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Abstract

Classically, finite modified logarithmic Sobolev inequalities are used to deduce a differential
inequality for the evolution of the relative entropy with respect to the invariant measure. We
will check that these inequalities are ill-behaved with respect, on one hand, to the symmetrization
procedure, and on the other hand, to the umbrella sampling procedure for Poincaré’s inequalities.
A short spectral proof of the latter method is given to estimate the spectral gap of a finite reversible
Markov generator L in terms of the spectral gap of the restrictions of L on two subsets whose union
is the whole state space and whose intersection is not empty.
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1 Introduction

The resort to the study of the evolution of the relative entropy is a traditional technique in the
investigation of the convergence of Markov processes to equilibrium. By differentiation with respect
to time, one ends up with an entropy dissipation. To compare this term with the relative entropy,
one is led to introduce modified logarithmic Sobolev inequalities. The goal of this note is to present
some examples of bad behaviors of these inequalities.

More precisely, the setting is as follows: consider V a finite state space endowed with an
Markov generator matrix L ≔ pLpx, yqqx,yPV , namely satisfying

@ x “ y P V, Lpx, yq ě 0

@ x P V, Lpx, xq “ ´
ÿ

yPV ztxu

Lpx, yq

We assume that L is irreducible:

@ x, y P V, D n P Z` : Lnpx, yq ą 0

Let µ ≔ pµpxqqxPV be the unique invariant probability measure for L, i.e. satisfying

@ y P V,
ÿ

xPV

µpxqLpx, yq “ 0

It charges all the points of V : µpxq ą 0 for all x P V . On PpV q, standing for the set of probability
measures on V , define the relative entropy with respect to µ via

@ m ≔ pmpxqqxPV P PpV q, Entpm|µq ≔
ÿ

xPV

ln

ˆ
m

µ
pxq

˙
mpxq

It is a way to measure the discrepancy between m and µ, in particular Pinsker’s inequality asserts
that the total variation between m and µ is bounded by the square root of twice the relative entropy,
cf. e.g. the book of Ané, Blachère, Chafäı, Fougères, Gentil, Malrieu, Roberto, and Scheffer [1].

The Markov semigroup pPtqtě0 associated to L is given by

@ t ě 0, Pt ≔ expptLq

and to any initial law m0 P PpV q, the corresponding distribution mt at time t ě 0 is

mt ≔ m0Pt

It is the law of the position at time t ě 0 of a Markov process generated by L and whose initial
state is sampled according to m0.

The irreducibility of L (equivalent to the positivity of mt for any t ą 0 and any initial distri-
bution m0) implies that for any given m0 P PpV q, mt converges to µ for large t ě 0. One way to
quantify this convergence is to study the evolution of Entpmt|µq by differentiating it with respect
to time:

@ m0 P PpV q, @ t ě 0, BtEntpmt|µq “ ´F pftq (1)

where ft is the density mt{µ and where

@ f P F`pV q, F pfq ≔
ÿ

x,yPV

µpxqLpx, yqfpxqplnpfpxqq ´ lnpfpyqqq
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with F`pV q standing for the cone of non-negative functions on V . The quantity F pfq is called
the entropy dissipation and is non-negative (it takes the value `8 if there exist x, y P V with
Lpx, yq ą 0, fpxq ą 0 and fpyq “ 0). To adopt functional notation, define

@ f P F`pV qzt0u, Epfq ≔ Ent pf ¨ µ{µrf s|µq

where f ¨ µ{µrf s is the probability measure admitting f{µrf s as density with respect to µ. To
transform (1) into a differential inequality for the evolution of the relative entropy, one introduces
the following modified logarithmic Sobolev inequality:

@ f P F`pV qzt0u, αEpfq ď F pfq

where α ě 0 is the best constant such that this bound holds (hereafter called the modified

logarithmic Sobolev constant and denoted αpLq when we need to emphasize the underlying
generator).

