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Abstract

We consider small Brownian perturbations of 1-dimensional dynamical systems for which
unicity of the solutions does not hold and thus in particular the classical theory of Freidlin and
Wentzell cannot be applied. More precisely, by using some usual changes of scale and speed for
real diffusions, we will study the asymptotic behavior of exit times from appropriate normalized
neighborhoods of 0, point where a lack of Lipschitzianity is assumed. This probabilistic approach
should enable to recover and extend some recent results of Gradinaru, Herrmann and Roynette
concerning singular large deviations for the densities of these processes, via spectral interpretations
of the appearing rates.
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1 Motivation and expectations

In a recent paper, Gradinaru, Herrmann and Roynette [13] considered for any fixed 1 < γ < 2, the
real diffusion (Xε(t))t≥0 parametrized by ε > 0 and defined by

{
Xε(0) = 0

dXε(t) = ε dB(t) + γ
2 |Xε(t)|γ−1 sign(Xε(t)) dt

where (B(t))t≥0 is a standard Brownian motion. As ε goes to 0+, this stochastic process Xε can be
seen as a small perturbation of a dynamical system Y verifying

{
Y (0) = 0
Y ′(t) = γ

2 |Y (t)|γ−1 sign(Y (t))
(1)

Due to the non unicity of the solutions of this equation, one cannot apply directly the theory of
large deviations developped by Freidlin and Wentzell [11] for similar diffusions, and indeed some new
phenomena are appearing (cf [1]).

To go further in the understanding of the induced particular behaviors, Gradinaru, Herrmann
and Roynette [13] have studied singular large deviations for pε(t, x), the density with respect to the
Lebesgue measure of the distribution of Xε(t) at time t > 0 and position x ∈ R satisfying (t, x) ∈ #,
where # is the time-space domain under the maximal solutions of (1):

# = {(t, x) ∈ R+ × R : |x| < (γ(1 − γ/2))t)1/(2−γ)}

They show that there exists a constant λ∞ > 0 (admitting a spectral interpretation) such that

lim
ε→0+

ε
2(2−γ)

γ ln(pε(t, x)) = −λ∞

(
|x|2−γ

γ(1 − γ/2)
− t

)
(2)

The proof of this result is quite technical and is based on a mix of probabilist ideas (representation
of the density pε(t, x) with expectations relative to Brownian bridges, via Girsanov’s formula) and
analytic methods (viscosity solutions of some ordinary differential equations).

Our purpose here is to present the main step of an alternative approach, entirely probabilist (and
thus subjectively simpler). In order to explain heuristically our point of view, let us recall that the
set of (non identically null) solutions of (1) can be parametrized by a couple (s, b) ∈ R+ × {−1, +1},
which corresponds to the solution Ys,b given by

∀ t ≥ 0, Ys,b(t) = b(γ(1 − γ/2))1/(2−γ)(t − s)1/(2−γ)
+

Then the idea is to obtain (singular) large deviations for approximations of this parameter relative

to Xε. The speed of this principle will be ε−
2(2−γ)

γ , negligible with respect to ε−2, which is the usual
speed for Freidlin and Wentzell’s type large deviations.

More precisely, we will find a nice parameter δ(ε) > 0 such that if we consider for fixed k > 0, the
R̄+-valued variables

T (ε,k) = inf{t ≥ 0 : |Xε(t)| = kδ(ε)}
T (ε,k,+) = inf{t ≥ 0 : Xε(t ∧ T (ε)) = kδ(ε)}
T (ε,k,−) = inf{t ≥ 0 : Xε(t ∧ T (ε)) = −kδ(ε)}
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then they satisfy a principle of large deviations: there exists a constant λk > 0 such that for all Borelian
subset A of [0, +∞[,

−λk inf(A) ≤ lim inf
ε→0+

ε
2(2−γ)

γ ln(P[T (ε,k) ∈ A]) (3)

≤ lim sup
ε→0+

ε
2(2−γ)

γ ln(P[T (ε,k) ∈ A]) ≤ −λk inf(A)

where A and A are respectively the interior and the closure of A, and idem for T (ε,k,+) and T (ε,k,−)

(but note that this will not have been true if we had permitted to +∞ to belong to A, since either
T (ε,k,+) or T (ε,k,−) gives a weight larger than 1/2 to this point).

The link with the constant λ∞ introduced by Gradinaru, Herrmann and Roynette [13] is that we
have

lim
k→∞

λk = λ∞ (4)

We think (but this question won’t be studied here, because it would led to different arguments
to the ones we want to present) that the above principles for T (ε,k,+) and T (ε,k,−), for all k > 0, are
sufficient to determine all the singular large deviations of Xε of the same order (in particular they
imply those of T (ε,k)). The intuition is that the threshold δ(ε) will have been chosen such that for large
k > 0, on R\] − kδ(ε), kδ(ε)[ one can apply (or more properly, adapt) the classical theory of Freidlin
and Wentzell, and due to its stronger speed, we will only be allowed to follow there the solutions of (1).
Or alternatively, the event {T (ε,k,+) = t}, for t ∈ R+ (and consequently that T (ε,k,−) = +∞), should
asymptotically (for small ε > 0 and next for large k > 0) mean that Xε is close to Yt,1.

For instance, let us come back to the density pε(t, x) for (t, x) ∈ # and with x > 0. There is a
unique solution of (1) going through (t, x) (ie taking the value x at time t), say it is parametrized by
(s, 1).

Following the previous wandering, we believe that maybe it is possible to show, in the sense of

logarithmic equivalence of order ε−
2(2−γ)

γ for small ε > 0 and in the limit for large k > 0, that

pε(t, x) + pε(tε, kδ(ε)) + P[T (ε,k,+) , tε] + P[T (ε,k,+) , s] (5)

where tε > 0 is such that Ys,1(tε) = kδ(ε). The last approximation should come from the convergence
of tε toward s as soon as kδ(ε) goes to zero.

For the cases where x = 0, one should rather use that for large k > 0,

pε(t, 0) + P[T (ε,k) ≥ t] + P[T (ε,k) , t]

Taking into account (4) and the fact that s = |x|2−γ/γ(1 − γ/2)−t in (5), it is somewhat appealing
if not conforting that the above acts of faith “lead” to the exact result.

Nevertheless, as we already mentioned it, we will only prove (3) and (4), not their expected conse-
quences. In fact, we will extend a little the setting by considering for drift of Xε the vector field given
by

∀ x ∈ R, b(x) =

{
a+

γ
2xγ−1 , if x ≥ 0

−a−
γ
2 |x|

γ−1 , if x < 0
(6)

where a+, a− > 0 and 1 < γ < 2.
In a quite strange manner, the lack of antisymmetry of this drift will not be strong enough to permit

different large deviations principles for T (ε,k,+) and T (ε,k,−) (but for sure, their commun constant λk
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will depend on a+ and a−). Note furthermore that for our restricted purpose, we only need that the
above definition of the drift is enforced for |x| small enough.

As the method we will use by changes of scale and speed for Xε is quite flexible, for some times we
wrongly believed that our setting could include relaxed assumptions such as






b(x) ∼
x→0+

a+
γ+

2 xγ+−1

b(x) ∼
x→0−

−a−
γ−
2 |x|γ−−1 (7)

where a+, a− > 0 and 1 < γ+, γ− < 2. There the strong non antisymmetry of b should lead to separate
behaviors for T (ε,k,+) and T (ε,k,−) (which would then be associated to appropriate parameters kδ+(ε)
and −kδ−(ε), for k, ε > 0, if we want to take advantage from the above considerations about Freidlin
and Wentzell theory) and that should imply different speeds for the singular large deviations of pε(t, x)
for (t, x) ∈ #, depending on the sign of x (under some additional regularity assumptions for the drift
b away from 0). But up to now, we did not manage to get round all the technical difficulties popping
out in that situation (or perhaps more correctly, an important idea is still missing there), except in
the case γ+ = γ− for which we can use direct comparisons with (6).

