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Abstract
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1 Introduction and main results
Comparison and classification are traditional mathematical tools to transfer information from a
reference object to more complex ones. The goal of this paper is to develop this framework in the
study of Markov semigroups by introducing the notion of interweaving as a refinement of the usual
concept of intertwining. Anticipating the formal definition given below, an interweaving relation
between two Markov semigroups can be seen as a symmetric (or a two-sided) intertwining relations
between them with the additional feature that the two Markovian intertwining kernels factorize
one of the semigroup considered at a random time.

The recent years have witnessed the ubiquity and usefulness of intertwining relations in the
study of Markov processes. Indeed, this concept which traces back to the works of Dynkin [21]
and Rogers and Pitman [42] yielding, in that later case, at the relationship between a Brownian
motion in Rn and its radial part, the Bessel process of dimension n, has been, for instance, used by
Diaconis and Fill [19] in relation with strong stationary times, by Carmona, Petit and Yor [15] in
relation to the so-called self-similar saw tooth-processes, extended by Patie and Savov in [36, 37]
to general self-similar positive Markov processes, by Miclo [31] in connection with the algebraic
concept of similarity transform, by Fill [23] for an elegant characterization of the distribution of the
first passage time of some Markov chains, by Borodin and Olshanski [13, 14] for the construction
of Markov processes on infinite dimensional spaces, by S. Pal and M. Shkolnikov [35] for diffusions,
by Patie and Simon [39] and Patie and Zhao [41] in relation with fractional operators.

The concept of interweaving will reinforce this line of research by proposing further developments
in the investigation of general Markov processes. Although additional applications can certainly be
developed, we will primarily focused on the study of ergodic, analytical and mixing properties of
Markov semigroups including, for instance, convergence to equilibrium in the sense of ϕ-entropy,
hyperboundness properties and cut-off phenomena. Our range of examples will be very broad as it
encompasses some discrete Markov chains, classical linear diffusions, some denegenerate hypoelliptic
diffusions, stochastic dynamics on partitions and some Markov processes with jumps.
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Let us now proceed with the formal definition of interweaving relations between Markov semi-
groups. Consider a (measurable) Markov kernel semigroup P B (Pt)t≥0 on a measurable state space
(V,V). Namely, P is a Markov kernel from R+ × V to V : for any A ∈ V, the function R+ × V 3
(t, x) 7→ Pt(x,A) is measurable and for any (t, x) ∈ R+ × V , the mapping V 3 A 7→ Pt(x,A) is
a probability measure. The semigroup property asserts that for any t, s ≥ 0, PtPs = Pt+s, in the
sense of the composition of Markov kernels from V to V . Let now P̃ B (P̃t)t≥0 be another Markov
semigroup on a measurable state space (Ṽ , Ṽ). We say there is a (Markov) intertwining relation
from P to P̃ when there exists a Markov kernel Λ from V to Ṽ such that

∀ t ≥ 0, PtΛ = ΛP̃t. (1)

It will be convenient to denote P Λy P̃ this commutation property (or Pt
Λy P̃t for the relation

between Markov kernels for a fixed t ≥ 0). Such a link may not say much. For instance when P̃
admits an invariant probability ν̃, (1) is satisfied by considering the Markov kernel Λ = ν̃ defined
by

∀ x ∈ V, ∀ Ã ∈ Ṽ, Λ(x, Ã) = ν̃(A). (2)

The intertwining relation (1) is said to be symmetric when there exists another Markov kernel

Λ̃ from Ṽ to V such that P̃ Λ̃y P . A more meaningful notion is the following one.

Definition 1 We say that P has an interweaving relation with P̃ if there exist two Markov
kernels Λ and Λ̃ and a non-negative random variable τ such that

P
Λy P̃

Λ̃y P (3)

ΛΛ̃ = Pτ =

∫ ∞
0

Pt P(τ ∈ dt). (4)

We call τ the warm-up time or the delay and we write P " P̃ or P
τ
" P̃ to emphasize the

dependency on τ . Note that when τ = δt0 is the degenerate random variable at t0 > 0, we may

simply write, when there is no confusion, P
t0
" P̃ .

When τ is in addition infinitely divisible we say that P admits an interweaving relation with
an infinitely divisible warm-up time (for short IRID) with P̃ and we write P

τ
" P̃ .

Finally, when we also have
Λ̃Λ = P̃τ (5)

we say that there is a symmetric interweaving relation between P and P̃ and we write P τ
! P̃

(resp. P τ
! P̃ when τ is infinitely divisible).

�

Note that due to our measurability assumption above on the kernel P , the integrand in the r.h.s.
of (4) is measurable with respect to t > 0 and the identity can be understood as the Markov kernel
on (V,V) defined by

∀ x ∈ V, ∀ A ∈ V, Pτ (x,A) B

∫ +∞

0
Pt(x,A)P(τ ∈ dt)

The notion of interweaving is related to completely monotone functions. Indeed, observe that

Pτ =

∫ ∞
0

e−tLP(τ ∈ dt) = F (L) (6)
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where L is the infinitesimal generator of P and F as the Laplace transform of positive measure is, by
Bochner classical result, a completely monotone function, i.e. F ∈ C∞(R+) and (−1)nF (n)(x) ≥ 0
for all n ∈ N and x ≥ 0. Next, we recall that a random variable τ is said to be infinitely divisible if for
each N ∈ N, there exits a sequence of i.i.d. random variables (τn)1≤n≤N such that, in distribution,

τ
(d)
= τ1 + . . . τn. Note that when τ is in addition infinitely divisible then there exists a Bernstein

function φ, i.e. φ(0) ≥ 0 and φ′ is completely monotone, such that, in (6) above, F = e−φ.
Moreover, in such a case, there exists an unique convolution semigroups on R+ whose transition

kernel is the law of a subordinator τ = (τt)t≥0, a non-decreasing Lévy process, such that τ
(d)
= τ1

and P τ = (P τt )t≥0 is a Markov semigroup, where for any bounded Borelian function f and t ≥ 0,

P τt f =

∫ ∞
0

Psf P(τt ∈ ds). (7)

P τ is the subordination of P in the sense of Bochner and we have P τ1 = Pτ . The definition of
interweaving can be summarized by the following commutative diagram (suggesting the name of
interweaving), holding for every t ≥ 0:

V V

Ṽ Ṽ

V V

Pt

Λ

Pτ

Λ

Pτ
P̃t

Λ̃ Λ̃

Pt

Figure 1: Interweaving relations with ΛΛ̃ = Pτ

Our objective in this paper is to provide some properties and investigate some applications of
interweaving relations in the study of probabilistic and analytical properties of general Markov
processes. Before presenting its range of applications, let us present a few general observations
about this concept.

Some general comments on interweaving relations

(a) The above Markov framework is quite plain. There are several ways to enrich it, especially
to associate a generator L to the semigroup P , since this is in general the simplest way to
describe P . Analytically, the semigroup P can be acting on a Banach space, in the sense of
Hille-Yosida theory, see e.g. the book of Yosida [50]. One standard choice, when P admits an
invariant probability ν, is to consider the Hilbert space L2(ν). Another possibility, when the
state space V is endowed with a σ-compact topology, is to consider the space of continuous
functions vanishing at infinity, endowed with the supremum norm.
From a probabilistic point of view, the generator L appears in the formulation of an underlying
martingale problem for the trajectories X B (Xt)t≥0 of an associated Markov process (cf. for
instance the book of Ethier and Kurtz [22]). Usually the state space V is endowed with a
topology and the trajectories are càdlàg, in particular the position Xt converges to X0 as t
goes to 0+.
The examples considered in this paper will be described through their generators. All will
admit an invariant measure which will be a probability measure, except for the squared Bessel
processes and some related examples, and thus the L2 setting and the martingale problems
will be equivalent.
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As t goes to zero and in the appropriate senses dictated by the above analytical or prob-
abilist frameworks, Pt converges to the identity operator Id, seen as the transition kernel
corresponding to no motion.

(b) When the generators L and L̃ are available for the semigroups P and P̃ , e.g. in one of the
meanings seen in (a), the intertwining relation (1) is often equivalent to LΛ = ΛL̃, where the
Markov kernel Λ has to be seen as an operator from D(L̃) to (a subset of) D(L), the respective
domains of the generators. When the intertwining relation is symmetric, see (5), we should
have that the image of D(L) by Λ̃ is included in D(L̃), in particular for interweaving relations,
the l.h.s. of (4) can also be seen as an operator from D(L) to itself which can be “extended”
into Pτ , a priori acting on B(V ), the space of bounded measurable functions on V .

(c) One way to avoid the case (2) is to ask for Λ to be one-to-one, e.g. as an operator from
B(Ṽ ) to B(V ) (but when Ṽ is not discrete, this is often requiring too much). Somewhat the
requirement (4) also goes in this direction: in the “regular” situations described above in (a),
Pt converges to Id for small t > 0 and thus should end up being invertible in this asymptotic.
This should still be true for Pτ when τ has a distribution concentrated near 0 and in particular
Λ would be one-to-one and Λ̃ would be surjective. In the case of a symmetric interweaving
relation with a warm-up variable τ on R+ concentrated near 0, we can expect Λ and Λ̃ to be
both invertible. That is why, more generally and heuristically, we see symmetric interweaving
as a Markovian formulation of a weak invertibility assumption on Λ and Λ̃, resulting in P and
P̃ being closely related. In the same spirit, the more mass the law of τ gives to neighborhoods
of 0+, the more informative (4) is, as the “invertibility of Pτ should be stronger”. Conversely,
assuming that P is ergodic with invariant probability measure ν, we have that for large t ≥ 0,
Pt is converging to ν (seen as a Markov kernel as in (2)). It follows that the more the law of
τ is concentrated on large values, the less informative (4) becomes. This interpretation will
be strengthened when we will see τ as a random warm-up time.

(d) From a spectral point of view and in the regular settings of (a), the meaning of an interweaving
relation from P to P̃ seems to be that the spectrum of the generator L of P is included into
the spectrum of the generator L̃ of P̃ , at least under appropriate ergodicity assumptions on
P and when the spectrum is be understood in an extended sense. We will not enter into the
underlying technicalities here, so let us just mention a conjecture that we hope to investigate
in a future work:

Conjecture 2 Consider two irreducible Markov generators L and L̃ on finite state spaces V
and Ṽ . There exists a interweaving relation from (exp(tL))t≥0 to (exp(tL))t≥0 if and only
if the extended spectrum of L is included into that of L̃. By extended spectrum, we mean
the eigenvalues as well as the dimensions of the associated Jordan blocks (inclusion implying
smaller or equal dimensions).

�

Such a result and possible extensions to more general state spaces would provide a spectral
understanding of why interweaving relations enable to deduce quantitative informations on
the convergence to equilibrium for P from similar knowledge from P̃ .

(e) Assume an intertwining relation P
Λy P̃ and that P and P̃ admit reversible probability

measures µ and µ̃, with µΛ = µ̃. Working in the L2 framework mentioned above in (a), we

get by duality an intertwining relation P̃ Λ∗y P . A priori Λ∗ : L2(µ) → L2(µ̃) is an abstract
Markov operator, in the sense that it preserves non-negativity and the function always taking
the value 1. To get a (L2-)interweaving relation, it remains to check that ΛΛ∗ = Pτ . Thus in
such a reversible setting, interweaving relations are relatively easy to deduce from intertwining
relations.

(f) Assume that we have a symmetric intertwining relation between two semigroups P and P̃ ,
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namely P Λy P̃ and P̃ Λ̃y P for some Markov kernels Λ and Λ̃. Then necessary ΛΛ̃ commutes
with all the Pt for t ≥ 0. Assume that P admits a generator L which is diagonalizable with
eigenvalues of multiplicities one. When functional calculus is available, we deduce that ΛΛ∗

is of the form F (−L), where F : R+ → R is a measurable mapping. To get a interweaving
relation is then equivalent to F being completely monotone.

(g) The symmetric interweaving relation does not correspond to the symmetrization of the in-
terweaving relation, which is only requiring two interweaving relations, one from P to P̃ and
one from P̃ to P . For the latter, the kernels from Ṽ to V and from V to Ṽ may be different
from Λ̃ and Λ, as well as the warm-up time from τ . Some results below can be extended from
symmetric to symmetrized interweaving relations But the notion of symmetric interweaving
relation is natural because of Proposition 4 below.

1.1 Basic properties of interweaving relations
We present now some useful transformations of semigroups that preserve interweaving relations and
postpone their proofs to Section 4. We start with the following result that enables to construct
from an IRID with a random warm-up time a interweaving relation with the constant 1 as warm-up
time. This observation will be useful in some applications of interweaving relations for which the
assumption of deterministic warm-up time is required.

Theorem 3 Assume that P
τ
" P̃ , that is the warm-up time τ is infinitely divisible. Then P τ

1
" P̃ τ

where τ = (τt)t≥0 is the subordinator such that τ
(d)
= τ1 and the subordinated semigroups are defined

as in (7).

We point out that in Section 2 (resp. Section 3), we present several examples for which the warm-
up time τ is a constant (resp. a positive infinitely divisible random variable). In the applications of
interweaving relations to ergodic properties, the previous result allows us to compare the approach
based on interweaving relations with the classical ones based on functional inequalities.

We proceed with additional properties of interweaving relations. To simplify the forthcoming
discussion, we assume that P (resp. P̃ ) is a semigroup on some Banach space B (resp. B̃), e.g. if P
is a Feller semigroup then B = Cb(V ) the space of continuous and bounded functions on V endowed
with the supremum topology.

Let us now come to symmetric interweaving relations. They are a consequence of interweaving
relations under a seemingly mild additional assumption:

Proposition 4 When the Markov kernel Λ is one-to-one, say from B(Ṽ ) to B(V ), then a inter-
weaving relation is symmetric.

Proof: Indeed, from (4), we deduce, first for a non-negative Borelian function f and then for a
general Borelian function f , by writing f = max(f, 0)−max(−f, 0), that

ΛΛ̃Λf = PτΛf =

∫ +∞

0
PtΛf P(τ ∈ dt) =

∫ +∞

0
ΛP̃t P(τ ∈ dt)f = ΛP̃τf

where we used Tonnelli theorem for the last identity. The injectivity of Λ implies that Λ̃Λ = P̃τ .
�

The one-to-one assumption of Proposition 4 is quite restrictive, when the state spaces are not
denumerable. Nevertheless, the simplicity of the above proof shows it can be weakened when
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working in the Hille-Yosida framework mentioned in Remark 1(a), by considering the corresponding
notion of injectivity, in particular in L2 spaces.

