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Pitman’s transformation

Let B B (Bt)t≥0 be a Brownian motion. Consider the Pitman’s
transformation R B (Rt)t≥0 given by

Rt B −Bt + 2 max
s∈[0,t]

Bs

Let Λ the Markov kernel from R+ to R given by

∀ r ≥ 0, Λ(r , dx) B U[−r ,r ](dx)

The process R is a Λ-dual process for B : for all time t ≥ 0,{
L(Bt |R[0,t]) = Λ(Rt , ·)
L(R[0,t]|B) = L(R[0,t]|B[0,t])

(1)

Furthermore, the process R is a Bessel-3 process, i.e. it has the law
of the norm of a Brownian motion in dimension 3.



Pitman’s theorem in picture

R

time

Figure: Trajectories: Brownian motion B[0,t], R[0,t], −R[0,t], and the
segment-valued dual: [−Rt ,Rt ]



Generators

The first duality relation of (1) can be deduced from δ0Λ = δ0 and
from the following intertwining relation for the generators G and G
of B and R :

GΛ = ΛG (2)

Here G = 1
2∂

2
x (on C2(R)) and G = 1

2∂
2
r + 1

r ∂r (on C2
N(R+), with

Neumann condition at 0).

The generator G of a Markov process X B (Xt)t≥0 is understood
in the sense of martingale problems: for any function f from the
domain of G (=nice observable on the underlying state space), the
process M f B (M f

t )t≥0 is a (local) martingale, where

M f
t B f (Xt)− f (X0)−

∫ t

0
G [f ](Xs) ds



Strong stationary times

A strong stationary time τ associated to a positive recurrent
Markov process X is a finite stopping time such that

τ ⊥⊥ Xτ and Xτ ∼ µ

where µ is the invariant probability of X . They provide exact
simulations of µ and estimates on the speed of convergence:

∀ t ≥ 0, ‖L(Xt)− µ‖tv ≤ s(L(Xt), µ) ≤ P[τ > t]

in total variation and separation discrepancy: for any probability
measures m and µ on the same state space:

s(m, µ) B esssupµ1−
dm

dµ
≥ 1

2

∥∥∥∥dmdµ − 1
∥∥∥∥
L1(µ)

C ‖m − µ‖tv

Strong stationary times were introduced by Aldous and Diaconis
[1986] to investigate the quantitative convergence to equilibrium of
the top-to-random card shuffle.



On the circle

As a consequence of (1), we get estimates on the convergence of
the Brownian motion W B (Wt)t≥0 B (Bt [2π])t≥0 on the circle
T B R/(2πZ): let τ be the hitting time of π by R :

τ B inf{t ≥ 0 : Rt = π}

It is a strong stationary time for W . The hitting times of Bessel
processes are well-studied, we have:

∀ λ > 0, E[exp(−λτ)] =

√
π 4
√
λ

4
√
2Γ(3/2)

1
I1/2(π

√
2λ)

where I1/2 is the modified Bessel function of index 1/2.
A Tauberien theorem enables to deduce the behavior for large t ≥ 0
of P[τ > t] and thus of s(L(Wt),UT) and ‖L(Wt)− UT‖tv, where
UT is the uniform probability on T.
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Elliptic real diffusions

On R, consider a diffusion X whose generator is G B a∂2 + b∂,
where a, b are smooth functions and a is positive. Consider the
speed measure µ(dx) B µ(x) dx with density

µ(x) B
exp (c(x))

a(x)
with c(x) B

∫ x

0

b(y)

a(y)
dy

It is invariant for X and even reversible: G can be extended into a
self-adjoint operator on L2(µ).
Consider

D B {[y , z ] : y , z ∈ (−∞,+∞), y ≤ z}

Define the conditioning Markov kernel Λ from D to R via

∀ [y , z ] ∈ D, Λ([y , z ], dx) B

 δy (dx) , if y = z

µ(x)
µ([y ,z])1[y ,z](x) dx , otherwise



Dual process
On D define the degenerate generator

G B (
√

a(z)∂z −
√

a(y)∂y )2

+(a′(y)/2− b(y))∂y + (a′(z)/2− b(z))∂z

+2

√
a(y)µ(y) +

√
a(z)µ(z)

µ([y , z ])
(
√
a(z)∂z −

√
a(y)∂y ),

Its interest is in the intertwining relation GΛ = ΛG .

