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Consider a finite state irreducible Markov process with transition graph G and 
invariant probability distribution π. Its inverse communication speed is defined as 
the expectation of the time to go from x to y when x, y are sampled independently 
according to π. We study this in the context of both discrete and continuous 
time. One of our goals is to show (under a suitable normalization condition 
on the transition rates for the continuous time case) that the shortest inverse 
communication speed among all Markov processes compatible with G and π is 
attained on those whose successive positions follow a Hamiltonian cycle, assuming 
one exists, and that π is close enough to the uniform distribution υ. This result is 
no longer true when π is sufficiently different from υ. Another purpose of the paper 
is to prove that when the invariance with respect to π is dropped and the inverse 
communication speed is replaced by the unweighted sum of the hitting times, then 
the Hamiltonian cycles, when they exist, are still the minimizers over all processes 
compatible with the prescribed directed graph G of permitted transitions, not only 
Markov processes, thus extending some previous results.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Our overall goal in this paper is to investigate, among certain classes of chains and processes, those which 
are the fastest, in the sense that their communication times are the smallest possible. A formal statement 
of this claim needs some notation to be set up, which we do next.

Given a finite oriented (strongly) connected graph G = (V, E), a random chain (Xn)n∈Z+ or a random 
process (Xt)t∈R+ is said to be compatible with G if it takes values in the vertex set V and its transitions 
are restricted to the edge set E (assumed to contain all the self-loops to allow for the random chain/process 
to stay at the same place). To indicate that the random chain/process starts from x ∈ V , we put x as 
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a subscript of the underlying probability Px and expectation Ex. Another useful notation is τy, the first 
hitting time of a point y ∈ V by the random chain/process. When in addition we are given a probability 
measure π on V , we will also be interested in Markov chains/processes compatible with G and admitting π
as invariant measure or fixed marginal.

More precisely, we are interested in the following two problems:

• (P1): To minimize F :=
∑

x∈V (
∑

y∈V Ex[τy]) over all G-compatible Markov chains or more general 
random processes.

• (P2): To minimize the expectation Fπ of the time needed to go from x to y when x and y are indepen-
dently sampled according to a probability distribution π on V , over all Markov chains that admit π as 
stationary distribution. That is, we seek to minimize

Fπ :=
∑
x∈V

π(x)

⎛⎝∑
y∈V

π(y)Ex[τy]

⎞⎠ (1)

where π is the prescribed stationary distribution.

Throughout this paper, υ will stand for the uniform distribution over V . Note that the first problem is not
a special case of the second with π = υ, because the minimization in the first case will be over all controlled 
Markov chains/processes, not necessarily those that have υ as the stationary distribution. In either case, 
this is distinct from the notion of rapid mixing [30]. It is known that the term in parentheses in (1) is 
independent of x and is called the Kemeny constant. The so-called eigentime identity relates this constant 
to the spectrum of the transition matrix P , in fact it turns out that it equals the trace of the fundamental 
matrix. That is, letting Π denote the rank one matrix whose rows are identical and equal to the stationary 
distribution π of a stochastic matrix P written as a row vector,

∑
x∈V

π(x)

⎛⎝∑
y∈V

π(y)Ex [τy]

⎞⎠ = tr
(
(I − P + Π)−1)− 1. (2)

See [24] for some early contributions to this circle of ideas and a historical perspective.

The above equivalence connects this problem to another strand of research initiated in [19], [20], which in 
fact has motivated the present work. These and subsequent works mentioned below embed the Hamiltonian 
cycle problem into a Markov decision process for singularly perturbed Markov chains. The hope is to have 
the well developed techniques of Markov decision theory bear upon the Hamiltonian cycle problem, both 
in order to get additional theoretical insights and to suggest novel heuristics. We summarize below the key 
developments in this strand of research.

This embedding is done as follows. The state space of the Markov chain is the node set V of the directed 
graph and at each node i, the control set is the edge set Ei := {(i, j) : (i, j) ∈ E} of outgoing edges at i. 
When the controlled Markov chain is in state i, a randomized control, depending on the past state-control 
sequence and possibly some independent randomization, chooses a probability distribution on Ei and picks 
an edge (i, j) according to it. The chain then moves to j. Thus the controlled transition probabilities are 
P (Xt+1 = k|Xt = i, Ut = (i, j)) = δjk, the Kronecker delta. This transition probability is further modified by 
taking a convex combination thereof with another transition probability with a weight 1 − ε for the former, 
where 0 < ε << 1, making it a singularly perturbed Markov chain. The choice of the latter transition 
probability corresponds to a deterministic (i.e., probability 1) transition to a prescribed ‘home’ node. The 
aim of the perturbation is to render the chain uni-chain in the sense that there is a nonzero probability 
path from any node to the home node regardless of the control choices.
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In [19], such an embedding is used in order to obtain a new linear programming relaxation of the Hamil-
tonian cycle problem, whereas [20] characterized Hamiltonian cycles (when they exist) as the minimizers 
over all deterministic stationary policies, for ε > 0 sufficiently small, of the (1, 1)-th element (i.e., the top 
diagonal term) of the fundamental matrix (I − Pε + Πε)−1, where I, Pε, Πε denote respectively the identity 
matrix, the perturbed transition matrix, and the rank one matrix with identical rows equal to the unique 
stationary distribution under Pε, written as a row vector.

It so happens that this matrix also appears in an asymptotic expansion due to Blackwell for infinite 
horizon discounted cost Markov decision process. A precise bound on the perturbation parameter for which 
the above optimality claim holds was obtained in [12]. For the special case of uniform π, i.e., doubly 
stochastic P , this was refined to ‘minimum over all stationary policies’, deterministic or otherwise, in [5]. 
The minimum of the functional under consideration is strictly higher for a non-Hamiltonian graph with the 
same number of nodes and this gap was estimated in [6].

Another important work in this vein is [17] which related the Hamiltonian cycle problem to constrained 
Markov decision processes, proving as a result the NP-hardness of the latter.

The culmination of this line of research is in the work of Litvak and Ejov [28] who used the trace of 
the fundamental matrix rather than its (1, 1)th element, as the ‘cost’ to be minimized, and showed that 
Hamiltonian cycles, when they exist, minimize it over all stochastic matrices, not just doubly stochastic, 
that are compatible with G, regardless of whether they are irreducible or not. In Markov decision theoretic 
parlance, this implies optimality over all policies for the unperturbed (i.e., ε = 0) Markov decision process 
wherein the control at any time is a prescribed function of the current state, i.e., a ‘stationary Markov 
policy’. In view of the known relation (2) of this trace with hitting times, they essentially established that if 
G contains a Hamiltonian cycle, then the fastest Markov chains are exactly those following deterministically 
the succession of states given by a Hamiltonian cycle (the corresponding value of the objective function or 
cost F does not depend on the choice of the admissible Hamiltonian cycle). This also improves upon the 
results of [24] which considered only ergodic chains. The latter work also includes a historical account of the 
so-called ‘random target lemma’ or ‘eigentime identity’ described in the next section, going back to [27].

As already mentioned, a major motivation for this line of research has been to come up with good heuristic 
algorithms for the Hamiltonian cycle problem and there are a number of articles that deal with this, such as 
[11]. We do not dwell on this issue here. These have been extensively surveyed in [7], [18], which also surveys 
a related and similarly motivated optimization problem wherein one seeks to maximize the determinant of 
a certain rank one perturbation of I − P0.

In yet another related work [8], the Markov decision theoretic formulation is leveraged to map the 
Hamiltonian cycle problem to that of comparing volumes of two convex sets.

There have also been other theoretical spin-offs leading to fine analysis of the structure of the problem. 
This includes exploration of matrices corresponding to Hamiltonian cycles [3], [10], [13] and studies into the 
structure of discounted occupation measures arising from these problems [15], [21], [16].

We can expect the optimality of Hamiltonian cycle to persist under small perturbations of the Markov 
chains considered above. For a different class of perturbations, such ‘stability’ results were established in 
Ejov et al. [14]. Specifically, they considered perturbations obtained by taking convex combination with 
a stochastic matrix whose all elements are identical, with a small weight for the latter. This in particu-
lar renders the chain irreducible. They calculate the exact perturbation error, proving simultaneously the 
optimality of the Hamiltonian cycle and its robustness to perturbation.

To summarize, the two key issues (though not necessarily the only ones) that have been central to the 
above line of research are: the optimality of the Hamiltonian cycle for a suitable Markov decision process, 
and the robustness of this claim vis-a-vis a suitable class of perturbations. In this paper we strengthen both 
these claims. Thus we consider F above as the basic object which makes sense even for general non-Markov 
processes compatible with the given graph. This leads to the problem (P1) above, where our objectives are:
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• (A) To establish the above optimality over a larger class of processes:
We strengthen the above claim to show the optimality of the stationary Markov policy corresponding 
to a Hamiltonian cycle, when one exists, over all policies, i.e., policies that can depend on the entire 
past and exogenous independent randomness. Observe that this is as general as it can get, because any 
G-compatible process can be cast as a controlled Markov chain by considering the conditional law of 
the next state given the past itself as the control depending on the entire past.
Also, the technique we use to prove this generalization is different, viz., a dynamic programming based 
argument that goes back to Held and Karp [23]. This requires converting this non-classical Markov 
decision process to a classical one by suitably re-defining the state space. This strengthens the result of 
Litvak and Ejov [28] which establishes optimality among stationary Markov policies. This improvement 
is facilitated by an intemediate technical lemma which allows us to identify the trace maximization 
problem with that of maximizing a sum of hitting times to all nodes starting from a fixed node.

• (B) To extend the above result to the continuous time framework under an appropriate normalization of 
the jump rates:
The extension of the above problem to continuous time is of independent interest because it is neither 
automatic nor trivial. This is because there is also an exponentially distributed sojourn time at each 
state. Unless the rate matrix is constrained, the problem becomes ill posed because we can make the 
rates arbitrarily high to push mean hitting times as close to zero as desired. Another difference with 
the discrete time set-up is that for any stationary Markov chain, the stationary distribution can be 
changed arbitrarily keeping the support constant by simply modulating the sojourn times without 
altering the graph or the transition probabilities. Hence we need to normalize the rates in order to 
make the problem well-posed. We impose a condition that the sum of rates, i.e., the �1-norm ‖Λ‖1 of 
the rate vector Λ, is kept constant. This can be motivated as follows. In order to make the problem 
scale-invariant so as to avoid the well-posedness issue above, it makes sense to set a symmetric, positive, 
positively 1-homogeneous smooth function F (i.e., F (aΛ) = aF (Λ) ∀ a > 0) equal to a constant. Our 
choice of the constraint ‖Λ‖1 = 1 is a specific instance of this, corresponding to F (Λ) = ‖Λ‖1.

This done, we take up next the problem of perturbations in the spirit of Ejov et al. [14], but again with 
a key difference. This is our problem (P2). We consider a different kind of perturbation here, viz., one that 
keeps the stationary distribution π in a small neighborhood of the uniform distribution υ. The objective 
can be summarized as:

• (C) To begin an investigation of the situation where π is not the uniform distribution:
We show that:
– (C1) when G contains a Hamiltonian cycle and that π is close to the uniform distribution υ, the 

fastest Markov chains/processes are still those associated with Hamiltonian cycles, and,
– (C2) that this is no longer true when π is ‘far away’ from υ.
In establishing this, we first employ the continuous time framework which proves to be more convenient 
because of the handy tools of calculus of Markov generators one is able to draw upon. In fact, we 
finally treat the discrete time problem by mapping it to a continuous time one in Section 5. This 
highlights further differences between the two: the greater flexibility of the continuous time framework 
in modulating sojourn times compared to discrete time chains with self-loops leads to a potentially lower 
minimum.
Since, as in [28], we show optimality of Hamiltonian cycles which corresponds in particular to uniform 
stationary distribution among all choices, the same is also optimal among all transition matrices cor-
responding to uniform stationary distribution, i.e., doubly stochastic matrices. The problem, however, 
becomes hard if we fix as above a stationary distribution π other than uniform and seek an optimum 
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among Markov chains with π as their stationary distribution. In continuous time, given any transition 
graph, the stationary distribution can be modified at will by changing the mean sojourn times, as long 
as the support is kept fixed. This suggests in particular the possibility of reducing the problem to one 
for uniform distribution. Our results above show that this is not possible.

That said, the criterion of minimizing the sum of π-weighted or unweighted mean hitting time of every 
other state from a base state is an optimization problem of independent interest. A potential application 
is to broadcasting messages over a communication network where this suggests using a ring sub-network. 
Another application is to a negative result in search discussed later in this article. Our results show that 
to search for a binary string of length l among all such in absence of prior knowledge, no search algorithm, 
random and history-dependent or otherwise, can do better than to list the strings and check them one by 
one.

The plan of the paper is as follows. The above results (A) and (B) are proved in the next section via a 
dynamic programming approach, which also provides as a corollary an alternative proof of the discrete time 
result of Litvak and Ejov [28] for the special case of π = υ. In Section 3, we prove (C), see Theorem 8, by 
using small perturbations of the uniform probability measure. At the other extreme, the proof of Theorem 13
in Section 4 deals with large perturbations. Section 5 contains some observations about the links between 
continuous time and discrete time. The first part of the appendix is quite long, as it presents the technical 
tools needed in the proof of Theorem 8: we decompose the generators leaving π invariant into convex sums 
of generators associated with (not necessarily Hamiltonian) cycles and we differentiate the expectations of 
hitting times with respect to the generators. In the second part, we compute the fastest normalized birth 
and death generators leaving invariant any fixed probability measure π on {0, 1, 2}. The underlying graph 
is the segment graph of length 2, which is the simplest example not containing a Hamiltonian cycle.