We now proceed by showing that, under mild conditions, " is an equivalence relation. This
highlights the idea, triggered by this concept, of an original classification scheme which enables to
extend in a natural way to general Markov semigroups some ergodic and analytical properties that
were attainable only for some specific classes, such as reversible diffusion ones.

Theorem 5 Assume that the Markov intertwining kernels is one-to-one on a dense subset of B
then " is an equivalence relation as

(i) " is reflexive, that is P
0
" P with 0 the degenerate variable at 0.

(ii) " is symmetric, that is if P
τ
" P̃ then P̃

τ
" P with P̃

Λ̃y P
Λy P̃ and Λ̃Λ = P̃τ .

(iii) " is transitive, that is if P
τ
" P̃ and P̃

τ̃
" P then P

τ+τ̃
" P , where τ and τ̃ are assumed to be

independent.

Remark 6 It is not difficult to check that if one restricts the previous theorem to the subset of
IRID then " remains an equivalence relation.

Schematically, the transitivity property of interweaving relations can be described, for any t ≥ 0,
where by rotating to 45 degrees the figure of our previous diagrams:

V Ṽ v∨ Ṽ V

V Ṽ v∨ Ṽ V

Pt

Λ

P̃t

Λ′

P̃τ̃

P t

Λ̃′

P̃t

Λ̃

Pt

Λ Λ′

P̃τ̃

Λ̃′ Λ̃

Figure 2: Transitive interweaving relations

We proceed with the following theorem that provides a closure property of interweaving relations
by similarity transform as well as a way to transport interweaving relations.

Theorem 7 Let us assume that P
τ
" P̃ .

1) Let PM be a Markov semigroup acting on the Banach space BM If the two Markov P and PM

are similar, that is, for all t ≥ 0, PMt = MPtM
−1 where M and its inverse M−1 are bounded

operators. Then,
PM

τ
" P̃

where, with the obvious notation ΛM = MΛ and Λ̃M = Λ̃M−1.
2) If

P
Ty P and P̃

Ty P̃ (8)

with P and P̃ two Markov semigroups defined on the measurable space (V,V ) and T an one-
to-one Markov operator. Then

P
τ
" P̃ and Pτ = ΛΛ̃

where
Λ

Ty Λ and Λ
Ty Λ̃. (9)
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1.2 Applications of interweaving relations to the theory of Markov
semigroups
We now turn to the description of some interesting features and applications of interweaving rela-
tions. Thorughout this section, we make the hypothesis that P and P̃ admit ν and ν̃ as invariant
probability measures, respectively, and P

τ
" P̃ . In this case, νΛ is also an invariant probability

measure for P̃ , as shown by multiplying (1) on the left by ν. Similarly, ν̃Λ̃ is invariant for P . We
will assume that ν̃ = νΛ and that ν = ν̃Λ̃, when the invariant probability measures are not unique.

1.2.1 Entropy convergence to equilibrium

We want to deduce estimates on the speed of convergence of P to the equilibrium ν by taking into
account a similar knowledge for P̃ and ν̃. First we must specify the way to measure how far a
probability measure m on V is from ν and here we choose the entropy (see Subsection 4.2.1 for
extension of the result to general ϕ-entropy). The (relative) entropy of m with respect to ν is
given by

Ent(m|ν) B


∫

ln

(
dm

dν

)
dm, if m� ν

+∞, otherwise

where dm/dν stands for the Radon-Nikodym density of m with respect to ν. As desired, the
quantity Ent(m|ν) measures the discrepancy between m and ν, in particular we have the Pinsker’s
bound:

Ent(m|ν) ≥ 2 ‖m− ν‖2tv
where the total variation distance ‖m− ν‖tv between m and ν is defined as the supremum of
m(A)− ν(A) over A ∈ V.

We proceed by assuming that we have some information about the convergence of P̃ towards
ν̃, under the following form: there exists a function ε : R+ × R+ → R+, with R+ B R+ t {+∞},
which is non-decreasing with respect to the second variable, such that

∀ m̃0 ∈ P(Ṽ ), ∀ t ≥ 0, Ent(m̃0P̃t|ν̃) ≤ ε(t,Ent(m̃0|ν̃)) (10)

where P(Ṽ ) is the set of all probability measures on Ṽ . For this bound to be meaningful, we
furthermore require that

∀ E ∈ R+, lim
t→+∞

ε(t, E) = 0

A typical instance of (10) is when P̃ satisfies (modified) logarithmic Sobolev inequalities (here
and below, we refer for instance to the book of Ané et al. [4] for a friendly presentation of these
inequalities). Then there exists a constant α̃ > 0 such that (10) holds with the function ε given by

∀ t ≥ 0, ∀ E ∈ R+, ε(t, E) = exp(−α̃t)E

Here is the transfer of the entropic convergence estimate to P :

Theorem 8 Assume that P
τ
" P̃ and that (10) holds. Then we have

∀ m0 ∈ P(V ), ∀ t ≥ 0, Ent(m0Pt+τ |ν) ≤ ε(t,Ent(m0|ν)) (11)

From a probabilistic point of view (see Remark 1(a) or the definition of a measurable Markov
process below), m0Pt+τ is the distribution of Xt+τ , where τ is a random time independent of X
and distributed according to τ . The bound (11) says that up to waiting a random warm-up time
τ , we get for P the same estimate on the speed of convergence to equilibrium as for P̃ .

8



1.2.2 Hypercontractivity

Another famous classical application of logarithmic Sobolev inequalities concerns hypercontractiv-
ity, which is a kind of regularizing property. Interweaving relations equally enable its transfer from
a semigroup to another one, up to a random warm-up time. More precisely, the hypercontrac-
tivity property of the semigroup P̃ , is the existence of a constant α̃ > 0 (which may be different
from the one considered above, for Markov processes which are not diffusions), such that we have
for the operator norms,

∀ t ≥ 0, |||P̃t|||L2(ν̃)→Lp(α̃t)(ν̃) ≤ 1 (12)

where

∀ t ≥ 0, p(α̃t) B 1 + exp(α̃t)

Here is the analogue of Theorem 8 for hypercontractivity:

Theorem 9 Assume that P
τ
" P̃ and that (12) holds. Then we have

∀ t ≥ 0, |||Pt+τ |||L2(ν)→Lp(α̃t)(ν) ≤ 1 (13)

1.2.3 Cut-off phenomenon

Coming back to the convergence to equilibrium, we now explain how a symmetric interweaving
relation enables the transfer of the cut-off phenomenon (for a short survey of this notion, see
Diaconis [18]). To state our result, we need a family (P (n))n∈Z+ of Markov semigroups on state
spaces (V (n))n∈Z+ with respective invariant probability measures (ν(n))n∈Z+ . Defining, for any
n ∈ Z+,

∀ t ∈ R+, d(n)(t) B sup
m0∈P(V (n))

∥∥∥m0P
(n)
t − ν(n)

∥∥∥
tv

(14)

we say that the family (P (n))n∈Z+ has
(1) a (uniform) cut-off at the positive cut-off times (t(n))n∈Z+ when for any r ∈ (0, 1)t(1,+∞),

lim
n→∞

d(n)(rt(n)) = 1{0<r<1}

(2) a window cut-off (resp. profile cut-off) at (t(n), w(n))n∈Z+ (resp. and with profile η) if
t(n) →∞, w(n) = o(t(n)) as n→∞, and

lim
c→−∞

lim
n→∞

d(n)(t(n) + cw(n)) = 1 and lim
c→+∞

lim
n→∞

d(n)(t(n) + cw(n)) = 0

(resp. and for all c ∈ R, η(c) = lim
n→∞

d(n)(t(n) + cw(n)) = lim
n→∞

d(n)(t(n) + cw(n))).

With these definitions we have the following result.

Theorem 10 Consider two families of Markov semigroups (P (n))n∈Z+ and (P̃ (n))n∈Z+ on (V (n))n∈Z+

and (Ṽ (n))n∈Z+ and with invariant probability distributions (ν(n))n∈Z+ and (ν̃(n))n∈Z+, respectively.

Let (t(n))n∈Z+ be a sequence of positive real numbers and assume that for any n ∈ Z+, P
t
(n)
0! P̃

such that

lim
n→∞

t
(n)
0

t(n)
= 0 (resp. lim

n→∞

t
(n)
0

w(n)
= 0) (15)

Then the cut-off (resp. window cut-off and profile cut-off) phenomenon with cut-off times
(t(n))n∈Z+ (resp. windows (w(n))n∈Z+ and profile η) for (P (n))n∈Z+ is equivalent to that of (P̃ (n))n∈Z+.
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The remaining part of the paper is organized as follows. In the two forthcoming sections we
describe several examples of interweaving relations along with their applications. More specifi-
cally, in the next section, we focus on interweaving relations where the warm-up distribution is a
Dirac mass: this includes the two points space and the intertwining relations between continuous
and discrete Bessel and Laguerre processes and some degenerate hypoelliptic Ornstein-Uhlenbeck
processes. In Section 3, we consider interweaving relations between diffusive Laguerre processes
of different parameters, as well as some semigroups associated to Markov processes with jumps.
Finally we prove extensions of the statements presented in this introduction in Section 4.

2 Deterministic warm-up time examples
Three examples of interweaving relations whose warm-up times are deterministic are presented in
the following subsections: there exists t0 ≥ 0 such that τ = δt0 . In this situation the statements of
Theorems 8 and 9 simplify, as (11) and (13) are respectively replaced by

∀ m0 ∈ P(V ), ∀ t ≥ 0, Ent(m0Pt0+t|µ) ≤ ε(t,Ent(m0|µ))

and

∀ t ≥ 0, |||P (β)
t0+t|||L2(µ)→Lp(α̃t)(µ) ≤ 1

2.1 The two point space
Consider the simplest non-trivial case of the setting of the introduction, where V = Ṽ is the two
point space {0, 1}. Let L and L̃ be two isospectral irreducible Markov generators on V . We can
write

L = λ(µ− Id)

where λ > 0 is the non-zero eigenvalue of −L, µ is the invariant probability of L, seen as a Markov
kernel, and Id is the identity operator. Any non-zero function ϕ on V such that µ[ϕ] = 0 is an
eigenfunction of L associated to the eigenvalue −λ. Consider the function ϕ normalized in L2(µ)
given by

ϕ B

(
ϕ(0)
ϕ(1)

)
B

(
l
−1/l

)
with l B

√
µ(1)

µ(0)
(16)

Since L̃ is irreducible and isospectral with L, it can be written λ(µ̃− Id), where µ̃ is the invariant
probability of L̃. Define ϕ̃ as in (16), with µ replaced by µ̃.

For ε > 0, define Λε the linear mapping sending ϕ̃ to εϕ and preserving the function 1. It is
immediate to check that L

Λεy L̃. A priori Λε is not a Markov kernel. Nevertheless its matrix in the

basis (1{0},1{1}) is of the form
(
a 1− a
b 1− b

)
and we compute that

a =
1 + εll̃

1 + l̃2

b =
1− εl̃/l
1 + l̃2

10



It follows that for ε > 0, Λε is Markovian if and only if

ε ≤ min(l/l̃ , l̃/l) (17)

Choose ε0 B min(l/l̃ , l̃/l), the largest value such that Λε0 is Markovian. Symmetrically, for ε̃ > 0,

construct Λ̃ε̃ sending ϕ to ε̃ϕ̃ and preserving 1. We have L̃
Λ̃ε̃y L and by symmetry of the r.h.s.

of (17), Λ̃ε is Markovian for ε̃ ∈ (0, ε0]. Again choose ε̃ = ε0, the largest value such that Λ̃ε̃ is
Markovian. The mapping Λ̃ε0Λε0 is uniquely determined by the fact that it preserves 1 and that
(Λ̃ε0Λε0)ϕ = ε20ϕ. This observation leads us to consider t0 B t0(L, L̃) B − ln(ε20) ≥ 0, so that
Λ̃ε0Λε0 = exp(t0L). We are thus in the framework considered in the introduction. Similarly, we get
Λε0Λ̃ε0 = exp(t0L̃), and this can also be deduced from Proposition 4, since Λε0 is invertible. It seems
that t0 is the smallest warm-up deterministic time enabling to go from estimates of convergence
for one of the semigroup to the other one. As in the introduction, let us consider more specifically
the traditional case of relative entropy. Diaconis and Saloff-Coste [20] computed the logarithmic
Sobolev constant α(L) of L:

α(L) = 4
1− 2µ∧

ln(1/µ∧ − 1)
λ

with µ∧ B µ(0) ∧ µ(1), the smallest value taken by the invariant measure.
We have for any initial distribution m0 on {0, 1},

∀ t ≥ 0, Ent(m0 exp(tL)|µ) ≤ exp(−α(L)t)Ent(m0|µ) (18)

Taking into account Theorem 8, this bound can be improved into

∀ t ≥ 0, Ent(m0 exp(tL)|µ) ≤ min{exp(−α(L̃)(t− t0(L, L̃))+) : L̃ ∈ L(L)}Ent(m0|µ)

where L(L) is the set of irreducible Markov generators isospectral to L. Note that α(L̃) is strictly
decreasing as a function of µ̃∧ and thus the logarithmic Sobolev constants of L and L̃ are distinct
when L 6= L̃ (up to the symmetry exchanging 0 and 1). Furthermore, the bound α(L̃) ≤ 2λ is
only attained when µ̃ is the uniform distribution on {0, 1} (in this case the computation of the
logarithmic Sobolev inequality is due to Gross [25]). So it is appealing to try a comparison with
this “fastest case” where µ̃ = (1/2, 1/2), and we get

∀ t ≥ 0, Ent(m0 exp(tL)|µ) ≤ exp(−2λ(t− ln(1/µ∧ − 1))+)Ent(m0|µ) (19)

since

ε0 = min

(√
µ(1)

µ(0)
,

√
µ(0)

µ(1)

)
=

√
µ∧

1− µ∧

so that t0 = ln(1/µ∧ − 1).
Formula (19) becomes rapidly better than (18). It follows that, for “medium” times, to get

good estimates of the relative entropy with respect to µ of the time marginal laws of the Markov
evolution generated by L, it is more interesting to intertwine this evolution with the isospectral
generator L̃ corresponding to the uniform distribution than to compute the logarithmic Sobolev
constant associated to L.

