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Abstract

In this paper, we revisit the forward algorithm, developed by Irle, to characterize both the value
function and the stopping set for a large class of optimal stopping problems on continuous-time Markov
Chains. Our objective is to renew the interest of this constructive method by showing its usefulness
to solve some constrained optimal stopping problems that have emerged recently.
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1 Introduction
Optimal stopping problems have received a lot of attention in the literature on stochastic control since
the seminal work of Wald [23] about sequential analysis while the most recent application of optimal
stopping problems have emerged from mathematical finance with both the valuation of American options
and the theory of real options, see e.g. [19] and [5]. The first general result of optimal stopping theory
for stochastic processes was obtained in discrete time by Snell [21] who characterized the value function
of an optimal stopping problem as the least excessive function that is a majorant of the reward1. From
there on, the theoretical and numerical aspects of the valuation of optimal stopping problems on Markov
processes have been the subject of numerous articles in many different models including discrete-time
Markov chains (see e.g. [3],[15]), time-homogenous diffusions (see e.g. [4]) and Lévy processes (see e.g.

∗LM and SV acknowledge funding from the French National Research Agency (ANR) under the Investments for the
Future (Investissements d’Avenir) program, grant ANR-17-EURE-0010.

1For a survey of optimal stopping theory for Markov processes, see the book by Shiryaev [20].
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[18]) with the appropriate extension of the Snell characterization. This paper is concerned with optimal
stopping problems in the setting of a general continuous-time Markov chain. This class of processes, which
contains the classic birth-death process, have recently been introduced in finance to model the state of
the order book, see [1] or to model growth stocks, see [14]. The paper follows in the footsteps of Eriksson
and Pistorius [8] who have shown that the value of an optimal stopping problem for a continuous-time
Markov chain can be characterized as the unique solution to a system of variational inequalities when
assuming a uniform integrability condition for the payoff function. Furthermore, when the state space of
the underlying Markov chain is a subset of R and when the stopping region is assumed to be an interval,
their paper also provides an algorithm to compute the value function.
Eager not to make any a priori assumptions about the shape of the stopping region, we use a different
approach that relies on the forward algorithm for optimal stopping problems on Markov chains, introduced
by Irle, in the two papers [11] and [12]. Inspired by Howard’s policy improvement, Irle proposed a very nice
monotone algorithm to compute the value of an optimal stopping problem, which unfortunately did not
receive the attention it deserves.2Relying on the Snell characterization as the smallest excessive majorant
of the payoff function, it consists in a monotone recursive construction of both the value function and
the stopping region along a sequence of almost excessive functions build with the hitting times of explicit
sets. The main advantage of the monotone approach developed here, is that it converges to the value with
minimal assumptions about the continuous-time Markov chain and the payoff function. In particular, we
abandon the uniform integrability condition while, unlike [8], the state space is not necessary a subset of
the set of real numbers. Such an approach gives a generic constructive method of finding the value function
and seems to be designed for computational methods. It is fair to notice however, that this procedure may
only give the exact value of the value function after infinite number of steps. A practical exception is given
when considering the case of Markov chains with finite number of states where the resulting algorithm
resembles the elimination algorithm proposed in [11], [12] and [22] and thus converges in a finite number of
steps. For completeness, other constructive iterative methods based on the Snell characterization have to
be mentioned. The two contemporaneous papers [10] and [2] in the one-dimensional diffusion case where
upper bounds of the value function are build using linear programming while [13] produces an increasing
sequence of approximations of the optimal stopping time of a Bermudean option. As applications, we
revisit two constrained optimal stopping problems. The first one proposed by Dupuis and Wang in [6]
considers the case where the decision-maker is only allowed to stop a Geometric Brownian motion at the
jump times of an independent Poisson process. The second problem is an example stemming from the
class of optimal stopping problems with stochastic stopping time constraints expressed in terms of the
states of a Markov process, see e.g. [7].