2. The dynamic programming approach

2.1. Introduction

The aim of this section is to address the first problem proposed above, flagged as (P1) in the introduction, 
i.e., to show that the Hamiltonian cycles, when one exists, are the fastest in the sense we have defined, 
among all processes compatible with the given graph, not just Markov chains. The proof uses dynamic 
programming. We first recall the eigentime identity in the next subsection and then establish the desired 
result for resp., discrete and continuous time in the subsections that follow.

2.2. The eigentime identity

We shall use the notation L(X) to denote the law of a random variable X and |A| for the cardinality of 
a finite set A. Consider a discrete time Markov chain (Xn)n∈Z+ on a finite state space V with transition 
matrix P = (p(x, y))x,y∈V . We assume it to be irreducible, i.e., for any x, y ∈ V , there exists a path 
x0 = x, x1, · · · , xn−1, xn = y such that p(xk, xk+1) > 0, for k ∈ �0, n − 1� := {0, 1, ..., n − 1}. Let π :=
(π(x))x∈V denote its unique stationary distribution, which is the left eigenvector of P corresponding to the 
Perron-Frobenius eigenvalue θ1 = 1. In particular, if L(X0) = π, then for any n ∈ Z+, we have L(Xn) = π. 
This justifies the term ‘stationary’, its uniqueness being a well-known consequence of the irreducibility 
hypothesis. Denote by θ2, · · · , θN the remaining eigenvalues of P . Also define the hitting times

∀ x ∈ V, τx := min{n ∈ Z+ : Xn = x}. (3)

The eigentime identity states that
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∀ x ∈ V,
∑
y

π(y)Ex[τy] =
N∑

m=2

1
1 − θm

. (4)

where N := |V | and each eigenvalue is counted as many times as its (algebraic) multiplicity. For reversible 
chains, this is Proposition 3.13, p. 75, of Aldous and Fill [2]. It was extended to the general case in Cui and 
Mao [9], see also [29] for a simple proof and further extensions. The left hand side gives the mean hitting 
time of a target state picked randomly with distribution π. A minor modification is to consider instead the 
stopping times

∀ x ∈ V, Tx := min{n ∈ N : Xn = x},

where N := Z+ \ {0}, the set of positive integers. Since π(x)Ex[Tx] = 1, we can replace (4) by

∀ x ∈ V,
∑
y

π(y)Ex[Ty] = 1 +
N∑

m=2

1
1 − θm

. (5)

This variant is essentially contained in Theorem 2.4 of Hunter [24]. An immediate corollary is the ‘sym-
metrized’ version

∑
x,y

π(x)π(y)Ex[τy] =
N∑

m=2

1
1 − θm

, (6)

∑
x,y

π(x)π(y)Ex[Ty] = 1 +
N∑

m=2

1
1 − θm

. (7)

Let Π be the rank one matrix whose rows are all equal to π. From Theorem 2.4 of Hunter [24], (7) equals 
the trace of the ‘fundamental matrix’ (I − P + Π)−1, where I is the identity matrix.

The notion of a fundamental matrix extends to the chains that are not irreducible if we define Π by the 
Cesaro sum

Π := lim
n↑∞

1
n + 1

n∑
m=0

Pn.

A Hamiltonian cycle A of V is an ordering (a0, a1, ..., aN−1) of the elements of V and aN = a0, as 
the indices should be seen as elements of ZN := Z/(NZ). More precisely, the cycles (a0, a1, ..., aN−1) and 
(ak, ak+1, ..., ak+N−1) should be identified as the same cycle, for all k ∈ ZN . This will be implicit in the 
sequel, even though for notational convenience, we will represent a cycle A as (a0, a1, ..., aN−1). Consider 
an irreducible directed graph G = (V, E) where V, E denote respectively its node and edge sets. In the 
discrete time setting, such graphs will always be assumed to contain all the self-loops, i.e. (i, i) ∈ E for any 
i ∈ V . This assumption is used mainly in Section 5. The Hamiltonian cycle A := (a0, a1, ..., aN−1) is said 
to be admissible for G if (ak, ak+1) ∈ E for all k ∈ ZN . It means that GA is a subgraph of G, where GA

is the oriented graph on V whose edges are the (ak, ak+1), for k ∈ ZN . The set of all Hamiltonian cycles 
(respectively, those admissible for G) is denoted H (resp., H(G)) and the graph G is said to be Hamiltonian
if H(G) �= ∅. Obviously, we have H = H(KV ), where KV is the complete oriented graph on V .

Consider the optimization problem of minimizing (4)/(6), or equivalently, (5)/(7), where π is equal 
to υ, over all irreducible P compatible with the given graph G (in the sense that for any x �= y ∈ V , 
P (x, y) > 0 ⇒ (x, y) ∈ E). Since these quantities will be infinite for reducible P , we might as well consider 
the problem of minimizing it over all stochastic matrices P compatible with G. Say that P is Hamiltonian if 
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there exists a Hamiltonian cycle (a1, · · · , aN ) such that p(ak, ak+1) = 1 = p(aN , a1) for 1 ≤ k < N . That is, 
the transitions deterministically trace a Hamiltonian cycle. Recall that a Hamiltonian cycle need not exist 
in general and the problem of determining whether one does is NP-hard (see, e.g., Garey and Johnson [22]). 
We then have:

Theorem 1. The quantity tr(I−P+Π)−1 or either of the quantities (4), (5) is minimized by a Hamiltonian P , 
if there exists one, over all stochastic matrices compatible with the graph G.

In case of irreducible matrices, the minimizations of tr(I − P + Π)−1, (4) and (5) are equivalent by the 
results of [24] and the fact was proved in [24]. For the general case, the fact was proved for the trace by 
Litvak and Ejov [28], Proposition 2.1, whereas the corresponding extension for (4), (5) is trivial because 
these quantities are infinite in absence of irreducibility.

In the next subsection, we give a variant of the cited result of Litvak and Ejov [28] inspired by the Held-
Karp algorithm for scheduling problems [23]. Specifically, we replace π(y) by 1 for all y in the above and show 
the optimality of deterministically traversing the Hamiltonian cycle over all G-compatible chains/processes, 
Markov or otherwise. This has interesting implications for random search.

2.3. A dynamic programming solution

As in Held and Karp [23], a natural state space for the dynamic program is

V ∗ := {(x,A) : x ∈ V, A ⊂ V },

where the first coordinate x will play the role of the current vertex and the second coordinate A the set of 
vertices not yet visited. With each (x, A) ∈ V ∗, we associate an action space Ux := the set of probability 
vectors on the set

Vx := {y ∈ V : (x, y) ∈ E} ⊂ V

of successors of x in G. Note that this does not depend on A. Suppose Vx is enumerated as (y1, · · · , ymx
). 

Given a ‘control’ q = (q(y1), · · · , q(ymx
)), the transition probability

p̂((y,B)|(x,A), q) (8)

of going from (x, A) ∈ V ∗ to (y, B) ∈ V ∗ under control q is zero if either y /∈ Vx or B �= A\{y}. Otherwise 
it equals q(y). Consider a V ∗-valued controlled Markov chain (Xn, An)n∈Z+ governed by a control process 
(qn)n∈Z+ with qn ∈ UXn

for all n ∈ Z+, evolving according to the above controlled transition probability 
function. That is, for any n ∈ Z+,

P ((Xn+1, An+1) = (y,B)|(Xm, Am, qm),m ≤ n)

= P ((Xn+1, An+1) = (y,B)|(Xn, An), qn)

= qn(y)δB,An\{y},

where δ·,· denotes the Kronecker delta. Since we are allowed to choose any past dependent transition 
probability compatible with G, this covers all V -valued random processes that are compatible with G, i.e., 
that make transitions only along the edges in E. To see this, consider any V -valued process (Xn)n∈Z+

compatible with the graph, i.e., Xn+1 ∈ VXn
, ∀n ∈ Z+ a.s., and define the corresponding (An)n∈Z+

recursively starting from some A0 by: An+1 = An\{Xn}, ∀n ∈ Z+. Then this fits the above framework 
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when qn is the regular conditional law of Xn+1 given (Xm, Am)m≤n. If (qn)n∈Z+ is a deterministic sequence, 
then both (Xn)n∈Z+ and (Xn, An)n∈Z+ will be Markov.

Our objective is to minimize for a prescribed initial state x0
1 the quantity

E

[∑
y

Ty

∣∣∣ X0 = x0, A0 = V

]
, (9)

which is proportional to (4) when (Xn)n∈Z+ is an irreducible Markov chain with stationary distribution 
π = υ, the uniform distribution. Note, however, that we do not require (Xn)n∈Z+ to be even Markov. Let

ζ := min{n ≥ 0 : An = ∅}. (10)

Then (9) equals

E

[∑
y

Ty

∣∣∣ X0 = x0, A0 = V

]
= E

[∑
y

∞∑
m=0

1{m<Ty}

∣∣∣ X0 = x0, A0 = V

]

= E

[ ∞∑
m=0

∑
y

1{m<Ty}

∣∣∣ X0 = x0, A0 = V

]

= E

[
ζ∑

m=0
|Am|

∣∣∣ X0 = x0, A0 = V

]
. (11)

Here An is nothing but ‘the states not yet reached’ where we do not count the initial state x0. This allows 
us to apply the dynamic programming principle to the ‘value function’ or ‘cost to go function’

V (x,A) := inf E
[

ζ∑
m=0

|Am|
∣∣∣ X0 = x,A0 = A

]
,

where the infimum is over all admissible controls. Standard arguments yield the dynamic programming 
equation

V (x,A) = min
q∈Ux

⎛⎝|A| +
∑
y∈Vx

q(y)V (y,A\{y})

⎞⎠ , A �= ∅, (12)

V (·, ∅) ≡ 0. (13)

This is a special case of the well known ‘stochastic shortest path’ problem [4]. The optimal control in state 
(x, A) is any minimizer of the right hand side of (12). Since the expression being minimized is affine in q, 
this minimum will be attained at a Dirac measure, implying that the optimal choice in state (x, A) has a 
solution which corresponds to a deterministic move to a certain y ∈ Vx. In other words, there is an optimal 
trajectory which is deterministic and necessarily visits each node at least once, otherwise the cost would be 
infinite. Since at most one new node can be visited each time, the total cost is at least 

∑N−1
i=1 i = N(N−1)

2 , 
which equals the cost for tracing a Hamiltonian cycle if one exists. Note also that if a state is not reachable 
from x0 under some policy, the corresponding cost is ∞.

1 More generally, for a prescribed initial distribution.
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We have proved:

Theorem 2. The minimum of (9) over all V -valued random processes compatible with G is attained by tracing 
a Hamiltonian cycle when one exists.

Since i0 was arbitrary, the claim holds for all initial distributions. This has interesting implications to 
some random search schemes. For example, consider the problem of searching for an l bit binary password 
given a device or ‘oracle’ that can verify whether a password is correct or not. Random search schemes for 
this problem have been proposed, involving Markov chains on the discrete l-cube {0, 1}l, where any two 
strings differing in one position are deemed to be neighbors. This undirected graph can be rendered directed 
by replacing each undirected edge by two directed edges. A simple induction argument shows that it has a 
Hamiltonian cycle. Then the foregoing leads to the conclusion that no random search scheme can do strictly 
better on average than simply listing the l-strings and checking them one by one.

Remark 3. The Markov chains tracing a Hamiltonian cycle may not be the unique minimizer of (9), since 
in the proof of Theorem 2, when we minimized an affine function over a convex domain, the minimizer 
may also be attained at points of the boundary of the domain which are not extremal. Indeed, here is an 
example. Consider G the complete graph over V = Z/(3Z). The stochastic chain described below is also a 
minimizer of (9):

• When the initial point is X0 = 0.
– From 0 choose as next position 1 or 2 with equal probability 1/2.
– From 1, knowing the previous position was 0, go to 2.
– From 1, knowing the previous position was not 0, go to 0.
– From 2, knowing the previous position was 0, go to 1.
– From 2, knowing the previous position was not 0, go to 0.

• When the initial point is X0 = 1 or X0 = 2, from a current point x ∈ Z/(3Z), go to x + 1.

Of course the above process is not Markovian. Theorem 2.1 of Litvak and Ejov [28] states that the unique 
minimizers among Markov chains are given by Hamiltonian cycles, when they exist. Let us present another 
proof which will be adaptable to the continuous time setting. Consider a Markov chain X minimizing (9)
and let P be its transition matrix. Make the hypothesis that G is Hamiltonian. From the above arguments, 
we get that starting from any x ∈ V , a.s. X must visit all the points of X \{x} exactly once before returning 
to x. Assume on the contrary that P does not induce a Hamiltonian cycle. Then there exist three distinct 
points x, x1, x2 ∈ V such that P (x, x1) > 0 and P (x, x2) > 0. Starting with X0 = x, if X1 = x1, afterwards 
X must visit x2 before returning to x, namely, there is a path going from x1 to x2 without visiting x with 
transitions permitted by P . Similarly, there is such a path going from x2 to x1. Thus x1 and x2 are included 
in a cycle of transitions permitted by P which does not touch x. It follows that with positive probability, 
X will visit x1 several times before returning to x, a contradiction.