The existence of Markovian kernels Λ and Λ̃ intertwining two irreducible isospectral (in the
extended sense: equality of eigenvalues and dimensions of the Jordan blocks) and finite Markov
generators was shown in [31]. We believe these kernels can furthermore be chosen so that a inter-
weaving relation holds, as a subcase of Conjecture 2.
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2.2 Classical and discrete squared Bessel processes
The examples described in this subsection and in the following one were the first instances of
interweaving relations that we identified in [32]. However, this notion was not properly isolated
and investigated there.
For a given β > 0, consider the classical squared Bessel diffusion generator Gβ of index β − 1
(dimension 2β) on R+ given by

∀ x ∈ (0,+∞), Gβ B x∂2 + β∂

where ∂ is the usual differentiation operator. This diffusion generator admits µβ as invariant (even
reversible) measure, where

∀ x ∈ (0,+∞), µβ(dx) B
xβ−1

Γ (β)
dx

where Γ is the usual gamma function. For β > 0, denote Q(β) B (Q
(β)
t )t≥0 the Markov semigroup

generated by Gβ .
An analogue discrete squared Bessel birth-and-death generator Gβ is defined by

∀ n ∈ Z+, Gβ B (n+ β)∂+ + n∂−

where the operators ∂± act on any function f : Z+ → R via

∀ n ∈ Z+, ∂±f(n) B f(n± 1)− f(n)

(with the convention that f(−1) B f(0)). The birth-and-death generatorGβ admits uβ as invariant
(even reversible) measure, where

∀ n ∈ Z+, uβ(n) B
(n+ β − 1)(n+ β − 2) · · ·β

n!
.

For β, σ > 0, denote Q(β,σ) B (Q
(β,σ)
t )t≥0 the Markov semigroup generated by σGβ . For σ > 0,

consider Λσ the Markov kernel from R+ to Z+ given by the Poisson transition probability measures:

∀ x ∈ R+, ∀ n ∈ Z+, Λσ(x, n) B
(σx)n

n!
exp(−σx)

Conversely, for β, σ > 0, consider Λ̃β,σ the Markov kernel from Z+ to R+ given by the gamma
transition probability measures:

∀ n ∈ Z+, ∀ x ∈ (0,∞), Λ̃β,σ(n, dx) = σn+β xn+β−1

Γ (n+ β)
exp(−σx) dx

In [32], we have shown the following symmetric interweaving relation with deterministic warm-
up time σ > 0:

Proposition 11 For any β, σ > 0, we have

Q(β) σ
! Q(β,σ)

where Λ = Λσ and Λ̃ = Λ̃β,σ.

For β > 0, the invariant measures µβ and uβ have infinite weight so the above Bessel processes
do not enter in the framework of convergence to equilibrium and we cannot apply the results
presented in the introduction. Nevertheless the interweaving relations of Proposition 11 are useful
for simulation purposes of one process in terms of the other one, especially in the direction of using
the birth-and-death process to simulate the diffusion process, as it was seen in [32].
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2.2.1 Non-colliding discrete and continuous squared Bessel processes

We proceed by describing a very elegant extension of the interweaving relations between squared
Bessel processes to the multidimensional setting that has been recently proposed by Assiotis [7].
More specifically, for any integer N ≥ 1 and β > 0, let QN,β (resp. QN,β) be the semigroup of N
independent copies of squared Bessel processes (resp. the discrete squared Bessel process) of index
β−1 conditioned to never intersect. These semigroups are known to be Feller semigroups acting on
the space C0(WN

+ ) and C0(WN
+ ) respectively where the Weyl chambers with positive coordinates

are defined by

WN
+ = {x = (x1, · · · , xN ) ∈ RN+ : x1 ≤ x2 ≤ · · · ≤ xN}

WN
+ = {n = (n1, · · · , nN ) ∈ ZN+ : n1 < n2 < · · · < nN}.

Then relying on the one-dimensional result that appeared in [32, Proposition 13 and 14], Assiotis
obtain the following, see [7, Proposition 1, Theorem 1.4, Remark 1.6].

Proposition 12 For any integer N ≥ 1 and β > 0, we have

QN,(β) 1
! QN,(β)

where Λ = ΛN1 and Λ̃ = Λ̃Nβ,1 are Markov kernels defined respectively, for any n ∈WN
+ and x ∈WN

+ ,
by

ΛN1 (x,n) =
∆N (n)

∆N (x)
det (Λ1(xi, nj))

N
i,j=1 ,

Λ̃Nβ,1 (n, dx) =
∆N (x)

∆N (n)
det
(
Λ̃β,1(ni, dxj

)N
i,j=1

dx1 · · · dxN ,

and ∆N (x) = det
(
xj−1
i

)N
i,j=1

=
∏

1≤i<j≤N (xj − xi) stands for the Vandermonde determinant.

We mention that the Markov realizations of the semigroups QN,(β) and QN,(β) appear in random
matrix theory as the dynamics of the eigenvalues of the so-called continuous and discrete Laguerre
ensembles and refer to [7] for further connections between these objects and other algebraic struc-
tures.

2.3 Classical and discrete Laguerre processes
A natural way to transform the transient Bessel processes into recurrent processes is recalled in [32]
and it leads to the Laguerre processes. This procedure slightly modifies the interweaving relations
and we ended up with the following results.
For β, σ > 0, consider the classical Laguerre differential operator Lβ,σ on R+ acting on
C∞b (R+), the space of bounded smooth functions with bounded derivatives on R+, via

∀ f ∈ C∞b (R+), ∀ x ∈ (0,+∞), Lβ,σ[f ](x) = σx∂2f(x) + (σβ − x)∂f(x) (20)

This operator is a one-dimensional diffusion generator and it is easy to check that its unique
invariant (even reversible) probability measure νβ,σ on R+, is the gamma distribution of shape
parameter β and scale parameter σ, i.e.

∀ x ∈ (0,+∞), νβ,σ(dx) =
xβ−1 exp(−x/σ)

σβΓ (β)
dx

13



It follows (via Freidrichs theory, see e.g. the book of Akhiezer and Glazman [1]) that Lβ,σ can be
extended into a self-adjoint operator on L2(νβ,σ). The associated continuous Markov semigroup is
denoted P (β,σ) B (P

(β,σ)
t )t≥0.

An analogue discrete Laguerre birth-and-death generator Lβ,σ is defined by

∀ n ∈ Z+, Lβ,σ B σ(n+ β)∂+ + (σ + 1)n∂− (21)

This generator admits an invariant (even reversible) probability measure ṽβ,σ on Z+, which is the
negative binomial distribution of parameters β and σ/(1 + σ), i.e.

∀ n ∈ Z+, ṽβ,σ(n) B (1 + σ)−β
(

σ

σ + 1

)n (n+ β − 1)(n+ β − 1) · · ·β
n!

Denote P(β,σ) B (P
(β,σ)
t )t≥0 the Markov semigroup generated by Lβ,σ. In [32], we have shown the

following symmetric interweaving relation with deterministic warm-up time.

Proposition 13 For any β, σ, ς > 0, we have

P (β,ς)
ln(1+ 1

ςσ
)

! P(β,ςσ)

where Λ = Λσ and Λ̃ = Λ̃β,σ+ 1
ς
.

The last relation can be seen as a consequence of the last-but-one identity, via Proposition 4, since
Λσ, from [32, Lemma 2.2], is one-to-one. The relations of Proposition 13 can be summarized by
the following diagram:

R+ R+

Z+ Z+

R+ R+

Z+ Z+

P
(β,ς)
t

Λσ

P
(β,ς)

ln(1+ 1
ςσ )

Λσ

P
(β,ς)

ln(1+ 1
ςσ )

P
(β,ςσ)
t

Λ̃β,ς−1+σ

P
(β,ςσ)

ln(1+ 1
ςσ )

Λ̃β,ς−1+σ

P
(β,ςσ)

ln(1+ 1
ςσ )

P
(β,ς)
t

Λσ Λσ

P
(β,ςσ)
t

Figure 3: Laguerre intertwining relations

The interweaving relations between the continuous and discrete Laguerre processes enable to
deduce links between their speed of convergence to equilibrium. As in the introduction, let us
present them in the usual entropy sense (see Section 4 for generalisations). First we recall the
logarithmic Sobolev inequalities satisfied by the Laguerre semigroups.

We start with the classical situation. For any β, ς > 0, the logarithmic Sobolev constant
α(β, ς) associated to the generator Lβ,ς defined in (20) is

α(β, ς) B inf
f∈C1

b(R+) : νβ,ς [f2]=1

4ς
∫
R+
xf ′2(x) νβ,ς(dx)∫

R+
f2(x) ln(f2(x)) νβ,ς(dx)

(22)
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(for any k ∈ N, Ck
b(R+) is the space of bounded continuously k times differentiable functions on

R+, with bounded derivatives). The numerator in (22) is four times the Dirichlet form (energy)
Eβ,ς(f, f) associated to L(β,ς) and defined, at least for f ∈ C2

b(R+), by

Eβ,ς(f, f) B −νβ,ς [fLβ,ς [f ]]

= ς

∫
R+

xf ′2(x) νβ,ς(dx)

where the last equality is obtained by integration by parts and the last expression enables to extend
the domain of definition of Eβ,ς .

It is well-known (see for instance the book of Ané et al. [4]) that the logarithmic Sobolev constant
is bounded above by twice the spectral gap of the associated generator. In the present setting, it
implies that α(β, ς) ≤ 2 for any β, ς > 0, since the spectrum of Lβ,ς is −Z+ with eigenvalues of
multiplicity 1, and so its spectral gap is 1. In fact the constant α(β, ς) does not depend on ς:

Lemma 14 For any β, ς > 0, we have α(β, ς) = α(β), where α(β) B α(β, 1).

Remark 15 The constant α(β) has been well-studied. Via the famous Γ2-criterion, Bakry [8] has
shown that α(β) = 1 for all β ≥ 1/2. Otherwise, the behavior of α(β) changes when β > 0 is going
to 0+, since it converges to zero as α(β) ∼ −4/ lnβ, see [30]. We also refer to Corollary for an
alternative analysis based on the concept of interweaving relation of the convergence to equilibrium
in entropy for 0 ≤ β < 1

2 .

Proof: For any ς > 0, let Mς be the dilation operator acting on any function f defined on R+ via

Mςf(x) = f(ςx)

An immediate linear change of variable shows that for any β, ς > 0, we have νβ,ς = νβMς (where
νβ stands for νβ,1). For f ∈ C1

b(R+) with νβ,ς [f2] = 1, consider the function f̃ B Mςf . We have
on the one hand,

νβ,ς [f
2] = νβ[f̃2]∫

R+

f2(x) ln f2(x) νβ,ς(dx) =

∫
R+

f̃2(x) ln f̃2(x) νβ(dx)

and on the other hand, ∫
R+

xf ′2(x) νβ,ς(dx) =
1

ς

∫
R+

xf̃ ′2(x) νβ(dx)

The announced result now follows from the bijectivity of the mapping f 7→ f̃ between {f ∈
C1

b(R+) : νβ,ς [f
2] = 1} and {f̃ ∈ C1

b(R+) : νβ[f̃2] = 1}.
�

Here we are interested in α(β) since for any initial distribution m0 on R+, we have

∀ t ≥ 0, Ent(m0P
(β,ς)
t |νβ,ς) ≤ exp(−α(β)t)Ent(m0|νβ,ς) (23)

(of course, such a bound is only relevant when the initial relative entropy Ent(m0|νβ,ς) is finite)
and α(β) is optimal for these equalities to hold for any initial distribution m0 ∈ P((0,+∞)) and
for any time t ≥ 0.
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The quantitative convergence to equilibrium in the entropy sense has not been investigated for
the discrete Laguerre generators. A priori, we have the following information. For β, σ > 0, the
modified logarithmic Sobolev constant αm(β, σ) associated to the generator Lβ,σ defined in (21) is

αm(β, σ) B inf
f∈Ff(Z+) :vβ,σ [f2]=1

Eβ,σ(f2, ln(f2))

vβ,σ[f2 ln(f2)]
(24)

where Ff(Z+) is the space of functions defined on Z+ which vanish except on a finite subset of
points and where the Dirichlet form Eβ,σ(f , g) of two functions f , g ∈ Ff(Z+) is given by

Eβ,σ(f , g) B −vβ,σ[fLβ,σ[g]]

=
∑
n∈Z+

(f(n+ 1)− f(n))(g(n+ 1)− g(n))vβ,σ(n)Lβ,σ(n, n+ 1)

Again, the interest of αm(β, σ) is the discrete analogue of (23): for any initial distribution m0 on
Z+, we have

∀ t ≥ 0, Ent(m0P
(β,σ)
t |vβ,σ) ≤ exp(−αm(β, σ)t)Ent(m0|vβ,σ) (25)

(for the deduction of this bound and (23) by differentiating their respective left-hand-side. with
respect to the time t ≥ 0, see again the book of Ané et al. [4]) and αm(β, σ) is optimal for these
inequalities to hold for any initial distribution m0 ∈ P(Z+) and for any time t ≥ 0. We also have
that αm(β, σ) is bounded above by twice the spectral gap of Lβ,σ. Namely αm(β, σ) ≤ 2 for any
β, σ > 0, since the spectrum of Lβ,σ is −Z+. Unfortunately, there is no proper way to estimate
from below αm(β, σ), which is only known in very few situations, especially related to the Poisson
distribution, see Wu [49]. That is why αm(β, σ) is often replaced by the classical logarithmic
Sobolev constant α(β, σ), given by

α(β, σ) B inf
f∈Ff(Z+) :vβ,σ [f2]=1

4Eβ,σ(f ,f))

vβ,σ[f2 ln(f2)]
(26)

It can be checked that α(β, σ) ≤ αm(β, σ), so that (25) still holds with αm(β, σ) replaced by
α(β, σ), with the advantage that the latter ergodic constant can be estimated via discrete Hardy’s
inequalities (cf. [29]):

Consider the quantity

Cβ,σ B min
n∈Z+

max(C−β,σ(n), C+
β,σ(n))

where for any n ∈ Z+, we take

C−β,σ(n) B sup
m<n

(
n−1∑
l=m

1

vβ,σ(l)Lβ,σ(l, l + 1)

)
vβ,σ(J0,mK) ln(1/vβ,σ(J0,mK))

C+
β,σ(n) B sup

m>n

(
m−1∑
l=n

1

vβ,σ(l)Lβ,σ(l, l + 1)

)
vβ,σ(Jm,∞J) ln(1/vβ,σ(Jm,∞J))

We have the general bounds

1

10

1

Cβ,σ
≤ α(β, σ) ≤ 8

3

(
1−

√
5

2
√

2

)−1
1

Cβ,σ
(27)
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These expressions can be exploited to get reasonably accurate estimates on α(β, σ) in terms of β
and σ, in particular αm(β, σ) ≥ α(β, σ) > 0 for all β, σ > 0 (insuring that the bound (25) is not
trivial).

