, the problem will be to describe PpL, rLq and to estimate T .

Proof

As in the proof of Lemma 21, consider a link Λ P KpL, rLq. The set PpV qΛ Ă PpL, rLq is convex and
left invariant by the semigroup pexpptrLqqtě0. Thus it is sufficient to see that for any rx P rV , there
exists Trx ě 0 such that δrx exppTrxrLq P PpV qΛ. Indeed, by stability of PpL, rLq by the semi-group
generated by rL, we get

@ rx P rV , δrx exppT rLq P PpL, rLq

with T ≔ maxtTrx : rx P rV u. By convexity of the mapping PprV q Q rm0 ÞÑ rmT and of the set PpV qΛ,
it appears then that

@ rm0 P PprV q, rm0 exppT rLq P PpV qΛ Ă PpL, rLq

But for any fixed rx P rV , we have that δrx expptrLq converges toward rµ for large t, so for large enough
Trx ě 0, δrx exppTrxrLq belongs to the neighborhood PpL, rLq of rµ.

�

In this paper, we adopted an equivalence relation point of view on Markov intertwinings,
through the Markov-similarity. But the order relation aspect of the Markov intertwinings is also
very interesting and maybe more relevant for applications. Such considerations can be found in
[14], but let us slightly modify the definitions given there by saying that the Markov generator rL
on the finite set rV is dominated by the Markov generator L on the finite set V (written rL ă L), if
there exists a injective Markov kernel Λ from V to rV such that LΛ “ ΛrL. The requirement that
Λ is one-to-one (with respect to the functional interpretation (2)) means that |V | ě |rV | and that
Λ has maximal rank as a matrix. Note that two Markov generators L and rL are Markov-similar
if and only if rL ă L and L ă rL. Most of the results presented up to now have variants for the
domination relation ă. In this spirit, Lemma 21 can be strengthened into

Lemma 23 Assume that the two Markov generators L and rL are such that rL ă L and L is
irreducible. Then rL is irreducible and if rµ is its invariant probability, PpL, rLq is a neighborhhood
of rµ.

Proof

We begin by proving that rL is irreducible. Let Λ P KpL, rLq be injective. Let rf be a function on rV
such that rLr rf s “ 0. By the intertwining relation, we get that LrΛr rf ss “ 0, so that by irreducibility
of L, Λr rf s is constant and by injectivity of Λ, rf is constant (since Λr1s “ 1). This property implies
that if rV is decomposed into irreducible classes with respect to rL, then there is only one terminal
class (namely rA1 is a singleton, with the notation introduced at the beginning of Section 3). So
to prove that rL is irreducible, it is sufficient that to show that rL admits an invariant probability
whose support is rV . By the intertwining relation, we get that rµ ≔ µΛ is an invariant probability
of rL, if µ is the invariant probability of L. It remains to see that rµ gives a positive weight to all
the elements of rV . Let MpV q be the set of signed measures on V . The Markov kernel Λ can be
seen as an operator from MpV q to MprV q via:

@ m P MpV q, @ rx P rV , mΛprxq ≔
ÿ

xPV

mpxqΛpx, rxq

It corresponds to the dual operator of Λ seen as an operator on functions, through the natural
duality between functions and signed measures on V . In particular, seen as an operator on signed
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measures, Λ is onto. As a consequence, for any rx P rV , we can findmrx P MpV q such thatmrxΛ “ δrx.
Since µ gives a positive weight to all elements of V , we can find ǫ ą 0 small enough so that for all
real numbers paxqxPV with |ax| ď ǫ for all x P V , µ `

ř
xPV axmx is a non negative measure. It

follows that

rµ`
ÿ

xPV

axδx “ pµ`
ÿ

xPV

axmxqΛ

is a non-negative measure. This is only possible, for all paxqxPV as above, if and only if rµ gives a
positive weight to all the elements of rV .

The same argument shows that Λ transforms neighborhoods of µ into neighborhoods of rµ, so
PpL, rLq is a neighborhood of rµ.

�

The proof of Lemma 22 can now be adapted (replacing the link Λ by an injective Markov kernel)
to show:

Proposition 24 Under the assumption of Lemma 22, there exists T ě 0 such that rmT P PpL, rLq
for all rm0 P PprV q. It follows that

@ ψ P Ψ, @ t ě 0, rEpψ, T ` tq ď Epψ, tq

with the notation introduced in Proposition 4, because for any ψ P Ψ, rm0 P PpL, rLq and t ě 0, we
have

Eψp rmt|rµq ď Epψ, tq

according to (10).