The plan of the article is the following: in next section we recall some classical background materials
about the 1-dimensional diffusion associated to a given measurable and bounded potential. Under
an extra continuity assumption for the latter, the section 3 contains an alternative proof of a large
deviation result for exit times from a fixed interval by the corresponding process, asymptotically for
large value of this time, and makes a link with the largest eigenvalue of the relative diffusion and
Schrödinger operators with Dirichlet boundary condition. These results were already known in a
smooth context, but we will have to extend them a little in order to deal with particular merely
continuous and unbounded situations, as they will be the main ingredient in sequel. Then in order to
illustrate the computations to follow, in section 4 we treat the large deviations as ε goes to zero of T (ε,k)

for any fixed k > 0, in the nice case (6) for 0 < γ < 2 and a−, a+ > 0, and we show the convergence
(4), which will be in some sense meaningful only for 1 ≤ γ < 2. Finally the easy generalizations to the
similar situations for T (ε,k,+) and T (ε,k,−), but where we only assume equivalences in zero, are done in
the last section.

Aknowledgements:

It is a pleasure to heartly thank once again Mihai Gradinaru for the presentation and explanations
he gave to me about the stimulating results he has obtained with his coauthors in [13] and which are
at the origin of this work. I am also grateful to Philippe Carmona for the lively discussions we have
had, especially concerning the contain of section 2.

2 Preliminaries on linear diffusions

The more general one-dimensional diffusions are the traditional setting (cf for instance [3], [15] or
[18], which will be our favorite reference here) for the results we will recall. Nevertheless, we will
only present this material in case of constant coefficient of “volatility”, because either the diffusions
considered in this article or the other ones we have in mind (with respect to (7)) will naturally satisfy
this assumption, which furthermore is stable by the conditioning operation described below. Indeed
the purpose of this section is twofold, in one hand we fix some usual notations and on the other one
we introduce this classical theory in a convenient way for us (thus saving the reader of going through
the exercises of section VII.3 of [18]).
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We consider the following a priori given objects: ε, δ− and δ+ are positive reals and U : ]−δ−, δ+[→ R
is a measurable and locally bounded function.

For fixed −δ− ≤ x ≤ δ+, we want to give a signification to the diffusion Xε,x = (Xε,x(t))t≥0 starting
from x, absorbed in −δ− and δ+ and whose evolution between these frontiers is heuristically described
by

dXε,x(t) = ε dB(t) +
1

2
U ′(Xε,x(t)) dt (8)

where B = (B(t))t≥0 stands for a standard Brownian motion.
But the lack of assumed regularity for U keeps us from taking a sde’s point of view. By chance,

in the context of dimension 1, there is another well-known and very efficient approach, via changes of
speed and scale, for which we need some notations.

So let us define the next functions

vε : [−δ−, δ+] → R̄

y /→
∫ y

0

exp
(
−U(z)/ε2

)
dz

and

mε : ] − δ−, δ+[ → R+

y /→ ε−2 exp
(
2U(y)/ε2

)

We notice that vε is continuous and strictly increasing, thus its inverse is well-defined and we put

nε
def.
= mε ◦ v−1

ε : ]vε(−δ−), vε(δ+)[→ R+

Now consider (W vε(x)(t))t≥0 a Brownian motion starting from vε(x) (in the non important cases
where vε(x) = ±∞, we make the convention that for all t ≥ 0, Wvε(x)(t) = vε(x), this is possible only
for the absorbing points x = −δ− or x = δ+), we define Xε,x as

∀ t ≥ 0, Xε,x(t) = v−1
ε (Wvε(x)[A

−1
ε (t) ∧ Tvε(−δ−)(Wvε(x)) ∧ Tvε(δ+)(Wvε(x))]) (9)

where A−1
ε is the inverse of

Aε : R+ 1 t /→
∫ t∧Tvε(−δ−)(Wvε(x))∧Tvε(δ+)(Wvε(x))

0

nε(Wvε(x)(s)) ds ∈ R̄+

and where for any y ∈ R and any real valued continuous process Y , Ty(Y ) denotes the reaching time
of y by Y .

The homogeneous Markov property of W x enables to deduce it for Xε,x, ie if Pε,x denotes the law of
this process on the canonical set of continous paths from R+ to [−δ−, δ+] (endowed with the Borelian
σ-field associated to the topology of locally uniform convergence), then for any t ≥ 0, the law of
(Xε,x(t + s))s≥0 conditioned by the knowledge of (Xε,x(u))0≤u≤t is just (Pε,x-a.s.) Pε,Xε,x(t).

The reason for the affirmation that Xε,x evolves as (8) inside ] − δ−, δ+[ is that if we assume
furthermore that U is C1 in ]−δ−, δ+[, then for any ϕ ∈ C2

c (]−δ−, δ+[) (the space of twice differentiable
functions with compact support in ] − δ−, δ+[), the process

(
ϕ(Xε,x(t)) − ϕ(Xε,x(0)) −

∫ t

0

Lε(ϕ)(Xε,x(s)) ds

)

t≥0
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is a martingale with respect to the natural filtration generated by Xε,x, where Lε is the pregenerator
defined on C2

c (] − δ−, δ+[) by

∀ ϕ ∈ C2
c (] − δ−, δ+[), ∀ x ∈] − δ−, δ+[, Lε(ϕ)(x) =

1

2

[
ε2ϕ′′(x) + U ′(x)ϕ′(x)

]

This result is proved via a straightforward application of Itô’s formula. We notice that if in addition,
U ′ is for instance supposed to be locally Lipschitz on ] − δ−, δ+[ (eg if U is C2), then unicity holds
for the above martingale problem, so its solution is given by the previous construction. This fact is
important, because it enables one to use the powerful tool of stochastic calculus. Next it is usually
possible to extend the result thus deduced to less regular functions U by taking into account continuity
properties with respect to these potentials. Typically, if (Un)n∈N is a sequence of measurable functions
on ] − δ−, δ+[ converging uniformly to a mapping U∞, then the respective diffusions Xε,x,Un (seen as
functionals on the standard Wiener space, by expressing that Wvε,Un(x) = vε,Un(x) + W0, note that
each time we will need to precise the potential considered, we will add it in the subscript) converge to
Xε,x,U∞, as n goes to infinity, for any fixed ε > 0 and x ∈ [−δ−, δ+] (nevertheless, one should be careful
there, since locally uniform convergence is not sufficient to insure this asymptotic behavior).

But one can find other heuristic interpretations of the evolution of Xε,x inside ] − δ−, δ+[ for some
particular U . Eg, if U ′ is assumed to be càdlàg on [−δ−, δ+], one can rather use the formula of Tanaka
and that leads to the introduction of local times. We don’t want to go through the whole development
of this approach, nonetheless let us just present the illustrative example of the potential U∞(·) = sign(·)
defined on [−1, 1] (with the inessential convention that sign(0) = 1).

The associated diffusion is then seen to be solution to

dXε,x(t) = ε dB(t) + ε2 1 + 2 exp(−2/ε2)

1 + exp(−2/ε2)
dlε,0(t)

where B is a standard Brownian motion and where (lε,0(t))t≥0 is the process of symmetrized local time
in 0 of Xε,x (see [4]).

This remark enables to see there is no difficulty in the definition of the processes mentioned in the
introduction, even those corresponding to (7) with 0 ≤ γ− < 2 and 0 ≤ γ+ < 2, because the above
considerations are valid as soon as vε and mε are well-defined (one can go even further since the local
boundedness of U hypothesis can sometimes also be relaxed, but unfortunately not up to the point
to allow for the treatment of the case of negative γ+ or γ−). For our strict case (6) and at least for
what is concerning (3), we will merely assume that 0 < γ < 2 (we remove the case γ = 0, due to
an embarrassing technicality appearing for non-continuous potentials). We will keep the assumption
that a+, a− > 0, since it corresponds to the originally motivating repulsive situation, even if this study
could be extended to a more general case. Nevertheless, when we will come to the proof of (4), we will
have to reactivate the hypothesis 1 ≤ γ < 2, if we want the limit to be non null.

