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On Riemannian manifolds

Consider the Laplacian 4 on a compact and connected
Riemannian manifold M of dimension n. The spectrum of ´4
is denoted

0 “ λ1pMq ă λ2pMq ď ¨ ¨ ¨ ď λkpMq ď ¨ ¨ ¨ Õ 8

Let A be the family of all nonempty open subsets A of M with a
piecewise smooth boundary, and more generally for k P N, denote
Ak the set of all k-tuples pA1, ¨ ¨ ¨ ,Akq of mutually disjoint
elements of A.
Define the k-th Cheeger (or isoperimetric) constant via

hkpMq B inf
pA1,¨¨¨ ,Ak qPAk

max
lPJkK

µpBAlq

µpAlq

where µ is the Riemannian measure and µ is the
pn ´ 1q-dimensional Hausdorff measure on M.



Higher order Cheeger inequalities

Theorem 1

There exists a universal positive constant c0 such that

@ k P N, λkpMq ě
c0
k6 h

2
kpMq

The Cheeger’s inequality was introduced by [Cheeger, 1970] for
k “ 2, it corresponds to cutting M into two parts.
Higher order Cheeger’s inequalities were first proven by [Lee,
Gharan and Trevisan, 2012] in a combinatoric framework.
Theorem 1 is also true for Riemannian manifolds with a smooth
boundary, endowed with the Laplacian with Neumann’s condition.
The boundary of a subset A P A must be replaced by the interior
boundary, i.e. the intersection of BA with IntpMq B MzBM.
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Steklov operators

Let f be a smooth function on the smooth boundary BM of a
compact and connected Riemannian manifold M of dimension n.
Consider F its harmonic extension on M and define on BM

Srf s B xν,∇F y

where ν is the unit inward normal vector along BM.
S is called the Steklov operator associated to M (or the
Dirichlet-to-Neumann operator). It is symmetric and essentially
self-adjoint in L2pµq. Denote the sequence of the Steklov
eigenvalues of ´S by

0 “ σ1pMq ă σ2pMq ď ¨ ¨ ¨ ď σkpMq ď ¨ ¨ ¨ Õ 8

We want to get lower bounds on them via isoperimetric quantities,
in the spirit of Theorem 1.



Isoperimetric quantities (1)

Define the interior and exterior boundaries of A P A via:

BiA B BAX IntM BeA B ĀX BM

Consider the isoperimetric ratios

ηpAq B
µpBiAq

µpAq
η1pAq B

µpBiAq

µpBeAq

ρpAq B inf
BPA
BĂA

B̄XBiA“H

ηpBq , ρ1pAq B inf
B 1PA
B 1ĂA

B̄ 1XBiA“H

η1pB 1q



Isoperimetric quantities (2)

For k P N, we define the k-th Cheeger–Steklov constant of M by

ιkpMq B inf
pA1,¨¨¨ ,Ak qPAk

max
lPJkK

ρpAlqρ
1pAlq

It should be compared to the k-th Cheeger constant given above:

hkpMq B inf
pA1,¨¨¨ ,Ak qPAk

max
lPJkK

ηpAlq

“ inf
pA1,¨¨¨ ,Ak qPAk

max
lPJkK

ρpAlq



Higher order Cheeger inequalities for Steklov eigenvalues

Theorem 2

There exists a universal positive constant c1 such that

@ k P N, σkpMq ě
c1
k6 ιkpMq

The Steklov operator was introduced in [Steklov,1902] for bounded
domains of the plane. Theorem 2 is an extension of works by
[Escobar, 1997, 1999] and [Jammes, 2015] for the
Steklov-Cheeger’s inequality corresponding to k “ 2.
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Finite Markov generators

A matrix L B Lpx , yqx ,yPM indexed by the finite set M is said to be
a Markov generator when

@ x ‰ y P M, Lpx , yq ě 0, and
ÿ

yPM

Lpx , yq “ 0

Assume it is irreducible: for every x , y P M there exists a sequence
x “ x0, x1, . . . , xl “ y of elements of M such that Lpxj , xj`1q ą 0
for any j P J0, l ´ 1K. Denote by µ B pµpxqqxPM its unique
invariant probability, characterized by

@ y P M,
ÿ

xPM

µpxqLpx , yq “ 0



Cheeger’s constants
Let A be the set of non-empty subsets of M. The boundary of
A P A is a set of edges:

BA B tpx , yq : x P A and y R Au

The set of edges is endowed with the measure µ given by

@ x “ y P M, µpx , yq B µpxqLpx , yq

For k P J|M|K, define the k-th Cheeger’s constant:

hkpLq B min
pA1,¨¨¨ ,Ak qPAk

max
lPJkK

µpBAlq

µpAlq

where Ak is the set of k-tuples pA1,A2, ...,Akq of disjoints
elements from A.
We also denote