Let us illustrate the previous considerations on the simplest example.

Example 25 Consider the two points set V ≔ t0, 1u. Any generator L on V can be written under
the form L “ lpµ ´ Idq, where Id is the 2 ˆ 2-identity matrix, l ě 0 and µ is “the” invariant
measure of L (note that except if L “ 0, which corresponds to l “ 0, L has a unique invariant
measure µ). It appears that ´L is diagonalizable and its eigenvalues are 0 and l. The generator
L is non-transient if and only if a ą 0 and µ ą 0 (in the sense that µp0q ą 0 and µp1q ą 0). The
generator L “ 0 is transient if and only if l ą 0 and µ is a Dirac mass. The left case is L “ 0.
Consider another generator rL “ rlprµ ´ Idq on t0, 1u. According to Corollary 11 and Theorem 1, it
is Markov-similar to the non-transient L if and only if l “ rl and rµ ą 0. From Corollary 11, we also
deduce that the generator rL “ 0 is Markov-similar to the transient L “ 0 if and only if rl “ l and
rµ is a Dirac mass. Finally the unique generator Markov similar to L “ 0 is 0 itself.

From now on, we assume that L and rL, as above, are non-transient and Markov-similar. Let Λ
be a Markov kernel on t0, 1u such that LΛ “ ΛrL. This amounts to µΛ “ rµ, namely KpL, rLq is the
set of Markov kernels transporting µ on rµ (in general, it is only a subset of those Markov kernels).
Since Λ ´ Id is a Markov generator, we can find a ě 0 and a probability measure ν on t0, 1u such
that

Λ “ p1 ´ aqId ` aν

This is not sufficient to insure that Λ is a Markov kernel: to get that the entries are non-negative,
we need furthermore that a P r0, 1{p1 ´ minpνqqs, but it will not be convenient to work directly
with this condition. The relation µΛ “ rµ is equivalent to

aν “ rµ´ p1 ´ aqµ
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For the l.h.s. to be non-negative, we must have a ě 1 ´ minprµ{µq. The kernel Λ can be written
under the form

Λa ≔ p1 ´ aqpId ´ µq ` rµ

For the entries of this matrix to be non-negative, we must have:
‚ For a ą 1: for all x P t0, 1u,

p1 ´ aqp1 ´ µpxqq ` rµpxq ě 0

i.e.

a ď 1 `
rµpxq

1 ´ µpxq

Let a` ≔ 1 ` minprµ{p1 ´ µqq, this condition is a ď a`.
‚ For a “ 1, Λ1 “ rµ has non-negative entries.
‚ For a ă 1: for all x P t0, 1u,

pa ´ 1qµpxq ` rµpxq ě 0

and we recover the condition a ě a´ ≔ 1 ´ minprµ{µq.
Thus we get

KpL, rLq “ tΛa : a P ra´, a`su

Since the mapping a ÞÑ Λa is affine and that the set of probability measures on t0, 1u is of dimension
1, it appears that PpL, rLq is the segment generated by the four probabilities η‹,y ≔ δyΛa‹

, with
y P t0, 1u and ‹ P t´,`u. Let x0, x1 P t0, 1u be respectively such that

rµ
µ

px0q “ min

ˆ rµ
µ

˙

rµ
1 ´ µ

px1q “ min

ˆ rµ
1 ´ µ

˙

We have, for any y P t0, 1u,

η´,y “
rµpx0q

µpx0q
pδy ´ µq ` rµ

η`,y “
rµpx1q

1 ´ µpx1q
pµ ´ δyq ` rµ

So, denoting x̄ ≔ 1´x for all x P t0, 1u, we compute that η´,x̄0 “ δx̄0 and η`,x1 “ δx̄1 . We also get

η´,x0px0q “
rµpx0q

µpx0q
and η`,x̄1px1q “

rµpx1q

µpx̄1q
(11)