2 Formulation of the problem
On a countable state space V endowed with the discrete topology, we consider a Markov generator
L B (L(x, y))x,y∈V , that is an infinite matrix whose entries are real numbers satisfying

∀x 6= y ∈ V, L(x, y) ≥ 0

∀x ∈ V, L(x, x) = −
∑
y 6=x

L(x, y)

2To be perfectly honest, we didn’t know Irle’s papers when we started working on the same type of algorithm in the first
version of this paper. We are indebted to Sören Christensen for introducing us the Irle’s groundbreaking works.
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We define L(x) = −L(x, x) and assume that L(x) < +∞ for every x ∈ V .
For any probability measure m on V , let us associate to L a Markov process X B (Xt)t≥0 defined on
some probability space (Ω,G,P) whose initial distribution is m. First we set σ0 B 0 and X0 is sampled
according to m. Then we consider an exponential random variable σ1 of parameter L(X0) B −L(X0, X0).
If L(X0) = 0, we have a.s. σ1 = +∞ and we take Xt B X0 for all t > 0, as well as σn B +∞ for
all n ∈ N, n ≥ 2. If L(X0) > 0, we take Xt B X0 for all t ∈ (0, σ1) and we sample Xσ1 on V \ {X0}
according to the probability distribution L(X0, .)/L(X0). Next, still in the case where σ1 < +∞, we
sample an inter-time σ2− σ1 as an exponential distribution of parameter L(Xσ1). If L(Xσ1) = 0, we have
a.s. σ2 = +∞ and we take Xt B Xσ1 for all t ∈ [σ1,+∞), as well as σn B +∞ for all n ∈ N, n ≥ 3.
If L(Xσ1) > 0, we take Xt B Xσ1 for all t ∈ [σ1, σ2) and we sample Xσ2 on V \ {Xσ1} according to the
probability distribution (L(Xσ1 , .)/L(Xσ1))x∈V \{Xσ1}. We keep on following the same procedure, where all
the ingredients are independent, except for the explicitly mentioned dependences.
In particular, we get a non-decreasing family (σn)n∈Z+ of jump times taking values in R̄+ B R+ t {+∞}.
Denote the corresponding exploding time

σ∞ B lim
n→∞

σn ∈ R̄+

When σ∞ < +∞, we must still define Xt for t ≥ σ∞. So introduce 4 a cemetery point not belonging to
V and denote V̄ B V t {4}. V̄ is seen as the Alexandrov compactification of V . We take Xt B 4 for
all t ≥ σ∞ to get a V̄ -valued Markov process X. Let (Gt)t≥0 be the completed right-continuous filtration
generated by X B (Xt)t≥0 and let F (resp.F̄+) be the set of functions defined on V taking values in R+

(resp. R̄+ B R+ t {+∞}). The generator L acts on F via

∀ f ∈ F , ∀ x ∈ V, L[f ](x) B
∑
y∈V

L(x, y)f(y)

=
∑

y∈V \{x}

L(x, y)(f(y)− f(x)).

We would like to extend this action on F̄+, but since its elements are allowed to take the value +∞, it
leads to artificial conventions such as (+∞)−(+∞) = 0. The only reasonable convention is 0×(+∞) = 0,
so let us introduce K, the infinite matrix whose diagonal entries are zero and which is coinciding with L
outside the diagonal. Its interest is that K acts obviously on F̄+ through

∀ f ∈ F̄+, ∀ x ∈ V, K[f ](x) B
∑

y∈V \{x}

L(x, y)f(y) ∈ R̄+. (2.1)

In this paper, we will consider an optimal stopping problem with payoff e−rtφ(Xt), where φ ∈ F̄+ and
r > 0, given by

u(x) B sup
τ∈T

Ex[e−rτφ(Xτ )], (2.2)

where T is a set of Gt-adapted stopping times and where the x in index of the expectation indicates that
X starts from x ∈ V . A stopping time τ ∗ is said to be optimal for u if

u(x) = Ex(e−rτ
∗
φ(Xτ∗)).

