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Decks of cards

N cards labeled 1, 2, ...,N. A deck of these cards is represented by
an element σ of the symmetric group SN :
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Figure: The deck of cards σ



Top-to-random shuffle

Starting from the ordered deck (1, 2, ...,N), shuffle it as follows,
where the positions I1, I2, I3, ... are independent and uniformly
distributed on {1, 2, ...,N}:
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Figure: An example of top-to-random shuffle, here I3 = N



Markov chains

For any n ∈ Z+, let Xn ∈ SN be the deck at time n. The random
sequence X ≔ (Xn)n∈Z+ is a Markov chain: to construct Xn+1,
only the knowledge of Xn (and of In+1, which is independent from
the past) is needed, not the way we ended up with Xn.

The uniform distribution USN
on SN is invariant for X : if

X0 ∼ USN
, then for any time n ∈ Z+, Xn ∼ USN

. Furthermore, by
irreducibility and aperiodicity, we know that the law L(Xn)
converges to USN

for large time n.

But from a practical point of view, we want to know for how long
we have to shuffle the deck to be close to USN

. Quantitative
convergence provides such estimates.



Quantitative convergence

Different ways to measure closeness of probability measures m and
µ on the same state space:
Total variation:

‖m − µ‖
tv
≔ sup

A event

|m(A)− µ(A)| = 1

2

∥

∥

∥

∥

dm

dµ
− 1

∥

∥

∥

∥

L1(µ)

Separation:

s(m, µ) ≔ esssupµ1 − dm

dµ
≥ ‖m − µ‖

tv

For top-to-random shuffle: for any c > 0,

∥

∥L(X⌊N ln(N)+cN⌋)− USN

∥

∥

tv
≤ exp(−c)

i.e. order N ln(N) shuffles are needed to be almost at equilibrium.
Furthermore, it can be shown to be a cut-off time.



Strong stationary times

The proof of Aldous and Diaconis [1986] used strong stationary
times associated to a Markov chain X : they are finite stopping
times (only the past of X and independent randomness are needed
to decide to stop) τ such that

τ ⊥⊥ Xτ and Xτ ∼ µ

where µ is the invariant probability of X .
They provide exact simulations of µ and we have

∀ n ∈ Z+, s(L(Xn), µ) ≤ P[τ > n]

In the top-to-random shuffle, a strong stationary time is given by
the first time the last card reaches the top and is inserted in the
deck. It is distributed as a sum of independent geometric random
variables of parameters 1/N, 2/N, ..., (N − 1)/N and 1. It leads to
the previous bound (coupon collector problem).



Set-valued dual

How to construct a strong stationary time?
Consider D ≔ {A ⊂ SN} \ {∅} and for any σ ∈ SN and
k ∈ {1, 2, ...,N}

Aσ,k ≔ {σ′ ∈ SN : σ′(1) = σ(1), σ′(2) = σ(2), ..., σ′(k) = σ(k)}

Define a set-valued process D ≔ (Dn)n∈Z+ via

Dn ≔ A
Xn,position of the initial last card

as long as the last card has not been reinserted, otherwise take
Dn ≔ SN .
Then D is a D-valued Markov chain absorbed at SN .
Define the Markov kernel Λ from D to SN via

∀ A ∈ D, ∀ σ ∈ SN , Λ(A, σ) ≔
USN

(σ)

USN
(A)

1σ∈A

(=conditional expectation on subsets under the invariant
probability).



Intertwining relations

Let P be the transition kernel associated to the time-homogeneous
Markov chain X :

∀ σ, σ′ ∈ SN , P(σ, σ′) ≔ P[Xn+1 = σ′|Xn = σ]

The r.h.s. is 1/N if Xn+1 ◦ X−1
n is a cycle of the form

(1 → i → i − 1 → i − 2 → · · · → 2 → 1) and 0 otherwise.
Let Q be the transition kernel associated to the time-homogeneous
Markov chain D. We have the intertwining relation

QΛ = ΛP (1)

which makes sense, since Q is a D ×D matrix, Λ is a D × SN

matrix and P is a SN × SN matrix.



Coupling by intertwining

Fill and Diaconis [1990] have shown that (1) is a key for the
construction of strong stationary times for finite Markov processes,
as soon as the transition kernel P is ergodic and Q is absorbing.