Nevertheless, the underlying computations are not so nice, while resorting to interweaving re-
lations eventually leads to better bounds on the convergence to equilibrium in the entropy sense.
More precisely, as a particular consequence of Theorem 8 applied to the three last lines of Figure 3,
with ς = 1, we get

Corollary 16 For any initial probability m0 on Z+ and for any β, σ > 0 and t ≥ 0, we have

Ent(m0P
(β,σ)
t |vβ,σ) ≤

(
σ + 1

σ

)α(β)

e−α(β)t Ent(m0|vβ,σ)

where we recall that α(β) = 1 for any β ≥ 1, see Remark 15.

In particular, for β ≥ 1/2 and up to waiting a warming-up time ln(1+ 1
σ ), before which Corollary

(16) provides no information and is less good than (25), we get after this period an exponential rate
of convergence equal to 1 (the best possible asymptotical one would be 2, i.e. twice the spectral
gap of Lβ,σ). Corollary 16 is also relevant for small β > 0, since one cannot hope for an estimate
so simple via (27).

Applying the bounds from Theorem 8 to the three first lines of Figure 3, we get for any initial
probability m0 on Z+, any β, ς, σ > 0 and any t ≥ 0,

Ent(m0P
(β,ς)
t |vβ,ς) ≤ exp(−αm(β, ςσ)[t− ln(1 +

1

ςσ
)]+)Ent(m0|vβ,ς)

Letting σ > 0 go to infinity and recalling that α(β) is optimal in (23), we deduce that

∀ β > 0, α(β) B lim
σ→+∞

αm(β, σ) ≤ α(β) (28)

In particular α(β) is going to zero as β goes to 0+ (in fact we believe that α(β) = α(β), as suggested
by the remark about approximations at the end of this subsection).

Similar relations between the classical and discrete Laguerre semigroups are equally valid con-
cerning hyperboundedness via Theorem 9. Indeed, the logarithmic Sobolev inequalities imply that
for any β, ς > 0, we have

∀ t ≥ 0, |||P (β,ς)
t |||L2(νβ,ς)→Lp(α(β)t)(νβ,ς)

≤ 1

where α(β) is defined in Lemma 14 and

∀ t ≥ 0, p(α(β)t) B 1 + exp(α(β)t)

and for any β, σ > 0

∀ t ≥ 0, |||P(β,σ)
t |||L2(vβ,σ)→Lp(α(β,σ)t)(vβ,σ) ≤ 1

where α(β, σ) is defined in (26) and

∀ t ≥ 0, p(α(β, σ)t) B 1 + exp(α(β, σ)t)

But due to the difficulty in estimating α(β, σ), it is preferable to use Theorem 9 to deduce that

∀ t ≥ 0, |||P(β,σ)

t+ln(1+ 1
σ

)
|||L2(vβ,σ)→Lp(α(β)t)(vβ,σ) ≤ 1
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To end this subsection, let us mention two other applications of the interweaving relations of
Proposition 13.

•Approximations: For any β, ς > 0, letX(β,ς) B (X
(β,ς)
t )t≥0 (respectively X̃(β,ς) B (X̃

(β,ς)
t )t≥0)

be a Markov process associated to P (β,ς) (resp. P(β,ς)). As seen in [32], for large σ > 0 the birth
and death process (X

(β,σς)
t )t≥0 provides an isospectral approximation of (X

(β,ς)
t )t≥0. This is related

to the fact that ᾱ(β) should be close to α(β), as suggested by (28).

• Simulations: For σ > 0, x ∈ R+ and t ≥ 0, the random variable Y B X
(β,ς)

ln(1+ 1
ςσ

)+t
can be

simulated by first sampling x̃ under the probability Λσ(x, dx̃), next by simulating X̃(β,ςσ)
t starting

with X̃(β,ςσ)
0 = x̃ (comprehensively, this amounts to simulate X̃(β,ςσ)

t with the initial distribution
Λσ(x, ·)) and finally by sampling Y under the probability Λ̃ς−1+σ(X̃

(β,ςσ)
t , ·).

2.4 Degenerate hypoelliptic Ornstein-Uhlenbeck processes
We now describe a refined version of a interweaving relation between degenerate and non-degenerate
hypoelliptic Ornstein-Uhlenbeck semigroups on Rd, d ≥ 1, that was identified in [40]. In that
paper, the authors exploit the interweaving relations to obtain the hypocoercive estimate with
explicit constants for the convergence to equilibrium in the weighted Hilbert space of the degenerate
hypoelliptic Ornstein-Uhlenbeck semigroups which are non-normal. Therein, we provide further
applications of these interweaving relations to these degenerate semigroups including entropy and
hypercontractivity estimates and the cut-off phenomena. To define these semigroups, we let B and
Γ be d × d-matrices with σ(B) ⊆ {z ∈ C; <(z) > 0} and Γ being positive semi-definite such that
det Γt > 0 for all t > 0 where

Γt =

∫ t

0
e−sBΓe−sB

∗
ds,

and the matrix B∗ stands for the adjoint of B. In particular, this holds when Γ is invertible,
which we call the non-degenerate case, although it can happen that det Γt > 0, for all t > 0, with
det Γ = 0, which we call the degenerate case. An equivalent condition to det Γt > 0 for all t > 0 is
that ker Γ, the kernel of Γ, does not contain any invariant subspace of B∗. Under these assumptions
on (Γ, B), the hypoelliptic Ornstein-Uhlenbeck semigroup P admits an unique invariant measure
which is the following gaussian distribution

ρΓ∞(dx) =
e−〈Γ

−1
∞ x,x〉/2√

(2π)d det Γ∞
dx, x ∈ Rd,

with Γ∞ =
∫∞

0 e−tBΓe−tB
∗
ds and 〈·, ·〉 denotes the Euclidean inner product in Rd. P extends to a

contraction semigroup on the weighted Hilbert space L2(ρ∞). We also recall that the generator of
the Ornstein-Uhlenbeck semigroup P = (e−tA)t≥0 acts on suitable functions f via

A[f ](x) =
1

2

d∑
i,j=1

γij∂i∂jf(x)−
d∑

i,j=1

bijxj∂if(x) =
1

2
tr(Γ∇2)f(x)− 〈Bx,∇〉f(x), x ∈ Rd,

and the condition det Γt > 0, for all t > 0, is equivalent to the hypoellipticity of ∂
∂t + A in

the d + 1 variables (t, x1, . . . , xd), hence the terminology. In Metafune, Pallara and Priola [28,
Theorem 3.1] (see also Bogatchev [12] and Aleman and Viola [3]) it was shown that the spectrum
of A in L2(ρΓ∞) is entirely determined by the one of the matrix B, specifically that, writing
N = {0, 1, 2, . . .}, σ(A) = {

∑r
i=1 kibi; ki ∈ N}, where b1, . . . , br are the distinct eigenvalues of B.

Hence, in particular, the spectral gap of A is λ1 = b∧ as the smallest eigenvalue of 1
2(B + B∗).
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Next, we denote by κ(V ) the condition number of any invertible matrix V , and note that if V is
positive-definite then κ(V ) = v∨/v∧, where v∨, v∧ > 0 are the largest and smallest eigenvalues of
V , respectively. In the following we write, for a vector α ∈ Rd, Dα for the diagonal matrix with
diagonal entries given by α.

Proposition 17 Let P be a (possibly) degenerate hypoelliptic Ornstein-Uhlenbeck semigroup as-
sociated to (Γ, B), that is ker Γ does not contain any invariant subspace of B∗. Suppose that B
is diagonalizable with similarity matrix V, and that σ(B) ⊆ (0,∞), that is V BV −1 = Db, where
b ∈ Rd is the vector of eigenvalues of B with bi > 0 for all i ∈ {1, . . . , d} and we set

αi = γ∧,∞e
bi
b∧

log κ(V Γ∞V ∗) and δi = γ∞

where γ∧,∞ (resp. b∧) is the smallest eigenvalues of V Γ∞V
∗ (resp. B). Then, there exists a non-

degenerate hypoelliptic Ornstein-Uhlenbeck semigroup P̃ associated to (Dα+2b, Db), self-adjoint on
L2(ρ̃Dα), such that

P
t
! P̃

where t = 1
b∧

log κ(V Γ∞V
∗), Λ : L2(ρDα) → L2(ρΓ∞) and Λ̃ : L2(ρΓ∞) → L2(ρDα) are bounded

and one-to-one Markov operators defined respectively by

Λf(x) = f ∗ ρD(α)(V x) and Λ̃f(x) =
1

ρD(α)(x)
((fV ∗ ρD(δ))ρD(δ)) ∗ ρDα−δ

(x), x ∈ Rd, (29)

where ∗ denotes the additive convolution operator, for a ∈ Rd, D(a) = Da − V ΓV ∗ and fV (x) =
f(V −1x).

Proof: First note that the change of coordinates map ΦV f(x) = f(V −1x) is a unitary operator
from L2(ρΓ∞) to L2(ρΦVΓ∞

), where ρΦV∞ denotes the image density of ρ∞ under ΦV , i.e. for x ∈ Rd,
ρΦV∞ (x) = 1

|detV |ρ∞(V −1x). Next, since B is diagonalizable with similarity matrix V we have that
V BV −1 = Db, where b ∈ Rd is the vector of eigenvalues of B with bi > 0 for all i = 1, . . . , d. Under
this change of coordinates, (Γ, B) gets mapped to (V ΓV ∗, Db) and a simple calculation shows that
Γ∞ then gets mapped to V Γ∞V

∗. Hence if we prove the desired result for the Ornstein-Uhlenbeck
semigroup P associated to (V ΓV ∗, Db) then, since Pt = ΦV

−1P tΦV we get, by Theorem 7 and the
unitary property of ΦV , that the claims hold for the Ornstein-Uhlenbeck semigroup P associated

to (Γ, B). From [40, Proposition 4.2], we know that P̃
t
" P where P̃ is the Ornstein-Uhlenbeck

semigroup associated to (Dα+2b, Db) which is self-adjoint on L2(ρDα), hence non-degenerate and
the operators Λ and Λ̃ are quasi-affinities on the appropriate weighted L2 spaces. In particular,
they are both one-to-one and hence the interweaving relation is symmetric by Theorem 5 which
completes the proof with another application of Theorem 7.

�

We proceed by providing some by-products of this interweaving relation. First, we recall that
in [40, Theorem 3.1], the following hypocoercive estimate was given, for any f ∈ L2(ρΓ∞),

∀ t ≥ 0, VarρΓ∞ (Ptf) ≤ κ(V Γ∞V
∗) exp(−2b∧t)VarρΓ∞ (f)

where VarρΓ∞ (f) =
∫
Rd(f(x) − ρΓ∞f)2ρΓ∞(x)dx. We carry on by recalling that, in the one-

dimensional case d = 1, it is well known that the self-adjoint Ornstein-Uhlenbeck semigroup
P̃ (i), i = 1, . . . , d, associated to (αi, bi) and whose generator is given by

Ã(i)[f ](x) = −(αi + 2bi)
2

2
f ′′(x)− bixf ′(x), x ∈ R,
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satisfies the so-called curvature dimension CD(bi,∞) which is equivalent to the strict log-Sobolev
inequality with constant bi, see [9, Section 2.7.1]. Then observing that P̃ , defined in Proposition
17, is the product of the P̃ (i)’s, that is P̃ =

⊗d
i=1 P̃

(i), we get from the stability of the log-Sobolev
inequality under products, see [9, Proposition 5.2.7], that P̃ satisfies the strict log-Sobolev inequality
with constant b∧ the minimum of the log-Sobolev constants. This yields the following estimate for
the convergence in entropy

∀ t ≥ 0, Ent(m0P̃t|ρ̃∞) ≤ exp(−b∧t)Ent(m0|ρ̃∞)

valid for any initial distribution m0 on Rd. Moreover, resorting again to the famous equivalence
between the log-Sobolev inequality and the hypercontractivity property due to Gross [25], we get,
writing

∀ t ≥ 0, p̃(t) B 1 + exp(b∧t)

that

∀ t ≥ 0, |||P̃t|||L2(ρ∞)→Lp̃(t)(ρ∞) ≤ 1

We emphasize that the extension of such estimates to degenerate hypoelliptic Ornstein-Uhlenbeck
semigroup P have met with resistance so far due to the fact that P is non-self-adjoint (even non-
normal) on L2(ρ∞), see [34, Lemma 3.3]. However, the interweaving relation described in Proposi-
tion 17 combined with the theorems 8 and 9 enable us to obtain the following.

Corollary 18 Let P be the degenerate hypoelliptic Ornstein-Uhlenbeck semigroup as defined in
Proposition 17. Then, for any initial distribution m0 on Rd, we have

∀ t ≥ 0, Ent(m0Pt|ρΓ∞) ≤ κ(V Γ∞V
∗) exp(−b∧t)Ent(m0|ρΓ∞) (30)

and

∀ t ≥ 0, |||Pt+t|||L2(ρΓ∞ )→Lp̃(t)(ρΓ∞ ) ≤ 1

We mention that Arnold and Erb [6] have obtained hypocoercivity estimate of the form (30), under
our assumptions, with exponential rate given by the spectral gap b∧ and that Arnold et al. [5] and
Monmarché [33] have proved hypocoercivity with exponential rate b∧ without assuming that B is
diagonalizable. However, in contrast to these existing results, we are able to explicitly identify the
constant in front of the exponential, i.e. κ(V Γ∞V

∗), in terms of the initial data Γ and B. Note
that, in particular, if B is symmetric then V is unitary and κ(V Γ∞V

∗) = κ(Γ∞). However we are
not aware of results regarding the hypercontractivity estimates.