}L} B maxt|Lpx , xq| : x P Mu



Higher order Cheeger’s inequalities

Assume µ is reversible for L:

@ x , y P M, µpxqLpx , yq “ µpyqLpy , xq

Then the eigenvalues of ´L are non-negative, write them

0 “ λ1pLq ă λ2pLq ď ¨ ¨ ¨ ď λ|M|pLq

Higher order Cheeger inequalities are similar to the bounds deduced
in the Riemannian situation:

Theorem 3

There exists a universal positive constant c2 such that

@ k P N, λkpLq ě
c2

k8}L}
h2
kpLq



Finite Steklov operator
Consider V Ă M a proper subset that will be seen as a boundary.
A corresponding Steklov operator S on RV is defined as follows.
For f P RV , consider F the harmonic extension on M, namely the
unique F P RM satisfying

#

LrF spxq “ 0 , if x P MzV

F pxq “ f pxq , if x P V

Then we define

@ x P V , Srf spxq B LrF spxq

We have

Proposition 4

The operator S is an irreducible Markov generator on V whose
invariant measure is ν, the normalized restriction of µ to V .
Furthermore when L is reversible, S is reversible.



Probabilist point of view
To the generator L and to any initial distribution m0 on M, we can
associate Markov processes pXtqtě0: sample X0 according to m0,
wait a time τ1 distributed as an exponential variable of parameter
|LpX0,X0q| and choose a new position Xτ1 with the probability
LpX0, ¨q{|LpX0,X0q|. Wait an inter-time τ2 ´ τ1 distributed as an
exponential variable of parameter |LpXτ1 ,Xτ1q| and choose a new
position Xτ2 with the probability LpXτ1 , ¨q{|LpXτ1 ,Xτ1q|, etc. All the
ingredients are independent, except for the mentioned dependences.
Assume that the support of m0 is included into V . A Markov
process pYtqtě0 associated to the generator S and whose initial
distribution is m0 can be obtained from pXtqtě0 by erasing its
passages in MzV .
The irreducibility of S follows and we get that the corresponding
invariant measure ν is proportional to the restriction of µ to V via
the ergodic theorem:

νpyq

νpzq
“ lim

tÑ`8

şt
0 1tyupYsq ds

şt
0 1tzupYsq ds

“ lim
tÑ`8

şt
0 1tyupXsq ds

şt
0 1tzupXsq ds

“
µpyq

µpzq



Analytic point of view

The Dirichlet form associated to L (and µ) is the bilinear form EL
given by

@ F ,G P RM , ELpF ,G q B ´

ż

FLrG s dµ

By the theory of (non-symmetrical) Dirichlet forms, the knowledge
of E and µ is (essentially) equivalent to the knowledge of the
semi-group of pXtqtě0.
E is symmetrical if and only if µ is reversible with respect to L.
For any f , g P FpV q, let F and G be their harmonic extensions. It
appears that

ESpf , gq “
ELpF ,G q
µpV q

The assertion about reversibility of Proposition 4 follows
immediately.



Isoperimetric quantities

Assume L reversible and consider the eigenvalues of S

0 “ σ1pSq ă σ2pSq ď σ3pSq ď ¨ ¨ ¨ ď σ|V |pSq

Furthermore, we define

ηpAq B
µpBAq

µpAq
η1pAq B

µpBAq

µpAX V q

where BA and AX V can be seen respectively as the interior and
exterior boundaries. Consider

ρpAq :“ min
BPA
BĎA

ηpBq ρ1pAq :“ min
B 1PA
B 1ĎA

η1pB 1q



Higher order Cheeger’s inequalities

For any k P JvK, introduce the k-th Cheeger-Steklov constant of
V via

ιkpSq B min
pA1,...,Ak qPAk

max
lPJkK

ρpAlqρ
1pAlq

We have the discrete analogue of Theorem 2:

Theorem 5

Assume that L is reversible. There exists a universal positive
constant c3 such that

@ k P JvK, σkpSq ě
c3
k6
ιkpSq

}L}



Approximation of Steklov operators (1)

Idea of the proof: approximation by a Markov process accelerated
on MzV . For any r ą 0, consider the irreducible Markov generator
defined by

@ x ‰ y P M, Lprqpx , yq B

#

rLpx , yq , if x P MzV
Lpx , yq , if x P V

Its invariant probability measure µprq is given by

@ x P M, µprqpxq “

#

µpxq
µpV q`p1´µpV qq{r , if x P V

µpxq
rµpV q`1´µpV q , if x P MzV

Furthermore, if µ is reversible for L, then µprq is reversible for Lprq.