Assume (1) is satisfied for general such P and Q. Let
X ≔ (Xn)n∈Z+ and D ≔ (Dn)n∈Z+ be corresponding Markov
chains, with L(D0)Λ = L(X0). Then there exists a coupling of X
and D such that for all times n ∈ Z+, we have for the conditional
expectations:

{ L(Xn|DJ0,nK) = Λ(Dn, ·)
L(DJ0,nK|X ) = L(DJ0,nK|XJ0,nK)

(2)

It follows that the absorption time of D is a strong stationary time
for X . Our goal is to extend such properties to diffusion processes
X .
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Brownian motion

The Brownian motion is approximated (in law) by letting ǫ → 0+ in
the following picture, where each step ±√

ǫ is chosen with
probability 1/2:

(0,0)

√
ǫ

2
√
ǫ

3
√
ǫ
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ǫ

−√
ǫ

−2
√
ǫ

−3
√
ǫ

ǫ 2ǫ 3ǫ 4ǫ 5ǫ 6ǫ 7ǫ 8ǫ 9ǫ 10ǫ 11ǫ 12ǫ 13ǫ

Figure: Approximation of a Brownian path



Pitman’s transformation

Let (Bt)t≥0 be a Brownian motion. Consider the Pitman’s
transformation R ≔ (Rt)t≥0 given by

Rt ≔ −Bt + 2 max
s∈[0,t]

Bs

Let Λ the Markov kernel from R+ to R given by

∀ r ≥ 0, Λ(r , dx) ≔ U[−r ,r ](dx)

Relation (2) can be extended to this continuous setting: for all time
t ≥ 0,

{ L(Bt |R[0,t]) = Λ(Rt , ·)
L(R[0,t]|B) = L(R[0,t]|B[0,t])

(3)

Furthermore, the process R is a Bessel-3 process, i.e. it has the law
of the norm of a Brownian motion in dimension 3.



Pitman’s theorem in picture

R

time

Figure: Trajectories: Brownian motion B[0,t], R[0,t], −R[0,t], and the

segment-valued dual: [−Rt,Rt ]



Generators

The intertwining relation (1) holds for the generators G and G of B
and R :

GΛ = ΛG

Here G = 1

2
∂2
x (on C2(R)) and G = 1

2
∂2
r +

1

r
∂r (on C2(R+)).

The generator G of a Markov process (Xt)t≥0 is understood in the
sense of martingale problems: for any function f from the domain
of G (=nice observable on the underlying state space), the process
M f
≔ (M f

t )t≥0 is a (local) martingale, where

M f
t ≔ f (Xt)− f (X0)−

∫ t

0

G [f ](Xs) ds

Martingales are among the main tools of probability theory, they
satisfy

∀ t, s ≥ 0, E[M f
t+s |X[0,t]] = M f

t



On the circle

Consequently of (3), we get estimates on the convergence of the
Brownian motion W ≔ (Wt)t≥0 on the circle T ≔ R/(2πZ): let τ
be the hitting time of π by R :

τ ≔ inf{t ≥ 0 : Rt = π}

It is a strong stationary time for W . The hitting times of Bessel
processes are well-studied, we have:

∀ λ > 0, E[exp(−λτ)] =

√
π 4
√
λ

4
√

2Γ(3/2)

1

I1/2(π
√

2λ)

where I1/2 is the modified Bessel function of index 1/2.
A Tauberien theorem enables to deduce the behavior for large t ≥ 0
of P[τ > t] and thus of s(L(Wt),UT) and ‖L(Wt)− UT‖tv

.
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Elliptic real diffusions

On R, consider a diffusion X whose generator is G ≔ a∂2 + b∂,
where a, b are smooth functions and a is positive. Consider the
speed measure µ(dx) ≔ µ(x) dx with density

µ(x) ≔
exp (c(x))

a(x)
with c(x) ≔

∫ x

0

b(y)

a(y)
dy

It is invariant for X and even reversible: G can be extended into a
self-adjoint operator on L

2(µ).
Consider

D ≔ {[y , z ] : y , z ∈ (−∞,+∞), y ≤ z}

As usual, define the associated Markov kernel Λ from D to R via

∀ [y , z ] ∈ D, Λ([y , z ], dx) ≔







δy (dx) , if y = z

µ(x)
µ([y ,z ])1[y ,z ](x) dx , otherwise



Dual process

On D define the degenerate generator

G ≔ (
√

a(z)∂z −
√

a(y)∂y )
2

+(a′(y)/2 − b(y))∂y + (a′(z)/2 − b(z))∂z

+2

√

a(y)µ(y) +
√

a(z)µ(z)

µ([y , z ])
(
√

a(z)∂z −
√

a(y)∂y ),

Its interest is in the intertwining relation GΛ = ΛG .