Remark 4. The time ζ defined in (10) is the covering time, namely the first time all the vertices from V
have been visited. Replace (11) by

E
[
ζ
∣∣∣ X0 = x0, A0 = V

]
= E

[
ζ∑

m=0
1
∣∣∣ X0 = x0, A0 = V

]
,

so that the above arguments show that for any fixed x0 ∈ V , the minimum of Ex0 [ζ] over all G-compatible 
random chains is attained by tracing a Hamiltonian cycle when one exists. Note that the latter Markov 
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chain does not satisfy the assumptions of Aldous [1], especially the reversibility, that is why his bounds 
cannot be applied here.

2.4. Continuous time problem

We now consider the continuous time counterparts of the foregoing. Recall that a Markov generator on V
can be represented by a matrix L := (L(x, y))x,y∈V whose off-diagonal entries are non-negative and whose 
row sums all vanish. For any x ∈ V , we will denote L∗(x) := −L(x, x) =

∑
y �=x L(x, y). The corresponding 

Markov processes, defined through the corresponding martingale problems, will be denoted X := (Xt)t≥0. 
The probabilistic description of the evolution of X is as follows: sample X0 according to its law L(X0), 
wait an exponential time σ1 with parameter L∗(X0) and choose a new position Xσ1 according to the 
probability (L(X0, x)/L∗(X0))x∈V \{X0}. For any time t ∈ [0, σ1), we take Xt := X0. Wait an independent 
exponential time σ2 with parameter L∗(Xσ1) and choose a new position Xσ1+σ2 according to the probability 
(L(Xσ1 , x)/L∗(Xσ1))x∈V \{Xσ1}. For any time t ∈ [σ1, σ1 +σ2), we take Xt := Xσ1 , and so on. Thus the law 
of X only depends on its initial distribution, namely on the law L(X0). The Markov generator L is said to 
be compatible with G, if we have

∀ x �= y ∈ V, L(x, y) > 0 ⇒ (x, y) ∈ E.

The probability measure π, viewed as a row vector, is said to be invariant for the generator L, if πL = 0. 
Its probabilistic interpretation is that if initially L(X0) = π, then for any t ≥ 0, L(Xt) = π, as in the 
discrete time case. The generator L is said to be irreducible if for any x, y ∈ V , there exists a path 
x0 = x, x1, ..., xl = y, with l ∈ Z+ the length of the path, such that L(xk, xk+1) > 0 for all k ∈ �0, l− 1�. In 
our finite setting, a Markov generator L always admits an invariant probability measure and the irreducibility 
of L ensures that it is unique. The irreducible Markov generator L is said to be normalized, if∑

x∈V

L∗(x)π(x) = 1, (14)

where π is the invariant measure of L. It means that at its equilibrium π (i.e., for the stationary X starting 
with L(X0) = π), the mean jump rate of X is 1. Denote by L(G, π) the convex set of irreducible normalized 
Markov generators L compatible with G and admitting π for invariant probability. To simplify notation, we 
will also write L(π) := L(KV , π) when G is the complete graph KV on V . For y ∈ V , let τy be the hitting 
time of y:

τy := inf{t ≥ 0 : Xt = y}.

We are particularly interested in the functional

F : L(G, π) 
 L �→
∑

x,y∈V

π(x)π(y)EL
x [τy], (15)

where we recall that the subscript x (respectively, the superscript L) in the expectation indicates that X is 
starting from x (resp., is generated by L). The probabilistic interpretation of F (L) is the mean time to go 
from x to y for the Markov process generated by L, when x and y are sampled independently according to 
its invariant probability π.

The quantity F (L) also admits a nice spectral formulation: for any L ∈ L(G, π), let Λ(L) be the spectrum 
of −L, removing the eigenvalue 0. To take into account the possible multiplicities of the eigenvalues, Λ(L)
should be seen a multiset (i.e., an eigenvalue of −L of algebraic multiplicity m appears m times in Λ(L)). 
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By irreducibility of L, Λ(L) is a priori a sub(multi)set of C+ := {z ∈ C : �(z) > 0} that is invariant under 
conjugation. The eigentime relation asserts that

F (L) =
∑

λ∈Λ(L)

1
λ
. (16)

The references Cui and Mao [9] and [29] cited in the discrete time setting also deal with the continuous 
time case. The quantity F (L) can also be written in terms of return times. Define for any y ∈ V ,

σ := min{t > 0 : Xt �= X0},

Ty := min{t ≥ σ : Xt = y}.

By irreducibility of L, we have the following eigentime identities (see Cui and Mao [9]), for any y ∈ V :

∑
y∈V

π(y)Ex[τy] =
∑

λ∈Λ(L)

1
λ

=
∑

x,z∈V

π(x)π(z)Ex[τz], (17)

∑
y

π(y)Ex[Ty] = 1 +
∑

λ∈Λ(L)

1
λ

=
∑

x,z∈V

π(x)π(z)Ex[Tz]. (18)

Remark 5. The smaller the F (L), the faster the underlying Markov process goes between the elements of V . 
It does not necessarily imply that the time-marginal distributions approach equilibrium faster (especially in 
the discrete time analogue, where due to periodicity, this convergence may not even occur). In particular, 
our notion of ‘fast’ is distinct from the extensively studied notion of fast mixing. It is related rather to the 
asymptotic behavior of the variances associated with the convergence of the empirical measures. Without 
getting into complete details of this point of view here, we consider the special case where π is reversible for L. 
Choose an orthonormal basis (ϕl)l∈�0,N−1� of L with respect to the scalar product of L2(π), with ϕ0 = 1, 
the vector of all 1’s. Any function f : V → R can be uniquely written under the form f =

∑
l∈�0,N−1� flϕl, 

with real coefficients (fl)l∈�0,N−1�. Consider the set

B := {f : ∀ l ∈ �1, N − 1�, |fl| ≤ 1}

For any function f : V → R, we have a central limit theorem for the associated empirical means, namely 
the convergence in law for large t ≥ 0:

1√
t

⎛⎝ t∫
0

(f(Xs) − μ[f ]) ds

⎞⎠→ N (0, σ2(f))

where the r.h.s. is the centered normal distribution with asymptotic variance σ2(f). Classical considerations 
of the related Poisson equation (see also Subsection 6.1 below) show that

σ2(f) =
∑

λ∈Λ(L)

1
λ
f2
l

It follows from (16) that

max
f∈B

σ2(f) = F (L)
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As in Subsection 2.3, our goal is to find the minimizers of F on L(G, π), when π(x) ≡ 1 ∀x, over all 
G-compatible processes. Consider therefore a continuous time V -valued controlled Markov chain, denoted 
(Xt, At)t≥0 again by abuse of notation, controlled by a control process (Ut)t≥0. The latter takes values in 
UXt

, where Ux := [0, ∞)Vx , identified with the instantaneous transition rates of Xt. That is, as δ goes to 
0+,

P (Xt+δ = j|Xs, Us, s ≤ t,Xt = i) = P (Xt+δ = j|Xt = i, Ut)

=

⎧⎪⎨⎪⎩
Ut(Xt, j)δ + o(δ) , if j ∈ VXt

,

−
∑

l∈VXt
Ut(Xt, l)δ + o(δ) , if j = Xt,

0 , if j /∈ VXt
∪ {Xt},

where we write Ut = (Ut(Xt, y1), · · · , Ut(Xt, ymXt
)) for a suitable enumeration (y1, · · · , ymXt

) of VXt
. Here 

it was not necessary that Vx contain x, we rather took Vx := {y ∈ V : L(x, y) > 0}.
For the remaining part of this subsection, we consider the case where π = υ, the uniform measure on 

V . There is no loss of generality in requiring that L is irreducible, because the functional F is infinite for 
non-irreducible Markov generators admitting υ as invariant measure. The normalization condition (14) can 
then be written in the form ∑

x�=y

Ut(x, y) = N. (19)

If for any t ≥ 0, Ut is a function of Xt alone, say Ut = r(Xt, ·) ∈ UXt
, then (Xt)t≥0 is a time-homogeneous 

Markov process with rate matrix R = (r(x, y))x,y∈V , where we set r(x, y) = 0 for y /∈ Vx. Consider the 
problem of minimizing (17). As before, we augment the state process to obtain the V ∗-valued process 
(X̂t)t≥0 = (Xt, At)t≥0, with the understanding that At can change only when Xt does and a transition of 
Xt from x to y leads to a transition of At to At\{y}. Consider the control problem of minimizing the cost

E

⎡⎣ ζ∫
0

|At|dt
∣∣∣ X0 = x0, A0 = V

⎤⎦ , (20)

for

ζ := {t ≥ 0 : At = ∅},

which is equivalent to (17), subject to the normalization constraint (19). The constraint (19) couples decisions 
across different states, so dynamic programming arguments cannot be directly applied. Therefore we modify 
the formulation for the time being, this modification will be dropped later. The modification is as follows. 
Let (ax)x∈V be scalars in (0, N) such that 

∑
x ax = N . For state x, we restrict the rates to be from the set

Ũx := {r(x, y) : r(x, y) = 0 ∀ y /∈ Vx,
∑
y∈Vx

r(x, y) = ax}.

Consider the value function

V (x,A) := inf E

⎡⎣ ζ∫
0

|At|dt
∣∣∣ X0 = x,A0 = A

⎤⎦ ,

where the infimum is over all admissible controls. The dynamic programming equation then is
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min
r(x,·)∈Ũx

⎛⎝|A| +
∑

y∈Vx,A

r(x, y)(V (y,A\{y}) − V (x,A))

⎞⎠ = 0, V (·, ∅) ≡ 0. (21)

Once again it is clear that the quantity being minimized is affine in the variables it is being minimized over 
and hence the optimum is attained for a deterministic choice of r(x, ·) in the sense that r(x, y) is non-zero 
for at most one y ∈ Vx. Thus there is an optimal path tracing the nodes of G in a deterministic manner, 
visiting each of them at least once. This is true for any choice of (ax)x∈V and therefore true in general 
for the constraint (19). Unlike the discrete time case, this does not, however, mean that the trajectory is 
deterministic, because the sojourn time in each node is still random.

Since it is clear again that at most one node that was not already seen is visited at each jump time, the 
cost is bounded below by

min
A

N∑
n=1

(
n∑

m=1

1
am

)
(22)

where

A :=
{

[a1, · · · , aN ] : an ≥ 0, ∀1 ≤ n ≤ N,
N∑

n=1
an = N

}
.

The expression in the parentheses in (22) is a lower bound on time to hit the n-th node in the sequence 
if the nodes are arranged in the order in which they were hit. This is legitimate because we can and do 
restrict ourselves to deterministic transitions as argued above. But (22) is a strictly convex function being 
minimized on a polytope and since both the function and the polytope are symmetric in the variables, it 
attains its unique minimum at [1, · · · , 1] ∈ A. This proves the optimality of a Hamiltonian cycle with equal 
mean sojourn times in each state, among all possible rate matrices subject to the rate constraint (19).

Thus we have:

Theorem 6. The minimum of (20) over all V -valued random processes compatible with G and satisfying the 
normalization condition (19), is attained by tracing a Hamiltonian cycle when one exists, with equal mean 
sojourn times, regardless of the initial distribution.

Here the fact that the optimality is independent of the initial condition for X follows from the arbitrary 
choice of the latter, as is common in application of the dynamic programming principle.

Remark 7. When G is Hamiltonian, the Markov processes tracing Hamiltonian cycles, with jump rates all 
equal to 1, may not be the unique minimizers of (20), an example is obtained by Poissonization of the 
random chain described in Remark 3. Nevertheless, they are the unique minimizers among the class of 
Markov processes, since the arguments at the end of Remark 3 are readily adaptable to the continuous time 
setting.

3. Small perturbations of the invariant measure

The rest of this article addresses the second problem stated in the introduction, flagged as (P2). We 
can expect the optimality of Hamiltonian cycle to persist under small perturbations of the Markov chains 
considered above. We do this first for the continuous time framework (which turns out to be more natural 
for the kind of techniques we employ, viz., the calculus of Markov generators) and then for the discrete case 
in Section 5. Our results are distinct from previous ‘persistence under perturbations’ results such as those 
of [14] in the nature of perturbations used, as explained in the introduction.
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When A := (a0, a1, ..., aN−1) ∈ H and a probability measure π on V are fixed, the set L(GA, π) is reduced 
to a singleton, its element will be denoted LA. It is indeed given by

∀ x, y ∈ V, LA(x, y) =

⎧⎪⎨⎪⎩
1

Nπ(x) , if x = ak and y = ak+1 for some k ∈ Zn

− 1
Nπ(x) , if x = y

0 , otherwise

More generally, we have the following. A cycle A in V is a finite sequence (a0, a1, ..., an−1) of distinct 
elements of V , with n ∈ N \ {1}, up to the identification with (ak, ak+1, ..., ak+n−1), for all k ∈ Zn. Indeed, 
as with Hamiltonian cycles (corresponding to n = N), the indices should be seen as elements of Zn. The 
set of all cycles is denoted by A. Let L̄(π) be the convex set of normalized Markov generators L admitting 
π for invariant probability. The difference with L(π) is that the elements of L̄(π) are not required to be 
irreducible. For any A ∈ A, there is a unique element L ∈ L̄(π) such that

∀ x, y ∈ V, L(x, y) > 0 ⇔ ∃ l ∈ Zn : x = al and y = al+1.