Proposition

There exists a unique process [Y ,Z ] whose generator is G, up to its
explosion time ζ. The diagonal is an entrance boundary for this
process.

The proof is based on the fact that (µ([Yt ,Zt ]))t∈[0,ζ] is a
(stopped) Bessel-3 process, up to the time-change (θt)t∈[0,ς] given
by

2
∫ θt

0
(
√
a(Ys)µ(Ys) +

√
a(Zs)µ(Zs))2 ds = t



Strong stationary times in 1-dimension
Application to the existence of strong stationary times:

Theorem
Assume that X is positive recurrent. There exists a strong
stationary time for X , whatever its initial distribution, if and only if
−∞ and +∞ are entrance boundaries.

Positive recurrence or ergodicity: µ is finite and in large time Xt

converges to the renormalization of µ, analytically this is
characterized by∫ 0

−∞
exp(−c(y)) dy = +∞ and

∫ ∞
0

exp(−c(y)) dy = +∞

Entrance boundary: e.g. for +∞, it means that X can be started
from +∞ (comes down from infinity), it amounts to:∫ +∞

0

(∫ x

0
exp (−c(y)) dy

)
µ(dx) < +∞



1-dimension hypoelliptic diffusions

Consider again the generator G B a∂2 + b∂, on R or T, where a is
allowed to vanish on a finite number of points, but such that

√
a

remains smooth. On the vanishing points, assume b does not
vanish: 1-dimensional hypoellipticity in the sense of Hörmander
[1967].
Up to some adjustments (modification of the measure used in Λ,
dual processes which can disconnect, ...), the above approach is
valid and enables to recover the density theorem (i.e. the law of Xt

admits a density for all t > 0) and to obtain estimates on the speed
of convergence to equilibrium (even when the invariant measure
does not charge the whole state space). The Bessel-3 process is still
there, the hypoellipticity is only felt at the level of the time change.

Is it possible to recover the generality of Hörmander’s theorem in
this probabilistic way?
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Riemannian manifolds

Consider a (complete) Riemannian manifold V of dimension n ≥ 2.
The Laplacian G associated to V is the generator of the Brownian
motion X B (Xt)t≥0 on V (up to speeding of time by 2). The
generator G is reversible with respect to the Riemannian measure
µ. When V is compact, µ can be normalized into a probability
measure.
Let D be the set of compact subdomains of V with a smooth
boundary. Consider Λ the Markov kernel from D to V ,
corresponding to the conditioning of µ.



Evolving domains

Goal:
• To find a Markov generator G on D intertwined with G through
Λ:

GΛ = ΛG (3)

• To associate to G a Markov evolution of domains (Dt)t≥0,
starting from a singleton: D0 = {x0}.
• To couple the evolutions X and (Dt)t≥0 so that{

L(Xt |D[0,t]) = Λ(Dt , ·)
L(D[0,t]|X ) = L(D[0,t]|X[0,t])

• To recover density theorems and to construct strong stationary
times when V is compact.



Mean curvature flow

Let be given D0 ∈ D. To any y ∈ ∂D0, associate the exit unitary
normal vector νy and the mean curvature ρ(y).
At least for small time t ≥ 0, it is possible to make the domain
evolve according to

∀ yt ∈ ∂Dt , ẏt = −ρ(yt)νyt

The domains Dt have a tendency to round up and to shrink to a
point in finite time.



Stochastic modification of the mean curvature flow

Modify the previous deterministic evolution into an
infinite-dimensional stochastic differential equation on (Dt)t∈[0,ζ]:

∀ Yt ∈ ∂Dt , dYt =

(√
2dBt +

(
2
µ(∂Dt)

µ(Dt)
− ρ(Yt)

)
dt

)
νYt (4)

where (Bt)t≥0 is a one-dimensional Brownian motion and µ is
(n − 1)-dimensional Hausdorff measure. The global isoperimetric
ratio µ(∂Dt)/µ(Dt) counters the effect of the mean curvature and
prevents the evolution to collapse to a singleton.