Observe that with our convention, we have e−rτφ(Xτ ) = 0 on the set {τ = +∞}.
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There are two questions to be solved in connection with Definition (2.2). The first question is to value
the function u while the second is to find an optimal stopping time τ ∗. Note that optimal stopping times
may not exist (see [20] Example 5 p.61) . According to the general optimal stopping theory, an optimal
stopping time, if it exists, is related to the set

D = {x ∈ V : u(x) = φ(x)} (2.3)

called the stopping region. In particular, when φ satisfies the uniform integrability condition

Ex
[
sup
t≥0

e−rtφ(Xt)

]
< ∞,

the stopping time τD = inf{t ≥ 0, Xt ∈ D} is optimal if for all x ∈ V,Px(τD <∞) = 1 (see Shiryaev [20]
Theorem 4 p.52).
The main objective of this paper is to provide a recursive construction of both the value function u and the
stopping region D when the payoff function is measurable and positive and does not satisfy the uniform
integrability condition. However, to present the idea of the Irle’s forward approach developed in this paper,
Section 3 first consider the case of a finite state space V for which the uniform integrability condition is
obviously satisfied. Section 4 is devoted to the general case. Section 5 contains the applications.

3 Finite state space
On a finite set V , the payoff function is bounded and thus the value function u defined by (2.2) is well-
defined for every x ∈ V . Moreover, it is well-known (see [20], Theorem 3) that the value function u is the
minimal r-excessive function which dominates φ. Recall that a function f is r-excessive if 0 ≥ L[f ]− rf .
Moreover, on the set {u > φ}, u satisfies L[u](x)− ru(x) = 0. Because of the finiteness of V , the process

e−rtf(Xt)− f(x)−
∫ t

0

e−rs (L[f ]− rf) (Xs) ds

is a Gt-martingale under Px for every function f defined on V and every x ∈ V which yields by taking
expectations, the so-called Dynkin’s formula.
We first establish some properties of the stopping region D. Let us introduce the set

D1 B {x ∈ V, L[φ](x)− rφ(x) ≤ 0}

and assume that φ(x0) > 0 for some x0 ∈ V . We recall that a Markov process X is said to be irreducible
if for all x, y ∈ V × V, Px(Ty < +∞) > 0 where

Ty B inf{t ≥ 0, Xt = y}.

Lemma 1. We have the inclusion D ⊂ D1 and when we assume furthermore that X is irreducible, we
have D ⊂ {x ∈ V, φ(x) > 0}.
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Proof. Because u is r-excessive, we have for all x ∈ D,

0 ≥ L[u](x)− ru(x)

=
∑
y 6=x

L(x, y)u(y)− (r + L(x))φ(x) because x ∈ D

≥
∑
y 6=x

L(x, y)φ(y)− (r + L(x))φ(x) because u ≥ φ

= L[φ](x)− rφ(x).

Therefore, x ∈ D1.

For the second inclusion, let Tx0 be the first time X hits x0. We have for all x ∈ V , and every t ≥ 0,

u(x) ≥ Ex[e−r(Tx0∧t)φ(XTx0∧t)]

= φ(x0)Ex[e−rTx011Tx0≤t] + Ex[e−rtφ(Xt)11Tx0≥t]

Letting t tend to +∞, we obtain because φ is bounded on the finite sate space V

u(x) ≥ φ(x0)Ex[e−rTx011Tx0<+∞] > 0

where the last strict inequality follows from the fact that X is irreducible.

Now, we introduce u1 as the value associated to the stopping strategy Stop the first time X enters in D1.
Formally, let us define

τ1 B inf{t ≥ 0 : Xt ∈ D1}

and

u1(x) B Ex[e−rτ1φ(Xτ1)11τ1<+∞]

Clearly u ≥ u1 by Definition (2.2). Moreover, we have u1 = φ on D1.

Lemma 2. We have

• ∀x /∈ D1, u1(x) > φ(x) and L[u1](x)− ru1(x) = 0.

• ∀x ∈ D, L[u1](x)− ru1(x) ≤ 0.