Let us come back to the general situation, but assuming now that U is bounded.
Another main interest of the mapping vε is that it admits the following probabilist interpretation

(cf proposition 3.2 p. 288 of [18]) :

P[T−δ−(Xε,x) < Tδ+(Xε,x)] =
vε(δ+) − vε(x)

vε(δ+) − vε(−δ−)
(10)

Before coming to a very interesting consequence of this famous fact, we simplify the notations:

as we will merely be led to consider X = (Xt)t≥0
def.
= Xε,0, from now on we will not only remove the

subscript x but also the ε. We denote by P̄ the conditioning of P by the event {T−δ−(X) < Tδ+(X)}
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and in order to avoid confusion, we will write X̄ for the canonical coordinate process under this new
probability (or alternatively for the image by the previous mapping of W = (Wt)t≥0 under P̄, the
conditioning of the standard Wiener measure by Tv(−δ−)(W ) < Tv(δ+)(W )).

By definition, we have for any Borelian subset A of the set of trajectories,

P̄[X̄ ∈ A] =
P[X ∈ A, T−δ−(X) < Tδ+(X)]

P[T−δ−(X) < Tδ+(X)]
(11)

The fact that the conditioning set belongs to the tail σ-algebra generated by X (due to the absorbing
property of −δ− and δ+), shows that X̄ is again Markovian.

Then our next objective is to explicit its generator. Following the procedure alluded to before, we
start with the case where U is furthermore assumed to be C1 in [−δ−, δ+]. Let ϕ ∈ C2

c (] − δ−, δ+[), we
have to differentiate for t ≥ 0,

∂tĒ[ϕ(X̄t)] = ∂t

(
E[ϕ(Xt)1I{T−δ− (X)<Tδ+

(X)}]

P[T−δ−(X) < Tδ+(X)]

)

(due to the boundedness of U , one will have noticed that T−δ−(X) ∧ Tδ+(X) < +∞ a.s. and that
0 < P[T−δ−(X) < Tδ+(X)] < 1).

Using (11), the fact that ϕ is null in −δ− and δ+ (implying that ϕ(Xt) = 0 if t ≥ T−δ−(X)∧Tδ+(X))
and conditioning 1It≤T−δ− (X)<Tδ+

(X) by σ(Xs ; 0 ≤ s ≤ t), we get that this is equal to

∂tE[ϕ(Xt)(v(δ+) − v(Xt))]

v(δ+) − v(0)
=

E[L[ϕ(·)(v(δ+) − v(·))](Xt)]

v(δ+)

But one calculates at once that for all x ∈] − δ−, δ+[,

L[ϕ(·)(v(δ+) − v(·))](x) = (v(δ+) − v(x))L[ϕ](x) − ϕ(x)L[v](x) − ε2ϕ′(x)v′(x)

= (v(δ+) − v(x))(L[ϕ](x) + ε2(ln(v(δ+) − v(x)))′ϕ′(x)

because we have that

L[v](x) =
ε2

2
exp(−U(x)/ε2)∂(exp(U(x)/ε2)∂v)

=
ε2

2
exp(−U(x)/ε2)∂1I = 0

Thus it appears that X̄ is just the diffusion starting from 0 and constructed as before, but with U
replaced by the potential Ū defined by

∀ x ∈] − δ−, δ+[, Ū(x) = U(x) + 2ε2 ln

(∫ δ+

x

exp(−U(y)/ε2) dy

)
(12)

since by putting together the above computations, we have shown that for t ≥ 0,

∂tĒ[ϕ(X̄t)] = Ē[L̄[ϕ](X̄t)]

with

∀ ϕ ∈ C2
c (] − δ−, δ+[), ∀ x ∈] − δ−, δ+[, L̄[ϕ](x) =

1

2

[
ε2ϕ′′(x) + Ū ′(x)ϕ′(x)

]
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(note furthermore that X̄ is still absorbed in −δ− and δ+, the latter not being reached by construction).
By the above mentioned approximation procedure, one can extend this property to any continuous

mapping U on [−δ−, δ+]. But in fact this representation of X̄ is also true for general measurable and
bounded potential U . To show it, one has to find a sequence (Un)n≥0 of bounded continuous potentials
which is approximating U in a weaker sense. More precisely, taking into account the theorem of Dini
dealing with uniform convergence for increasing functions and some well-known properties of Brownian
motion (insuring that a.s., TvUn (−δ−)(W ) → TvU (−δ−)(W ) if vUn → vU), one just need such a family for
which vUn and AUn converge respectively to vU and AU (a.s. with respect to W ) for large n. Indeed, it is
sufficient that Un converges to U for large n in the L1([−δ−, δ+])-meaning and that (Un)n≥0 is uniformly
bounded (thus for instance it is enough to regularize U by convolution). To convince yourself, remark
that in (9), due to the presence of the hitting times and using the family (lx,t(W ))x∈R, t≥0 of the local
times of W (in position x ∈ R and up to time t ≥ 0), we could have rather considered

AU : R+ 1 t /→
∫ vU (δ+)

vU (−δ−)

nU (x) lx,t(W ) dx

=

∫ δ+

−δ−

mU(x)lvU (x),t(W )v′
U(x) dx

= ε−2

∫ δ+

−δ−

exp(U(x)/ε2)lvU (x),t(W ) dx

(this mapping is different from the previous one only for the non important times t ≥ Tv(−δ−)(W ) ∧
Tv(δ+)(W )), where it appears that we can take advantage in one hand of the L1-convergence of
exp(Un(x)/ε2) to exp(U(x)/ε2) (which is deduced immediately by Lipschitzianity from that of Un

to U) and on the other hand of the (a.s.) convergence of lvUn (x),t(W ) to lvU (x),t(W ) for large n. We
leave the standard details to the reader.

But it seems a fortiori that the shortest way to prove the above conditioning property is first to do
it on the Brownian motion with respect to the event {Tv(−δ−)(W ) < Tv(δ+)(W )}, to write the diffusion
thus obtain in the form of (9) and then to compose it with the formula giving X̄ (or X) to deduce the
result.

3 Behavior of large exit times

The large deviation principle we will present here is also known (cf [6] and [14]), but it seems to us
that the technicality of its proof is not corresponding to its simplicity, so we will show this result in
a direct and naive way, in the specific one-dimensional case. Heuristically its signification is quite
obvious and just expresses that for a fixed diffusion constructed as in the previous section, the law of
the reaching time of the boundary is close to an exponential distribution for its large enough values.
This fact is very natural since for such remote occurence, the process will have had plenty of time
to forget its initial condition, phenomenon which is well-known to imply the exponential caracter of
the exit time (this property is sometimes called unpredictability, see for instance [16]). The link with
analytical considerations is that the parameter of the approximating exponential law is given by the
opposite of the largest eigenvalue of the associated diffusion and Schrödinger operators with Dirichlet
condition.