Approximation of Steklov operators (2)

Assume µ is reversible for L and denote

0 “ λ
prq
1 ă λ

prq
2 ď λ

prq
3 ď ¨ ¨ ¨ ď λ

prq
m

the eigenvalues of ´Lprq

Proposition 6

For any k P J|V |K, we have

lim
rÑ`8

λ
prq
k “ σkpSq

and for any k P J|M|KzJ|V |K,

lim
rÑ`8

λ
prq
k “ `8



Dirichlet-Steklov operator

To any A P A associate a Dirichlet-Steklov operator SA: given
f P RAXV , consider the solution F P RM of

$

’

&

’

%

LrF spxq “ 0 , if x P AzV
F pxq “ 0 , if x P MzA
F pxq “ f pxq , if x P AX V

(1)

and define

@ x P AX V , SArf spxq B LrF spxq

When AX V ‰ H, SA is a subMarkovian generator (i.e.
SApx , yq ě 0, for any x ‰ y , and

ř

yPV SApx , yqď 0). It may not
be irreducible, but Perron-Frobenius’ theorem enables to consider
the smallest eigenvalue σ0pAq ě 0 of ´SA.



Dirichlet-Steklov connectivity spectrum
The Dirichlet-Steklov connectivity spectrum
pκ1pSq, κ2pSq, ..., κ|V |pSqq of S via

@ k P J|V |K, κkpSq B min
pA1,...,Ak qPAk

max
lPJkK

σ0pAlq

It shares some similarity with the Steklov connectivity spectrum
pι1pSq, ι2pSq, ..., ι|V |pSqq, but it is more stable, due to its spectral
nature.

Theorem 7

Assume that L is reversible. There exists a universal constant
c4 ą 0 such that

@ k P J|V |K,
c4
k6κkpSq ď σkpSq ď κkpSq

The proof is based on accelerated approximation, using the higher
order Dirichlet-Cheeger inequalities of [Lee, Gharan and Trevisan,
2012].



End of the proof

Theorem 2 follows, if it can be shown that

@ A P A, σ0pAq ě
ρpAqρ1pAq

8 }L}

Indeed, when F is associated to f P RAXV as in (1), we have

σ0pAq ě
1

8 }L}
µr|dF 2|s

µrF 2s

µr|dF 2|s

µrf 21AXV s

where for any function G P RM and any edge px , yq P M,
|dG |px , yq B |G pyq ´ G pxq|. It remains to use the discrete co-area
formula, in the same spirit as [Jammes, 2015], to get the wanted
result.
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Measurable state space

The assumption on the state space can be relaxed by considering a
probability measure space pM,M, µq, endowed with a Markov
kernel P leaving µ invariant. The boundary set V PM must be
such that 0 ă µpV q ă 1 and we take A the set of A PM such
that 0 ă µpAq ď 1.
Let Z B pZ pnqqnPZ` be a Markov chain whose transition kernel is
P . For any A P A, define the hitting time of A by Z via

τA B inftn P Z` : Z pnq P Au

We assume that P is weakly mixing, in the sense that τA is a.s.
finite, whatever the initial distribution of Z p0q and for any A P A.



Steklov operators

Consider f a bounded measurable function on V , we associate a
function F on M via

@ x P M, Ff pxq B Ex rf pZ pτV qqs

It can be seen as an harmonic extension: F coincides with f on V
and satisfies pP ´ I qrF s “ 0 on MzV . The Steklov operator S is
then defined by

@ x P V , Srf spxq B PrF spxq ´ f pxq

The normalized restriction of µ on V is invariant for S and
reversible when µ is reversible. Then we can consider the
eigenvalues of ´S : 0 “ σ1pSq ď σ2pSq ď σ3pSq ď ¨ ¨ ¨ .



Higher order Cheeger’s inequalities

The other definitions considered in the finite case can be extended
to the present setting and in the end we get:

Theorem 8

There exists a universal positive constant c5 such that

@ k P JvK, σkpSq ě
c5ιkpSq

k6

Nevertheless, there is a technical difficulty: for the approximation
by acceleration of the quantities σ0pAq to be uniform in A P A
(after endowing r0,`8s with a finite metric), we need that it is
easy to get out of MzV , in the sense that the Dirichlet gap of
MzV is positive, namely

inf
F PL2pµqzt0u :F“0 onV

µrF pI ´ PqrF ss

µrF 2s
ą 0



Non-homogeneous acceleration

To prove Theorem 8 without the above condition, the underlying
Markov process must be accelerated in MzV in a way depending on
its current position: the further away from V , the faster it must
evolve. It amounts to consider an accelerated generator of the form