Proposition

There exists a unique process [Y ,Z ] whose generator is G, up to its

explosion time ζ. The diagonal is an entrance boundary for this

process.

The proof is based on the fact that (µ([Yt ,Zt ]))t∈[0,ζ] is a
(stopped) Bessel-3 process, up to the time-change (θt)t∈[0,ς] given
by

2

∫ θt

0

(
√

a(Ys)µ(Ys) +
√

a(Zs)µ(Zs))
2 ds = t



Strong stationary times in 1-dimension

Application to the existence of strong stationary times:

Theorem

Assume that X is positive recurrent. There exists a strong

stationary time for X , whatever its initial distribution, if and only if

−∞ and +∞ are entrance boundaries.

Positive recurrence or ergodicity: µ is finite and in large time Xt

converges to the renormalization of µ, analytically this is
characterized by

∫

0

−∞
exp(−c(y)) dy = +∞ and

∫ ∞

0

exp(−c(y)) dy = +∞

Entrance boundary: e.g. for +∞, it means that X can be started
from +∞ (comes down from infinity), it amounts to:

∫ +∞

0

(
∫ x

0

exp (−c(y)) dy

)

µ(dx) < +∞



1-dimension hypoelliptic diffusions

Consider again the generator G ≔ a∂2 + b∂, on R or T, where a is
allowed to vanish on a finite number of points, but such that

√
a

remains smooth. On the vanishing points, assume b does not
vanish: 1-dimensional hypoellipticity in the sense of Hörmander
[1967].
Up to some adjustments (modification of the measure used in Λ,
dual processes which can disconnect, ...), the above approach is
valid and enables to recover the density theorem (i.e. the law of Xt

admits a density for all t > 0) and to obtain estimates on the speed
of convergence to equilibrium (even when the invariant measure
does not charge the whole state space). The Bessel-3 process is still
there, the hypoellipticity is only felt at the level of the time change.

Is it possible to recover the generality of Hörmander’s theorem in
this probabilistic way?
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Riemannian manifolds

Consider a (complete) Riemannian manifold V of dimension n ≥ 2.
Examples in dimension n = 2:

The Laplacian G associated to V is the generator of the Brownian
motion X ≔ (Xt)t≥0 on V (up to speeding of time by 2). The
process X can be approximated as in R by using independent and
uniform increments on spheres of radius

√
ǫ, as in the real case.

The generator G is reversible with respect to the Riemannian
measure µ. When V is compact, µ can be normalized into a
probability measure.



Evolving domains

Let D be the set of compact subdomains of V with a smooth
boundary. Consider Λ the Markov kernel from D to V ,
corresponding to the conditioning of µ. We want:
• to find a Markov generator G intertwined with G through Λ:

GΛ = ΛG (4)

• To associate to G a Markov evolution of domains (Dt)t≥0,
starting from a singleton: D0 = {x0}.
• To couple the evolutions X and (Dt)t≥0 so that

{ L(Xt |D[0,t]) = Λ(Dt , ·)
L(D[0,t]|X ) = L(D[0,t]|X[0,t])

• To recover density theorems and to construct strong stationary
times when V is compact.



Mean curvature flow

Let be given D0 ∈ D. To any y ∈ ∂D0, associate the exit unitary
normal vector νy and the mean curvature ρ(y).
At least for small time t ≥ 0, it is possible to make the domain
evolve according to

∀ yt ∈ ∂Dt , ẏt = −ρ(yt)νyt

The domains Dt have a tendency to round up and to shrink to a
point in finite time.