More precisely, let us fix some notations, which will be slightly different from those of the above
section, in order to facilitate further reference. First the parameter ε will play no role here (the result
is not of the type of those of Freidlin and Wentzell [11] nor Mathieu [16], where the asymptotics
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considered are when ε is going to zero) and our forthcoming applications will take place only for the
special value ε = 1, thus we will stick to this situation. For a reason which will also be clearer in next
sections, we prefer to take −k and k for boundaries, where k > 0 is fixed, instead of −δ− and δ+. And
at least to begin with, assume that the potential U : [−k, k] → R is bounded. As in the previous
section, this leads us to define the functions

V : [−k, k] 1 y /→
∫ y

0

exp(−U(z)) dz

M : [−k, k] 1 y /→ exp(2U(y))

N : [V (−k), V (k)] 1 y /→ M(V −1(y))

These ingredients enable us to construct as before a Markovian process Z, starting from 0, absorbed
in −k and k and whose evolution inside ] − k, k[ is heuristically described by the sde dZt = dBt +
1
2U

′(Zt) dt, where B is a standard Brownian motion. Sometimes it will be useful to make Z start from
another point x ∈ [−k, k] and then we will have resort to the traditional notation Ex to indicate that
we are considering expectations with respect to this process Z. It will also be convenient to believe
that U is a function defined on the whole real line, feature which can be easily obtained for instance
by extending it in the following manner

∀ x ∈ R, U(x) = U(−k ∨ x ∧ k)

or in another smoother way if some regularity is required.
Thus Z can also be constructed in the totallity of R (or any more convenient interval containing

[−k, k]) and this permits to consider simultaneously for all l > 0, the hitting times

Sl
def.
= inf{t ≥ 0 : |Zt| ≥ l}

(but our main interest will be on Sk, for Z starting from 0).
Besides, still for l > 0, let us introduce the constant

λl
def.
= inf

f∈C1
c (]−l,l[)

µl((f ′)2)

µl(f 2)

where µl be the probability on [−l, l] whose density with respect to the Lebesgue measure is propor-
tional to exp(U).

We will turn to spectral interpretations of this quantity latter on. For the moment it just enables
us to state the result we were mentioning at the beginning:

Theorem 3.1 Assume that U is continuous on [−k, k], then for any Borelian subset A of [0, +∞[,
we have

−λk inf(A) ≤ lim inf
M→+∞

1

M
ln(P[

Sk

M
∈ A]) ≤ lim sup

M→+∞

1

M
ln(P[

Sk

M
∈ A]) ≤ −λk inf(A)

If U was to be C∞ on [−k, k], this result already exists in the literature, but we will give a shortest
proof in the special 1-dimensional case. Latter on we will also discuss about a multidimensional
analogue and give the extension to “unilateral” exit times, which can be seen as “bilateral” ones
corresponding to some unbounded potential U .

The method we present consists in two parts: the first one shows the existence of a related limit
and the second one identifies it.
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So here is the first step, which is true for general measurable and bounded potential U .

A priori, if Sk was really distributed as an exponential variable for some parameter λk > 0, then we
could conclude immediately that the theorem 3.1 is true. But strictly speaking, this is false, look for
example at the special case of a null potential, ie at the Brownian situation. Then the non-negative
Laplace transform of the law of Sk is explicitly known and is given by

∀ 0 ≤ l < 2(π/k)2, E[exp(lSk)] =
1

cos(
√

2lk)

(see for instance [18] and the references given there), which is different from that of an expected
exponential distribution. This fine knowledge, and especially the behavior near the pole 2(π/k)2 of
the meromorphe extension of the above mapping in l ∈ C, can be used to deduce the asymptotic of
P[Sk ≥ M ] for large M (cf the classical reference [9]). Nevertheless, even this approach is not so trivial,
but remark that the below alternative description (15) of the constant λk appearing in theorem 3.1
enables to see that in this particular case its value is 2(π/k)2.

Thus a first thought is to use the manipulations of the previous section to rewrite Sk in terms of a
Brownian motion W and doing so we get the formula

Sk =

∫ TV (−k)(W )∧TV (k)(W )

0

N(Wt) dt (13)

which does not seem very helpful, except that it give a priori lower and upper bounds:

min
V (−k)≤x≤V (k)

N(x)(TV (−k)(B) ∧ TV (k)(B)) ≤ Sk ≤ max
V (−k)≤x≤V (k)

N(x)(TV (−k)(B) ∧ TV (k)(B)) (14)

A second idea, when one look at the above large deviation result, is that it should be a consequence
of the well-known theorem of Ellis and Gärtner (cf for instance [7]). Indeed, if we define

λ̄k
def.
= inf{λ ≥ 0 : E[exp(λSk)] = +∞} (15)

number which satisfies 0 < λ̄k < +∞ due to (14), then we get immediately the upper bound

∀ A ∈ B(R+), lim sup
M→+∞

1

M
ln(P[

Sk

M
∈ A]) ≤ −λ̄k inf(A)

Unfortunately this theorem is not applicable for the lower bound (this is even more frustrating as
a posteriori it gives the good result!), because as in the simple case of an exponential variable, the
needed hypothesis of strict convexity of the rate function is not verified. Thus we will have to work
directly.

We begin by observing that to obtain the corresponding lower bounds, thanks to the order structure
and particular topology of R+, it is sufficient to prove that

lim inf
M→+∞

1

M
ln(P[Sk > M ]) ≥ −λ̄k

Indeed, an equality is taking place here with a true limit and to go into this direction, let us show
a qualitative result:

Lemma 3.2 There exists a constant 0 < λ̃k < +∞ such that

lim
M→+∞

1

M
ln(P[Sk > M ]) = −λ̃k

10



Proof:

We begin by noting that starting from 0 was not a good idea for the process Z to get out fast from
] − k, k[: more rigorously, there exist a constant c ≥ 1 such that

∀ x ∈ [−k, k], ∀ M > 0, Px[Sk > M ] ≤ cP0[Sk > M ]

This comes from the strong Markov property, since for any fixed x ∈ [−k, k],

E0[Sk > M ] ≥ P0[Tx(Z) < Sk, Sk > M ]

= E0[1ITx(Z)<Sk
Px[Sk(Z̃) > M − Tx(Z)]]

≥ E0[1ITx(Z)<Sk
Px[Sk > M ]]

= P0[Tx(Z) < T−sign(x)k(Z)]Px[Sk > M ]

=
V (−sign(x)k) − V (0)

V (−sign(x)k) − V (x)
Px[Sk > M ]

≥ (V (k) − V (0)) ∧ (V (0) − V (−k))

V (k) − V (−k)
Px[Sk > M ]

where in the second line, the expectation Ex was only with respect to the process Z̃, again evolving
as Z but starting from x. So we can take

c =
V (k) − V (−k)

(V (k) − V (0)) ∧ (V (0) − V (−k))

Now for any given M1, M2 > 0, we get by using the usual Markov property,

P0[Sk > M1 + M2] = E0[1ISk>M1PZ(M1)[Sk > M2]]

≤ cE0[1ISk>M1P0[Sk > M2]]

= cP0[Sk > M1]P0[Sk > M2]

It follows that the quantity cP[Sk > M ] is submultiplicative in M > 0, so by virtue of the subad-
ditivity theorem, we obtain the existence of

lim
M→+∞

1

M
ln(cP[Sk > M ]) = inf

M>0

1

M
ln(cP[Sk > M ])

and by consequence the convergence presented in the lemma. The finitness and positivity of the
opposite of the limit can then be deduced from (14).

We have now to verify that λ̄k and λ̃k are equal, but this is just direct computations from the above
lemma which is easily seen to imply, for any 0 < η < λ̃k,

E[exp((λ̃k − η)Sk)] < +∞
E[exp((λ̃k + η)Sk)] = +∞

One can even go further by using the fact that in the subadditivity theorem the limit is also the
infimum, because this proves that

E[exp(λ̃kSk)] = +∞

11



It is time to come to our second step consisting in another formulation of λ̄k. Even if the result
is valid for continuous potential U on [−k, k] (and hopefully for measurable and bounded ones), in
a traditional way, we will first work under the extra hypothesis that U is of class C2 on [−k, k] and
only latter on will we use some continuity properties of Sk with respect to the potential to extend the
results obtained.

Proposition 3.3 At least under the above regularity assumption, the two constants λk and λ̄k coincide.