Proof. Let x /∈ D1. Applying the Optional Sampling theorem to the bounded martingale

Mt = e−rtφ(Xt)− φ(x)−
∫ t

0

e−rs (L[φ]− rφ) (Xs) ds,

we have,

u1(x) = Ex[e−rτ1φ(Xτ1)]

= φ(x) + Ex
[∫ τ1

0

e−rs(L[φ](Xs)− rφ(Xs)) ds

]
> φ(x),
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because L[φ](y) − rφ(y) > 0 for y /∈ D1. Moreover, for x /∈ D1, τ1 ≥ σ1 almost surely. Thus, the Strong
Markov property yields

u1(x) = Ex[e−rτ1φ(Xτ1)]

= Ex[e−rσ1u1(Xσ1)]

=
L[u1](x) + L(x)u1(x)

r + L(x)
,

from which we deduce L[u1](x)− ru1(x) = 0.

Because u is r-excessive, we have for all x ∈ D,

0 ≥ L[u](x)− ru(x)

=
∑
y∈V

L(x, y)u(y)− rφ(x) because x ∈ D

≥
∑
y 6=x

L(x, y)u1(y)− (r + L(x))φ(x)

= L[u1](x)− ru1(x) because D ⊂ D1.

To start the recursive construction, we introduce the set

D2 B {x ∈ D1, L[u1](x)− ru1(x) ≤ 0}

and the function

u2(x) B Ex[e−rτ2φ(Xτ2)11τ2<+∞]

where

τ2 B inf{t ≥ 0 : Xt ∈ D2}

Observe that if D2 = D1, u1 is a r-excessive majorant of φ and therefore u1 ≥ u. Because the reverse
inequality holds by definition, the procedure stops.
By induction, we shall define a sequence (un,Dn) for n ∈ Z+ starting from (u1,D1) by

Dn+1 B {x ∈ Dn, L[un](x)− run(x) ≤ 0}

and

un+1(x) B Ex[e−rτn+1φ(Xτn+1)11τn+1<+∞]

where

τn+1 B inf{t ≥ 0 : Xt ∈ Dn+1}.

Next lemma proves a key monotonicity result.
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Lemma 3. We have un+1 ≥ un and ∀x /∈ Dn+1, un+1(x) > φ(x).

Proof. To start the induction, we assume using Lemma 2 that un satisfies

∀x ∈ V \Dn,L[un](x)− run(x) = 0 and un(x) > φ(x) (3.1)
∀x ∈ Dn, un(x) = φ(x). (3.2)

For x ∈ Dn+1 ⊂ Dn, we have un+1(x) = φ(x) = un(x). On the other hand, for x /∈ Dn+1, we have

un+1(x) = Ex[e−rτn+1φ(Xτn+1)11τn+1<+∞]

= Ex[e−rτn+1un(Xτn)11τn+1<+∞] because Dn+1 ⊂ Dn

= un(x) + Ex
[∫ τn+1

0

e−rs(L[un](Xs)− run(Xs)) ds

]
≥ un(x),

because L[un]− un ≥ 0 outside Dn+1.
Let x /∈ Dn+1. If x /∈ Dn, we have un(x) > φ(x) and thus un+1(x) > φ(x). Now, let x ∈ Dn ∩ Dcn+1 and
let us define

τ̂ B inf{t ≥ 0, Xt /∈ Dn ∩ Dcn+1}.

Clearly, τ̂ ≤ τn+1. Therefore by the Strong Markov property,

un+1(x) = Ex[e−rτ̂un+1(Xτ̂ )11τ̂<+∞]

≥ Ex[e−rτ̂un(Xτ̂ )11τ̂<+∞]

> un(x),

because L[un]− un > 0 on the set Dn ∩ Dcn+1.

According to Lemma 3, the sequence (un)n is increasing and satisfies un ≥ φ with strict inequality outside
Dn, while by construction, the sequence (Dn)n is decreasing. It follows that we can define a function u∞
on V by

u∞(x) = lim
n→∞

un(x)

and a set by

D∞ B
⋂
n∈Z+

Dn.

We are in a position to state our first result.

Theorem 4. We have u∞ = u and D∞ = D.