So η´,x0 is a Dirac mass if and only if rµ “ µ and η`,x̄1 is a Dirac mass if and only if rµ is the image
of µ by the involution of t0, 1u, x ÞÑ x̄. Without loss of generality, assume that µp1q ě µp0q and
rµp1q ě rµp0q. In particular rµ is the image of µ by the involution of t0, 1u, x ÞÑ x̄ if and only if µ
and rµ are the uniform measure. Next let us dismiss the cases where µ “ rµ, i.e. L “ rL, because it
is clear then that PpL,Lq “ PpV q. From the above considerations, it follows that for L “ rL, we
will have PpL, rLq “ PpV q if and only if the convex hull of tδx̄0 , δx̄1u is PpV q, i.e. if x0 “ x1. But
we just assumed that µ and rµ are non-decreasing, we have x1 “ 0. Thus PpL, rLq “ PpV q if and
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only if rµp1q
µp1q ě rµp0q

µp0q , i.e. rµp1q ď µp1q. Note that PpL, rLq “ PpV q “ PprL,Lq is in fact equivalent to

L “ rL. A first conclusion is that if rµp1q ď µp1q, then

@ ψ P Ψ, @ t ě 0, rEpψ, tq ď Epψ, tq

Assume next that rµp1q ą µp1q. Then we have x0 “ x1 “ 0 and from (11) (taking into account that
rµp0q{µp0q ě rµp0q{µp1q) we deduce that

PpL, rLq “

„ rµp0q

µp0q
δ0 `

ˆ
1 ´

rµp0q

µp0q

˙
δ1, δ1



It follows that we can take in Lemma 22,

T “ min

"
t ě 0 : @ rm0 P Ppt0, 1uq, rmtp1q ě 1 ´

rµp0q

µp0q

*

“ min

"
t ě 0 : δ0 expptrLqp1q ě 1 ´

rµp0q

µp0q

*

“ min

"
t ě 0 : p1 ´ expp´ltqqrµp1q ě 1 ´

rµp0q

µp0q

*

“ ´
1

l
ln

ˆ
1 ´

rµp1q ´ µp1q

rµp1qp1 ´ µp1qq

˙

˝

We end this section by pointing out the links between the objects introduced above with the
notion of weak hypergroup. Let be given a Markov generator L on the finite set V . The set KpL,Lq
was called the Markov commutator of L in [14], since it consists of the Markov kernels commuting
with L (as already mentioned in Remark 3). Following this previous paper, the generator L is said
to be a weak hypergroup with respect to x0 P V if for any m P PpV q, there exists K P KpL,Lq
such that Kpx0, ¨q “ mp¨q. Taking advantage of the fact that for any Markov generators L, rL and
pL, we have the inclusion KpL, rLqKprL, pLq Ă KpL, pLq, we deduce the following criterion:

Proposition 26 Assume that L and rL are two Markov generators on V and rV respectively, such
that rL is a weak hypergroup with respect to rx0 and there exists x0 P V and Λ P KpL, rLq with
Λpx0, ¨q “ δrx0 . Then we have PpL, rLq “ PprV q and by consequence,

@ ψ P Ψ, @ t ě 0, rEpψ, tq ď Epψ, tq

This condition generalizes the deduction of PpL, rLq “ PprV q given in Example 25, which is
continued below:

Example 27 We come back to the two point case, with the notation introduced in Example 25.
Consider L “ lpµ ´ Idq a non-transient generator, where µp0q ď µp1q. Let us check that L is a
weak hypergroup with respect to 0. We begin by computing the commutator KpL,Lq. We have
seen that any Markov kernel K on t0, 1u can be written under the form p1 ´ kqId ` kν, where
ν P Ppt0, 1uq and k P r0, 1{p1 ´ minpνqqs. It appears that K commutes with L if and only if kν
commutes with µ, namely if k “ 0 or ν “ µ. So we get

KpL,Lq “ tKk ≔ p1 ´ kqId ` kµ : k P r0, 1{p1 ´ minpµqqsu

Since K0p0, ¨q “ δ0 and K1{p1´µp0qqp0, ¨q “ δ1, we get that L is a weak hypergroup.

Consider another non-transient Markov generator rL, to fulfill the assumptions of Proposition 26,
we are wondering if we can find x0 P t0, 1u and Λ P KpL, rLq such that Λpx0, ¨q “ δ0. As we have
already deduced it from (11), this is equivalent to rµp1q ď µp1q.

˝
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5 On infinite state spaces

The goal of this short section is to prove Proposition 5 and to suggest that the infinite state space
situation would deserve to be investigated further.

Let L and rL be two Markov generators, respectively on the measurable spaces pV,Vq and prV , rVq.
The simple implication in Proposition 5 holds under weaker assumptions than L and rL being nice:

Lemma 28 Assume that L and rL admit unique invariant probabilities µ and rµ which are re-
versible, and that their spectra consist of eigenvalues, respectively in L

2pµq and L
2prµq. If L and rL

are weakly Markov-similar in the abstract sense, then they are isospectral.