We now turn to another application of interweaving which allows to identify the cut-off phenom-
ena for degenerate hypoelliptic Ornstein-Uhlenbeck semigroups. To this end, let α B (α1, α2, ..., αd)
and b B (b1, b2, ..., bd) be vectors from (0,+∞)d. Denote b∧ B min(bl, l ∈ JdK) and for any n ∈ N,
α(n) B (α, . . . , α) ∈ Rdn and b(n) B (b, . . . , b) ∈ Rdn. Consider the family of semigroups (P̃ (n))n∈Z+

associated for each n ∈ Z+ to (Dα(n)+2b(n) , Db(n)). Lachaud [27] has shown that this family has a
cut-off at the time

t(n) B
log n

2b∧
(31)

(more precisely, Lachaud [27] has only considered the case d = 1, but her arguments extend to any
d ∈ N, see also Barrera, Lachaud and Ycart [11]).

We have the following generalization.
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Corollary 19 For any n ∈ N, let P (n) be the degenerate hypoelliptic Ornstein-Uhlenbeck semigroup
in Rdn as defined in Proposition 17 and associated to some (Γ(n), B(n)), with κ(Γ

(n)
∞ ) satisfying

lim
n→∞

log(n)

κ(Γ
(n)
∞ )

= +∞

and α(n) as above b(n) as above. Then, the family (P (n))n∈N has a cut-off at the times (t(n))n∈N
defined in (31).

Proof: Under the conditions of the claim, we easily check that Proposition 17 entails that for

each n ∈ N, P (n)
t(n)

" P̃ (n) where t(n) = 1
b∧

log κ(Γ
(n)
∞ ) and P̃ (n) is the semigroup of the self-adjoint

Ornstein-Uhlenbeck process defined before the corollary. We conclude the proof by invoking the
result of Lachaud [27] recalled before the corollary and Theorem 10.

�

To finish this section, let us give a concrete example.
Consider the matrices

Γ B

(
0 0
0 1

)
B B

(
0 −1

1/2 2

)
The corresponding Ornstein-Uhlenbeck is a simple example of a kinetic model: the first coor-

dinate corresponds to the position in R of a particle in the quadratic potential R 3 x 7→ x2/4, and
the second coordinate is the speed, on which is acting a Brownian motion. It is a typical instance
of a hypoelliptic system. To see it admits an invariant probability and the existence of Γ∞, it is
sufficient to check that the eigenvalues b1, b2 of B are positive. They are indeed the solutions of the
second order equation X2 − 2X + 1/2 = 0 and we get

b1 = 1− 1/
√

2

b2 = 1 + 1/
√

2

Let Γ∞ and α1, α2 > 0 be as in Proposition 17. Denote b B (b1, b2) and α B (α1, α2).
For any n ∈ N, introduce the tensorizations

Γ(n) B


Γ 0 0 · · · 0
0 Γ 0 · · · 0

0 0 Γ
. . . 0

...
...

. . . . . .
...

0 0 . . . 0 Γ

 B(n) B


B 0 0 · · · 0
0 B 0 · · · 0

0 0 B
. . . 0

...
...

. . . . . .
...

0 0 . . . 0 B


This block structure implies that for any n ∈ N, the Ornstein-Uhlenbeck semigroup P (n) asso-

ciated to (Γ(n), B(n)) is hypoelliptic and we have

Γ(n)
∞ B


Γ∞ 0 0 · · · 0
0 Γ∞ 0 · · · 0

0 0 Γ∞
. . . 0

...
...

. . . . . .
...

0 0 . . . 0 Γ∞


In particular κ(Γ

(n)
∞ ) does not depend on n ∈ N and α(n) = (α, . . . , α) ∈ Rdn and b(n) =

(b, . . . , b) ∈ Rdn.
It follows from Corollary 19 that the family (P (n))n∈N has a cut-off at the times (log(n)/(2b1))n∈N.
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3 Random warm-up time examples
In this section, we present several examples of interweaving relations for which the warm-up time is a
positive random variable. This includes the family of Laguerre and Jacobi processes and examples
of Subsection 2.3 that are extended in various directions either by playing with the underlying
parameters or by pertubating their generator by a non-local component, that is by adding jumps in
their dynamics. We also describe several interesting applications of interweaving relations in these
contexts.

3.1 Diffusive Laguerre operators
The classical Laguerre generators Lβ,σ, for β, σ > 0, were recalled in Subsection 2.3. Here we
will drop the second parameter σ > 0, since we are more interested in the parameter β > 0: we
would like to counter the bad behavior of the logarithmic Sobolev constant for small β > 0 via
interweaving relations, in the spirit of what we have done for the two-point state space in Subsection
2.1. Namely we are looking for interweaving relations between Laguerre semigroups with different
parameters β > 0.

For any β > 0, we write simply Lβ B Lβ,1, νβ B νβ,1 and P (β) B P (β,1), with the notations of
Subsection 2.3. For any β, ε > 0, consider the Markov kernel Λβε from R+ to R+ corresponding to
the multiplication by a Beta random variable of parameters ε and β, namely for any f ∈ B(R+),
the set of bounded measurable mappings on R+,

∀ x ∈ R+, Λβε [f ](x) B
Γ (β + ε)

Γ (β)Γ (ε)

∫ 1

0
f(rx)rε−1(1− r)β−1 dr

Its interest for us, is that according to Patie and Savov [36] we have the intertwining relation

∀ β > ε > 0, ∀ t ≥ 0, P
(β+ε)
t Λβε = ΛβεP

(ε)
t

where the products are understood as the compositions of Markov kernels. They can also be seen
as compositions of operators acting on L2-spaces and we have the following commuting diagram
for any β > ε > 0 and t ≥ 0:

L2(νβ+ε) L2(νβ+ε)

L2(νε) L2(νε)

P
(β+ε)
t

Λβε Λβε

P
(ε)
t

Figure 4: Intertwining relation between P (β+ε)
t and P (ε)

t

To get an intertwining relation in the reverse direction, we pass to the adjoint relations, taking
into account that P (β+ε)

t and P (ε)
t are self-adjoint in L2(νβ+ε) and L2(νε) respectively:

L2(νε) L2(νε)

L2(νβ+ε) L2(νβ+ε)

P
(ε)
t

Λ∗βε Λ∗βε

P
(β+ε)
t

Figure 5: Intertwining relation between P (ε)
t and P (β+ε)

t
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where Λ∗βε : L2(νβ+ε)→ L2(νε) is the adjoint operator of Λβε : L2(νε)→ L2(νβ+ε).
Since νβ+ε and νε are both probability measures, it is known a priori that Λ∗βε corresponds to a

Markov kernel. Let us compute it more precisely:

Lemma 20 We have for any β, ε > 0 and any g ∈ B(R+),

∀ x ∈ R+, Λ∗βε [g](x) =
xβ

Γ (β)

∫ +∞

0
g((1 + s)x) sβ exp(−sx) ds

Proof: For any f, g ∈ B(R+), we compute

νβ+ε[gΛβε [f ]] =
Γ (β + ε)

Γ (β)Γ (ε)

∫
R+

g(x)

(∫ 1

0
f(rx)rε−1(1− r)β−1 dr

)
xβ+ε−1 exp(−x)

Γ (β + ε)
dx

=

∫ 1

0

(∫
R+

g(x)f(rx)xβ+ε−1 exp(−x) dx

)
rε−1(1− r)β−1 dr

=

∫ 1

0

(
r−(β+ε)

∫
R+

g(x/r)f(x)xβ+ε−1 exp(−x/r) dx
)
rε−1(1− r)β−1 dr

=

∫
R+

f(x)

(
xβ
∫ 1

0
g(x/r) rε−β+ε−1(1− r)β−1 exp(−x(1/r − 1)) dr

)
xε−1 exp(−x) dx

Since the last expression must be equal to Γ (β)Γ (ε)νε[fΛ
∗
β+ε,ε[g]], for any f ∈ B(R+), we obtain

∀ x ∈ R+, Λ∗βε [g](x) =
xβ

Γ (β)

∫ 1

0
g(x/r)

1

r2

(
1− r
r

)β−1

exp(−x(1− r)/r) dr

and we deduce the announced result via the change of variable s = (1− r)/r.
�

To get a c.mi.r., let us compute the Markov kernel ΛβεΛ∗βε . Following the argumentation of

Remark 1(f), we know a priori that ΛβεΛ∗βε commutes with the P (β+ε)
t , for all t ≥ 0. Since Lβ+ε

is diagonalizable in L2(νβ+ε) and all its eigenvalues are non-positive and simple, it follows from
functional calculus that ΛβεΛ∗βε is of the form F (−Lβ+ε), where F : R+ → R is a measurable
mapping. Here is its explicit formula:

Proposition 21 For any β, ε > 0, we have

ΛβεΛ
∗
βε = Fβε(−Lβ+ε) (32)

with

∀ u ∈ R+, Fβε(u) B

∫ ∞
0

e−usP(τ (βε) ∈ ds) =
Γ (β + ε)Γ (u+ ε)

Γ (ε)Γ (u+ β + ε)

and

∀ s ≥ 0, P(τ (βε) ∈ ds) B Γ (β + ε)

Γ (β)Γ (ε)
exp(−εs)(1− exp(−s))β−1 ds (33)

Similarly, we have, still for β, ε > 0,

Λ∗βεΛβε = Fβε(−Lε)
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Proof: It is well-known (see e.g. the book of Szegö [47]) that the spectrum of −Lβ+ε is Z+ and
for each eigenvalue n ∈ Z+, an associated eigenvector is the Laguerre polynomial L(β+ε)

n of degree
n. It follows that to prove (32), it is sufficient to show that for any n ∈ Z+, we have

ΛβεΛ
∗
βε [L

(β+ε)
n ] = Fβε(n)[L(β+ε)

n ]

From the commutation of ΛβεΛ∗βε with the P (β+ε)
t for all t ≥ 0, we know a priori that the l.h.s.

is proportional to L(β+ε)
n . Thus, denoting pn : R+ 3 x 7→ xn, the monomial of degree n, it is

sufficient to check that ΛβεΛ∗βε [pn] is equal to Fβε(n)pn, up to a polynomial of degree n − 1. This
operation can be decomposed into two similar sub-tasks. Indeed from Figure 4 we deduce that for
any t ≥ 0,

P
(β+ε)
t Λβε [L(ε)

n ] = ΛβεP
(ε)
t [L(ε)

n ] = exp(−nt)Λβε [L(ε)
n ]

namely Λβε [L
(ε)
n ] is proportional to L(β+ε)

n . So let F̃βε(n) ∈ R be such that Λβε [pn] is equal to
F̃βε(n)pn, up to a polynomial of degree n− 1. Similarly, taking into account Figure 5, there exists
F̂βε(n) ∈ R such that Λ∗βε [pn] is equal to F̂βε(n)pn, up to a polynomial of degree n − 1. It follows
that Fβε(n) = F̃βε(n)F̂βε(n) and we just need to compute F̃βε(n) and F̂βε(n). Let us start with
F̃βε(n). We have for any x ∈ R+,

Λβε [pn](x) =
Γ (β + ε)

Γ (β)Γ (ε)

∫ 1

0
(rx)nrε−1(1− r)β−1 dr

=
Γ (β + ε)

Γ (β)Γ (ε)

(∫ 1

0
rn+ε−1(1− r)β−1 dr

)
xn (34)

=
Γ (β + ε)

Γ (β)Γ (ε)

Γ (n+ ε)Γ (β)

Γ (n+ β + ε)
pn(x)

and thus

F̃βε(n) =
Γ (β + ε)Γ (n+ ε)

Γ (ε)Γ (n+ β + ε)
=

(n+ ε− 1)(n+ ε− 2) · · · ε
(n+ β + ε− 1)(n+ β + ε− 2) · · ·β + ε

. (35)

On the other hand, for F̂βε(n), we have for any x ∈ R+,

Λ∗βε [pn](x) =
xβ

Γ (β)

∫ +∞

0
((1 + s)x)n sβ−1 exp(−sx) ds

=
xβ

Γ (β)

(∫ +∞

0
(1 + s)n sβ−1 exp(−sx) ds

)
xn

=
1

Γ (β)

(∫ +∞

0
(1 + s/x)n sβ−1 exp(−s) ds

)
xn

=

n∑
m=0

(
n

m

)
1

Γ (β)

(∫ +∞

0
sm sβ−1 exp(−s) ds

)
xn−m.