Proof. By definition, u ≥ un for every n ∈ Z+ and thus passing to the limit, we have u ≥ u∞. To show
the reverse inequality, we first notice that for every n ∈ Z+, we have un ≥ φ and thus u∞ ≥ φ.
If x ∈ D∞ then x ∈ Dn+1 for every n ∈ Z+ and thus L[un](x)− run(x) ≤ 0 for every n ∈ Z+. Passing to
the limit, we obtain

L[u∞](x)− ru∞(x) ≤ 0 ∀x ∈ D∞.
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If x /∈ D∞ then there is some n0 such that x /∈ Dn for n ≥ n0. Thus, for such a n ≥ n0, we have

L[un](x)− run(x) = 0.

Passing to the limit, we obtain

L[u∞](x)− ru∞(x) = 0 ∀x /∈ D∞.

To conclude, we observe that because for every x ∈ V , we have L[u∞](x)− ru∞(x) ≤ 0, we have for every
stopping time τ

u∞(x) ≥ E[e−rτu∞(Xτ )],

from which we deduce that
u∞(x) ≥ E[e−rτφ(Xτ )], (3.3)

because u∞ ≥ φ. Taking the supremum over τ at the right-hand side of (3.3), we obtain u∞ ≥ u.
Equality u = u∞ implies that D∞ ⊂ D. To show the reverse inclusion, let x /∈ D∞ which means that
x /∈ Dn for n larger than some n0. Lemma 3 yields that un(x) > φ(x) for n ≥ n0 and because un is
increasing, we deduce that u∞(x) > φ(x) for x /∈ D∞ which concludes the proof.

Remark 5. Because V is finite, the sequence (un)n is constant after some n0 ≤ card(V ) and therefore
the procedure stops after at most card(V ) steps.

Example 6. Let (Xt)t≥0 be a birth-death process on the set of integers VN = {−N, . . . , N} stopped the
first time it hits −N or N . We define for x ∈ VN \ {−N,N},

L(x, x+ 1) = λ ≥ 0,
L(x, x− 1) = µ ≥ 0,

L(x) = λ+ µ,

and L(−N) = L(N) = 0. We define φ(x) = max(x, 0) as the reward function.
Clearly, u(−N) = 0 = φ(−N) and u(N) = N = φ(N) thus the stopping region contains the extreme
points {−N,N}. We define

D1 B {x ∈ VN , L[φ](x)− rφ(x) ≤ 0}.

A direct computation shows that L[φ](x) − rφ(x) = 0 for −N + 1 ≤ x ≤ −1, L[φ](0) − rφ(0) = λ and
L[φ](x)− rφ(x) = λ− µ− rx for 1 ≤ x ≤ N − 1. Therefore,

D1 = {−N,−N + 1, . . . ,−1} ∪ {x1, . . . , N},

with x1 = dλ−µ
r
e, where dxe is the least integer greater than or equal to x. In particular, when λ ≤ µ, we

have x1 = 0 and thus D1 = VN = D. Assume now that λ > µ. To start the induction, we define

τ1 B inf{t ≥ 0 : Xt ∈ D1}

and

u1(x) B Ex[e−rτ1φ(Xτ1)11τ1<+∞]
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and we construct u1 by solving for 0 ≤ x ≤ x1 − 1, the linear equation

λu1(x+ 1) + µu1(x− 1)− (r + λ+ µ)u1(x) = 0 with u1(−1) = 0 and u1(x1) = x1.

The function u1 is thus explicit and denoting

∆ B (r + λ+ µ)2 − 4λµ > 0,

θ1 =
r + λ+ µ−

√
∆

2λ
and θ2 =

r + λ+ µ+
√

∆

2λ
,

we have

u1(x) = x1
θx+1
2 − θx+1

1

θx1+1
2 − θx1+1

1

.

Observe that θ2 + θ1 > 0 and thus L[u1](−1) − ru1(−1) = λu1(0) > 0. As a consequence, −1 does not
belong to the set

D2 = {x ∈ D1, L[u1](x)− ru1(x) ≤ 0}.