The symmetrization Gpfq of the entropy dissipation F pfq is defined by

@ f P F`pV q, Gpfq ≔ 1

2

ÿ

x,yPV

µpxqLpx, yqpfpxq ´ fpyqqplnpfpxqq ´ lnpfpyqqq

and its interest relies on the symmetric modified logarithmic Sobolev inequality

@ f P F`pV qzt0u, β Epfq ď Gpfq

where β ě 0 is the best constant such that this bound holds (called the symmetric modified

logarithmic Sobolev constant). This bound corresponds to the previous modified logarithmic
Sobolev inequality, but with L replaced by its additive symmetrization pL ` L˚q{2 in L

2pµq:
L˚ is the adjoint operator of L in L

2pµq, which is a Markovian generator, because µ is invariant
for L. More explicitly, one computes that

@ x, y P V, L˚px, yq “ µpyq
µpxqLpy, xq

The invariant probability µ is said to be reversible with respect to L when L˚ “ L, i.e.

@ x, y P V, µpxqLpx, yq “ µpyqLpy, xq

In this case, we have

@ f P F`pV q, F pfq “ Gpfq (2)

(in Lemma 4 below, we will check that conversely (2) implies that µ is reversible with respect to
L). When µ is not reversible with respect to L, the introduction of G and β is an attempt to come
back to the reversible situation, since µ is reversible for the Markov generator pL ` L˚q{2. It is
then natural to wonder if it would not be possible to compare the functionals F and G. An easy
relation is

@ f P F`pV q, F pfq ď 2Gpfq

This is a consequence of the non-negativeness of the entropy dissipation F and of the fact that for
any f P F`pV q, the quantity

2Gpfq ´ F pfq “
ÿ

x,yPV

µpxqLpx, yqfpyqplnpfpyqq ´ lnpfpxqqq

is also non-negative, since it can be viewed as an entropy dissipation for the time-reversed generator
L˚. As a consequence, we deduce that α ď 2β.

Nevertheless, in view of the above considerations, a reverse bound would be more desirable,
unfortunately there is no such relation in general:
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Proposition 1 As soon as cardpV q ě 3, there exists an irreducible Markov generator L on V

such that

inf
fPFąpV q

F pfq
Gpfq “ 0

where FąpV q is set of positive functions on V (considered instead of F`pV q, just to avoid the value
`8 for F and G).

When cardpV q “ 2, µ is necessarily reversible with respect to L, so that (2) applies.
It is possible to avoid the comparison of the functionals F and G, in particular through the

resort to logarithmic Sobolev inequalities. Due to the inequality

@ a, b P R`, 4p
?
b ´

?
aq2 ď pb ´ aqplnpbq ´ lnpaqq

we have β ě 4γ, where γ is the (symmetric) logarithmic Sobolev constant, namely the best
constant γ ě 0 such that

@ f P F`pV qzt0u, γ Epfq ď Hp
a

fq

where H is the energy associated to L:

@ f P FpV q, Hpfq ≔ 1

2

ÿ

x,yPV

µpxqLpx, yqpfpxq ´ fpyqq2

(FpV q is the space of all real functions defined on V ). The energy is automatically symmetric and
there is no need to consider a non-symmetric version. Indeed, we compute that for any f P FpV q,

ÿ

x,yPV

µpxqLpx, yqfpxqpfpxq ´ fpyqq “ ´µrfLrf ss

“ ´µrfL˚rf ss

“ ´µ

„
f
L ` L˚

2
rf s



“ Hpfq

In our finite setting, it is well-known that γ ą 0 if and only if L is irreducible, see e.g. the
lecture notes of Saloff-Coste [4]. Nevertheless, β can be more convenient than γ, as there are
natural examples on denumerable state spaces with β ą 0 while γ “ 0 (see for instance Wu [5]).
In fact, if one intends to use the logarithmic Sobolev constant γ, it is pointless to consider the
functional G, since it follows from [3] that F and H are easy to compare directly: we always have

@ f P F`pV q, F pfq ě Hpfq (3)

In particular, this bound implies 2β ě α ě γ and so the (symmetric) modified logarithmic
Sobolev inequality constants α and β are positive for the irreducible Markov generator L.