It follows that

F̂βε(n) =

(
n

0

)
1

Γ (β)

∫ +∞

0
sβ−1 exp(−s) ds =

1

Γ (β)
Γ (β) = 1
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Thus we get that for all n ∈ Z+, Fβε(n) = F̃βε(n). Coming back to (34), it appears that for any
n ∈ Z+,

Fβε(n) =
Γ (β + ε)

Γ (β)Γ (ε)

∫ 1

0
rn+ε−1(1− r)β−1 dr

=
Γ (β + ε)

Γ (β)Γ (ε)

∫ +∞

0
exp(−ns) exp(−εs)(1− exp(−s))β−1 ds

where we considered the change of variable r = exp(−s). It justifies (32).
The last assertion of the proposition is proven similarly, or by applying the L2-version of Propo-

sition 4: Λβε is one-to-one, since it transforms the orthogonal basis (L(ε)
n )n∈Z+ of L2(νε) into an

orthogonal basis of L2(νβ+ε):

∀ n ∈ Z+, Λβε [L(ε)
n ] = F̃βε(n)L(β+ε)

n

where F̃βε(n) > 0 is given in (35).
�

Thus we have shown the symmetric c.m.i.r. between P (β+ε)
t and P (ε)

t described in the following
Figure 6, for any β + ε > ε > 0 and t ≥ 0:

L2(νβ+ε) L2(νβ+ε)

L2(νε) L2(νε)

L2(νβ+ε) L2(νβ+ε)

L2(νε) L2(νε)

P
(β+ε)
t

Λβε

P
(β+ε)

τ(βε)

Λβε

P
(β+ε)

τ(βε)

P
(ε)

τ(βε)

P
(ε)
t

Λ∗βε

P
(ε)

τ(βε)

Λ∗βε

Λβε

P
(β+ε)
t

Λβε

P
(ε)
t

Figure 6: interweaving relations between P (β+ε)
t and P (ε)

t

Since we are interested in the behavior for small shape parameter, let us denote for β + ε ∈
(0, 1/2), τβ+ε B π1/2,β+ε. We deduce the following bound from Theorem 8 and from the fact that
α(1/2) = 1:

Corollary 22 For any ε ∈ (0, 1/2) and any m0 ∈ P((0,+∞)),

∀ t ≥ 0, Ent(m0P
(ε)

t+τ (βε) |νε) ≤ exp(−t)Ent(m0|νε) (36)

Recall the estimate directly obtained by applying the logarithmic Sobolev inequality satisfied by
the generator Lε for any ε ∈ (0, 1/2):

∀ m0 ∈ P((0,+∞)), ∀ t ≥ 0, Ent(m0P
(ε)
t |νε) ≤ exp(−α(ε)t)Ent(m0|νε) (37)

(where α(ε) is defined in (14)). The bounds (36) and (37) are not directly comparable, since
they concern different distributions, namely m0P

(ε)

t+τ (βε) and m0P
(ε)
t and the former is not just

a deterministic time translate through P of the latter. Nevertheless, to highlight the potential
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advantage of (36), let us make the following observation. Let X(ε) B (X
(ε)
t )t≥0 be a diffusion

process associated to the Markov semigroup P (ε), with small ε ∈ (0, 1/2), starting with X
(ε)
0

uniformly distributed over [0, 1]. We want to use this trajectory to sample according to νε, with
an accuracy given by δ > 0 in the entropy sense. Relying on (37), we consider the position X(ε)

T1
at

the time T1 ≥ 0 such that

exp(−α(ε)T1)Ent(m0|νε) ≤ δ

for some δ > 0. Letting ε going to 0+ and recalling that α(ε) ∼ 4/ ln(1/ε), we easily compute that

Ent(m0|νε) =

∫ 1

0
ln(Γ (ε)x1−ε exp(x)) dx = ln(Γ (ε)) + (1− ε)

∫ 1

0
ln(x) dx+

∫ 1

0
x dx

= ln(Γ (ε)) + ε− 1/2 ∼ ln(Γ (ε))

∼ ln(1/ε)

So we get that

T1 ' ln(1/ε) ln(ln(1/ε)/δ)/4 = ln(1/ε)(ln(ln(1/ε) + ln(1/δ))/4

Relying on (36), we consider the position X(ε)
T2+T3

, where T2 is independent from X(ε) and has the
same law than τε and T3 ≥ 0 is such that

exp(−T3)Ent(m0|νε) ≤ δ

namely

T3 ' ln(ln(1/ε)/δ)

To get a rough idea of T2, let us compute its expectation, as ε goes to zero:

E[T2] =

∫ +∞

0
sP(τ (βε) ∈ ds) =

Γ (1/2)

Γ (1/2− ε)Γ (ε)

∫ +∞

0
s exp(−εs)(1− exp(−s))−ε−1/2 ds

= − Γ (1/2)

Γ (1/2− ε)Γ (ε)

∫ 1

0
ln(r)rε−1(1− r)−ε−1/2 dr

∼ − 1

Γ (ε)

∫ 1

0
ln(r)rε−1 dr =

1

Γ (ε+ 1)

∫ 1

0
rε−1 dr =

1

εΓ (ε+ 1)

∼ 1

ε

(where an integration by parts was used for the fourth equality), and thus

E[T2] + T3 ' 1

ε
+ ln(1/δ)

When δ > 0 is very small, e.g. of order exp(−1/ε), the quantity E[T2] +T3 is much smaller than
T1, suggesting that the approach based on (36) is a more effcient sampling procedure.

Similar observations are also valid for hyperboundedness, as we deduce from Theorem 9:

Corollary 23 For any ε ∈ (0, 1/2), we have

∀ t ≥ 0, |||P (ε)

t+τ (βε) |||L2(νε)→Lp(t)(νε)
≤ 1 (38)

where

∀ t ≥ 0, p(t) B 1 + exp(t)

Note that for small ε > 0 and large t ≥ 0, the exponent p(t) is much larger than 1 + exp(α(ε)t),
the quantity one gets via the traditional application of the logarithmic Sobolev associated to Lε.
Thus up to waiting a warm-up time variable τ (βε)), the hyperboundedness estimate (38) is more
interesting than the usual hypercontractive bound.
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3.2 The Jacobi processes
We proceed with another important and classical example in the theory of diffusions which is the
Jacobi semigroup J(β) = (J

(β)
t )t≥0. Its infinitesimal generator is defined for a function f ∈ C2(V ),

the space of twice continuously differentiable functions on V = [0, 1], by

Jβ[f ](x) = x(1− x)f ′′(x) + (λ1 − β − λ1x)f ′(x), x ∈ [0, 1], (39)

where λ1 ≥ 2β > 2 and refer here and below to [16, Section 5] for a thorough review of the Jacobi
semigroup.

It admits as unique invariant measure νβ , the distribution of a beta B(λ1, β) random variable,
defined on (0, 1) as

νβ(dx) =
Γ (λ1)

Γ (λ1 − β)Γ (β)
xβ−1(1− x)λ1−β−1dx, 0 < x < 1.

As a by-product, the Hölder inequality yields that J(β) extends to a contraction semigroup from
the Hilbert space L2(νβ) into itself. We recall that for any n ∈ N,∫ ∞

0
xnνβ(dx) =

Γ (λ1)

Γ (β)

Γ (n+ β)

Γ (n+ λ1)
.

We say that the Jacobi operator is symmetric when λ1 = 2β and, in this case, we write J̃ = (J̃t)t≥0

for the symmetric Jacobi semigroup whose infinitesimal generator is J̃ = Jλ1
2

that is

J̃ [f ](x) = x(1− x)f ′′(x) +
λ1

2
(1− 2x)f ′(x), 0 < x < 1.

We remark that, when λ1
2 = n ∈ N, there exists a homeomorphism between Jβ and the radial part

of the Laplace-Beltrami operator on the n-sphere, which leads to the curvature-dimension condition
CD(λ1 − 1, λ1), see [9] for the definition. We deduce from [16, Proposition 3.6], choosing in the
notation thereout µ = λ1

2 and ~ ≡ 0, the following interweaving relation between the symmetric
and other Jacobi semigroups.

Proposition 24 For any λ1 > 2β > 1, we have

J̃
τ (λ1,β)

! J(β)

with

∀ u ∈ R+,

∫ ∞
0

e−usP(τ
(λ1,β)
φ ∈ ds) =

Γ (λ1 − β)Γ (ρ(u) + λ1
2 )

Γ (ρ(u) + λ1 − β)Γ (λ1
2 )

where ρ(u) =

√
u+ (λ1−1)2

4 − λ1−1
2 .

As a self-adjoint operator Jβ has nice spectral properties: its spectrum is discrete with simple eigen-
values given by the set (−n(n− 1)− λ1n)n≥0. Moreover, it satisfies certain functional inequalities
which give some quantitative rates of convergence to the equilibrium measure νβ . For instance,
from the Poincaré inequality for Jβ , see [9, Chapter 4.2], one gets the following variance decay
estimate, valid for any f ∈ L2(νβ) and t ≥ 0,

Varνβ (J
(β)
t [f ]) ≤ e−2λ1tVarνβ (f),
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where for a measure ν, we have set Varν (f) = ||f − νf ||2L2(ν). Next, note, writing

J̄β[f ](x) = (1− x2)f ′′(x) + (λ1 − 2β − λ1x)f ′(x) (40)

and g(x) = x+1
2 , that

J̄β[f ◦ g](g−1(x)) = x(1− x)f ′′(x) + (λ1 − β − λ1x)f ′(x) = Jβ[f ](x).

Then, the log-Sobolev constant being invariant by homeomorphism, one gets, from Saloff-Coste
[44], see also Fontenas [24], that the log-Sobolev constant α (λ1, β) of the Jacobi operator Jβ is such
that

α

(
λ1,

λ1

2

)
=
λ1

2
(41)

for the symmetric Jacobi and otherwise, α (λ1, β) < λ1
2 for λ1 > 2β, with for any fixed β and large

λ1, α (λ1, β) ∼ λ1
4 . Since always α (λ1, β) ≤ 2λ1, we thus get, from (41), that the symmetric Jacobi

semigroup attains the optimal entropic decay and hypercontractivity rate. We point out that the
explicit expression of the log-Sobolev constant for the symmetric case goes back to Barky in [8].
Although the log-Sobolev constant is not attainable in the other cases, the interweaving relation
described above combined with theorems 8 and 9 enable us to provide the following information
regarding the non-symmetric Jacobi semigroups.

Proposition 25 For any λ1 > 2β > 1, m0 ∈ P((0, 1)) and t ≥ 0, we have

Ent(m0J
(β)

t+τ (λ1,β) |νβ) ≤ e−
λ1
2
t Ent(m0|νβ)

and
|||J(β)

t+τ (λ1,β) |||L2(ν)→Lp(t) ≤ 1 where p(t) = 1 + e
λ1
2
t. (42)

We close this example by mentioning that in [16] interweaving relations are established between
the symmetric Jacobi semigroup and a class of non-local and non-self-adjoint Markov semigroups
on the unit interval [0, 1].

3.3 The non-self-adjoint generalized Laguerre semigroups
In this part, we illustrate that the concept of interweaving relation is also useful in the context
of non-reversible and non-local Markov semigroups. More specifically, let P = (Pt)t≥0 be the
generalized Laguerre semigroup as introduced and thoroughly studied in [36]. We also refer to
this paper for further details about the objects that will be introduced in this part. It can be
characterized through its infinitesimal generator which takes the form, for a function f smooth,

Lφ[f ](x) = xf ′′(x) + (m+ 1− x) f ′(x) +

∫ ∞
0

(
f(e−yx)− f(x)

)
Π(x, dy), x > 0,

where m ≥ 0 and Π(x, dy) = Π(dy)
x with Π a finite non-negative Radon measure on R+ with a

finite first moment, that is Π =
∫∞

0 yΠ(dy) <∞. Observe that, writing pn(x) = xn, x > 0, n ∈ N,
an integration by parts yields

Lφ[pn](x) = nφ(n)pn−1(x)− npn(x),

where, for u ≥ 0, we have set

φ(u) = u+m+

∫ ∞
0

(e−uy − 1)Π(u, dy). (43)
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Note that φ is a Bernstein function and it is in fact the Laplace exponent of the descending
ladder height process ξ = (ξt)t≥0 of the spectrally negative Lévy process with Laplace exponent
uφ(u), see e.g. [26, Sec. 6.5.2]. P admits an unique invariant measure which is an absolutely
continuous probability measure with a density denoted by ν. Its law is determined by its integer
moments which are given, for any n ∈ N, by∫ ∞

0
xnνφ(x)dx = Wφ(n+ 1)

where Wφ(1) = 1 and Wφ(n+ 1) =
∏n
k=1 φ(k). P extends to a non-self-adjoint strongly continuous

contraction semigroup on L2(νφ). Next, let P̃ (β) = (P̃
(β)
t )t≥0 denotes the semigroup of the classical

Laguerre process of index β ≥ 0 (or dimension β+ 1) and recall from Section 2.3 that its generator
is the differential operator

Lβ+1[f ](x) = xf ′′(x) + (β + 1− x) f ′(x), x > 0.

P̃ (β) is a self-adjoint operator on L2(νβ) where here, for sake of simplicity, we write νβ(dx) =
xβ

Γ (β+1)e
−xdx, x > 0. We disregard the parameter β when it is 0, that is we simply write P̃ = P̃ (0)

and ν = ν0.
Now, according to [36], there exists a multiplicative Markov kernel Iφ defined by

Iφ[f ](x) = E [f(xIφ)] , x > 0, (44)

where Iφ =
∫∞

0 e−ξtdt with ξ the subordinator with Laplace exponent the Bernstein function φ
and, for any n ∈ N,

Iφ[pn](x) =
Γ (n+ 1)

Wφ(n+ 1)
pn(x), x > 0. (45)

We also introduce for any β > 0, the Markov kernel B∗β , acting on any bounded Borelian function
f via

B∗β[f ](x) =
xβ

Γ (β)

∫ ∞
0

f((1 + y)x)yβ−1e−yxdy, x > 0. (46)

We are ready to state and proof the following.

Proposition 26 For any β > Π +m, we have

P
τ (β)

! P̃ (β)

where τ (β) is an infinitely divisible variable characterized by∫ ∞
0

e−usP(τ (β) ∈ ds) =

(
Γ (1 + β)Γ (u+ 1)

Γ (u+ β + 1)

)
= e−φβ(u)t, u > 0. (47)

In particular, P(τ (β) ∈ ds) = (1 +β)(1 + log s)βds, s ∈ (1/e, 1). Moreover, for any such β, we have

Λ = IφB∗β and Λ̃ = Vβ (48)

where Vβ is a Markov kernel associated to the variable Yβ whose distribution is determined by its
moments given by, for any n ∈ N,

Vβ[pn](x) = E [pn(xYβ)] = Γ (1 + β)
Wφ(n+ 1)

Γ (n+ 1 + β)
pn(x), x > 0. (49)

Finally, we have for any t ≥ 0 and m0 ∈ P((0,+∞)),

Ent(m0Pt+τ (β) |νφ) ≤ e−tEnt(m0|νφ), (50)

and
|||Pt+τ (β) |||L2(νφ)→Lp(t)(νφ) ≤ 1 where p(t) = 1 + et. (51)
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Proof: First, we recall from [36, Theorem 7.1] that the following intertwining relationship

PtIφ = IφP̃t, t ≥ 0, (52)

holds in L2(ν). Next, [36, Proposition 4.4] entails that, for any β > Π + m, φβ(u) = φ(u)
u+β is a

Bernstein function and there exists a Markov kernel Vβ associated to the positive random variable
Yβ whose moments are given by (49) and determined its law. Moreover, from Lemma 10.2 of the
aforementioned paper, we have, in L2(νφ), the following identity

P̃
(β)
t Vβ = VβPt, t ≥ 0. (53)

Then, invoking either [15, Identity (1.c)] or again [36, Theorem 7.1], we have in L2(ε)

P̃
(β)
t Bβ = BβP̃t.

Taking the adjoint, in the weighted Hilbert space, intertwining identity and using the fact that P̃
(resp. P̃ (β)

t ) is self-adjoint in L2(ν) (resp. L2(νβ)) yields in L2(νβ)

P̃tB
∗
β = B∗βP̃

(β)
t (54)

Combining this with (52) entails that in L2(νβ)

PtIφB∗β = IφP̃B∗β = IφB∗βP̃
(β)
t .