Therefore, if L[u1](x1)− ru1(x1) = µu1(x1 − 1) + λ− (r + µ)x1 ≤ 0, we have

D2 = {−N,−N + 1, . . . ,−2} ∪ {x1, . . . , N},

or, if L[u1](x1)− ru1(x1) = µu1(x1 − 1) + λ− (r + µ)x1 > 0

D2 = {−N,−N + 1, . . . ,−2} ∪ {x1 + 1, . . . , N}.

Following our recursive procedure, after N steps, we shall have eliminated the negative integers and thus
obtain

DN = {−N} ∪ {xN , . . . , N}

for some x1 ≤ xN ≤ N . Note that for −N ≤ x ≤ xN , we have

uN(x) = xN
θx+N2 − θx+N1

θxN+N
2 − θxN+N

1

.

If λuN(xn + 1) + µuN(xN − 1) − (r + λ + µ)uN(xN) = λ − (r + µ)xN + µxN
θ
xN−1+N
2 −θxN−1+N

1

θ
xN+N
2 −θxN+N

1

≤ 0, the
stopping region coincides with DN , else we define

DN+1 = {−N} ∪ {xN+1, . . . , N}, with xN+1 = xN + 1

and

uN+1(x) = xN+1
θx+N2 − θx+N1

θ
xN+1+N
2 − θxN+1+N

1

and we repeat the procedure.
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4 General state space

4.1 Countable State Space

When considering countable finite state space, Dynkin’s formula that has been used in the proofs of
Lemma 2 and 3 is not directly available, because nothing prevents the payoff to take arbitrarily large
values. Nevertheless, we will adapt the strategy used in the case of a finite state space to build a monotone
dynamic approach to the value function in the case of a countable finite state space.
Hereafter, we set some payoff function φ ∈ F̄+ \ {0} and r > 0. We will construct a subset D∞ ⊂ V and
a function u∞ ∈ F̄+ by the following recursive algorithm.
We begin by taking D0 B V and u0 B φ. Next, let us assume that Dn ⊂ V and un ∈ F̄+ have been built
for some n ∈ Z+ such that

∀x ∈ V \Dn, (r + L(x))un(x) = K[un](x) (4.1)
∀x ∈ Dn, un(x) = φ(x). (4.2)

Observe that it is trivially true for n = 0. Then, we define the subset Dn+1 as follows

Dn+1 B {x ∈ Dn : K[un](x) ≤ (r + L(x))un(x)} (4.3)

where the inequality is understood in R̄+.
Next, we consider the stopping time

τn+1 B inf{t ≥ 0 : Xt ∈ Dn+1}

with the usual convention that inf ∅ = +∞. For m ∈ Z+, define furthermore the stopping time

τ
(m)
n+1 B σm ∧ τn+1

and the function u(m)
n+1 ∈ F̄+ given by

∀ x ∈ V, u
(m)
n+1(x) B Ex[exp(−rτ (m)

n+1)un(X
τ
(m)
n+1

)]. (4.4)

Remark 7. The non-negative random variable exp(−rτ (m)
n+1)un(X

τ
(m)
n+1

) is well-defined, even if τ (m)
n+1 = +∞,

since the convention 0 × (+∞) = 0 imposes that exp(−rτ (m)
n+1)un(X

τ
(m)
n+1

) = 0 whatever would be X
τ
(m)
n+1

,

which is not defined in this case. The occurrence of τ (m)
n+1 = +∞ should be quite exceptional: we have

{τ (m)
n+1 = +∞} = {τn+1 = +∞ and L(X

τ
(m)
n+1

) = 0}

in particular it never happens if L(x) > 0 for all x ∈ V , i.e. when 4 is the only possible absorbing point
for X.

Our first result shows that the sequence (u
(m)
n+1)m∈Z+ is non-decreasing.