It is indeed the generator, denoted LA in the sequel, given by

∀ x, y ∈ V, LA(x, y) =

⎧⎪⎨⎪⎩
1

nπ(x) , if x = al and y = al+1 for some l ∈ Zn,

− 1
nπ(x) , if x = y,

0 , otherwise.
(23)

The interest of this kind of generators will appear below in Sub-appendix 6.2, where it will be convenient 
to differentiate in the direction of cycles whose support is not the whole set V .

Our main result in this section is:

Theorem 8. Assume that the graph G is Hamiltonian. Then there exists a neighborhood N of υ in the set 
P+(V ) of probability measures on V (endowed with the topology inherited from that of [0, 1]V ) such that for 
any π ∈ N , the set of minimizers of F on L(G, π) is exactly {LA : A ∈ H(G)}.

The complete proof of Theorem 8 is quite technical, with several intermediate lemmas. But the underlying 
heuristic idea is simple: when the uniform probability measure υ is slightly perturbed into an invariant 
probability measure π, the energy landscape of F is not significantly modified. In particular a compact set 
of generators not containing a global minimum of F on L(υ) does not get continuously distorted abruptly 
into a set of generators containing a global minimum of F on L(π): there is no spontaneous emergence of 
global minimizers. This continuity property (partially included in Lemma 12) implies that it is sufficient 
to show that the Hamiltonian generators remain local minimizers of F on L(π) for π close enough to υ
(see Lemma 11). This approach needs a convenient notion of differentiation on L(π). The corresponding 
calculus is introduced and developed in the Appendix, where Poisson equations play an important role. The 
remaining part of this section is devoted to the proof of Theorem 8 and its preliminaries.

First we check that all Hamiltonian cycles have the same speed in L(π). This was stated in the introduction 
in the discrete time setting and for the uniform distribution υ, but it is true more generally.

Lemma 9. Let A = (a0, ..., aN−1) ∈ H be a Hamiltonian cycle, we have

F (LA) = N

2
∑
x�=y

π(x)π(y).

In particular this quantity does not depend on the choice of the Hamiltonian cycle A.
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Proof. The generator LA can be represented by the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
Nπ(a0)

1
Nπ(a0) 0 · · · · · · 0

0 − 1
Nπ(a1)

1
Nπ(a1) 0 · · · 0

· · · · · ·

0 · · · · · · 0 − 1
Nπ(aN−2)

1
Nπ(aN−2)

1
Nπ(aN−1) 0 · · · · · · 0 − 1

Nπ(aN−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It follows that the polynomial in X given by

P (X) := det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X − 1
Nπ(a0)

1
Nπ(a0) 0 · · · · · · 0

0 X − 1
Nπ(a1)

1
Nπ(a1) 0 · · · 0

· · · · · ·

0 · · · · · · 0 X − 1
Nπ(aN−2)

1
Nπ(aN−2)

1
Nπ(aN−1) 0 · · · · · · 0 X − 1

Nπ(aN−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

is equal to X
∏

λ∈Λ(LA)(X − λ). Expanding the latter expression into X(α0 +α1X + · · ·+αN−1X
N−1), we 

get that

∑
λ∈Λ(LA)

1
λ

= −α1

α0
. (24)

Indeed, by the usual relations between the roots and the coefficients of the polynomial 
∏

λ∈Λ(LA)(X − λ) =
α0 + α1X + · · · + αN−1X

N−1, we have

α0 = (−1)N−1
∏

m∈�N−1�

λm, (25)

α1 = (−1)N−2
∑

k∈�N−1�

∏
m∈�N−1�\{k}

λm, (26)

where Λ(LA) is parametrized as the multiset consisting of the λm, for m ∈ �N − 1� := {1, 2, ..., N − 1}. As 
a consequence, (24) is deduced by taking the ratio of (26) by (25).

On the other hand, we compute directly from the definition of P (X), by expanding the determinant, that

P (X) =
∏

l∈ZN

(
X − 1

Nπ(al)

)
−
∏

l∈ZN

(
− 1
Nπ(al)

)
.

It follows that

α0 =
∑

k∈ZN

∏
m∈ZN\{k}

(
− 1
Nπ(am)

)
,

α1 = 1
2

∑ ∏ (
− 1
Nπ(am)

)

k �=l∈ZN m∈ZN\{k,l}
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(the factor 1/2 is due to the fact that the pair (k, l) also appears as (l, k)). Multiplying the numerator and 
the denominator by 

∏
m∈ZN

(−Nπ(am)), we get that

−α1

α0
=

N2

2
∑

k �=l∈ZN
π(ak)π(al)

N
∑

m∈ZN
π(am)

and this leads to the announced result. �
In particular, for π = υ, the uniform probability measure on V , we get:

Corollary 10. For π = υ, we have for any Hamiltonian cycle A,

F (LA) = N − 1
2 .

The next result is the crucial step in the proof of Theorem 8. For its statement, introduce for any A ∈ H
and ε ∈ (0, 1),

NA,ε := {L = (1 − t)LA + tL̃ : t ∈ [0, ε) and L̃ ∈ L̄(π)}. (27)

This set is a neighborhood of LA in L(π). Any L̃ ∈ L̄(π) can be decomposed as∑
Ã∈A

p(Ã)LÃ = p(A)LA +
∑

Ã∈A\{A}

p(Ã)LÃ

where p is a probability on A ([25], see also Lemma 25 below). Thus NA,ε remains the same set if we had 
required in (27) that L̃ belong to the convex hull generated by the LÃ, Ã ∈ A \ {A}.

Define

π∧ := min
x∈V

π(x),

ε1(N,π∧) := π4
∧ ln

(
1 + 1

Nπ2
∧

)
,

ε2(π∧) := 1
56π

12
∧ ,

ε(N,π∧) := ε1(N,π∧) ∧ ε2(π∧).

Lemma 11. For N ≥ 2 and any A ∈ H, LA is the unique minimizer of F over NA,ε(N,π∧).

Proof. Assume that for some given A ∈ H, LA is not the unique minimizer of F over NA,ε(N,π∧). Then we 
can find t ∈ (0, ε(N, π∧)) and a probability p on A \ {A}, such that F (Lt) ≤ F (LA), with

Lt := (1 − t)LA + tL̃,

L̃ :=
∑

Ã∈A\{A}

p(Ã)LÃ.

Applying Taylor-Lagrange formula to the function [0, t] 
 s �→ F (Ls), we get: there exists s ∈ [0, t] such 
that

F (Lt) = F (LA) + tD˜F (LA) + t2
D2˜F (Ls),
L 2 L
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where the derivatives DL̃F (LA) and D2
L̃
F (Ls) are defined in the Appendix, respectively in (39) and just 

before Lemma 19. Taking into account Propositions 26 and 27 and (56), we obtain

F (Lt) ≥ F (LA) + t
N − 1
2N − t2

(
F (Ls)
π2
∧

+ F (Ls)2

π4
∧

+ F (Ls)3

π6
∧

)
. (28)

To evaluate F (Ls), note that for s ∈ (0, t), by Proposition 26 and (56) again,

∂sF (Ls) = DL̃F (Ls)

≤ M(Ls) + M(Ls)2

≤ F (Ls)
π2
∧

+ F (Ls)2

π4
∧

,

where M(Ls) is defined in (55). Classical computations show that if a C1 function f : [0, t] → (0, +∞)
satisfies ∂sf(s) ≤ af(s) + bf2(s) for all s ∈ [0, t], where a, b > 0, then assuming f(0) exp(bt) < f(0) + b/a, 
we get

∀ s ∈ [0, t], f(s) ≤ bf(0) exp(bt)
b + af(0)(1 − exp(bt)) .

In particular, if

exp(bt) < 1 + b/(2af(0)), (29)

then

∀ s ∈ [0, t], f(s) ≤ 2
(
f(0) + b

2a

)
.

Let us apply this observation to the mapping [0, t] 
 s �→ F (Ls) and a := 1/π2
∧, b = 1/π4

∧. Since

F (L0) = F (LA)

= N

2
∑

x�=y∈V

π(x)π(y)

≤ N

2 ,

we get that condition (29) is satisfied, in view of the definition of ε1(N, π∧) and due to the fact that 
t ∈ (0, ε1(N, π∧)). It follows that,

∀ s ∈ [0, t], F (Ls) ≤ N + 1
π2
∧

≤ 2
π2
∧
,

since π∧ ≤ 1/N . Substituting this bound in (28), we deduce that

F (Lt) ≥ F (LA) + t
N − 1
2N − t2

(
2
π4
∧

+ 4
π8
∧

+ 8
π12
∧

)
≥ F (LA) + t

1 − 14
12 t

2.
4 π∧
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The r.h.s. is strictly larger than F (LA) if t < ε2(π∧) and this is in contradiction with our initial assump-
tion. �

Denote for any π ∈ P+(V ),

F∧(π) := inf{F (L) : L ∈ L(π)}. (30)

Another ingredient in the proof of Theorem 8 is:

Lemma 12. The mapping P+(V ) 
 π �→ F∧(π) is continuous.

Proof. Let L be the set of irreducible and normalized Markov generators (so that L = �π∈P+(V )L(π)), 
endowed with the topology inherited from RV 2 . The functional F is defined on L and (16) is valid on L. 
As a consequence, F is continuous on L. Indeed, if (Ln)n∈N is a sequence of elements of L converging to 
L ∈ L, then according to Paragraph 5 of Chapter 2 of Kato [26], we have limn→∞ Λ(Ln) = Λ(L) and so 
limn→∞ F (Ln) = F (L). Next consider a sequence (πn)n∈N of elements from P+(V ) converging to π ∈ P+(V )
and such that the sequence (F∧(πn))n∈N admits a limit. For all n ∈ N, let Ln be an element from L(πn)
such that

F∧(πn) ≤ F (Ln) ≤ F∧(πn) + 1
n
.

Due to the normalization condition and the fact that π ∈ P+(V ), we can extract a subsequence from 
(Ln)n∈N (still denoted (Ln)n∈N below) converging to some generator L. It is clear that L is normalized and 
that π is invariant for L. Let us check that L is irreducible. Fix x ∈ V . For any n ∈ N, let X(n) := (X(n)

t )t≥0
be a Markov process starting from x and whose generator is Ln. It is not difficult to deduce from the 
corresponding martingale problems, that X(n) converges in law (with respect to the Skorokhod topology) 
to a Markov process starting from x and whose generator is L. Thus for any y ∈ V and T ≥ 0,

lim
n→∞

Ex[T ∧ τ (n)
y ] = Ex[T ∧ τy]

(with obvious notation). It follows that

Ex[T ∧ τy] ≤ lim inf
n→∞

Ex[τ (n)
y ]

≤ lim inf
n→∞

1
πn(x)πn(y)F (Ln)

= 1
π(x)π(y) lim inf

n→∞
F∧(πn)

≤ N

2π(x)π(y)

by Lemma 9. Letting T go to infinity, we get Ex[τy] ≤ N/(2π2
∧). This bound, valid for all x, y ∈ V , implies 

that L is irreducible and thus L ∈ L(π). Furthermore, the above arguments show that

lim
n→∞

F∧(πn) = lim
n→∞

F (Ln)

= F (L)

≥ F∧(π).
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So F∧ is lower continuous on P+(V ). By considering the sequence (πn)n∈N identically equal to π, we also 
get that the infimum defining F∧(π) is attained.

To show that F∧ is upper continuous on P+(V ), let again (πn)n∈N be a sequence of elements from P+(V )
converging to some π ∈ P+(V ) and such that the sequence (F∧(πn))n∈N admits a limit. According to the 
previous remark, there exists L ∈ L(π) such that F (L) = F∧(π). For any n ∈ N, consider the matrix L̃n

given by

∀ x, y ∈ V, L̃n(x, y) := π(x)
πn(x)L(x, y).

It is easy to prove that L̃n is an irreducible Markov generator leaving πn invariant. But it may not be 
normalized, so let κn > 0 be such that Ln := κnL̃n belongs to L(πn). There is no difficulty in checking 
that Ln converges to L and thus that limn→∞ F (Ln) = F (L) = F∧(π). Thus passing to the limit in 
F (Ln) ≥ F∧(πn), we deduce that

F∧(π) ≥ lim
n→∞

F∧(πn)

as desired. �
With all these ingredients, we can now come to the

Proof of Theorem 8. Note that it is sufficient to consider the case where G is the complete graph over V , 
because then F∧(π) ≤ min{F (L) : L ∈ L(G, π)} for any graph G and probability measure π on V .

The main argument is by contradiction. Assuming that the statement of Theorem 8 is not true, we can find 
a sequence (πn)n∈N from P+(V ) converging to υ, such that for all n ∈ N, there exists Ln ∈ L(πn) \{Lπn,A :
A ∈ H} with F (Ln) = F∧(πn). (Here we have included πn in the index of Lπn,A to underscore the fact that 
this generator, associated to a Hamiltonian cycle A, also depends on the underlying invariant probability 
πn.) As seen in the proof of Lemma 12, a subsequence (still denoted (Ln)n∈N) converging toward some 
L ∈ L(υ) can be extracted from (Ln)n∈N such that

lim
n→∞

F (Ln) = F (L)

and by Lemma 12,

lim
n→∞

F∧(πn) = F∧(υ).