Proof:

The shortest way to prove this equality is to admit the analytic fact that there exists a function
ϕ ∈ C2(] − k, k[) such that ϕ > 0 (Perron-Frobenius property), limx→−k+ ϕ(x) = 0 = limx→k− ϕ(x),
and verifying

1

2
(ϕ′′ + U ′ϕ′) = −λkϕ (16)

thanks to a variationnal treatment of the definition of λk.
There we have taken into account the regularity of the potential U . This property also shows that

in the latter definition of Sk, the process Z can be replaced by the solution of the sde on the whole
real line

{
Z0 = 0

dZt = dBt + 1
2U

′(Zt) dt

where B is a standard Brownian motion.
Thus it appears that the process (ϕ(Zt∧Sk

) exp(λk(t ∧ Sk)))t≥0 is a martingale. But considering
0 < η < k, it follows that for any t ≥ 0,

E[ϕ(Zt∧Sk−η
) exp(λk(t ∧ Sk−η))] = ϕ(0)

Then if we let t growing to infinity, we obtain

[ϕ(−k + η) ∨ ϕ(k − η)]E[exp(λkSk−η)] ≥ E[ϕ(ZSk−η
) exp(λkSk−η)] = ϕ(0)

and next passing to the limit as η goes to zero, there is no doubt that E[exp(λkSk)] = +∞, which
means that λk ≥ λ̄k.

To see the reciproque, note that the above considerations also imply that E[exp(λkSk−η)] < +∞
(because ϕ(−k + η) ∧ ϕ(k − η) > 0, note that this could not have been true if we had considered for
ϕ an eigenvector associated to another eigenvalue), which can be rewritten as

∀ k, η > 0, E[exp(λk+ηSk)] < +∞

ie λk+η ≤ λ̄k.
Meanwhile, by replacing µk by the nonnormalized measure of density exp(U) on [−k, k] in the

definition of λ̃k, it is quite clear that R∗
+ 1 l /→ λl is nonincreasing and càg. But it is not difficult to

be convinced that it is indeed continuous (for instance by a dilatation of space, one can bring all the
problems (for different l > 0) on a fixed interval, say the segment [−1, 1], and then the result follows
from the uniform convergence of the corresponding potentials). Thus letting η going to 0 in the above
bound, we can conclude that λk ≤ λ̄k and so to the validity of the proposition.
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Remarks 3.4: It could seem that we have lied in the introduction by promising not to resort to
analytic methods, in the implicit sense of not taking advantage of thus obtained properties (existence,
unicity, regularity ...) of solutions of ordinary or partial differential equations. But the previous
spectral caracterisation of λ̄k will not be really needed for (3), and consequently for the large deviations
of T (ε,k,+) and T (ε,k,−) in the strict anti-symmetrical situation; in that case it is just useful to make a
link with the work of Gradinaru, Herrmann and Roynette [13]. Nevertheless, let us mention informally
that more probabilist-oriented approachs are possible for the above bound λ̄k ≥ λk, this will also show
how it is related to some close subjects.

a) We could have used another large deviation theorem by a customary change of level: for any fixed
η > 0, the distribution of Sk is not modified if we consider in its definition the process Z issued from 0
and whose evolution inside ]−k−η, k +η[ is heuristically described by the sde dZt = dBt +

1
2U

′(Zt) dt,
where B is a standard Brownian motion, but which is reflected on the boundary {−k − η, k + η}
(Neumann boundary condition). This process has the advantage to be strongly ergodic, with µk+η

as reversible measure, so it is well-known that a principle of large deviations holds for its empirical
measures

ξt
def.
=

1

t

∫ t

0

δZs ds

for large t > 0 (see for instance the theorem 4.2.58 of [8]). Its upper bound says that for all closed
subset A of the set of probabilities on [−k − η, k + η], endowed with the weak topology, we have

lim sup
t→+∞

1

t
ln(P[ξt ∈ A]) ≤ − inf

m∈A
Λ(m)

with the action functional Λ given on any probability m on [−k − η, k + η] by

Λ(m) =

{
µk+η((f ′)2) , if m 4 µk+η and f

def.
=
√

dm/dµk+η is absolutely continuous
+∞ , otherwise

where f ′ will always stand for the weak derivative of an absolutely continuous function f .
Meanwhile, taking into account some famous particularities of the trajectories of diffusions such as

Z (which can be deduced from those of a Brownian motion, either via an available Girsanov formula
because of the regularity of U , or more generally through the transformations of the previous section),
we are assured of the a.s. equality between the sets

{Sk > M} = {ξM([−k − η,−k] 5 [k, k + η]) = 0}

for any given M > 0.
Thus we get that

−λ̄k ≤ − inf
f∈Ak+η

µk+η((f
′)2)

where

Ak+η = {f ∈ H̄k+η : f = 0 on [−k − η,−k] 5 [k, k + η]}

H̄k+η = {f ∈ C([−k − η, k + η]) : f is absolutely continuous and

∫
f 2 dµk+η = 1}

Let us also note the related set

Hk = {f ∈ C([−k, k]) : f is absolutely continuous, f(−k) = 0 = f(k)}

13



Its interest is that it is not very difficult to show that

λk = inf
f∈Hk\{0}

µk((f ′)2)

µk(f 2)

= inf
f∈Ak+η

µk+η((f
′)2)

from where we deduce the announced inequality λ̄k ≥ λk.
Indeed, DeBlassie [6] used this approach to prove the reverse inequality, by coming back to the

original article of Donsker and Varadhan [10], where they showed the lower bound for the large devia-
tions of empirical probabilities under less restrictive topological hypotheses than for usual principles,
in particular allowing considerations of the support of generical measures.

b) For another alternative proof, let us come back to a process Z evolving as before inside the
interval ]− k, k[, absorbed in its boundary, but whose starting point will be indicated by the subscript
of the expectation. We begin by noting that if λ > 0 verifies E0[exp(λSk)] < +∞ (ie λ < λk), then
furthermore the mapping

ϕλ : [−k, k] 1 x /→ Ex[exp(λSk)] ≥ 1

is bounded. This comes again from the strong Markov property, since as in the proof of lemma 3.2,
we can prove that

∀ x ∈ [−k, k], Ex[exp(λSk)] ≤
V (k) − V (−k)

(V (k) − V (0)) ∧ (V (0) − V (−k))
E0[exp(λSk)]

Similar computations, with merely the simple Markov property, also show that the process exp(λt)
ϕλ(Zt) is a submartingale. Thus using a few Itô’s stochastic calculus, we get that

∀ t ≥ 0, ∀ x ∈ [−k, k], λ exp(λt)ϕλ(x) + exp(λt)L(ϕλ)(x) ≥ 0

where L is the operator (∂2 + U ′∂)/2, at least if we forget about the regularity conditions.
Next we multiply these inequalities by (ϕλ(x) − 1) exp(−λt) and integrate them with respect to

µk(dx), to obtain,

λ(µk((ϕλ − 1)2) + µk(ϕλ − 1)) ≥ −µk((ϕλ − 1)L(ϕλ))

= −µk((ϕλ − 1)L(ϕλ − 1))

= µk[((ϕλ − 1)′)2]

But recall that in the infimum of the definition of λk, we could have considered all absolutely
continuous functions which are converging to zero near both boundaries and whose weak derivative
is in L2(µk). This is the case of ϕλ − 1, thus via a straightforward application of Cauchy-Schwartz
inequality, we get that

λ

(

1 +
1√

µk((ϕλ − 1)2)

)

≥ λk

and to conclude, note that if λ grows to λk, then

µk((ϕλ − 1)2) →
λ→(λk)−

∫
Ex[exp(λkSk) − 1]2 µk(dx)

= +∞
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where the last equality comes from the fact that

∀ x ∈] − k, k[, Ex[exp(λkSk)] = +∞

which itself can be deduced as before from the same property but only for x = 0.
These computations also suggest a posteriori that if the following convergences exist

∀ x ∈] − k, k[, ϕ(x) = lim
λ→(λk)−

ϕλ(x)

ϕλ(0)

then the limiting object ϕ should be a minimizer in the definition of λk, ie an eigenvector as in (16).