Proof

Let Λ be an abstract weak L
2-link such that LΛ “ ΛrL. As the operator Λ is Markovian, it has

norm 1. Denote by prλlqlPZ`
and p rϕlqlPZ`

the eigenvalues and respective orthonormal eigenvectors

of rL. For any l P Z`, Λr rϕls belongs to L
2pµq (its norm is less or equal to 1) and from the

intertwining relation we deduce that it is an eigenfunction of L associated to the eigenvalue rλl.
Taking into account that Λ is one-to-one, we deduce that the spectrum of rL is included into that
of L. Conversely, considering rΛ an abstract weak L

2-link such that rLrΛ “ rΛL, we get the reverse
inclusion.

�

The proof of the reciprocal implication is an extension of that of Lemma 6.

Lemma 29 If the two nice generators L and rL are isospectral, then they are weakly Markov-
similar.

Proof

Let pϕlqlPZ`
and p rϕlqlPZ`

be bounded orthonormal eigenvectors of L and rL, respectively, associated
to the same family of eigenvalues pλlqlPZ`

. We can and will assume that ϕ0 “ 1 and rϕ0 “ 1 are
the constant eigenvectors associated to the eigenvalue 0. We will construct an operator Λ such
that LΛ “ ΛrL by requiring that

@ l P Z`, Λr rϕls “ alϕl

for a conveniently chosen sequence palqlPZ`
. First we impose that a0 “ 1, so that Λr1s “ 1. Next

we choose the remaining coefficients positive and satisfying
ÿ

lPN

al }ϕl}8 } rϕl}8 ď 1 (12)

This is possible, since the eigenvectors are bounded. Let us check that such an operator Λ preserves
non-negativity. It is sufficient to show that if rf is a measurable fonction defined on rV and taking
values in r0, 1s, then Λr rf s ě 0 µ-a.s. Since rf P L

2prµq, we can decompose it on the orthonormal
basis p rϕlqlPZ`

:

rf “
ÿ

lPZ`

bl rϕl

where a priori the coefficients pblqlPZ`
belong to R. We have b0 “ rµr1 rf s P r0, 1s and

@ l P N, |bl| “ |rµr rϕl rf s|

ď } rϕl}8 rµr rf s

“ } rϕl}8 b0
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Thus we get

Λr rf s “ Λ

»
– ÿ

lPZ`

bl rϕl

fi
fl

“
ÿ

lPZ`

alblϕl

“ b01 `
ÿ

lPN

alblϕl

ě b0 ´
ÿ

lPN

al|bl| }ϕl}8

ě

˜
1 ´

ÿ

lPN

al }ϕl}8 } rϕl}8

¸
b0

ě 0

according to (12). It follows that Λ is a Markov operator in the abstract sense. It comes from a
Markov kernel, due to the assumption on the state spaces.

It remains to show that µΛ is equal to the invariant probability rµ of rL. By the intertwining
relation, µΛ is an invariant probability of rL, thus by uniqueness of the latter, we have µΛ “ rΛ.

�

It is natural to imagine a strong version of Proposition 5. The Markov operator Λ : L2prµq Ñ
L
2pµq is said to be a strong link if it is invertible and its inverse is bounded. This notion leads

to the definition: two Markov generators L and rL are strongly Markov-similar if they can be
mutually intertwined through strong links. We are wondering if two nice isospectral Markov gen-
erators would not be strongly Markov-similar if their eigenvectors are uniformly bounded, namely
with the above notation, if

sup
lPZ`

}ϕl}8 ă `8 and sup
lPZ`

} rϕl}8 ă `8

Note that the examples of isospectral flat manifolds presented in the review of Gordon [10] can
be shown to be strongly Markov-similar, by transforming the transplantation maps (i.e. unitary
instead of Markovian intertwining maps, see the papers of Bérard [2, 3]) into strong links. More
precisely, it is sufficient to take a, b ą 0 such that 4a ` 3b “ 1 in the matrix T displayed page 763
of Gordon [10].
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[3] Pierre Bérard. Transplantation et isospectralité. II. J. London Math. Soc. (2), 48(3):565–576,
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Université Paul Sabatier

118, route de Narbonne

31062 Toulouse Cedex 9, France

23