It follows that F (L) = F∧(υ). From Remark 7, we deduce that there exists A ∈ H such that L = Lυ,A. 
Using again the fact that

lim
n→∞

πn = υ, (31)

we get that limn→∞ Lπn,A = Lυ,A and thus

lim
n→∞

(Ln − Lπn,A) = 0. (32)

Consider r := minn∈N πn,∧, which is positive due to (31), and let ε := ε(N, r), with the notation introduced 
before Lemma 11. From (32), we deduce that for n ∈ N large enough, Ln belongs to N (πn, A, ε), defined 
as in (27), with π replaced by πn. Then Lemma 11 asserts that Ln = Lπn,A, because Ln is a minimizer of 
L over L(πn). This is in contradiction with our initial assumption. �
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Fig. 1. The graph Ğ.

4. Large perturbations of the invariant measure

Here we consider large perturbations of the uniform probability measure υ. We show that Theorem 8
cannot be extended to all probability measures π, at least for the graphs which are not a Hamiltonian cycle, 
a situation where L(G, π) is not reduced to a singleton. (In particular, this requires N ≥ 3.) Our main result 
here is:

Theorem 13. Assume that G is not a Hamiltonian cycle. Then there exist probability measures π on V such 
that none of the elements of {LA : A ∈ H(G)} is a minimizer of F on L(G, π).

Thus for some (G, π), the minimizers of F on L(G, π) are (spatially) hesitating Markov processes: at some 
vertex, the next visited point is not chosen deterministically. For a given Hamiltonian graph G which is not 
a Hamiltonian cycle, it would be interesting to describe the probability measures π leading to a transition 
between non-hesitating and hesitating minimizers. This issue remains open at present.

Proof of Theorem 13. The heuristic idea behind the following arguments is very simple: when G is not a 
Hamiltonian cycle, it is possible to find an oriented sub-graph Ğ looking as in Fig. 1. By choosing probability 
measures π close to the uniform measure on the sub-cycle of Ğ and the associated fastest Markov processes, 
we get values of F which are strictly smaller than those obtained on the Hamiltonian generators on the 
whole graph G, because they almost correspond to the minimization problem over the sub-cycle endowed 
with the uniform measure.

More precisely, let G = (V, E) be a finite oriented connected graph which is not a Hamiltonian cycle. 
Then we can find a cycle A := (a0, a1, ..., an−1) ∈ A(G) with n < card(V ). Denote Ṽ := {a0, a1, ..., an−1}
and V̂ := V \ Ṽ . By the strong connectivity of G, we can find a subset Ê of oriented edges from E, such that 
card(Ê) = card(V̂ ) and for any x ∈ V̂ we can find exactly one y ∈ V with (x, y) ∈ Ê. Putting together the 
edges from A and those from Ê, we get a graph Ğ on V looking like the following picture, where the cycle 
is oriented clockwise and the trees are oriented toward the cycle. For r > 0, consider the Markov generator 
Lr defined by

∀ x �= y ∈ V, Lr(x, y) :=

⎧⎪⎨⎪⎩
1 , if there exists l ∈ �0, n− 1� such that x = al and y = al+1

r , if (x, y) ∈ Ê

0 , otherwise.
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This generator is not irreducible, since it does not allow the chain to go from the cycle A to V̂ . Nevertheless, 
its unique invariant probability measure π is the uniform probability measure on Ṽ . The generator Lr then 
satisfies an extended normalization condition, in the sense that∑

x�=y∈V

π(x)Lr(x, y) = 1.

The eigenvalues of Lr are easy to find:

Λ(Lr) = Λ(L̃A) � {r[|V̂ |]},

where L̃A is the generator corresponding to the Hamiltonian cycle given by A on Ṽ and {r[|V̂ |]} is the 
multiset consisting of the value r with the multiplicity |V̂ |. This identity is an immediate consequence of 
following decomposition of Lr, where all the elements of Ṽ have been put before those of V̂ and where the 
elements of V̂ have been ordered so that the (oriented) distance to Ṽ is non-decreasing (in particular the 
last element corresponds to a leaf of Ğ):

Lr =
(
L̃A 0
C D

)
.

In the r.h.s., the V̂ × V̂ matrix D is sub-diagonal and its diagonal consists only of −r. Formula (16) enables 
us to extend the functional F to Lr and we get

F (Lr) = F (L̃A) + N

r
.

In particular, it follows that

lim
r→+∞

F (Lr) = F (L̃A) = n− 1
2 < F (LH)

for any Hamiltonian cycle H ∈ H(G), where we used twice Corollary 10. From now on, we fix r > 0 large 
enough, so that

F (Lr) < F (LH) (33)

for any Hamiltonian cycle H ∈ H(G).
For any ε > 0, consider the Markov generator

Lr,ε := Z−1
r,ε (Lr + εLG)

where
• the Markov generator LG is defined by

∀ x �= y ∈ V, LG(x, y) :=
{

1 , if (x, y) ∈ E

0 , otherwise

• the constant Zr,ε > 0 is such that Lr,ε is normalized (observe that Lr + εLG is irreducible on V ).
For r, ε > 0, denote πr,ε the invariant probability measure of Lr,ε. It is clear that as ε goes to 0+, πr,ε

converges toward π. It follows that



22 V. Borkar, L. Miclo / J. Math. Anal. Appl. 481 (2020) 123488
lim
ε→0+

Zr,ε = 1,

lim
ε→0+

Lr,ε = Lr.

From the general theory of perturbation of spectra of finite operators (see, e.g., the beginning of the second 
chapter of the book of Kato [26]), we have

lim
ε→0+

F (Lr,ε) = F (Lr).

Taking into account (33), we can thus find ε > 0 small enough so that

F (Lr,ε) < F (LH)

for any Hamiltonian cycle H ∈ H(G). That is, the probability measure πr,ε satisfies the statement of 
Theorem 13. Observe that this probability measure πr,ε is quite far away from υ, because it gives very small 
weight to the elements of V̂ . �

Note that this result does not contradict Theorem 6, which considered the minimization of 
∑

y Ex [τy]
and not 

∑
y π(y)Ex [τy].

5. The discrete time framework

Here we discuss the links between the search of the fastest continuous-time Markov processes with the 
analogous problem in discrete time.

Let a graph G = (V, E) and a probability measure π on V be fixed and denote by K(G, π) the set of 
irreducible Markov kernels K on V whose permitted transitions are edges from E plus self-loops (i.e., the 
possibility to stay at the same node which allows for a nontrivial Bernoulli distributed random sojourn 
time) and having π as the unique invariant distribution (i.e., satisfying πK = π). For any K ∈ K(G, π), let 
X := (Xn)n∈Z+ be a Markov chain whose transitions are dictated by K. For any y ∈ V , recall (see (3)) the 
first hitting time of y defined as

τy := inf{n ∈ Z+ : Xn = y}.

On K(G, π), we consider the functional Fπ defined by

∀ K ∈ K(G, π), Fπ(K) :=
∑

x,y∈V

π(x)π(y)Ex[τy],

where subscript x in the expectation indicates that X is starting from x ∈ V . As before, this serves as the 
objective function we seek to minimize.

To any K ∈ K(G, π), we associate Θ(K) the multi-set consisting of the spectrum of K, removing the 
eigenvalue 1 which has multiplicity 1. In other words, this is the set of all eigenvalues except 1, repeated as 
many times as their respective multiplicities. It is a priori a sub(multi-)set of the closed unit disk centered 
at 0 of C left invariant by conjugation, since complex eigenvalues will occur in complex conjugate pairs. In 
analogy with the continuous-time situation, we have the eigentime relation already introduced in subsection 
2.2 (see (4)):

∀ K ∈ K(G, π), Fπ(K) =
∑ 1

1 − θ
. (34)
θ∈Θ(K)
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Recall the notation L∗(x) := −L(x, x) for an infinitesimal generator L(·, ·) of a continuous time Markov 
chain. To any such L ∈ L(G, π), associate

l := max{L∗(x) : x ∈ V },

K := I + L

l
i.e., K(x, y) := δxy + L(x, y)

l
. (35)

The number l is chosen so that all the diagonal entries of K are non-negative, since the only nonpositive 
elements of L are the diagonal elements −L∗(x). Since the row sums of L are zero, the row sums of K are 
equal to those of I, so are all equal to 1. Furthermore, since πL = the zero vector, we have πK = πI = π, 
thus K ∈ K(G, π). Furthermore, from (35), we have Θ(K) = 1 − Λ(L)/l, so that by (34),

Fπ(K) = lF (L). (36)

Taking into account that

l ≥
∑
x∈V

π(x)L∗(x) = 1,

it follows that Fπ(K) ≥ F (L). We will denote Φ : L(G, π) → K(G, π) the mapping L �→ K defined above.
Conversely, for any K ∈ K(G, π),

∑
x∈V

π(x)(1 −K(x, x)) =
∑
x∈V

π(x)
(

1 −
(

1 + L(x, x)
l

))

=
∑
x∈V

π(x)
(
−L(x, x)

l

)
∈ (0, 1].

Hence to any K ∈ K(G, π), associate

k := 1∑
x∈V π(x)(1 −K(x, x)) ,

L = k(K − I).

It is immediate to check that L ∈ L(G, π). Furthermore, we get Λ(L) = k(1 − Θ(K)) and it follows that

F (L) = Fπ(K)/k.

Taking into account that

k ≥ 1∑
x∈V π(x) = 1,

we get that F (L) ≤ Fπ(K). Denote Ψ : K(G, π) → L(G, π) the mapping K �→ L as above.

Remark 14. The mappings Φ and Ψ are not inverse of each other, because the image of L(G, π) by Φ is 
included in K0(G, π) := {K ∈ K(G, π) : ∃ x ∈ V with K(x, x) = 0}. Nevertheless, we have that Φ and Ψ0
are inverse of each other, where Ψ0 is the restriction of Ψ to K0(G, π).

When one is looking for the minimal value of Fπ on K(G, π), one can restrict attention to K0(G, π), 
because
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min{Fπ(K) : K ∈ K(G, π)} = min{Fπ(K) : K ∈ K0(G, π)}.

Indeed, for any K ∈ K(G, π), there exist a unique K̃ ∈ K0(G, π) and α ∈ [0, 1) such that K = (1 −α)K̃+αI. 
Then we get Θ(K) = (1 − α)Θ(K̃) + α, i.e. Θ(K) − 1 = (1 − α)(Θ(K̃) − 1). This implies that

Fπ(K̃) = (1 − α)Fπ(K)

≤ Fπ(K).

As in (30), denote

F∧(G, π) := inf{F (L) : L ∈ L(G, π)},

F∧(G, π) := inf{Fπ(K) : K ∈ K(G, π)}.

From the above considerations, we deduce:

Proposition 15. We always have

F∧(G, π) ≤ F∧(G, π).

If in addition we assume that there is a minimizer L ∈ L(G, π) of F such that L∗(x) does not depend on 
x ∈ V (it is then equal to 1), then we get F∧(G, π) = F∧(G, π).

Proof. Consider K ∈ K(G, π). We have seen that

Fπ(K) ≥ F (Ψ(K))

≥ F∧(G, π),

so taking the infimum over K ∈ K(G, π), we get the first bound.
Conversely, if L ∈ L(G, π) is a minimizer of F whose diagonal is constant, then l = 1 in (36), namely 

Fπ(Φ(L)) = F (L) = F∧(G, π). From the previous inequality, it follows that Φ(L) is indeed a minimizer of 
Fπ on K(G, π) and we conclude that F∧(G, π) = F∧(G, π). �
Remark 16. This result implies in particular that the (normalized) fastest continuous-time Markov process 
is as least as fast as the fastest discrete-time Markov chain. The superior performance (vis-a-vis our objective 
function) for the continuous time Markov chains over discrete time Markov chain is due to greater flexibility 
of modulating the continuous-time exit rate from each vertex and therefore the sojourn times, as opposed 
to what is possible by using self-loops in the discrete-time.

In association with Theorem 6, the above proposition also enables us to recover the result of Litvak and 
Ejov [28] stating that for any Hamiltonian graph G, the permutation matrices associated to the Hamiltonian 
cycles of G are the unique minimizers of Fυ on K(G, υ). Proposition 15 does not enable us to extend directly 
Theorem 13 to the discrete time setting, because the diagonal of the generator associated to a Hamiltonian 
cycle is constant if and only if the underlying invariant probability measure is uniform. This extension is 
nevertheless true. To show it, note that the differentiation technique of Section 3 can be adapted to K(G, π).
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Appendices

6. Differentiation on L(π)

This part of the appendix introduces some elements of differential calculus on L(π), which are helpful 
in the proof of Theorem 8. Here we will be working mainly with the complete graph KV . We will first 
differentiate with respect to general generators. Next we provide more precise formulas for the first and 
second derivatives with respect to cycles. Finally we will bound these derivatives.

6.1. Differentiation with respect to general generators

We begin by presenting a more analytical expression for the functional F . For y ∈ V , consider the function

fy : V 
 x �→
1{y}(x)
π(y) − 1.