Thus along the lines of the above development, it has appeared that −λk is the largest eigenvalue
of the autoadjoint extension L̄k with Dirichlet boundary condition of the diffusion pregenerator Lk =
(∂2 + U ′∂)/2 acting on C2

c (]− k, k[). Alternatively, this operator L̄k is associated to the Dirichlet form
(Dk, Ek), where

Dk = {f ∈ Hk : f ′ ∈ L2(µk)}
∀ f ∈ Dk, Ek(f, f) = µk((f

′)2)

But there is still another possible description of λk, through Schrödinger operators. It just cor-
responds to a change of reference measure, which should now rather be lk, the Lebesgue measure on
[−k, k]. More precisely, consider the isometric mapping

gk : L2(lk) → L2(µk)

f /→ exp(−U/2)f

then by conjugacy, the operator Lk is transformed in

∀ f ∈ C2
c (] − k, k[), L̃k(f) = g−1

k Lk(gkf) =
1

2

(
∂2f −

[(
U ′

2

)2

+
U ′′

2

]
f

)

Then considering the Schrödinger operator L̂k which is the autoadjoint extension of L̃k corre-
sponding to Dirichlet boundary condition, we see that its largest eigenvalue is also −λk. This can be
rewritten in way of positive closed forms, or equivalently,

λk =
1

2
inf

f∈C1
c (]−k,k[)

lk((f ′)2 + [(U ′/2)2 + U ′′/2]f 2)

lk(f 2)

Nevertheless, the Dirichlet formulation relative to (Dk, Ek) seems the more interesting, since it will
be the only one conserving a meaning for more general potential U .

Besides, let us now come to the end of the proof of theorem 3.1, by extending the above identification
to the situation of continuous potentials U .

As one can guess, we will proceed by approximation: let (Un)n≥0 be a sequence of functions
belonging to C2(R), converging uniformly to a continuous extension of U on [−k − 1, k + 1] for a fixed
k > 0, and being uniformly continuous in n ≥ 0. Such a family can be obtained by considering for
instance regularisations by convolution and by using the uniform continuity of U on [−k − 1, k + 1].

Then for any fixed small 0 < η < 1, we can find a n0 large enough such that for all n ≥ n0,

V (k − η) ≤ Vn(k) ≤ V (k + η)

V (−k − η) ≤ Vn(−k) ≤ V (−k + η)

(1 − η)N(x) ≤ Nn(x) ≤ (1 + η)N(x) , for all x ∈ [−k − 1, k + 1]
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(the n in subscript indicates that the corresponding notion are relative to Un).
Thus we get for such n ≥ n0 that

(1 − η)Sk−η ≤ Sk,n ≤ (1 + η)Sk+η

from where it follows that

(1 + η)−1λ̄k+η ≤ lim inf
n→+∞

λ̄k,n ≤ lim sup
n→+∞

λ̄k,n ≤ (1 − η)−1λ̄k−η

Next we are allowed to let η go to zero to obtain

λ̄k+ ≤ lim inf
n→∞

λ̄k,n ≤ lim inf
n→∞

λ̄k,n ≤ λ̄k−

(there is no doubt that λ̄k+

def.
= limη→0+ λ̄k+η and λ̄k−

def.
= limη→0+ λ̄k−η exist, since the quantity λ̄k is

clearly decreasing in k > 0).
On the other hand, the convergence of the λk,n for large n is more direct and will be used below to

finish the demonstration. Indeed, for any n ≥ 0 and any function f ∈ C1
c (] − k, k[), we are assured of

exp(−2 ‖Un − U‖)
∫

(f ′)2 dµk∫
f 2 dµk

≤
∫

(f ′)2 dµk,n∫
f 2 dµk,n

≤ exp(2 ‖Un − U‖)
∫

(f ′)2 dµk∫
f 2 dµk

which implies at once the wanted convergence:

lim
n→∞

λk,n = λk

So using the identities λ̄k,n = λk,n, for n ≥ 0, we deduce that

λ̄k+ ≤ λk ≤ λ̄k−

But as before, the uniform continuity of U on say [−k − 1, k + 1], shows that the mapping ] − k −
1, k + 1[1 l /→ λl is continuous and taking into account that ] − k − 1, k + 1[1 l /→ λ̄l has at most a
denumerable number of discontinuities, it appears finally that

λk = λ̄k = λ̄k+ = λ̄k−

Remark 3.5: Quite surprinsingly, the continuity of ] − k − 1, k + 1[1 l /→ λ̄l, or equivalently
]− k− 1, k +1[1 l /→ λ̃l, is not easy to obtain directly. Resorting again to the infimum property of the
subadditivity theorem occuring in the definition of λ̃k, one can indeed show that the latter mapping is
càg. One of the main advantage of the introduction of the alternative description ]−k−1, k+1[1 l /→ λl

is to permit to go round this difficulty, even if it is not entirely satisfactory from a probabilistic point
of view.

Besides in view of the previous results, one cannot keep from presenting the following statement:

Conjecture 3.6: Let Ω be a bounded smooth open and connected subset of a Riemannian manifold
of dimension d ∈ N∗. We denote by lΩ the restriction of the Riemannian measure to this set. Let also
U : Ω → R+ be a locally bounded potential which is assumed to be bounded in the neighborhood of
at least one point in the frontier Ω̄ \ Ω (this condition shall permit to the below process to get out of
Ω). One can define a Dirichlet form E on the subdomain of L2(exp(−U)lΩ) constitued of the functions
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f converging to zero near the boundary and admitting a weak gradient ∇f such that the next quantity
is finite

E(f, f)
def.
=

∫
|∇f |2 exp(−U)dlΩ

By the general theory of Dirichlet forms [12], one can associate to this object a boundary absorbed
diffusion (Xt, Px)t≥0, x∈Ω̄ in the sense of Hunt processes.

Let S = inf{t ≥ 0 : Xt ∈ ∂Ω}, then we believe that a large deviation principle similar to that of
theorem 3.1 is taking place, with −λk replaced by the largest eigenvalue of the autoadjoint operator
associated to E .

As we pointed it out at the beginning of this section, this result is known if U belongs to C∞(Ω̄):
DeBlassie [5], [6] and Kenig and Pipher [14] even do much better by giving expansions to any order of
the probability Px[S > M ] for large M and fixed x ∈ Ω, in terms of the eigenvalues and eigenvectors
associated to the above operator with Dirichlet boundary condition. These authors are especially
interested in the so-called h-conditioning of Brownian motion, which corresponds to the particular
cases where U verifies #U + |∇U |2 /2 = 0 and then the harmonic function h is just exp(U/2), but as
they remarked, their computations can be generalized to diffusions with smooth coefficients, at least
in Euclidian spaces Rd, for d ≥ 1. Even if their approachs are not entirely analytical, we really do
believe that one should be able to go further in the probabilistic understandings of this phenomenon.
Nevertheless proving or finding a counter-example to the above extension is out of the limited scope of
this article. Note that even in the simpler context of the real line, we have not proved it entirely, since
the measurable or the unbounded cases still resist, except for the special situation presented below.

So to finish, we look at exit times from a specified side, ie

T±k
def.
=

{
Sk , if XSk

= ±k
+∞ , otherwise

Indeed, these random variables will satisfy for their huge values exactly the same large deviation
principle as that of Sk. This feature may seem strange at first view: why should an a priori non
symmetrical process make no difference between its boundaries? In fact it does differentiate them, but
only for relatively small values of the exit time (or at the level of precise large deviations for the huge
ones, when one is also interested in the problem of evaluating the factor in front of the dominating
exponential). At least this phenomenon is compatible with our heuristic remark about unpredictability,
at the beginning of this section.