In fact, (3) and (2) imply that it would only have been interesting to bound below F in terms of
G in the non-reversible situations where it is possible to estimate the modified logarithmic Sobolev
constant β without going through the logarithmic Sobolev constant γ.

Another usual way to measure the discrepancy between two probability measures m and µ is
the chi-2 distance defined by

χ2pm,µq ≔

gffe ÿ

xPV

ˆ
m

µ
pxq ´ 1

˙
2

µpxq
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The corresponding functional is

@ f P FpV q, Dpfq ≔
a

µrpf ´ µrf sq2s

“
d

1

2

ÿ

x,yPV

µpxqµpyqpfpyq ´ fpxqq2

Considering the evolution of the chi-2 distance of the time-marginal laws to equilibrium instead of
the relative entropy, one is led to the Poincaré’s inequality

@ f P FpV q, λDpfq ď Hpfq

where the spectral gap λ ě 0 is the best possible constant in this bound. There is a gneral
comparison between the logarithmic Sobolev constant and the spectral gap: 2γ ď λ, cf. e.g. the
book of Ané, Blachère, Chafäı, Fougères, Gentil, Malrieu, Roberto, and Scheffer [1].

For any positive µ P PpV q, consider the generator Lµ defined by

@ x “ y, Lµpx, yq ≔ µpyq

It is irreducible and µ is its unique invariant measure which is furthermore reversible. It is the
generator of the Markov process which, from any initial distribution, wait an exponential time of
parameter 1 and then choose as next position a point sampled according to µ. In some sense, this
process jumps directly to equilibrium. In this situation, we have Dpfq “ Hpfq, for any f P FpV q
and by consequence λ “ 1.

This observation is the key point in the intersection method. It amounts to the following
procedure for the Poincaré’s inequality. Assume that V “ rV Y pV and that rV X pV is the singleton
tx0u. Let rL (respectively pL) be an irreducible and reversible Markov generator on rV (resp. pV ).
Denote by rµ and rλ ą 0 (resp. pµ and pλ ą 0) the reversible probability measure and the spectral gap
of rL (resp. pL). Define rχ ≔ rλrµpx0q and pχ ≔ pλpµpx0q. Consider L “ rL ` pL, namely the Markovian
generator given by

@ x, y P V, Lpx, yq ≔
#

rLpx, yq , if x, y P rV
pLpx, yq , if x, y P pV

Theorem 2 The Markov generator L is irreducible and reversible and its spectral gap λ satisfies

λ ě minprλ, pλ, rχ ` pχ ´
a

rχ2 ` pχ2 ´ rχpχq ą 0

The hypothesis that rV X pV is a singleton can be relaxed, for instance the proof of Theorem 2
can be extended immediately to the situation where the restrictions of rµ and pµ on rV X pV are
proportional. Then in the definition of rχ and pχ, rµpx0q and pµpx0q have to be replaced respectively
by rµprV X pV q and pµprV X pV q. More generally, the intersection method is a particular case of the
procedure of umbrella sampling described in Madras and Randall [2]. There, the authors start
with a reversible Markov transition kernel P and relate its spectral gap to the spectral gaps of the
restriction of P to several subsets and to the spectral gap of another transition kernel standing for
the motions between the subsets. Theorem 2 is more precise than Theorem 1.1 from Madras and
Randall [2], because we will encapsulate the spectral gaps rλ and pλ of the subsets rV and pV into the
definition of the generator describing the motions between them. This slight improvement could
be extended to the setting of Madras and Randall [2].