Theorem
Starting from a non-singleton element of D, it is possible to define
(Dt)t∈[0,ζ], where ζ is a positive random time, solving (4) and
whose generator G satisfies the intertwining relation (3).

The proof is based on an extension of the Doss-Sussman method to
the infinite dimensional setting of D.



Euclidean spaces

When V has constant curvature, (4) can be solved for all times,
starting from a singleton {x0}. In this situation Dt is a ball
centered at x0 and of radius Rt solving the following stochastic
differential equations:

• Euclidean space Rn (null curvature):

dRt =
√
2dBt +

n + 1
Rt

dt

(Bessel process of dimension n + 2, up to scaling time by 1/2).

Furthermore when n = 2, it can be proved that starting from any
D ∈ D, the normalized domain Dt/

√
µ(Dt) converges to the disk

of diameter 1/
√
π for large times (under the restriction that (4)

can be solved for any time t ≥ 0).



Constant curvature

• Spherical space Sn (positive curvature=1):

dRt =
√
2dBt +

(
2 sinn−1(Rt)∫ Rt

0 sinn−1(z) dz
− (n − 1) cot(Rt)

)
dt

Enable to construct strong stationary times and to recover the
cut-off phenomenon with respect to the dimension [Saloff-Coste
1994, Méliot 2014].

• Poincaré’s model of hyperbolic space Hn (negative
curvature=−1)

dRt =
√
2dBt +

(
2 sinhn−1(Rt)∫ Rt

0 sinhn−1(z) dz
− (n − 1) coth(Rt)

)
dt



Observables

To define rigorously the generator G, we must have at our disposal
“nice observables”.

• Elementary observables:

Ff : D 3 D 7→ Ff (D) B

∫
D
f dµ

associated to the functions f ∈ C∞(V ), the space of smooth
mappings on V .

• Composite observables: the functionals of the form
F B f(Ff1 , ...,Ffn), where n ∈ Z+, f1, ..., fn ∈ C∞(V ) and
f : R → R is a C∞ mapping, with R an open subset of Rn

containing the image of D by (Ff1 , ...,Ffn).



Generator G

On elementary observables:

∀ D ∈ D, G[Ff ](D) B

∫
D
G [f ] dµ+ 2

µ(∂D)

µ(D)

∫
∂D

f dµ

For the extension to composite observables, the carré du champs is
also required:

∀ D ∈ D, ΓG [Ff ,Fg ](D) =

(∫
∂D

f dµ

)(∫
∂D

g dµ

)
Then on composite observables F as above:

G[F] =
∑

j∈J1,nK

∂j f(Ff1 , ...,Ffn)G[Ffj ] +
∑

k,l∈J1,nK

∂k,l f(Ff1 , ...,Ffn)ΓG [Ffk ,Ffl ]

(consequence of the continuity of the trajectories of D).



Elliptic diffusions on manifolds

The above constructions can be extended to any elliptic second
order differential generator G on a manifold V admitting an
invariant measure µ. The definition of the generator G is exactly
the same, but there is a difference in the description of the
infinitesimal evolution of the boundaries.
The operator G induces on V a Riemannian structure so that
G = 4+ b, where b is a vector field. Write exp(U) the density of
µ with respect to the Riemannian measure. Then b admits a
(weighted Hodge) decomposition ∇U + β. The s.d.e. (4) must be
replaced by

dYt =(√
2dBt +

(
2
µ(∂Dt)

µ(Dt)
+ 〈β −∇U, ν〉 (Yt)− ρ(Yt)

)
dt

)
ν(Yt)



Pitman property

Up to the stopping time until which everything is well-defined, we
always have:

Theorem
The volume process (µ(Dθt ))t≥0 is a Bessel process of dimension 3,
where the time change is given by

2
∫ θt

0
(µ(∂Ds))2 ds = t

The ubiquity of the Bessel-3 process suggests that hypoellipticity in
general could be investigated in a similar probabilistic way.
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Markov chains

Given an intertwining relation between finite generators or
transition matrices, Diaconis and Fill [1990] constructed a coupling
between the corresponding Markov processes or chains.
Problem: it is difficult to manipulate, since it is not so explicit.