Thus our last objective here is to show:

Proposition 3.7 Always under the assumption of continuity for U on [−k, k], for any Borelian subset
A of [0, +∞[, we have

−λk inf(A) ≤ lim inf
M→+∞

1

M
ln(P[

T±k

M
∈ A]) ≤ lim sup

M→+∞

1

M
ln(P[

T±k

M
∈ A]) ≤ −λk inf(A)

By symmetry of the formulation, it is sufficient to study the case of T−k and in fact to show that

lim
M→+∞

1

M
ln(P[+∞ > T−k > M ]) = −λk

Taking into account the trivial inequality

P[+∞ > T−k > M ] ≤ P[Sk > M ]
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valid for any M ≥ 0, we just have to be convinced that

lim inf
M→+∞

1

M
ln(P[+∞ > T−k > M ]) ≥ −λk

To obtain this bound, it is natural to use a conditioning by the event {T−k < Tk} and according to
the previous section, if we denote by an superscript † the notions relative to the unbounded potential

∀ x ∈ [−k, k[, U †(x) = U(x) + 2 ln

(∫ k

x

exp(−U(y)) dy

)

we can write

P[+∞ > T−k > M ] = P[T−k < Tk]P[+∞ > T †
−k > M ]

= P[T−k < Tk]P[S†
k > M ]

≥ P[T−k < Tk]P[S†
k−η > M ]

for any small 0 < η < k.
But for S†

k−η we can take advantage of the theorem 3.1, because U † is continuous on [−k+η, k−η],
and we get

lim
M→+∞

1

M
ln(P[S†

k−η > M ]) = −λ†
k−η

If we show that indeed

∀ 0 < η < k, λ†
k−η = λk−η (17)

then the above proposition will follow as usually by the convergence of λk−η toward λk for small η > 0.
Also in a customary manner, we begin by treating the case of a potential U of class C2. Elementary

computations show that in this situation,

∀ x ∈ [−k + η, k − η],

(
∂U(x)

2

)2

+
∂2U(x)

2
=

(
∂U †(x)

2

)2

+
∂2U †(x)

2

This means that the spectral Schrödinger interpretations are the same for λ†
k−η and λk−η, from

where we deduce (17) in regular cases.
Now it remains to notice that the identity

inf
f∈C1

c (]−k+η,k−η[)

∫
(f ′)2 exp(−U †)dlk−η∫
f 2 exp(−U †)dlk−η

= inf
f∈C1

c (]−k+η,k−η[)

∫
(f ′)2 exp(−U)dlk−η∫
f 2 exp(−U)dlk−η

is easily extended by an approximation procedure, from the C2-regular situation to any continuous
potential.

4 A study case

We will treat here the large deviations as ε → 0+ and for fixed k > 0, of the random variable T (ε,k)

seen in the introduction, in the almost symmetrical degenerate (in the sense that (1) admits several
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solutions) power potential cases expressed by (6), because its simplicity underlines the main ideas for
the general situation.

Except for T (ε,k), T (ε,k,+) and T (ε,k,−) with ε, k > 0, we will use the notations introduced in the two
previous sections. Thus, ε, δ−, δ+ > 0 being fixed, we will be principaly interested in the diffusion X
starting from 0, absorbed in −δ− and δ+ and constructed from the continuous potential

∀ x ∈ R, U(x) =

{
a+xγ , if x ≥ 0

a− |x|γ , if x < 0
(18)

where a−, a+ > 0 and 0 < γ < 2 are given.
Indeed, we will assume that δ− and δ+ depend on ε and more precisely that their (for the moment

common) value is kε2/γ , for any given k > 0. By their definition, it is quite clear that T (ε,k,−), T (ε,k,+)

and T (ε,k) coincide respectively with T−δ−(X), Tδ+(X) and T−δ−(X) ∧ Tδ+(X).

As one can imagine, we will prove our result by rewriting everything in terms of the standard
Brownian motion W appearing in (9). For instance, we note at once that

T (ε,k) = A(Tv(−δ−)(W ) ∧ Tv(δ+)(W ))

In order to exploit this formulation, we begin by expliciting the dependence of v, m and n in ε > 0.
In that respect, the following functions (which are just respective extensions of v1, m1 and n1) are
quite natural;

V : R 1 y /→
∫ y

0

exp(−U(z)) dz

M : R 1 y /→ exp(2U(y))

N : R 1 y /→ M(V −1(y))

because we are assured of

Lemma 4.1 For any ε > 0, we have for −δ− ≤ x ≤ δ+,

v(x) = ε2/γV (ε−2/γx)

m(x) = ε−2M(ε−2/γx)

n(x) = ε−2N(ε−2/γx)

Proof:

This comes directly from the scaling property of U , for instance for v, one has for any −δ− ≤ x ≤ δ+,

v(x) =

∫ x

0

exp(−U(y)/ε2) dy

=

∫ x

0

exp(−U(y/ε2/γ)) dy

= ε2/γ

∫ ε−2/γx

0

exp(−U(y)) dy

= ε2/γV (ε−2/γx)
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These observations lead us to consider the new Brownian motion B defined by

∀ t ≥ 0, Bt = ε−2/γWε4/γt

because we get

ε−4/γTv(δ+)(W ) = Tε−2/γv(δ+)(B)

= TV (k)(B)

and similarly

ε−4/γTv(−δ−)(W ) = TV (−k)(B)

Thus it appears that

T (ε,k) =

∫ Tv(δ+)(W )∧Tv(−δ−)(W )

0

n(Wt) dt

= ε−2

∫ ε4/γ(TV (k)(B)∧TV (−k)(B))

0

N(Bε−4/γt) dt

= ε4/γ−2Sk

where the random variable Sk is independent of ε and is given by

Sk =

∫ TV (−k)(B)∧TV (k)(B)

0

N(Bt) dt

But as in the previous section, or by looking at the above computations with ε = 1 in the other
direction, we can reinterprete this quantity as the reaching time of the boundary for the process Z
starting from 0, absorbed in −k and k and whose evolution inside ] − k, k[ is heuristically described
by the sde dZt = dBt + 1

2U
′(Zt) dt, where B is a standard Brownian motion and U is our particular

potential of interest.
The principle of large deviations (3) now follows directly from theorem 3.1 by just considering

ε4/γ−2 instead of M .

The convergence (4) is also quite clear with

λ∞
def.
= inf

f∈C2
c (R)

∫
(f ′(x))2 exp(U(x))dx∫
f(x)2 exp(U(x))dx

because writing for k > 0,

λk = inf
f∈C2

c (]−k,k[)

∫
(f ′(x))2 exp(U(x))dx∫
f(x)2 exp(U(x))dx

we see that when we let k grow, via obvious identifications, we are simply increasing the set on which
the infimum is taken and in the limit we obtain C2

c (R) = ∪k>0C2
c (] − k, k[).

Returning to one of the spectral interpretations of latter section, we can look at λ∞ as the smallest
eigenvalue of the Schrödinger operator on the whole real line given by

1

2

(
−∂2 + a2

sign(x)

γ2

4
|x|2γ−2 + asign(x)

γ(γ − 1)

2
|x|γ−2

)
, for x ∈ R

and this establishes (an outline of) the relation with the work of Gradinaru, Herrmann and Roynette
[13], at least for 1 < γ < 2.

But the interesting question is then to know if the constant λ∞ ≥ 0 is null or positive, and the
answer is
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Proposition 4.2 In the previous setting, we have λ∞ > 0 ⇔ γ ≥ 1.