However, our goal here is to give a straightforward spectral proof of Theorem 2 and to show
that he relative entropy does not follow the same pattern: when L “ Lµ, we compute that

@ f P F`pV q, F pfq “ Epfq ´ µrlnpfqs
ě Epfq
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where we used the Jensen’s inequality with respect to the convex function p0,`8q Q u ÞÑ ´ lnpuq
to deduce the last inequality. In particular we get αpLµq ě 1.

By analogy with the Poincaré’s inequality, one can wonder if there exists a constant κ ą 0 such
that the following bi-modified logarithmic Sobolev inequality holds:

@ f P F`pV q, κEmpfq ď F pfq (4)

where the modified relative entropy Empfq is the quantity Epfq ´ µrlnpfqs (since E ď Em, of
course we have κ ď α).

Unfortunately, it is often not possible:

Proposition 3 The best constant κ in (4) satisfies

κ ď min
x “yPV

Lpy, xq
µpxq

In particular it is non-null if and only if the transition graph of L is the complete graph on V .

The latter drawback prevents the obtention of (bi-)modified logarithmic Sobolev inequalities
by an intersection method, whose crucial observation was that D “ H for L “ Lµ. Of course
(4) would have not been satisfactory in itself, since F pfq should be replaced by the dissipation
functional associated to Empfq, namely

@ f P FąpV q,
ÿ

x,yPV

µpxqLpx, yqfpxq
ˆ
lnpfpxqq ´ lnpfpyqq ` 1

fpyq ´ 1

fpxq

˙

leading to a new type of modified logarithmic Sobolev inequality. But we will not push further in
this direction here.

2 Proofs and examples

Here we check the results presented in the introduction, via the exhibit of appropriate examples
for Propositions 1 and 3.

Let us begin with the assertion made after (2):

Lemma 4 The identity (2) is satisfied if and only if µ is reversible with respect to L.

Proof

Fix x0 P V and consider a function U P FpV q such that Upx0q “ 0 ą maxtUpxq : x P V ztx0uu.
For r ě 0, define fr P FpV q via

@ x P V, frpxq ≔ expprUpxqq

Letting r go to `8 in F pfrq “ Gpfrq, we get

´
ÿ

yPV

µpx0qLpx0, yqUpyq “ ´1

2

˜
ÿ

yPV

µpx0qLpx0, yqUpyq `
ÿ

yPV

µpyqLpy, x0qUpyq
¸

i.e.

ÿ

yPV

µpx0qLpx0, yqUpyq “
ÿ

yPV

µpyqLpy, x0qUpyq
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Fix another point x1 P V ztx0u and let Upx1q go to ´8, while letting the other other values of U
fixed: it follows that µpx0qLpx0, x1q “ µpx1qLpx1, x0q. Since this is true for all x0 “ x1 P V , we
get that µ is reversible with respect to L.

�

Next we find an example leading to the assertion of Proposition 1.

Proof of Proposition 1

We begin with the case where V ≔ Z3. Consider the irreducible and Markov generator L given
by

@ x “ y P Z3, Lpx, yq ≔
"

1 , if y “ x ` 1
0 , otherwise

Its invariant probability measure is the uniform measure µ on Z3.
For r ą 1, let fr P FąpZ3q defined by