Finite Markov chain setting: V a finite state space and P an
irreducible transition matrix, denote µ the invariant probability.
Consider the conditioning Markov kernel Λ,

∀ S ∈ D, ∀ x ∈ X , Λ(S , x) B
µ(x)

µ(S)

where D B {S ⊂ V : S 6= ∅}. Let X B (Xn)n∈Z+ be a Markov
chain associated to P , we want to find a Markov chain
X B (Xn)n∈Z+ on D which is a Λ-dual to X and an explicit
coupling (X ,X).



Random mappings

Consider the adjoint transition matrix (in L2(µ)):

∀ x , y ∈ V , P∗(x , y) B
µ(y)

µ(x)
P(y , x)

A random mapping ψ : Ω× V → V is said to be associated to P∗

when

∀ x , x ′ ∈ V , P[ψ(x) = x ′] = P∗(x , x ′)

For any S ∈ D̄ B D t {∅}, let be given a random mapping ψS . It
defines a random mapping Ψ from D̄ to D̄ via

∀ S ∈ D̄, Ψ(S) B {y ∈ V : ψS(y) ∈ S}



Forward construction (1)

Let be given a trajectory (xn)n∈Z+ of X . A adapted finite trajectory
(Sn)n∈Z+ of X is constructed iteratively via
• S0 B {x0}.
• When Sn has been constructed, consider a random mapping ψSn

associated to P∗ (independent of everything already done, except
for the index Sn) and condition by the event {ψSn(xn+1) = xn}, to
get a random mapping φn (no longer associated to P∗). Construct

Sn+1 B {y ∈ V : φn(y) ∈ Sn}

A stochastic chain X is obtained by integrating with respect to
(xn)n∈Z+ .



Forward construction (2)

Theorem
The stochastic chain X is Markovian and is a Λ-dual of X .

The spirit of this construction is related to the
coupling-from-the-past sampling algorithm of Propp and Wilson
[1996] and particular instances of random mappings enable to
recover the Doob-transform of the evolving sets of Morris and Peres
[2005].



Discrete Pitman theorem

Consider the usual random walk X B (Xn)n∈Z+ on Z, starting from
0 and whose transitions are given by

∀ x , y ∈ Z, P(x , y) B

{
1/2 , if |y − x | = 1
0 , otherwise

The counting measure is invariant and even reversible: P∗ = P .
The conditioning Markov kernel Λ is defined as before, by
restricting D to contain only finite subsets.
Introduce the process R B (Rn)n∈Z+ via

∀ n ∈ Z+, Rn B 2max{Xm : m ∈ J0, nK} − Xn

Then the discrete equivalent of (1) holds: the stochastic chain
X B (Xn)n∈Z+ , given by

∀ n ∈ Z+, Xn B {Rn − 2m : m ∈ J0,RnK}

is Markovian and a Λ-dual of X .



Schematic proof by random mappings
Consider the random mapping ψS given by

∀ x ∈ Z, ψS(x) B

{
x + B , if x > max(S)
x − B , if x ≤ max(S)

where B is a Rademacher variable, and the picture:

n n + 1 n n + 1 n n + 1 n n + 1



Extensions

In the discrete Pitman theorem, a backward construction of the
dual is possible. This property extends to restless birth and death
chains on Z, i.e. satisfying ∀ x ∈ Z, P(x , x − 1) + P(x , x + 1) = 1.
Extra randomness is in general necessary. But first computations
suggest that this extra randomness disappears for one-dimensional
diffusions, through approximation by restless birth and death chains
on Z.

The hope is that random mappings can be replaced by random
flows in diffusion frameworks, leading to direct constructions of
Λ-duals in the context of hypoelliptic processes.
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