Finally, this combines with the intertwining relationship (53) yields the identity in L2(νφ)

PtIφB∗βVβ = IφdB∗βP̃
(β)
t Vβ = IφdB

∗
βVβPt (55)

and
P̃

(β)
t VβIφB∗β = VβIφB∗βP̃

(β)
t . (56)

Since from [36, Theorem 7.1(2) and Lemma 8.16], we have that Iφ and B∗β are one-to-one in L2(ν)

and L2(νβ) respectively, we get that their composition IφB∗β is also one-to-one in L2(νβ). Thus, it

remains to show that Pτ = IφB∗βVβ or, by Theorem 3, equivalently P̃ (β)
τ = VβIφB∗β . To justify the

latter identity, we proceed as in the proof of Proposition 21, we have from [36, Theorem 1.22(c)],
that, for any t > 0, the spectrum of Pt in L2(νφ) is discrete and given by e−tN and each eigenvalue
is simple with for all n ∈ N,

Pt[Pn](x) = e−ntPn(x)

where the polynomials Pn are defined via the identity Pn(x) = Iφ[Ln](x), (Ln)n≥0 being the
orthonormal sequence of Laguerre polynomials. Thus, we deduce from (55) that

PtIφB∗βVβ[Pn] = IφB∗βVβPt[Pn] = e−ntIφB∗βVβ[Pn],

that is IφB∗βVβ[Pn] is proportional to Pn. More specifically, recalling that for any n ∈ N,

B∗β[pn](x) = pn(x) + Pn−1(x)

where here and below Pn−1(x) stands for a generic polynomial of order n− 1, we deduce from (45)
and (49) that

VβIφB∗β[pn](x) =
Γ (n+ 1 + d)

Γ (1 + d)Wφ(n+ 1)
Γ (1 + β)

Wφ(n+ 1)

Γ (n+ 1 + β)
pn(x) + Pn−1(x) (57)

=
Γ (1 + β)Γ (n+ 1 + d)

Γ (1 + d)Γ (n+ 1 + β)
pn(x) + Pn−1(x) (58)
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and hence

IφB∗βVβ[Pn](x) =
Γ (1 + β)Γ (n+ 1 + d)

Γ (1 + d)Γ (n+ 1 + β)
Pn(x). (59)

On the other hand, it is well known that φβ(u) = − log Γ (1+β)Γ (u+1+d)
Γ (1+d)Γ (n+1+β) is a Bernstein function which

corresponds to the Laplace exponent of the positive infinitely divisible variable τ (β) = − logBβ ,
where Bβ is a beta variable of parameter β > 0. Finally, since β > Π + m > 0, one gets that the
log-Sobolev constant of the classical Laguerre P (β) is 1, see Remark 15. We complete the proof by
invoking theorems 8 and 9.

3.3.1 Subordinate generalized Laguerre semigroups

It is well-known, see e.g. [9], that, for any t > 0, P̃ (β)
t is an Hilbert-Schmidt operator in L2(νβ) that

admits, for any f ∈ L2(νβ), the diagonalization

P̃
(β)
t [f ] =

∞∑
n=0

e−ntcn(β)〈f,L(β)
n 〉νβ L

(β)
n (60)

where the sequence of Laguerre polynomials (
√
cn(β)L(β)

n )n≥0 forms an orthonormal basis of L2(νβ)
and we recall that

L(β)
n (x) =

n∑
r=0

(−1)r
(
n+ β

n− r

)
xr

r!

and cn(β) = Γ (n+1)Γ (β+1)
Γ (n+β+1) . Moreover, a classical argument based on the spectral theory of reversible

compact Markov semigoups yields, for any t ≥ 0 and f ∈ L2(νβ), the spectral gap estimate

Varνβ
(
P̃

(β)
t [f ]

)
≤ e−t Varνβ (f) (61)

where, we recall that for a measure ν, we have set Varν (f) = ||f − ν[f ]||2L2(ν). Let us denote by

P̃ τ
(β)

= (P̃ τ
(β)

t )t≥0 the Bochner subordination of P̃ (β) by the subordinator (τ
(β)
t )t≥0 where τ (β)

1 has
the same law than the positive infinitely divisible variable τ (β) defined in Proposition 26 and use
the same notation for the subordinated semigroup P τ (β) .

Corollary 27 For any β > 0, t > 0, P̃ τ (β)

t is a self-adjoint Hilbert-Schmidt operator in L2(νβ)
that admits, for any f ∈ L2(νβ), the diagonalization

P̃ τ
(β)

t [f ] =

∞∑
n=0

ct+1
n (β) 〈f,L(β)

n 〉νβ L
(β)
n (62)

and
Varνβ

(
P̃ τ

(β)

t [f ]
)
≤ (1 + β)−t Varνβ (f) (63)

Moreover, for any β > Π +m, P τ (β) 1
! P̃ τ

(β) and for any f ∈ L2(ν) and t > 1, we have in L2(ν)

P τ
(β)

t [f ] =

∞∑
n=0

ctn(β) 〈f,Vn〉ν Pn (64)

and for any t ≥ 0

Varν

(
P τ

(β)

t [f ]
)
≤ (1 + β)1−t Varν (f) (65)
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Proof: The fact that P̃ τ (β) is self-adjoint in L2(νβ) can easily be checked by means of Fubini
theorem as, for any non-negative f, g ∈ L2(νβ) and t ≥ 0,

〈P̃ τ (β)

t [f ], g〉νβ =

∫ ∞
0
〈P̃ (β)

s [f ], g〉νβP(τ
(β)
t ∈ ds) =

∫ ∞
0
〈f, P̃ (β)

s [g]〉νβP(τ
(β)
t ∈ ds)

= 〈f, P̃ τ (β)

t [g]〉νβ

where we used that P̃ (β) is self-adjoint in L2(νβ). Next, one has that for any f ∈ L2(νβ), the
diagonalization

P̃ τ
(β)

t [f ] =

∫ ∞
0

P(τ
(β)
t ∈ ds)P̃ (β)

s [f ]

=

∫ ∞
0

P(τ
(β)
t ∈ ds)

∞∑
n=0

e−sncn(β) 〈f,L(β)
n 〉νβ L

(β)
n

=

∞∑
n=0

(
Γ (1 + β)Γ (n+ 1)

Γ (n+ β + 1)

)t
cn(β) 〈f,L(β)

n 〉νβ L
(β)
n

where we used (60) in the second equality and to conclude we combined the identity (47), the
Stirling formula that yields that for n large enough

cn(β) =
Γ (n+ 1)Γ (β + 1)

Γ (n+ β + 1)
∼ Γ (β + 1)n−β (66)

with the fact that P̃ (β)
t is closed as an Hilbert-Schmidt operator. Next, using the interweaving

relation described in Proposition 26 combined with Theorem 3 since τ (β) is infinitely divisible, we
get that for any β > Π +m, P τ (β) 1

! P̃ τ
(β) . From this relation, we deduce that, for any f ∈ L2(ν)

and t > 0,

P τ
(β)

t+1 [f ] = P τ
(β)

t ΛβVβ[f ] = ΛβP̃
τ (β)

t Vβ[f ] (67)

= Λβ

∞∑
n=0

(
Γ (1 + β)Γ (n+ 1)

Γ (n+ β + 1)

)t
cn(β) 〈Vβ[f ],L(β)

n 〉νβ L
(β)
n (68)

=
∞∑
n=0

ctn(β)cn(β) 〈f,Vn〉ν Pn (69)

where Vn = V∗βL
(β)
n and ΛβL

(β)
n = IφB∗βL

(β)
n = IφLn = Pn(x), which completes the proof of the

spectral expansion of P τ (β)

t f for t > 1. The last claim follows from the interweaving relation with
warm-up time 1 and an application of Theorem 28 below by choosing ϕ(x) = x2 − 1

4 Proofs of the main results
In the following subsections, we prove the main results about interweaving relations announced in
the introduction.

4.1 Proof of the results from section 1.1
4.1.1 Proof of Theorem 3

Here we consider warm-up distributions which are infinitely divisible distributions and we construct
via subordination other interweaved Markov semigroups which brought us back to the situation of
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deterministic warm-up times, thus showing Theorem 3. More precisely, assume that τ is infinitely
divisible. Then there exists a unique convolution semigroup on R+ which determines the transition

kernel of the subordinator (τt)t≥0 where τ1
(d)
= τ . Given a Markov semigroup P , define the family

of Markov operators Q B (Qt)t≥0 via

∀ t ≥ 0, Qt B Pτt =

∫
R+

Ps τt(ds)

Q is the subordination of P in the sense of Bochner and it is also a Markov semigroup, see e.g. [46,
Chap. 12]. Similarly, given another Markov semigroup P̃ , define the Markov semigroup Q̃ B
(Q̃t)t≥0 B (P̃τt)t≥0.

As in Theorem 3, assume an interweaving relation holds between the semigroups P and P̃ with
warm-up distribution τ , that is P

τ
" P̃ . Denote by Λ and Λ̃ the corresponding Markov kernels

between the underlying state spaces V and Ṽ Then Figure 1 leads to the following diagram for all
t ≥ 0.

V V

Ṽ Ṽ

V V

Qt

Λ

Q1

Λ

Q1
Q̃t

Λ̃ Λ̃

Qt

Figure 7: Intertwining relations for Q and Q̃

Indeed, by definition, we have ΛΛ̃ = Pτ = Q1 and for any t ≥ 0, we get

QtΛ =

∫
R+

Ps τt(ds)Λ

=

∫
R+

PsΛτt(ds)

=

∫
R+

ΛP̃s τt(ds)

= ΛQ̃t

Similarly, we have

∀ t ≥ 0, Q̃tΛ̃ = Λ̃Qt

and this ends the proof of Theorem 3.

4.1.2 Proof of Theorem 5

The first claim is obvious. Next, if P
τ
" P̃ with P Λy P̃

Λ̃y P , then, clearly P̃ Λ̃y P
Λy P̃ . Moreover,

since Markovian intertwining relationship is stable by mixture with a positive measure, we get that
that P τ Λy Qτ and as P τ = ΛΛ̃, we get

Λ (VI−Qτ ) = 0
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which concludes the proof of (ii) by an injectivity argument. Next, if P Λy P̃
Λ̃y P and P̃ Vy P

Λy P̃

then P ΛVy P
ΛΛ̃y P . Moreover, we have

ΛV ΛΛ̃ = ΛQτ Λ̃ = ΛΛ̃P τ = P τP τ = F (L)F (L)

where we used successively that P̃
τ
" P , P̃ τ Λ̃y P τ which itself follows as above from P̃

Λ̃y P ,
P

τ
" P̃ and the last identity sets a notation. To complete the proof we observe that the product

FF is the Laplace transform of the sum of the independent random variables τ + τ .

4.1.3 Proof of Theorem 7

First, by since P Λy P̃
Λ̃y P and P Vy P V and P V V −1

y P , we easily deduce that P V V Λy P̃
Λ̃V −1

y P V

and we conclude the proof of the first item by observing that V ΛΛ̃V −1 = V PτV
−1 = P Vτ . Next,

the identities (8), (9) and the second gateway in (3) yield

ΛPI = PΛI = P IΛ = IQΛ = IΛP̃ = ΛIP̃

and the injectivity of Λ gives that P Iy P̃. On can interchange the role of P and P̃ in the previous
sequence of identities to conclude that P Iy P̃

Vy P. Next, as above, by stability of intertwining
relation by mixture, we get that P τ Λy P and hence ΛPτ = P τΛ = ΛΛ̃Λ = ΛIV which concludes
the proof by invoking the injectivity of Λ.

4.2 Extensions and proofs of the results from Section 1.2
4.2.1 Proof of Theorem 8

Here we extend the statement of Theorem 8 by considering (relative) ϕ-entropies.
Let ϕ : R+ → R+ be a convex function such that ϕ(1) = 0. The (relative) ϕ-entropy of two

probability measures m and ν defined on the same state space is given by

Entϕ(m|ν) B

∫
ϕ

(
dm

dν

)
dν +

(
1−

∫
dm

dν
dν

)
lim

x→+∞

ϕ(x)

x

where dm/dν stands for the Radon-Nikodym density of m with respect to ν. In this definition the
convention 0 · ∞ = 0 is enforced, namely, when m is absolutely continuous with respect to ν, the
second term vanishes. When m is not absolutely continuous with respect to ν, i.e.

∫
dm
dν dν < 1,

their ϕ-entropy is +∞ as soon as limx→+∞
ϕ(x)
x = +∞. The case of the usual entropy Entϕ(·)

corresponds to the particular function ϕ given by

∀ x ∈ R+, ϕ(x) B x ln(x)− x+ 1 (70)

Recall the framework of the introduction: P and P̃ are two Markov semigroups, respectively
on the state spaces V and Ṽ . Let Λ and Λ̃ be Markov kernels from V to Ṽ and from Ṽ to V .
We assume that P and P̃ admit invariant probability measures ν and ν̃ and that νΛ = ν̃ and
ν̃Λ̃ = ν. Estimates in the ϕ-entropy sense on the speed of convergence to equilibrium for P̃ can be
transferred to P with the help of a c.m.i.r.:

Theorem 28 Assume that there exists a interweaving relation from P to P̃ with warm-up distri-
bution τ and that

∀ m̃0 ∈ P(Ṽ ), ∀ t ≥ 0, Entϕ(m̃0P̃t|ν̃) ≤ ε(t,Entϕ(m̃0|ν̃)) (71)
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for some function ε : R+ ×R+ → R+, which is non-decreasing with respect to the second variable.
Then we have

∀ m0 ∈ P(V ), ∀ t ≥ 0, Entϕ(m0Pθt(τ)|ν) ≤ ε(t,Entϕ(m0|ν)) (72)

where θt is the translation operator on R+.