Lprqpx , dyq B

"

rϕpxqpPpx , dyq ´ δxpdyqq , if x P MzV
ϕpxqpPpx , dyq ´ δxpdyqq , if x P V

where ϕ : M Ñ r1,`8q is an appropriate acceleration function.
Indeed, choosing

@ x P M, ϕpxq B
1

Ex rexpp´2τV { lnp2qqs

one can prove that the corresponding Dirichlet gap is larger to 1/2
and it leads to Theorem 8.
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Mass concentration deformations

The previous approach can be adapted to the Riemannian
framework to estimate the eigenvalues σ of the Steklov problem:

"

∆f “ 0 , in M
Bf
Bν “ ´σf , on BM

(2)

An acceleration procedure was already used by [Lamberti and
Provenzano, 2015]: they considered the eigenproblem

"

∆f ` λρεf “ 0 , in M
Bf
Bν “ 0 , on BM

(3)

where

ρεpxq B

"

ε , if dpx , BMq ě ε
ε´1 , otherwise

and proved the convergence as ε goes to zero 0` of the eigenvalues
of (3) toward those of (2).



Mixed Dirichlet-Steklov eigenvalue problem
The same approximation holds for σ0pAq, the first eigenvalue of

$

&

%

∆f “ 0 , in A
Bf
Bν “ σf , on BeA
f “ 0 , on BiA

by the first eigenvalue of the mixed Dirichlet-Neumann problem
$

&

%

∆f ` λρεf “ 0 , in A
Bf
Bν “ 0 , on BeA
f “ 0 , on BiA

The convergence is even uniform over A P A.
Theorem 2 follows by the same arguments as above, taking into
account higher order Cheeger inequalities for elliptic reversible
diffusions on compact manifolds.
Classical examples can be revisited to show the necessity of terms
of the same nature as ρ and ρ1 in the definition of the
Cheeger-Steklov constants.



Steklov-Buser’s inequality?

A reciprocal bound to Cheeger’s inequality was proven by [Buser,
1982] under the assumption that the Ricci curvature is bounded
below by ´pn ´ 1q2δ:

λ2pMq ď 2δpn ´ 1qh2pMq ` 10h2
2pMq

It is natural to wonder if a similar relation would hold for Steklov
operators, especially in view of some recent results on higher order
Buser inequalities, see e.g. [Liu and Peyerimhoff, 2018], in a
combinatoric setting.
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Example 1

Exemple 4 of [Jammes, 2015] can be used to show the necessity of
quantities such as ηpBq and η1pBq in the definition of ιkpMq for all
k ě 2.
Consider Ml B N ˆ p´l , lq, where l ą 0 and N is a closed
manifold. The Steklov spectrum of Ml was calculated explicitly by
[Colbois, El Soufi and Girouard, 2011]. The set of eigenvalues is
!

0 l´1,
a

λkpNq tanhp
a

λkpNqlq,
a

λkpNq cothp
a

λkpNqlq : k P N
)

where λkpNq are the Laplace eigenvalues of N. For every k P N,
σkpMlq “ Oplq as l Ñ 0`, while for k ě 2, hkpMlq ě h2pMlq ě c
for some positive constant c independent of l . It shows the
necessity of a quantity such as η1pBq in the definition of ιkpMlq for
all k ě 2.



Example 2

Let S1 be the unit circle and S1
m denote a circle of radius m ą 0

with their standard metric. Consider the sequence
pMm B S1

m ˆ p´m
3{2,m3{2qqmPN with the product metric. The set

of Steklov eigenvalues σkpMmq is given as in the previous example.
Since λkpS1

mq “
1
m2λkpS1q, we have for any fixed k ě 2

σkpMmq „ m3{2λkpS1
mq “

1
?
m
λkpS1q as mÑ8

Therefore
@ k P N, lim

mÑ8
σkpMmq “ 0

It is easy to check that for every k P N, limmÑ8 hkpMmq “ 0.
Furthermore, there exists a constant C ą 0 independent of m such
that h1kpMmq ě C for any k ě 2. This example shows the necessity
of a quantity such as ηpBq in the definition of ιkpMmq for all k ě 2.



Example 3

[Girouard and Polterovich, 2010] studied a family of Cheeger
dumbbells pMεqεą0 and showed that limεÑ0` σkpMεq “ 0 for every
k P N. In their example, Mε is a domain in R2 consisting of the
union of two disjoint Euclidean unit disks connected with a thin
rectangular neck of length ε and width ε3. It can be checked that
h2pMεq Ñ 0 as εÑ 0 and that for k ě 3, hkpMεq ě c ą 0, where c
is a constant independent of ε. This example, as Example 1, shows
the necessity of η1pBq in ιkpMεq, at least for k ě 3. However, in
Example 1 the volume of the family of manifolds tends to zero,
while in this example the area and the boundary length of Mε are
uniformly controlled.
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