Proof:

By analogy with λk, let us introduce another related notion for fixed k, a > 0,

λk,a
def.
= inf

f∈C1
c ([0,k[)

∫ k
0 (f ′(x))2 exp(axγ)dx
∫ k

0 f 2(x) exp(axγ)dx

Indeed, elementary manipulations enable one to make the constatation that

λk,a+ ∧ λk,a− ≤ λk ≤ λk,a+ ∨ λk,a−

Thus we just have to see that for any fixed a > 0,

∀ 0 < γ < 2, lim
k→+∞

λk,a = inf
k>0

λk,a > 0 ⇔ γ ≥ 1

But the Hardy’s inequalities (cf for instance [17] or [2]) give explicit bounds for the above constants:

1

4
L−1

k,a ≤ λk,a ≤ L−1
k,a

where

Lk,a = sup
0<x<k

∫ x

0

exp(−a(k − y)γ) dy

∫ k

x

exp(a(k − y)γ) dy

The number which really matters for us is by consequence

sup
k>0

Lk,a = sup
k>0

sup
0<x<k

∫ k

x

exp(−ayγ) dy

∫ x

0

exp(ayγ) dy

= sup
x>0

∫ +∞

x

exp(−ayγ) dy

∫ x

0

exp(ayγ) dy

and in the last rhs we recognize the quantity appearing when one is wondering about the existence of
a positive spectral gap for the classical reversible diffusion associated to the probability

∀ x ∈ R, µ(dx) =

(∫

R
exp(−a |y|γ) dy

)−1

exp(−a |x|γ) dx

and it is well-known that the condition supk>0 Lk,a < +∞ is satisfied if and only if γ ≥ 1.
To recover rapidly this result, it is sufficient to write the previous quantity as

sup
x>0

x2

∫ +∞

1

exp(−axγyγ) dy

∫ 1

0

exp(axγyγ) dy

and to use the Laplace method for integrals with a small parameter to get

exp(axγ)

∫ +∞

1

exp(−axγyγ) dy ∼
x→+∞

1

aγxγ

exp(−axγ)

∫ 1

0

exp(axγyγ) dy ∼
x→+∞

1

aγxγ
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5 Generalizations

As we alluded to it in the introduction, what is really meaningful for the project we have in mind is the
asymptotic behavior of T (ε,k,+) and T (ε,k,−), not that of T (ε,k), because in some sense they correspond to
the parametrization of the non-null solutions of (1). Thus our duty here will be to get large deviation
results for them.

First we consider drifts of the closed form given by (6) and as before we take δ(ε) = ε2/γ in the
definition of our stopping times of interest.

Note there is a situation where we can conclude at once; the truely anti-symmetric case where
a+ = a− > 0, since then we a priori know that T (ε,k,+) and T (ε,k,−) have the same distribution, thus we
can deduce the wanted principle from the identities

∀ A ∈ B(R+), P[T (ε,k,−) ∈ A] = P[T (ε,k,+) ∈ A] =
1

2
P[T (ε,k) ∈ A]

Nevertheless, the slightly non-antisymmetrical case (6) with a+ := a− is not much more difficult in
view of the results of section 3. Indeed, with the notations introduced there, we get by definition

T (ε,k,+) = ε4/γ−2Tk

T (ε,k,−) = ε4/γ−2T−k
(19)

and with the help of proposition 3.7 we can conclude as before.
An alternative and suggestive way, after noting that

lim
ε→0+

ε2−4/γ ln(P[T (ε,k,−) < T (ε,k,+)]) = 0

(due to (10)) is to use, for what is concerning T (ε,k,−), a conditioning by {T (ε,k,−) < T (ε,k,+)} and to
work directly from (12).

Indeed, in case where U is given by (18), one has a kind of scaling property for Ū :

∀ x ∈] − kε2/γ , kε2/γ [,
Ū(x)

ε2
= U(x/ε2/γ) + 2 ln

(
ε2/γ

∫ k

x/ε2/γ

exp(−U(y)) dy

)

which via the induced dependence on ε of the corresponding v̄, m̄ and n̄, and the consideration of the
Brownian motion B̄ defined by

∀ t ≥ 0, B̄t = ε2/γWε−4/γt

(the renormalisation is different from that of the previous section), leads to formulae similar to (19),
but for the respective conditioned variables.

Now we come to treat the situation where the drift of Xε only satisfies





b(x) ∼
x→0+

a+
γ
2xγ−1

b(x) ∼
x→0−

−a−
γ
2 |x|

γ−1

with a+, a− > 0 and 0 < γ < 2.

Proposition 5.1 In the above relaxed setting, T (ε,k,+) and T (ε,k,−) still satisfies the same large devia-
tion principle as (3).
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Proof:

The basic idea is to use stochastic comparisons. So let us start with a general remark: let b1 and
b2 be smooth vector fields on R with bounded derivatives and satisfying

∀ x ∈ R, b1(x) ≤ b2(x)

We denote for i = 1, 2 and fixed ε > 0, by Xi,ε the strong solution of the sde

{
Xi,ε(0) = 0

dXi,ε(t) = εdBt + bi(Xi,ε(t)) dt

with the same Brownian motion B. Then we are assured of

P[∀ t ≥ 0, X1,ε(t) ≤ X2,ε(t)] = 1

and this obvious statement (but which is asking a little effort to be proved) leads to the fact that for
any l ≥ 0,

P[Tl(X1,ε) ≥ Tl(X2,ε)] = 1

Through an usual approximation procedure, this result can be extended to less regular vector fields.
Without entering here into all the details of such a formulation, let us just mention the application to
our problem.

For 0 < η < 1, we consider the vector fields bη,+ and bη,− given by

∀ x ∈ R, bη,±(x) = sign(x)(1 ± sign(x)η)asign(x)
γ

2
|x|γ−1

and the associated diffusions Xε,η,± (eg for Xε,η,+, we have just replaced a+ and a− respectively by
(1 + η)a+ and (1 − η)a−). More generally, any relative notion will be indicated by a subscript η,±.
For instance, for any fixed k > 0, we are assured for all ε > 0 small enough, of

P[T (ε,k,+)
η,+ ≤ T (ε,k,+) ≤ T (ε,k,+)

η,− ] = 1

and thus we get for any M > 0,

−λk,η,−M ≤ lim inf
ε→0+

ε
2(2−γ)

γ ln(P[T (ε,k,+) ≤ M ]) ≤ lim sup
ε→0+

ε
2(2−γ)

γ ln(P[T (ε,k,+) ≤ M ]) ≤ −λk,η,+M

In a traditional manner, we now take into account the convergences

lim
η→0+

λk,η,− = λk

lim
η→0+

λk,η,+ = λk

to deduce

lim
ε→0+

ε
2(2−γ)

γ ln(P[T (ε,k,+) ≤ M ]) = −λkM

from where follows easily the large deviation principle for T (ε,k,+).
The corresponding one for T (ε,k,−) is obtained in a similar way.
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Remark 5.2: a) Already for γ = 1, Gradinaru, Herrmann and Roynette [13] show that (2) is no
longer valid and must be replaced by

∀ (t, x) ∈ #, lim
ε→0+

ε2 ln(pε(t, x)) = − 1

8t
(2 |x|− t)2

Thus for the values 0 < γ ≤ 1, our analysis of convenient exit times will not be sufficient in the
present form. This comes from the fact that their order of large deviations is no more negligible with
respect to that of a Freidlin-Wentzell type result. The case γ = 1 is especially stimulating for the
reason that the above competiting orders of large deviations are equal, since 2(2 − γ)/γ = 2 and we
still have λ∞ > 0. Note that then the action functional for pε(t, x) not only depends on (t, x) ∈ # via
2 |x|2 − t, which is as before the “exit time” of 0 for the solution of (1) passing through (t, x), but also
on t. This problem shows that there is a lot of work ahead in this direction.

b) Even if the one-dimensional situation is far from being solved, let us mention that the multi-
dimensional results mentioned in section 3 could lead to large deviation behaviors for the density of
small random perturbations of degenerate dynamical systems on Euclidian space Rd, with d > 1, but
one will have to work out results for the exit couple formed of time and position.
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