Remark 29 As in the introduction, for this estimate to be meaningful, one should furthermore
require that

∀ E ∈ R+, lim
t→+∞

ε(t, E) = 0

Proof of Theorem 28
Consider E and Ẽ two measurable spaces and Ξ a Markov kernel from E to Ẽ. Let m̃ and m
be two probability measures on E. As a consequence of Jensen inequality, we have for any convex
function ϕ as above,

Entϕ(m̃Ξ|mΞ) ≤ Entϕ(m̃|m) (73)

(see e.g. [17]).
The interweaving relation between P and P̃ implies that for any t ≥ 0, we have

ΛP̃tΛ̃ = Pθt(τ)

It follows that for any m0 ∈ P(V ),

Entϕ(m0Pθt(τ)|ν) = Entϕ(m0ΛP̃tΛ̃|ν̃Λ̃)

≤ Entϕ(m0ΛP̃t|ν̃)

where (73) was applied with m̃ B m0ΛP̃t, m B ν̃ and Ξ B Λ̃. Taking into account (71), we get

Entϕ(m0ΛP̃t|ν̃) ≤ ε(t,Entϕ(m0Λ|ν̃))

= ε(t,Entϕ(m0Λ|νΛ))

≤ ε(t,Entϕ(m0|ν))

where we used again (73) with m̃ B m0, m B ν and Ξ B Λ.
�

The traditional way to deduce a bound such as (71) is via ϕ-Sobolev inequalities. Without
entering into the general theory, let us e.g. consider the case where Ṽ is a finite state space and P̃ is
generated by an irreducible Markov generator L̃. Denote Ã the set of positive functions defined on
Ṽ with ν̃[f ] = 1 and assume that ϕ is differentiable on (0,+∞) (in particular ϕ′(1) = 0). Consider
the energy

∀ f ∈ Ã, Ẽϕ(f, ϕ′(f)) B −ν̃[fL̃[ϕ′(f)]]

(the r.h.s. is always non-negative) and denote

α̃ϕ B inf
f∈Ã\{1̃}

Ẽϕ(f, ϕ′(f))

Entϕ(f · ν̃|ν̃)
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where 1̃ is the function only taking the value 1 on Ṽ and f · ν̃ is the probability on Ṽ admitting
the density f w.r.t. ν̃. The quantity α̃ϕ is non-negative and is called the ϕ-Sobolev constant. Then
(71) holds with the function ε given by

∀ t ≥ 0, ∀ E ≥ 0, ε(t, E) B exp(−α̃ϕt)E

This result is obtained by differentiating the quantity Entϕ(m̃0P̃t|ν̃) with respect to t > 0, for
any fixed m̃0 ∈ P(Ṽ ), and by applying Grönwall lemma. The validity of this approach is very
general, up to the appropriate definition of the domain Ã.

In the classical case (70) and when the finite generator L̃ is assumed to be furthermore reversible,
the energy is given by

∀ f ∈ Ã, Ẽ(f, ln(f)) =
1

2

∑
x,y∈Ṽ

(f(y)− f(x))(ln(f(y))− ln(f(x))) ν̃(x)L̃(x, y)

and the corresponding constant α̃ is called the modified logarithmic Sobolev constant. It is bounded
below by the usual logarithmic Sobolev constant, obtained by replacing Ẽ(f, ln(f)) by

4Ẽ(
√
f,
√
f) = 2

∑
x,y∈Ṽ

(
√
f(y)−

√
f(x))2 ν̃(x)L̃(x, y)

in the above definitions. In the diffusion framework, the modified and usual logarithmic Sobolev
constant coincide (for the previous functional analysis assertions, see for instance the book of Ané
et al. [4]).

Let us consider the situation of a deterministic warm-up time: there exists t0 ≥ 0 such that
τ = δt0 , as in Section 2. Assume that (P̃ , ν̃) satisfies a modified logarithmic Sobolev inequality
with constant α̃ > 0, so that for any initial distribution m̃0 ∈ P(Ṽ ), we have

∀ t ≥ 0, Ent(m̃t|ν̃) ≤ exp(−α̃t)Ent(m̃0|ν̃)

Theorem 28 enables to get for (P, ν) that for any initial distribution m0 ∈ P(V ), we have

∀ t ≥ 0, Entϕ(mt0+t|ν) ≤ exp(−α̃t)Entϕ(m0|ν)

Alternatively, taking into account that the relative entropy of the time marginal laws of a Markov
process with respect to its invariant measure is always non-increasing with respect to time (see e.g.
[17]), we get

∀ t ≥ 0, Entϕ(mt|ν) ≤ exp(−α̃(t− t0)+)Entϕ(m0|ν) (74)

In this bound, the time t0 clearly appears as a warm-up period. The fact that no contractive
estimate of Entϕ(mt|ν) can be deduced for t ∈ [0, t0] relates (74) to hypocoercive bounds (see e.g.
Villani [48]).

These considerations were illustrated by the classical and discrete examples of Subsection 2.3. In
Subsection 3.3, we presented a interweaving relation with a random warm-up time between jump
Laguerre processes and classical Laguerre processes. It enables to get estimates on convergence
to equilibrium in entropy sense for non-reversible jump processes without the a priori knowledge
of corresponding modified logarithmic Sobolev inequalities. It shows the applicative potential of
c.m.i.r.

Remark 30 In general, it is not possible to deduce from a bound such as (72) an estimate on
Entϕ(m0Pt|ν) for given large t ≥ 0, except in the case of a deterministic warm-up time. Indeed,
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consider P the deterministic semigroup generated on the circle T B R/(2τZ) by the usual derivation
∂. Starting from x0 ∈ T, the position at time t ≥ 0 of an associated Markov process is x0 + t [2τ ].
The associated invariant measure ν is the uniform distribution over T. Let τ be the uniform
distribution over [0, 2τ ]. For any t ≥ 0, we have Entϕ(m0Pθt(τ)|ν) = 0 for any initial distribution
m0, while Entϕ(m0Pt|ν) = +∞ when m0 is a Dirac mass.

Remark 31 Another approach to convergence to equilibrium is based on strong stationary times,
see Aldous and Diaconis [2] and Diaconis and Fill [19] for seminal works about this alternative
point of view. It is more probabilistic in spirit, since it constructs stopping times τ such that the
position of the underlying Markov process is at equilibrium and independent from τ . Furthermore,
it is an important motivation for the investigation of intertwining relations. Thus it is natural to
wonder if interweaving relations enable the transfer of strong stationary times. Unfortunately we
did not find a satisfactory procedure, especially when the warm-up distribution is not a Dirac mass.
Nevertheless, strong stationary times are often used due to their close relation to the convergence
to equilibrium in the separation sense (see e.g. Diaconis and Fill [19]), and interweaving relations
enable to directly transfer corresponding estimates.

Recall that the separation discrepancy s(m, ν) between two probability measures m and ν on
the same state space is defined as

s(m, ν) B ess sup
ν

1− dm

dν

The separation discrepancy is in fact a limit case of ϕ-entropies. More precisely, for p ≥ 1 ,
consider the convex mapping

∀ x ∈ R+, ϕp(x) B (1− x)p+

where (·)+ stands for the non-negative part. It is not difficult to show that for any probability
measures m and ν on the same state space, we have

lim
p→+∞

(
Entϕp(m, ν)

)1/p
= s(m, ν)

This result in conjunction with Theorem 8 show that we can transfer separation estimates
through c.m.i.r. More precisely, assume that we have a interweaving relation with warm-up distri-
bution τ between the ergodic semigroups P and P̃ , with invariant probability ν and ν̃. Let m0 be
an initial distribution on V and denote m̃0 B m0Λ. Assume that we have a function ε̃ : R+ → R+

such that

∀ t ≥ 0, s(m̃0P̃t, ν̃) ≤ ε̃(t)

Since we have for any p ≥ 1 and any probability measure m̃ on Ṽ ,

Entϕp(m̃, ν̃) ≤ s(m̃, ν̃)p

Theorem 8 implies that

∀ p ≥ 1, ∀ t ≥ 0, Entϕp(m0Pθt(τ), ν) ≤ ε̃(t)p

It remains to take the power 1/p and to let p go to infinity to get

∀ t ≥ 0, s(m0Pθt(τ), ν) ≤ ε̃(t)

which corresponds to the wanted separation estimate transfer.
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4.3 Hyperboundedness
As in the previous subsection, the underlying principle for the transfer of hyperboundedness via
interweaving relations is convexity, so that the Orlicz spaces are the natural framework here, not
only the Lp spaces, for p ≥ 2, as stated in Theorem 9.

Let us recall the notion of Orlicz spaces (for a general introduction, see for instance the book
of Rao and Ren [43]). Let ϕ : R → R+ be a Young function: it is a even convex function ϕ 6= 0
satisfying ϕ(0) = 0. When E is a measurable space endowed with a probability measure m, the
Orlicz space Lϕ(m) is the vector space of measurable functions f : E → R such that

‖f‖Lϕ(m) B inf{r > 0 :

∫
ϕ(f/r) dm ≤ 1}

is finite. The quantity ‖·‖Lϕ(m) defines a norm on Lϕ(m), when the functions are identified up to
a m-negligible set. The key property of Orlicz spaces we will need is:

Lemma 32 Consider Λ a Markov kernel from E to another measurable space Ẽ. Let m̃ be the
image of the probability measure m on E by Λ. For any measurable function f : Ẽ → R, we have

‖Λ[f ]‖Lϕ(m) ≤ ‖f‖Lϕ(m̃)

Proof: This is an immediate consequence of convexity. Indeed, by Jensen’s inequality, we have
m-a.s. and for any r ≥ 0,

ϕ(Λ[f/r]) ≤ Λ[ϕ(f/r)]

Integrating with respect to m, we get∫
ϕ(Λ[f/r]) dm ≤

∫
Λ[ϕ(f/r)] dm

=

∫
ϕ(f/r) dm̃

and it remains to take the infimum of the r > 0 such that
∫
ϕ(f/r) dm̃ ≤ 1 to get the announced

result.
�

As in the introduction, let be given P a Markov semigroup from V to V and P̃ a Markov
semigroup from Ṽ to Ṽ . Assume that ν and ν̃ are respectively invariant probability measures for
P and P̃ and that an interweaving relation holds, as described in Figure 1, with Markov kernels
Λ from V to Ṽ and Λ̃ from Ṽ to V , as well as warm-up distribution τ . As usual, νΛ and ν̃Λ̃
are respectively invariant for P̃ and P . In case of non-uniqueness of these invariant probability
measures, we furthermore assume that ν̃ = νΛ and ν = ν̃Λ̃. Here is an extension of Theorem 9:

Theorem 33 Assume that for some time T ≥ 0 and some Young function ϕ, we have in the
operator norm

|||P̃T |||L2(ν̃)→Lϕ(ν̃) ≤ 1 (75)

Then we get

|||PT+τ |||L2(ν)→Lϕ(ν) ≤ 1 (76)
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Proof: As in the proof of Theorem 28, the starting point is

ΛP̃T Λ̃ = PT+τ

It follows that

|||PT+τ |||L2(ν)→Lϕ(ν) ≤ |||Λ|||Lϕ(ν̃)→Lϕ(ν)|||P̃T |||L2(ν̃)→Lϕ(ν̃)|||Λ̃|||L2(ν)→L2(ν̃)

≤ |||Λ|||Lϕ(ν̃)→Lϕ(ν)|||Λ̃|||L2(ν)→L2(ν̃)

Lemma 32 applied with m = ν and m̃ = ν̃ (recall that νΛ = ν̃) implies that

|||Λ|||Lϕ(ν̃)→Lϕ(ν) = 1

Considering the Young function R 3 x 7→ x2, Lemma 32 applied with m = ν̃ and m = ν (recall
that ν̃Λ̃ = ν) implies that

|||Λ̃|||L2(ν)→L2(ν̃) = 1

concluding the proof of the wanted bound.
�

Theorem 9 is a consequence of Theorem 28, applied, for fixed t ≥ 0, with T = t and

ϕ : R 3 x 7→ xp(α̃t)

Note that due to the warm-up distribution, it is not possible to deduce from the conclusion of
Theorem 9 that the semigroup P satisfies a logarithmic Sobolev inequality (for the classical links
between the latter inequality and hypercontractivity, again see e.g. Ané et al. [4]).

4.4 Proof of Theorem 10
Assume first that a cut-off phenomenon occurs for the family (P (n))n∈Z+ , with cut-off times
(t(n))n∈Z+ , and let us show the same is true for (P̃ (n))n∈Z+ .

Consider the Young function R 3 x 7→ |x− 1|. The associated entropy between the probability
measures m and ν is just twice the total variation

2 ‖m− ν‖tv =

∫ ∣∣∣∣dmdν − 1

∣∣∣∣ dν + 1−
∫
dm

dν
dν

The proof of Theorem 28 with this particular Young function shows that for any n ∈ Z+,

∀ t ≥ 0, ∀ m̃0 ∈ P(Ṽ (n)),

∥∥∥∥m̃0P̃
(n)

t
(n)
0 +t

− ν̃(n)

∥∥∥∥
tv

≤
∥∥∥m̃0Λ̃P

(n)
t − ν(n)

∥∥∥
tv

≤ d(n)(t)

where d(n) is given in (14). Considering a similar definition of d̃(n) for the semigroup P̃ (n), we obtain

∀ t ≥ 0, d̃(n)(t
(n)
0 + t) ≤ d(n)(t)
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Taking into account that for any n ∈ Z+, the function d̃(n) is non-increasing, we deduce from the
cut-off phenomenon for P and from (15) that for any r > 0,

lim
n→∞

d̃(n)((1 + r)t(n)) ≤ lim
n→∞

d̃(n)(t
(n)
0 + (1 + r/2)t(n))

≤ lim
n→∞

d(n)((1 + r/2)t(n))

= 0

For the other point in the definition of the cut-off phenomenon, assume by contradiction that
for some r0 ∈ (0, 1), we have

lim
n→∞

d̃(n)((1− r0)t(n)) < 1 (77)

By the assumed symmetry of the interweaving relations between the sequence (P (n))n∈Z+ and
(P̃ (n))n∈Z+ , we show as above that

∀ t ≥ 0, d(n)(t
(n)
0 + t) ≤ d̃(n)(t)

Taking into account that for any n ∈ Z+, the function d(n) is non-increasing, we deduce from (77)
and from (15) that

lim
n→∞

d(n)((1− r0/2)t(n)) ≤ lim
n→∞

d(n)(t
(n)
0 + (1− r0)t(n))

≤ lim
n→∞

d̃(n)((1− r0)t(n))

< 1

which is in contradiction with the cut-off phenomenon for the family (P (n))n∈Z+ . Thus we get that
for any r ∈ (0, 1),

lim
n→∞

d̃(n)((1− r)t(n)) = 1

and this ends the proof that a cut-off phenomenon occurs for the family (P (n))n∈Z+ with cut-off
times (t(n))n∈Z+ .

The remaining claims of Theorem 10 are proven by a similar line of reasoning.
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