frp0q “ 1, frp1q “ r, frp2q “ r{ lnprq

We compute that

F pfrq “
ÿ

xPZ3

µpxqLpx, x ` 1qfrpxqplnpfrpxqq ´ lnpfrpx ` 1qqq

“ 1

3

ÿ

xPZ3

frpxqplnpfrpxqq ´ lnpfrpx ` 1qqq

“ 1

3

ˆ
´ lnprq ` r

ˆ
lnprq ´ ln

ˆ
r

lnprq

˙˙
` r

lnprq ln
ˆ

r

lnprq

˙˙

“ 1

3

ˆ
´ lnprq ` r lnplnprqq ` r

lnprqplnprq ´ lnplnprqqq
˙

„ r lnplnprqq{3

as r ą 1 goes to `8.
Similarly, we have

Gpfrq “
ÿ

xPZ3

µpxqLpx, x ` 1qpfrpxq ´ frpx ` 1qqplnpfrpxqq ´ lnpfrpx ` 1qqq

“ 1

3

ÿ

xPZ3

pfrpxq ´ frpx ` 1qqplnpfrpxqq ´ lnpfrpx ` 1qqq

ě 1

3
pfrp0q ´ frp1qqplnpfrp0qq ´ lnpfrp1qqq

“ p1 ´ rqp0 ´ lnprqq{3
„ r lnprq{3

as r ą 1 goes to `8. In particular, we get

lim
rÑ`8

F pfrq
Gpfrq “ 0

To get the same result on any finite set V with cardpV q ě 4, choose two points x0 “ x1 in V

and consider the irreducible and Markov generator L given by

@ x “ y P V, Lpx, yq ≔

$
’’&
’’%

1{pcardpV q ´ 2q , if x “ x0 and y R tx0, x1u
1 , if x R tx0, x1u and y “ x1
1 , if x “ x1 and y “ x0
0 , otherwise
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By considering functions which are constant on V ztx0, x1u, we are brought back to the previous
situation on Z3.

�

We now come to the positive result about Poincaré’s inquality.

Proof of Theorem 2

The Markov generator L is clearly irreducible: from x0, the transitions of rL (respectively pL) enable
to rejoin any point of rV (resp. pV ) and to come back to x0. Furthermore, from the reversibility
of rµ and pµ with respect to rL and pL, it appears that if we can find a probability measure µ on V

which is proportional to rµ (resp. pµ) on rV (resp. pV ), then µ is reversible with respect to L (and in
particular is invariant for L). Indeed, this is a consequence of the fact that if Lpx, yq ą 0 then x, y

are both belonging to rV or to pV . We are thus looking for three positive constants ra, pa and b such
that

µ ≔ rarµ ` papµ ´ bδx0

is a probability measure satisfying

µpx0q “ rarµpx0q and µpx0q “ papµpx0q

These equalities lead to

rarµpx0q “ b “ papµpx0q (5)

and since we must also have ra ` pa ´ b “ 1, we deduce that the solution to this problem is

ra “ pµpx0q
rµpx0q ` pµpx0q ´ rµpx0qpµpx0q

pa “ rµpx0q
rµpx0q ` pµpx0q ´ rµpx0qpµpx0q

(and b given by (5)).
By definition of the energy H associated to L, we have for any f P FpV q,

Hpfq ≔ 1

2

ÿ

x “yPV

µpxqLpx, yqpfpxq ´ fpyqq2

“ 1

2

ÿ

x “yP rV

µpxqLpx, yqpfpxq ´ fpyqq2 ` 1

2

ÿ

x “yP pV

µpxqLpx, yqpfpxq ´ fpyqq2

“ ra rHpfq ` pa pHpfq

where rH (resp. pH) is the energy associated to rL (resp. pL) and rHpfq is standing for rH applied to
the restriction of f to rV .

By definition of the spectral gaps rλ and pλ, we have

rλ rDpfq ď rHpfq and rλ pDpfq ď pHpfq

so that

@ f P FpV q, Hpfq ě rarλ rDpfq ` papλ pDpfq
“ HKpfq

where HK is the energy associated to the Markov generator K defined by

@ x “ y P V, Kpx, yq ≔
#

rλrµpyq , if x P rV and y P rV
pλpµpyq , if x P pV and y P pV
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It is immediate to check that µ is also reversible for K. Let θ be the spectral gap of K. From the
above considerations, we have

@ f P FpV q, Hpfq ě θDpfq

namely λ ě θ. To prove Theorem 2, it remains to show that

θ ě minprλ, pλ, rχ ` pχ ´
a

rχ2 ` pχ2 ´ rχpχq (6)