Note that π[fy] = 0, so for any L ∈ L(π), by irreducibility, there exists a unique function ϕL
y on V satisfying 

the Poisson equation {
L[ϕL

y ] = fy,

ϕL
y (y) = 0.

(37)

In the first equality, L[ϕL
y ] is a matrix-vector product, where functions are seen as column vectors (measures 

will be interpreted as row vectors), i.e.,

∀ x ∈ V, L[ϕL
y ](x) :=

∑
z∈V

L(x, z)ϕL
y (z)

The uniqueness of the solution to (37) comes from the fact that the difference χ between two solutions 
satisfies L[χ] = 0 and χ(y) = 0. By irreducibility of L, L[χ] = 0 implies that χ is constant and χ(y) = 0
enables us to conclude that χ = 0. The following relation with the functional F is equally well-known:

Lemma 17. For any L ∈ L(π) and any x, y ∈ V , we have

ϕL
y (x) = EL

x [τy],

so that

F (L) =
∑
y∈V

π(y)π[ϕL
y ]. (38)

To simplify notation, from now on, we will remove the superscript L of EL
x and ϕL

y when the underlying 
generator L is clear from the context.

Proof. Let us recall a simple argument, which will be used again in the sequel. Through the martingale 
problem characterization of X, we have that for any given function ϕ on V , the process (Mt)t≥0 defined by

∀ t ≥ 0, Mt := ϕ(Xt) − ϕ(X0) −
t∫
L[ϕ](Xs) ds
0
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is a martingale. In particular, for any stopping time τ , the process (Mτ∧t)t≥0 is also a martingale. Thus, 
starting from x ∈ V , we get,

Ex[Mτy∧t] = 0

= Ex

⎡⎣ϕ(Xτ∧t) − ϕ(X0) −
τ∧t∫
0

L[ϕ](Xs) ds

⎤⎦
= Ex [ϕ(Xτ∧t)] − ϕ(x) − Ex

⎡⎣ τ∧t∫
0

L[ϕ](Xs) ds

⎤⎦ .

Since τ is a.s. finite, we obtain by dominated convergence that as t goes to infinity,

Ex [ϕ(Xτ )] − ϕ(x) − Ex

⎡⎣ τ∫
0

L[ϕ](Xs) ds

⎤⎦ = 0.

For any y ∈ V , consider ϕ := ϕy and τ := τy. From (37) and from the fact that fy(z) = −1 for any 
z ∈ V \ {y}, we deduce

ϕy(x) = Ex[τy].

The last identity of the lemma comes from∑
x∈V

π(x)Ex[τy] =
∑
x∈V

π(x)ϕy(x)

= π[ϕy]. �
Since we are looking for minimizers of F on L(π), it is natural to differentiate this functional. Recall the 

definition of L̄(π) from Section 3. For L ∈ L(π), L̃ ∈ L̄(π) and ε ∈ [0, 1), let Lε := (1 − ε)L + εL̃ ∈ L̄(π). 
Define

DL̃F (L) := lim
ε→0+

F (Lε) − F (L)
ε

, (39)

where F (L) is the functional considered in (38). In the proof of the following result, it will be shown that 
the above limit exists.

Lemma 18. With the above notation, we have

DL̃F (L) =
∑
y∈V

π(y)(π[ϕy] − π[ψy])

= F (L) −
∑
y∈V

π(y)π[ψy].

where ψy is the unique solution of another Poisson equation{
L[ψy] = L̃[ϕy],
ψy(y) = 0.

(40)
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Proof. Let Fπ stand for the space of functions f on V whose mean with respect to π vanishes. By restriction 
to Fπ, L ∈ L(π) can be seen as an invertible endomorphism of Fπ. Denote by L−1

|Fπ
its inverse. Similarly, 

for ε ∈ [0, 1), let L−1
ε,Fπ

be the inverse of Lε on Fπ. The mapping [0, 1) 
 ε �→ Lε being analytic, the same is 
true for [0, 1) 
 ε �→ L−1

ε,Fπ
. Since we have

∀ ε ∈ [0, 1), ∀ y ∈ V, ϕLε
y = L−1

ε,Fπ
[fy] − L−1

ε,Fπ
[fy](y)

(where the number L−1
ε,Fπ

[fy](y) stands for the function L−1
ε,Fπ

[fy](·) on V evaluated at value y), we deduce 
that the mapping

[0, 1) 
 ε �→ ϕLε
y

is analytic. The same is true for [0, 1) 
 ε �→ F (Lε), due to the equality

∀ ε ∈ [0, 1), F (Lε) =
∑
y∈V

π(y)π[ϕLε
y ].

In particular its derivative DL̃F (L) exists and is equal to 
∑

y∈V π(y)π[ϕ′
y], where ϕ′

y is the derivative of 
ϕLε
y at ε = 0. Differentiating the relation Lε[ϕLε

y ] = fy, we get

(L̃− L)[ϕy] + L[ϕ′
y] = 0.

Furthermore, since ϕLε
y (y) = 0 for all ε ∈ [0, 1) by definition, we have that ϕ′

y(y) = ∂εϕ
Lε
y (y)|ε=0 = 0, so 

that ϕy − ϕ′
y satisfies the equation (40) and must be equal to ψy. The claim then follows from the equality 

ϕ′
y = ϕy − ψy for all y ∈ V . �
In the above proof, we have seen that [0, 1) 
 ε �→ F (Lε) is analytic, so we can differentiate it a second 

time at ε = 0. Denote D2
L̃
F (L) = ∂2

εF (Lε)|ε=0.

Lemma 19. For L ∈ L(π), L̃ ∈ L̄(π), we have

D2
L̃
F (L) =

∑
y∈V

π(y)(2π[ϕy] − 4π[ψy] + 2π[ψ̆y])

= 4DL̃F (L) − 2F (L) + 2
∑
y∈V

π(y)π[ψ̆y],

where ψ̆y is the unique solution of

{
L[ψ̆y] = L̃[ψy],
ψ̆y(y) = 0.

(41)

Proof. For any y ∈ V , denote ϕ′′
y the second derivative of ϕLε

y at ε = 0. By differentiating twice the relation 
Lε[ϕLε

y ] = fy at ε = 0, we get

(∂2
εLε)[ϕy] + 2(∂εLε)[ϕ′

y] + L[ϕ′′
y ] = 0.

Since ∂2
εLε = 0,
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L[ϕ′′
y ] = 2(L− L̃)[ϕ′

y]

= 2(L− L̃)[ϕy − ψy]

= 2L[ϕy − ψy] − 2L̃[ϕy − ψy]

= 2L[ϕy − ψy] − 2L̃[ϕy] + 2L̃[ψy]

= 2L[ϕy − ψy] − 2L[ψy] + 2L̃[ψy]

= L[2ϕy − 4ψy] + 2L̃[ψy].

It follows that ϕ′′
y/2 − ϕy + 2ψy satisfies the first condition of equation (41). It also vanishes at y, since 

ϕ′′
y(y) = 0 = ϕy(y) = ψy(y). Thus we get that ϕ′′

y = 2ϕy − 4ψy + 2ψ̆y. The announced result is now a 
consequence of the equality

D2
L̃
F (L) =

∑
y∈V

π(y)π[ϕ′′
y ],

which comes from (38). �
6.2. First derivatives with respect to cycles

It will be convenient to use these differentiations with respect to particular generators L̃ ∈ L̄(π).

Lemma 20. Let A = (al)l∈Zn
∈ A be given and for y ∈ V , consider the function ψy defined by (40) with 

L̃ = LA. Then we have

∀ x ∈ V, ψy(x) = 1
n

∑
l∈Zn

(ϕy(al+1) − ϕy(al))(ϕal
(x) − ϕal

(y)). (42)

Furthermore, we get that

∑
y∈V

π(y)π[ψy] = − 1
n

∑
l∈Zn

∑
y∈V

π(y)(ϕy(al+1) − ϕy(al))ϕal
(y)

= 1
n

⎛⎝∑
l∈Zn

1
2Eal+1 [τ2

al
] − Eπ[τal

]Eal+1 [τal
]

⎞⎠ ,

where Eπ stands for the expectation relative to the initial distribution π for X.

Proof. For any function ϕ on V , we have

LA[ϕ] =
∑
l∈Zn

ϕ(al+1) − ϕ(al)
nπ(al)

1{al},

where 1{al} is the indicator function of the point al. Let ψ be a function such that L[ψ] = LA[ϕ]. Using the 
martingale problem as in the proof of Lemma 17, we get for any x, y ∈ V ,

ψ(y) − ψ(x) = Ex

⎡⎣ τy∫
L[ψ](Xs) ds

⎤⎦

0



V. Borkar, L. Miclo / J. Math. Anal. Appl. 481 (2020) 123488 29
= Ex

⎡⎣ τy∫
0

LA[ϕ](Xs) ds

⎤⎦
=
∑
l∈Zn

ϕ(al+1) − ϕ(al)
n

Ex

⎡⎣ τy∫
0

1{al}
π(al)

(Xs) ds

⎤⎦
=
∑
l∈Zn

ϕ(al+1) − ϕ(al)
n

Ex

⎡⎣ τy∫
0

1 + fal
(Xs) ds

⎤⎦
=
∑
l∈Zn

ϕ(al+1) − ϕ(al)
n

⎛⎝ϕy(x) + Ex

⎡⎣ τy∫
0

fal
(Xs) ds

⎤⎦⎞⎠ .

Taking into account that L[ϕal
] = fal

, we deduce that

Ex

⎡⎣ τy∫
0

fal
(Xs) ds

⎤⎦ = ϕal
(y) − ϕal

(x),

so that

ψ(y) − ψ(x) =
∑
l∈Zn

ϕ(al+1) − ϕ(al)
n

(ϕy(x) + ϕal
(y) − ϕal

(x)) .

Note that

∑
l∈Zn

ϕ(al+1) − ϕ(al)
n

ϕy(x) = ϕy(x)
n

∑
l∈Zn

ϕ(al+1) − ϕ(al)

= 0.

Thus

ψ(y) − ψ(x) = 1
n

∑
l∈Zn

(ϕ(al+1) − ϕ(al)) (ϕal
(y) − ϕal

(x)) .

Considering for y ∈ V the functions ϕ = ϕy and ψ = ψy and recalling that ψy(y) = 0, gives the first relation 
of the lemma. Integrating this relation with respect to π in x, we get

π[ψy] = 1
n

∑
l∈Zn

(ϕy(al+1) − ϕy(al))(π[ϕal
] − ϕal

(y)).

A well-known result (recall (4) or see, e.g., the book of Aldous and Fill [2]) asserts that the quantity ∑
y∈V π(y)ϕy(x) does not depend on x ∈ V . It follows that

∑
y∈V

π(y)(ϕy(al+1) − ϕy(al))π[ϕal
] = 0 (43)

and hence ∑
π(y)π[ψy] = − 1

n

∑
π(y)

∑
(ϕy(al+1) − ϕy(al))ϕal

(y),

y∈V y∈V l∈Zn
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which is the second equality of the lemma. For any l ∈ Zn, let φal
be the function defined by:

∀ x ∈ V, φal
(x) =

∑
y∈V

π(y)ϕal
(y)(ϕy(x) − ϕy(al)). (44)

We have 
∑

y∈V π(y)π[ψy] = − 1
n

∑
l∈Zn

φal
(al+1). To compute φal

, note that φal
(al) = 0 and that

L[φal
] =

∑
y∈V

π(y)ϕal
(y)L[ϕy]

=
∑
y∈V

π(y)ϕal
(y)fy

=
∑
y∈V

π(y)ϕal
(y)
(

1{y}
π(y) − 1

)
= ϕal

− π[ϕal
].

This observation leads us to resort once again to the martingale problem, to get for any x ∈ V ,

φal
(al) = φal

(x) + Ex

⎡⎣ τal∫
0

(ϕal
(Xs) − π[ϕal

]) ds

⎤⎦
= φal

(x) + Ex

⎡⎣ τal∫
0

ϕal
(Xs) ds

⎤⎦− π[ϕal
]Ex[τal

]

= φal
(x) − π[ϕal

]ϕal
(x) + Ex

⎡⎣ τal∫
0

ϕal
(Xs) ds

⎤⎦
= φal

(x) − π[ϕal
]ϕal

(x) + 1
2Ex[τ2

al
]

according to Lemma 21 below. Recalling that φal
(al) = 0, we get

φal
(x) = π[ϕal

]ϕal
(x) − 1

2Ex[τ2
al

] (45)

and this leads immediately to the last equality of the lemma. �
In the previous proof, we needed the following result.

Lemma 21. For any x, y ∈ V , we have

Ex

⎡⎣ τy∫
0

ϕy(Xs) ds

⎤⎦ = 1
2Ex[τ2

y ].