Stochastic modification of the mean curvature flow

Modify the previous deterministic evolution into an
infinite-dimensional stochastic differential equation on (Dt)t∈[0,ζ]:

∀ Yt ∈ ∂Dt , dYt =

(√
2dBt +

(

2
µ(∂Dt)

µ(Dt)
− ρ(Yt)

)

dt

)

νYt
(5)

where (Bt)t≥0 is a one-dimensional Brownian motion and µ is
(n − 1)-dimensional Hausdorff measure. The global isoperimetric
ratio µ(∂Dt)/µ(Dt) counters the effect of the mean curvature and
prevents the evolution to collapse to a singleton.

Theorem

Starting from a non-singleton element of D, it is possible to define

(Dt)t∈[0,ζ], where ζ is a positive random time, solving (5) and

whose generator G satisfies the intertwining relation (4).

The proof is based on an extension of the Doss-Sussman method to
the infinite dimensional setting of D.



Euclidean spaces

When V has constant curvature, (5) can be solved for all times,
starting from a singleton {x0}. In this situation Dt is a ball
centered at x0 and of radius Rt solving the following stochastic
differential equations:

• Euclidean space R
n (null curvature):

dRt =
√

2dBt +
n+ 1

Rt

dt

(Bessel process of dimension n+ 2, up to scaling time by 1/2).

Furthermore when n = 2, it can be proved that starting from any
D ∈ D, the normalized domain Dt/

√

µ(Dt) converges to the disk
of diameter 1/

√
π for large times (under the restriction that (5)

can be solved for any time t ≥ 0).



Constant curvature

• Spherical space S
n (positive curvature=1):

dRt =
√

2dBt +

(

2 sinn−1(Rt)
∫ Rt

0
sinn−1(z) dz

− (n − 1) cot(Rt)

)

dt

Enable to construct strong stationary times (should lead to a
cut-off phenomenon with respect to the dimension).

• Poincaré’s model of hyperbolic space H
n (negative

curvature=−1)

dRt =
√

2dBt +

(

2 sinhn−1(Rt)
∫ Rt

0
sinhn−1(z) dz

− (n − 1) coth(Rt)

)

dt



Observables

To define rigorously the generator G, we must have at our disposal
“nice observables”.

• Elementary observables:

Ff : D ∋ D 7→ Ff (D) ≔

∫

D

f dµ

associated to the functions f ∈ C∞(V ), the space of smooth
mappings on V .

• Composite observables: the functionals of the form
F ≔ f(Ff1 , ...,Ffn ), where n ∈ Z+, f1, ..., fn ∈ C∞(V ) and
f : R → R is a C∞ mapping, with R an open subset of Rn

containing the image of D by (Ff1 , ...,Ffn).



Generator G

On elementary observables:

∀ D ∈ D, G[Ff ](D) ≔

∫

D

G [f ] dµ+ 2
µ(∂D)

µ(D)

∫

∂D
f dµ

For the extension to composite observables, the carré du champs

is also required:

∀ D ∈ D, ΓG [Ff ,Fg ](D) =

(
∫

∂D
f dµ

)(
∫

∂D
g dµ

)

Then on composite observables F as above:

G[F] =
∑

j∈J1,nK

∂j f(Ff1 , ...,Ffn )G[Ffj ] +
∑

k,l∈J1,nK

∂k,l f(Ff1 , ...,Ffn)ΓG [Ffk ,Ffl ]

(consequence of the continuity of the trajectories of D).



Elliptic diffusions on manifolds

The above constructions can be extended to any elliptic second
order differential generator G on a manifold V admitting an
invariant measure µ. The definition of the generator G is exactly
the same, but there is a difference in the description of the
infinitesimal evolution of the boundaries.
The operator G induces on V a Riemannian structure so that
G = △+ b, where b is a vector field. Write exp(U) the density of
µ with respect to the Riemannian measure. Then b admits a
(weighted Hodge) decomposition ∇U + β. The s.d.e. (5) must be
replaced by

dYt =
(√

2dBt +

(

2
µ(∂Dt)

µ(Dt)
+ 〈β −∇U, ν〉 (Yt)− ρ(Yt)

)

dt

)

ν(Yt)



Pitman property

Up to the stopping time until which everything is well-defined, we
always have:

Theorem

The volume process (µ(Dθt ))t≥0 is a Bessel process of dimension 3,

where the time change is given by

2

∫ θt

0

(µ(∂Ds))
2 ds = t

The ubiquity of the Bessel-3 process suggests that hypoellipticity in
general could be investigated in a similar probabilistic way.
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