Lemma 8. We have

∀ m ∈ Z+, ∀ x ∈ V, u
(m)
n+1(x) ≤ u

(m+1)
n+1 (x)

10



Proof. We first compute

u
(m+1)
n+1 (x) B Ex[exp(−rτ (m+1)

n+1 )un(X
τ
(m+1)
n+1

)]

= Ex[1τn+1≤σm exp(−rτ (m+1)
n+1 )un(X

τ
(m+1)
n+1

)] + Ex[1τn+1>σm exp(−rτ (m+1)
n+1 )un(X

τ
(m+1)
n+1

)]

Note that on the event {τn+1 ≤ σm}, we have that τ (m+1)
n+1 = τn+1 = τ

(m)
n+1, so the first term in the above

r.h.s. is equal to

Ex[1τn+1≤σm exp(−rτ (m+1)
n+1 )un(X

τ
(m+1)
n+1

)] = Ex[1τn+1≤σm exp(−rτ (m)
n+1)un(X

τ
(m)
n+1

)] (4.5)

On the event {τn+1 > σm}, we have that τ (m+1)
n+1 = τ

(m)
n+1+σ1◦θτ (m)

n+1
, where θt, for t ≥ 0, is the shift operator

by time t ≥ 0 on the underlying canonical probability space D(R+, V̄ ) of RCLL trajectories. Using the
Strong Markov property of X, we get that

Ex[1τn+1>σm exp(−rτ (m+1)
n+1 )un(X

τ
(m+1)
n+1

)] = Ex
[
1τn+1>σm exp(−rτ (m)

n+1)EX
τ
(m)
n+1

[exp(−rσ1)un(Xσ1)]

]
(4.6)

For y ∈ V , consider two situations:

• if L(y) = 0, we have a.s. σ1 = +∞ and as in Remark 7, we get

Ey[exp(−rσ1)un(Xσ1)] = 0

• if L(y) > 0, we compute, in R̄+,

Ey[exp(−rσ1)un(Xσ1)] =

∫ +∞

0

exp(−rs)L(y) exp(−L(y)s)
∑

z∈V \{y}

L(y, z)

L(y)
un(z)

=

∫ +∞

0

exp(−rs) exp(−L(y)s)
∑

z∈V \{y}

L(y, z)un(z)

=
1

r + L(y)
K[un](y)

By our conventions, the equality

Ey[exp(−rσ1)un(Xσ1)] =
1

r + L(y)
K[un](y) (4.7)

is then true for all y ∈ V .
For y ∈ Dn, due to (4.1), the r.h.s. is equal to un(y). For y ∈ Dn \Dn+1, by definition of Dn+1 in (4.3),
the r.h.s. of (4.7) is bounded below by un(y). It follows that for any y 6∈ Dn+1,

Ey[exp(−rσ1)un(Xσ1)] ≥ un(y)

On the event {τn+1 > σm}, we have X
τ
(m)
n+1
6∈ Dn+1 and thus

EX
τ
(m)
n+1

[exp(−rσ1)un(Xσ1)] ≥ un(X
τ
(m)
n+1

)

11



Coming back to (4.6), we deduce that

Ex[1τn+1>σm exp(−rτ (m+1)
n+1 )un(X

τ
(m+1)
n+1

)] ≥ Ex[1τn+1>σm exp(−rτ (m)
n+1)un(X

τ
(m)
n+1

)]

and taking into account (4.5), we conclude that

u
(m+1)
n+1 (x) ≥ Ex[1τn+1≤σm exp(−rτ (m)

n+1)un(X
τ
(m)
n+1

)] + Ex[1τn+1>σm exp(−rτ (m)
n+1)un(X

τ
(m)
n+1

)]

= Ex[exp(−rτ (m)
n+1)un(X

τ
(m)
n+1

)]

= u
(m)
n+1(x)

The monotonicity property of Lemma 8 enables us to define the function un+1 ∈ F̄+ via

∀ x ∈ V, un+1(x) B lim
m→∞

u
(m)
n+1(x)

ending the iterative construction of the pair (Dn+1, un+1) from (Dn, un). It remains to check that:

Lemma 9. The assertion (4.1) is satisfied with n replaced by n+ 1.