Proof. Coming back to the probabilistic interpretation of ϕy and taking into account the Markov property 
and Fubini theorem, we get,

Ex

⎡⎣ τy∫
ϕy(Xs) ds

⎤⎦ =
+∞∫

Ex

[
1{s≤τy}EXs

[τy]
]
ds
0 0
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=
+∞∫
0

+∞∫
0

Ex

[
1{s≤τy}EXs

[1{t≤τy}]
]
ds dt

=
+∞∫
0

+∞∫
0

Ex

[
1{s≤τy}E[1{t≤τy◦θs}|σ(Xu : u ∈ [0, s])]

]
ds dt

=
+∞∫
0

+∞∫
0

Ex

[
1{s≤τy}1{t≤τy◦θs}

]
ds dt

=
+∞∫
0

+∞∫
0

Ex

[
1{s+t≤τy}

]
ds dt,

where θs is the usual shift by time s of the trajectories of X. Using the Fubini theorem, we get

+∞∫
0

+∞∫
0

Ex

[
1{s+t≤τy}

]
ds dt = Ex

⎡⎣ +∞∫
0

+∞∫
0

1{s+t≤τy} ds dt

⎤⎦
= 1

2Ex

⎡⎣ +∞∫
0

+∞∫
0

1{s≤τy}1{t≤τy} ds dt

⎤⎦

= 1
2Ex

⎡⎢⎣
⎛⎝ τy∫

0

ds

⎞⎠2
⎤⎥⎦

= 1
2Ex[τ2

y ]. �
6.3. Second derivatives: preliminaries

Before treating the second derivative in a similar way, let us present two remarks about the quantities 
that appear in Lemma 20. Except for (46) and (47) below, this sub-appendix should be skipped on a first 
reading, as is not necessary for Theorem 8, but we believe it will be relevant for a further study of the 
minimizers of the mapping F on L(π).

Define the following quantities, associated with a given L ∈ L(π):

∀ x, y ∈ V, hL(x, y) := 1
2Ey[τ2

x ] − Eπ[τx]Ey[τx]

∀ A = (a1, ..., an) ∈ A, HA(L) = 1
n

∑
l∈Zn

hL(al, al+1) (46)

Lemmas 18 and 20 allow us to write:

∀ A = (a1, ..., an) ∈ A, DAF (L) = F (L) −HA(L) (47)

where DAF (L) is a short hand for DLA
F (L).

Let us say that a cycle A = (a1, ..., an) ∈ A is below the generator L, if

∀ l ∈ Zn, L(al, al+1) > 0
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and denote by A(L) the set of cycles below L. Then we have:

Lemma 22. Assume that L ∈ L(π) is a minimizer of F on L(π). Then,

∀ A ∈ A(L), HA(L) = F (L),

∀ A ∈ A \ A(L), HA(L) ≤ F (L).

In particular, we get

F (L) = max
A∈A

HA(L).

Proof. Consider a minimizer L ∈ L(π) of F on L(π) and A ∈ A(L). By definition of A(L), for ε ∈ R small 
enough, Lε := (1 − ε)L + εLA remains a Markov generator, even if ε is negative. It belongs to L(π) due to 
the fact that π is invariant for both L and LA. Thus the mapping ε �→ F (Lε) attains a local minimum at 
the interior point ε = 0, so by differentiating we get that DAF (L) = 0, which implies HA(L) = F (L). For 
A ∈ A \A(L), the operator (1 − ε)L + εLA is not Markovian for ε < 0. So DAF (L) only corresponds to the 
right derivative of F (Lε) at ε = 0+. The minimizing assumption on L implies that DAF (L) ≥ 0, namely 
HA(L) ≤ F (L). The last identity of the lemma is an immediate consequence of the previous observations 
and of the fact that there exists at least one cycle below L, by irreducibility. �

Next we mention a spectral relation satisfied by the quantities (hL(x, y))x,y∈V , reminiscent of (16). Indeed, 
it is proved in a similar way, as will become clear from the following proof where the arguments for (16)
will be recalled.

Lemma 23. For any L ∈ L(π), we have

∑
x,y∈V

π(x)π(y)hL(x, y) =
∑

λ∈Λ(L)

1
λ2 . (48)

Proof. As in the proof of Lemma 17, let Fπ stand for the space of functions f on V whose mean with 
respect to π vanishes and denote by Π the orthogonal projection from L2(π) to Fπ:

∀ f ∈ L2(π), Π[f ] = f − π[f ].

Let (gy)y∈V be any orthonormal basis of L2(π) and R be any endomorphism of Fπ. We have seen in Lemma 
6 of [29] that

tr(R) =
∑
y∈V

π[Π[gy]R[Π[gy]]].

In [29], we considered the orthonormal basis given by

∀ y ∈ V, gy :=
1{y}√
π(y)

and the operator L−1
|Fπ

defined in the proof of Lemma 18, in order to conclude to (16), taking into account 
the fact that Π[gy] =

√
π(y)fy, for all y ∈ V , and that tr(L−1 ) = − 

∑ 1 .
|Fπ λ∈Λ(L) λ
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To prove (48), we use R = (L−1
|Fπ

)2. Observe that for any y ∈ V ,

(L−1
|Fπ

)2[fy] = L−1
|Fπ

[ϕy − π[ϕy]]

= φy − π[φy]

where φy is the unique solution of {
L[φy] = ϕy − π[ϕy]
φy(y) = 0.

(49)

(This notation agrees with that introduced in (44)). Thus we get

∑
λ∈Λ(L)

1
λ2 = tr((L−1

|Fπ
)2)

=
∑
y∈V

π[Π[gy](L−1
|Fπ

)2[Π[gy]]]

=
∑
y∈V

π(y)π[fy(L−1
|Fπ

)2[fy]]

=
∑
y∈V

π(y)π[fy(φy − π[φy])]

=
∑
y∈V

π(y)π[fyφy]

=
∑
y∈V

π(y)φy(y) − π(y)π[φy]

= −
∑
y∈V

π(y)π[φy]

= −
∑

x,y∈V

π(x)π(y)φy(x).

In the proof of Lemma 20 (see (45)), it was shown that

∀ x, y ∈ V, φx(y) = −hL(x, y),

which leads immediately to (48). �
6.4. Second derivatives with respect to cycles

Lemma 20 can be extended to the second derivative presented in Lemma 19, by computing similarly the 
function ψ̆y defined by (41) with L̃ = LA, for fixed A = (al)l∈Zn

∈ A and y ∈ V . For our purposes, it is 
convenient to consider a generalization of this situation. Given another cycle A′ = (a′l)l∈Zn′ ∈ A, consider 
the equation in the function Ψy: {

L[Ψy] = LA′ [ψy],
Ψy(y) = 0,

(50)

where ψy is still associated with L, A and y as in Lemma 20. Of course, when A′ = A, we recover Ψy = ψ̆y.
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Lemma 24. For A = (al)l∈Zn
∈ A, A′ = (a′l)l∈Zn′ ∈ A and y ∈ V given as above, consider the function Ψy

defined by (50). Then we have, for any x ∈ V ,

Ψy(x) = 1
nn′

∑
l∈Zn,k∈Zn′

(ϕy(al+1) − ϕy(al))(ϕal
(a′k+1) − ϕal

(a′k))(ϕa′
k
(x) − ϕa′

k
(y)). (51)

Furthermore, we get that

∑
y∈V

π(y)π[Ψy]

= 1
nn′

∑
l∈Zn,k∈Zn′

(hL(a′k, al+1) − hL(a′k, al))(ϕal
(a′k+1) − ϕal

(a′k)) (52)

= 1
nn′

∑
l∈Zn,k∈Zn′

(
1
2(Eal+1 [τ2

a′
k
] − Eal

[τ2
a′
k
]) − Eπ[τa′

k
](Eal+1 [τa′

k
] − Eal

[τa′
k
])
)

(
Ea′

k+1
[τal

] − Ea′
k
[τal

]
)
.

Proof. From Lemma 20, we have

LA′ [ψy] = 1
n

∑
l∈Zn

(ϕy(al+1) − ϕy(al))LA′ [ϕal
]

= 1
n

∑
l∈Zn

(ϕy(al+1) − ϕy(al))
∑

k∈Zn′

ϕal
(a′k+1) − ϕal

(a′k)
n′π(a′k)

1{a′
k}

= 1
nn′

∑
l∈Zn

(ϕy(al+1) − ϕy(al))
∑

k∈Zn′

(ϕal
(a′k+1) − ϕal

(a′k))
1{a′

k}

π(a′k)

= 1
nn′

∑
l∈Zn

(ϕy(al+1) − ϕy(al))
∑

k∈Zn′

(ϕal
(a′k+1) − ϕal

(a′k))fa′
k
,

where we used that for any l ∈ Zn,

∑
k∈Zn′

(ϕal
(a′k+1) − ϕal

(a′k)) = 0.

Thus, denoting

ξy(·) := 1
nn′

∑
l∈Zn

(ϕy(al+1) − ϕy(al))
∑

k∈Zn′

(ϕal
(a′k+1) − ϕal

(a′k))(ϕa′
k
(·) − ϕa′

k
(y)),

we get that L[ξy] = LA′ [ψy] and ξy(y) = 0. It follows that Ψy = ξy, as announced.
We deduce that

π[ψ̆y] = 1
nn′

∑
l∈Zn

(ϕy(al+1) − ϕy(al))
∑

k∈Zn′

(ϕal
(a′k+1) − ϕal

(a′k))(π[ϕa′
k
] − ϕa′

k
(y))

and
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∑
y∈V

π(y)π[ψ̆y] = 1
nn′

∑
y∈V

π(y)
∑

l∈Zn,k∈Zn′

(ϕy(al+1) − ϕy(al))(ϕal
(a′k+1) − ϕal

(a′k))(π[ϕa′
k
] − ϕa′

k
(y))

= − 1
nn′

∑
y∈V

∑
l∈Zn,k∈Zn′

π(y)(ϕy(al+1) − ϕy(al))(ϕal
(a′k+1) − ϕal

(a′k))ϕa′
k
(y), (53)

where we used again (recall (43)) that∑
y∈V

π(y)(ϕy(al+1) − ϕy(al)) = 0.

Remember also (cf. (44)) that

∀ x ∈ V,
∑
y∈V

π(y)(ϕy(x) − ϕy(a′k))ϕa′
k
(y) = φa′

k
(x)

= −hL(a′k, x).

Thus substituting in (53)

ϕy(al+1) − ϕy(al) = ϕy(al+1) − ϕy(a′k) − (ϕy(al) − ϕy(a′k)),

we deduce (52). The last equality of the lemma is obtained by expressing hL and ϕx, for x ∈ V , in terms of 
expectations of hitting times. �

Denote by HA′,A(L) the expression given by (52). Considering the case A′ = A, Lemma 19 leads to

DA,AF (L) = 2F (L) − 4HA(L) + 2HA,A(L) (54)

where DA,AF (L) is a shorthand for D2
LA

F (L). Lemma 24 enables us to extend (54) to the case where 
A �= A′: if we define for any A, A′ ∈ A, DA′,AF (L) := DA′(DAF (L)), then we get, via computations similar 
to those of the proof of Lemma 19,

DA′,AF (L) = 2(F (L) −HA(L) −HA′(L) + HA′,A(L)).

The previous expressions for differentiation up to order 2 with respect to Markov generators associated 
to cycles can be extended to general Markov generators from L̄(π). To go in this direction, we need to recall 
a simple result:

Lemma 25. The extreme points of the convex set L̄(π) are exactly the generators LA for A ∈ A.

As a consequence, any L ∈ L̄(π) can be decomposed into a barycentric sum

L =
∑
A∈A

p(A)LA,

where p is a probability measure on A. For an extensive discussion of such decompositions, see the book of 
Kalpazidou [25]. Note that the above decomposition is not unique in general, because L̄(π) is not a simplex 
for N ≥ 3. For instance, the generator

L := 1
2

⎛⎜⎝−2 1 1
1 −2 1
1 1 −2

⎞⎟⎠
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of the simple random walk on Z3 can be written in the form L = 1
2L(0,1,2) + 1

2L(0,2,1) and L = 1
3L(0,1) +

1
3L(1,2) + 1

3L(2,0).
Nevertheless, given L̃, L̂ ∈ L̄(π), decompose them into

L̃ =
∑
A∈A

p̃(A)LA,

L̂ =
∑
A∈A

p̂(A)LA,

where p̃, ̂p are probability measures on A. Then we get for any L ∈ L(π).

DL̃F (L) =
∑
A∈A

p̃(A)DAF (L),

DL̂DL̃F (L) =
∑

A,A′∈A
p̃(A)p̂(A′)DA,A′F (L).

It follows that we can write

DL̃F (L) = F (L) −HL̃(L),

DL̂DL̃F (L) = 2(F (L) −HL̃(L) −HL̂(L) + HL̃,L̂(L)),

where

HL̃(L) =
∑
x�=y

π(x)L̃(x, y)hL(x, y),

HL̂,L̃(L) =
∑

x�=y, x′ �=y′

π(x′)L̂(x′, y′)π(x)L̃(x, y)(hL(x′, y) − hL(x′, x))(ϕx(y′) − ϕx(x′))

(definitions which conform to (46) and (52) when L̃ = LA and L̂ = LA′).

6.5. Bounds on derivatives

In view of (42) and (51), the following quantity seems to play an important role in bounding the deriva-
tives:

M(L) := max
y,x,x′∈V

|ϕy(x) − ϕy(x′)| (55)

= max
y,x∈V

ϕy(x),

where the last equality is due to the fact that ϕy, for y ∈ V , is non-negative and vanishes at y.