To go in this direction, we compute that for any f P FpV q,

@ x P V, Krf spxq “

$
’&
’%

rλrµrf s ´ rλfpxq , if x P rV ztx0u
pλpµrf s ´ pλfpxq , if x P pV ztx0u
rλrµrf s ` pλpµrf s ´ prλ ` pλqfpx0q , if x “ x0

Let W be the vector subspace of F consisting of the functions which are constant on rV ztx0u and
constant on pV ztx0u. From the above expression, W is left stable by K, so by reversibility, the
same is true for WK, its orthogonal complement in L

2pµq. A function f P FpV q belongs to WK if
and only if µrf1V ztx0us “ µrf1V ztx0us “ fpx0q “ 0. In particular, for f P WK, we have

@ x P V, Krf spxq “

$
&
%

´rλfpxq , if x P rV ztx0u
´pλfpxq , if x P pV ztx0u
0 , if x “ x0

It follows that rλ and pλ are the only possible eigenvalues of the restriction of ´K to WK (and they
are indeed eigenvalues, as soon as cardprV q ě 3 and cardppV q ě 3 respectively).

In the basis p1tx0u,1rV ztx0u,1rV ztx0uq of W , the matrix associated to K has the form

¨
˝

´rχ ´ pχ rχ pχ
rχ ´rχ 0
pχ 0 ´pχ

˛
‚

Thus the eigenvalues of the restriction of K to W are exactly the eigenvalues of this matrix. The
characteristic polynomial of the opposite of this matrix is

X3 ´ 2prχ ` pχqX2 ` 3rχpχX

whose roots are 0 and X˘ ≔ rχ ` pχ ˘
a

rχ2 ` pχ2 ´ rχpχ. As a consequence, we get, when rλ and pλ
are eigenvalues of ´K|WK,

θ “ mintrλ, pλ,X´,X`u
“ mintrλ, pλ,X´u

When rλ or pλ is not an eigenvalue of ´K|WK, we only end up with the lower bound (6), thus always
valid as announced.

�

Remark 5 Assume for instance that rχ ď pχ. Using the bound rχ2 ď rχpχ ď pχ2 in the definition of
X´, we find that

rχ ď X´ ď pχ

with strict inequalities when rχ ă pχ. Thus if furthermore rµpx0q is sufficiently close to 1, we can
end up with rλ ă X´. In more “typical” situations where rµpx0q and pµpx0q are quite small, we will
get that X´ ă minprλ, pλq.
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˝

Finally, we come to the last assertion of the introduction.

Proof of Proposition 3

Fix x P V and f P FpV ztxuq such that µrf1V ztxus “ 1. For any ǫ ą 0, define fǫ P F`pV q via

@ y P V, fǫpyq ≔
"

fpyq{Zǫ , if y “ x

ǫ{Zǫ , if y “ x

where Zǫ ≔ 1 ` µpxqǫ is the normalization such that µrfǫs “ 1. Letting ǫ go to 0`, we get

Emrfǫs „ µrlnr1{fǫss „ µpxq lnp1{ǫq

and

F rfǫs „
ÿ

y “x

µpyqLpy, xqf rys lnp1{ǫq

It follows that

κ ď inf

"ř
y “x µpyqLpy, xqf rys

µpxq : f P FpV ztxuq with µrf1V ztxus “ 1

*

“ min
yPV ztxu

Lpy, xqf rys
µpxq

whence the announced result, since x was arbitrary chosen.
�

Acknowledgments:
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2000. With a preface by Dominique Bakry and Michel Ledoux.

[2] Neal Madras and Dana Randall. Markov chain decomposition for convergence rate analysis.
Ann. Appl. Probab., 12(2):581–606, 2002.

[3] Laurent Miclo. Remarques sur l’hypercontractivité et l’évolution de l’entropie pour des châınes
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