Proposition 26. We have for any L ∈ L(π) and L̃, L̂ ∈ L̄(π),

F (L) ≤ M(L),∣∣DL̃F (L)
∣∣ ≤ M(L) + M(L)2,∣∣DL̂DL̃F (L)
∣∣ ≤ 2(M(L) + M(L)2 + M(L)3).
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Proof. The first bound follows directly from the definitions of F (L) and ϕy, see Lemma 17. For the second, 
note that (42) can be extended to the solution of (40) for general L̃ ∈ L̄(π): we get

∀ y, x ∈ V, ψy(x) =
∑

z �=z′∈V

π(z)L̃(z, z′)(ϕy(z′) − ϕy(z))(ϕz(x) − ϕz(y)).

Taking into account the renormalization of L̃, it follows that for any y ∈ V , we have for the supremum 
norm:

‖ψy‖∞ ≤ M(L)2.

For the third bound of the lemma, note that (51) can also be extended to the more general function Ψy, 
which is the solution of {

L[Ψy] = L̂[ψy]
Ψy(y) = 0,

for any given y ∈ V and where ψy is the solution of (40). It follows that for any x, y ∈ V , this generalized 
function Ψy is given by

Ψy(x) =
∑

u �=v, u′ �=v′

π(u′)L̂(u′, v′)π(u)L̃(u, v)(ϕy(v) − ϕy(u))(ϕu(v′) − ϕu(u′))(ϕu′(x) − ϕu′(y)).

Thus

‖Ψy‖∞ ≤ M(L)3. �
A natural question is how to upper bound M(L). A first answer is to use the operator norm ‖ | · ‖ |∞→∞

from L∞(π) to L∞(π) with the operator L−1
|Fπ

introduced in the proof of Lemma 18:

M(L) = max
y∈V

‖ϕy‖∞

≤ max
y∈V

‖ϕy − π[ϕy]‖∞ + max
y∈V

π[ϕy]

≤ ‖|L−1
|Fπ

‖|∞→∞ max
y∈V

‖fy‖∞ + max
y∈V

(1 − π(y))M(L)

≤ ‖|L−1
|Fπ

‖|∞→∞
1
π∧

+ (1 − π∧)M(L)

where π∧ := minx∈V π(x). It follows that

M(L) ≤
‖|L−1

|Fπ
‖|∞→∞

π2
∧

.

But the norm ‖ |L−1
|Fπ

‖ |∞→∞ does not seem so easy to evaluate. One can instead resort to the operator 
norm from L2(π) to L2(π) as follows. Denoting I the identity operator on Fπ, we have as above

M(L) ≤ ‖|I‖|2→∞‖|L−1
|Fπ

‖|2→2 max
y∈V

‖fy‖2 + (1 − π∧)M(L)

≤ 1√
π∧

‖|L−1
|Fπ

‖|2→2 max
y∈V

√
1

π(y) − 1 + (1 − π∧)M(L)
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≤ 1√
π∧

‖|L−1
|Fπ

‖|2→2

√
1
π∧

+ (1 − π∧)M(L)

≤ ‖|L−1
|Fπ

‖|2→2
1
π∧

+ (1 − π∧)M(L).

As a consequence, we get

M(L) ≤
‖|L−1

|Fπ
‖|2→2

π2
∧

.

This expression is advantageous when L is reversible with respect to π, since in this situation, ‖ |L−1
|Fπ

‖ |2→2 =
1/λ, where λ is the spectral gap of L, namely the smallest element of Λ(L) (which is then in (0, +∞)). 
Nevertheless, since we are interested in F (L), there is a simple comparison:

M(L) ≤ F (L)
π2
∧

. (56)

Indeed, let y, z ∈ V be such that M(L) = ϕy(z). We have

F (L) =
∑
y′∈V

π(y′)π[ϕy′ ]

=
∑

y′,z′∈V

π(y′)π(z′)ϕy′(z′)

≥ π(y)π(z)ϕy(z)

≥ π2
∧ϕy(z)

= π2
∧M(L).

We now concentrate on the case π = υ, the uniform measure and L = LA, with A a Hamiltonian cycle. 
The following differentiation of a cyclic generator LA in the direction of another cycle Ã has been crucial 
in the proof of Theorem 8.

Proposition 27. For any A ∈ H and Ã ∈ A \ {A}, we have on L(υ),

DÃF (LA) ≥ N − 1
2N .

Proof. There is no loss of generality in assuming that V = ZN and that A = (0, 1, 2, ..., N − 1). To simplify 
the notation, let us write L = LA. By invariance of L and υ through the rotations ZN 
 x �→ x + y ∈ ZN

for any fixed y ∈ ZN , we recover that the quantity Eυ[τx] does not depend on the choice of x ∈ ZN and 
that it is equal to F (L). Furthermore, since under L, the Markov process waits an exponential time with 
parameter 1 before adding 1 to the current state, we get that for any x, y ∈ ZN , Ex[τy] = ρ(x, y), where

∀ x, y ∈ ZN , ρ(x, y) := min{n ∈ Z+ : y = x + n}.

It follows that F (L) = (N − 1)/2 (for an alternative proof, see Corollary 10). Thus we get that

∀ x, y ∈ ZN , hL(x, y) = 1
2
(
Ey[τ2

x ] − (N − 1)Ey[τx]
)

= 1 (
Ey[τ2

x ] − (N − 1)ρ(y, x)
)
.
2
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Since under Py, τx is a sum of ρ(y, x) independent exponential random variables of parameter 1, we compute 
that

Ey[τ2
x ] = ρ(y, x)2 + ρ(y, x).

It follows that for any x, y ∈ ZN , hL(x, y) = hN (ρ(y, x)), where

hN : [0, N − 1] 
 m �→ 1
2
(
m2 − (N − 2)m

)
.

This function hN is decreasing on [0, (N − 2)/2], increasing on [(N − 2)/2, N − 1] and we have hN (0) = 0 <
(N − 1)/2 = hN (N − 1).

Thus from the definition (46), we get that

∀ Ã ∈ A, HÃ(L) ≤ hN (N − 1)

= HA(L).

Let us improve this bound when A �= Ã (up to the cyclic identification). Consider Ã := (ã0, ̃a1, ..., ̃an) ∈ A, 
and assume first there exists at least one l ∈ Zn, such that ρ(ãl+1, ̃al) �= N − 1. We get

HÃ(L) ≤ n− 1
n

hN (N − 1) + 1
n

max{hN (0), hN (N − 2)}

= n− 1
n

HA(L)

≤ N − 1
N

HA(L),

where in the equality, we used that hN(0) = hN (N − 2) = 0 and that hN (N − 1) = HA(L), according 
to (46). Next assume on the contrary that for all l ∈ Zn, we have ρ(ãl+1, ̃al) = N − 1, which means that 
ãl = ãl+1 + N − 1, i.e. ãl+1 = ãl + 1 in ZN . Since this must be true for all l ∈ Zn, it follows that n = N

and that Ã must be of the form (k, k + 1, ..., k + N − 1), for some k ∈ ZN , namely, it is identified with A.
As a consequence, taking into account (47), we obtain,

∀ Ã ∈ A \ {A}, DÃF (L) = F (L) −HÃ(L)

≥ F (L) − N − 1
N

HA(L)

= DAF (L) + 1
N

HA(L)

= N − 1
2N

where we took into account that DAF (L) = 0, because L= LA is not modified in the direction of the 
cycle A. �

Above we worked with the complete graph KV and the associated set of Markov generators L(π). All the 
previous considerations can be extended to the case of L(G, π), where the graph G is as in the introduction. 
The only difference is that A has to be replaced by A(G), the set of cycles using only edges from E. For 
instance, Lemma 25 has to be replaced by

Lemma 28. The extreme points of the convex set L̄(G, π) (the set of normalized Markov generators L, 
compatible with G and admitting π for invariant probability) are exactly the generators LA for A ∈ A(G).
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7. Computations on the simplest example of non-Hamiltonian connected graph

The length 2 segment S2 := ({0, 1, 2}, {(0, 1), (1, 0), (1, 2), (2, 1)}) is the simplest non-Hamiltonian 
(strongly) connected graph. We compute here the minimizer of F on L(S2, π), for any probability mea-
sure π on {0, 1, 2}. We hope this example will motivate further investigation of the minimizers of F in the 
challenging non-Hamiltonian framework.

To simplify the notation, write x = π(0), y = π(1) and z = π(2), by assumption we have that x, y, z > 0
and x + y + z = 1. Modulo exchanging the vertices 0 and 2, we assume that |x − 1/2| ≥ |z − 1/2|.

Any Markov generator L from L(S2, π) has the form

L :=

⎛⎜⎝−a a 0
α −α− β β

0 b −b

⎞⎟⎠
where the coefficients a, α, β, b > 0 satisfy,

xa = yα,

yβ = zb,

xa + y(α + β) + zb = 1.

The first two equalities correspond to the invariance of π for L (here π is even reversible for the birth and 
death generator L) and the third one is the normalization condition, which can be rewritten as

2xa + 2zb = 1 (57)

Denote Λ(L) = {λ1, λ2}, its elements are the non-zero roots in X of the polynomial det(X+L). We compute 
that

det(X + L) = X(X2 − (a + α + β + b)X + ab + aβ + αb),

so that

λ1 + λ2 = a + α + β + b,

λ1λ2 = ab + aβ + αb.

From (16), we have

F (L) = 1
λ1

+ 1
λ2

= λ1 + λ2

λ1λ2

= a + α + β + b

ab + aβ + αb

=
a
(
1 + x

y

)
+ b

(
1 + z

y

)
ab
(
1 + x

y + z
y

)
= a(x + y) + b(y + z)
ab(y + x + z)
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= a(x + y) + b(y + z)
ab

= x + y

b
+ y + z

a

= 1 − z

b
+ 1 − x

a
.

Taking into account (57), the minimizer of F on L(S2, π) corresponds to the minimizer of

(0, 1/(2x)) 
 a �→ 2z 1 − z

1 − 2xa + 1 − x

a
. (58)

We are thus led to the second order equation in a:

4x(z(1 − z) − x(1 − x))a2 + 4x(1 − x)a− (1 − x) = 0. (59)

Due to the assumption |x − 1/2| ≥ |z − 1/2|, the first coefficient is non-negative. We consider two cases.

• If |x −1/2| = |z−1/2|, then (59) degenerates into a first order equation and a := 1/(4x) is the minimizer 
of the mapping (58). It follows that the minimizer of F on L(S2, π) is

L∧ :=

⎛⎜⎜⎝
− 1

4x
1
4x 0

1
4y − 1

2y
1
4y

0 1
4z − 1

4z

⎞⎟⎟⎠
and the minimal value F∧(S2, π) of F on L(S2, π) is

F (L∧) = 4(1 − z)z + 4(1 − x)x = 8x(1 − x).

In particular, for π = υ, the uniform distribution on {0, 1, 2}, we get

L∧ := 1
4

⎛⎜⎝−3 3 0
3 −6 3
0 3 −3

⎞⎟⎠
and F∧(S2, υ) = 16/9.

• If |x − 1/2| > |z − 1/2|, then (59) admits two solutions

a± :=
−x(1 − x) ±

√
x(1 − x)z(1 − z)

2x(z(1 − z) − x(1 − x)) ,

but only a+ belongs to (0, 1/(2x)) and is in fact the minimizer of the mapping (58). This value can be 
simplified into

a+ = 1
2x

√
x(1 − x)√

x(1 − x) +
√
z(1 − z)

.

It follows that the minimizer of F on L(S2, π) is
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L∧ := 1√
x(1 − x) +

√
z(1 − z)

⎛⎜⎜⎜⎝
−
√

x(1−x)
2x

√
x(1−x)
2x 0√

x(1−x)
2y −

√
x(1−x)+

√
z(1−z)

2y

√
z(1−z)
2y

0
√

z(1−z)
2z −

√
z(1−z)
2z

⎞⎟⎟⎟⎠
= pL(0,1) + (1 − p)L(1,2)

with the notation introduced in (23) and

p :=
√

x(1 − x)√
x(1 − x) +

√
z(1 − z)

.

The minimal value F∧(S2, π) of F on L(S2, π) is

F (L∧) = 2
(√

x(1 − x) +
√
z(1 − z)

)2
.

Letting |x − 1/2| converge to |z − 1/2|, we recover the values of L∧ and F (L∧) obtained in the previous 
case.

8. Conclusions and future directions

Our main contributions in this article have been the following. First, we revisit the Markov decision 
theoretical framework for the Hamiltonian cycle problem initiated by Filar and collaborators, and establish 
the optimality of a Hamiltonian cycle for the problem of minimizing the mean hitting time to a state 
picked according to the stationary distribution for the chain. The latter quantity also equals the trace of 
the fundamental matrix associated with the chain. Our result is the most general of this kind in so far as 
the optimality is over all random processes compatible with the graph. This is done for both discrete and 
continuous time chains. We then took up a detailed study of the continuous state scenario, with suitable 
normalized exit rates. Because of the additional degrees of freedom in terms of sojourn times, this theory is 
much richer. We establish the optimality of Hamiltonian cycle as before when the stationary distribution is 
uniform, and establish its robustness to small perturbation of the uniform stationary distribution. We give 
a counterexample to show that if the perturbation is large, the claim fails.

For future work, an important direction is: to initiate research on continuous time Markov chains in 
this context, as the field is wide open, and furthermore, the problem is non-trivially distinct from the well 
studied discrete case, calling upon novel techniques for proofs.
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