Proof. Consider x ∈ V \Dn+1 for which τ (m+1)
n+1 ≥ σ1, Px a. s.. For the Markov process X starting from

x, we have for any m ∈ Z+,

τ
(m+1)
n+1 = σ1 + τ

(m)
n+1 ◦ σ1

The Strong Markov property of X then implies that

u
(m+1)
n+1 (x) = Ex

[
exp(−rσ1)EXσ1 [exp(−rτ (m)

n+1)un(X
τ
(m)
n+1

)]
]

= Ex
[
exp(−rσ1)u(m)

n+1(Xσ1)
]

=
1

r + L(x)
K[u

(m)
n+1](x)

by resorting again to the computations of the proof of Lemma 8. Monotone convergence insures that

lim
m→∞

K[u
(m)
n+1](x) = K[un+1](x)

so we get that for x ∈ V \Dn+1,

(r + L(x))un+1(x) = K[un+1](x)

as wanted.

The sequence (Dn)n∈Z+ is non-increasing by definition, as a consequence we can define

D∞ B
⋂
n∈Z+

Dn

12



From Lemma 8, we deduce that for any n ∈ Z+,

∀ x ∈ V, un+1(x) ≥ u
(0)
n+1(x)

= un(x)

It follows that we can define the function u∞ ∈ F̄+ as the non-decreasing limit

∀ x ∈ V, u∞(x) = lim
n→∞

un(x) ∈ R̄+

The next two propositions establish noticeable properties of the pair (D∞, u∞):

Proposition 10. We have:

∀ x ∈ D∞,
{

u∞(x) = φ(x)
K[u∞](x) ≤ (r + L(x))u∞(x)

∀ x ∈ V \D∞,
{

u∞(x) ≥ φ(x)
K[u∞](x) = (r + L(x))u∞(x)

Proof. Since u0 = φ, the fact that (un)n∈Z+ is a non-decreasing sequence implies that u∞ ≥ φ. To show
there is an equality on D∞, it is sufficient to show that

∀ n ∈ Z+, ∀ x ∈ Dn, un(x) = φ(x)

This is proven by an iterative argument on n ∈ Z+. For n = 0, it corresponds to the equality u0 = φ.
Assume that un = φ on Dn, for some n ∈ Z+. For x ∈ Dn+1, we have τn+1 = 0 and thus for any m ∈ Z+,
we get τ (m)

n+1 = 0. From (4.4), we deduce that

∀ x ∈ Dn+1, u
(m)
n+1 = un(x) = φ(x)

Letting m go to infinity, it yields that un+1 = φ on Dn+1.
Consider x ∈ V \D∞. There exists N(x) ∈ Z+ such that for any n ≥ N(x), we have x ∈ V \Dn. Then
passing at the limit for large n in (4.1), we get, via another use of monotone convergence, that

∀ x ∈ V \D∞, (r + L(x))u∞(x) = K[u∞](x)

For x ∈ D∞, we have x ∈ Dn+1 for any n ∈ Z+ and thus from (4.3), we have K[un](x) ≤ (r+L(x))un(x).
Letting n go to infinity, we deduce that

∀ x ∈ D∞, K[u∞](x) ≤ (r + L(x))u∞(x)

In fact, u∞ is a strict majorant of φ on V \D∞ as proved in the following

Proposition 11. We have

∀ x ∈ V \D∞, u∞(x) > φ(x)

It follows that

D∞ = {x ∈ V : u∞(x) = φ(x)}

13



Proof. Consider x ∈ V \D∞, there exists a first integer n ∈ Z+ such that x ∈ Dn and x 6∈ Dn+1. From
(4.1) and x ∈ V \Dn+1, we deduce that

K[un+1](x) = (r + L(x))un+1(x)

From (4.3) and x ∈ V \Dn+1, we get

K[un](x) > (r + L(x))un(x)

Putting together these two inequalities and the fact that K[un+1] ≥ K[un], we end up with

(r + L(x))un+1(x) > (r + L(x))un(x)

which implies that

φ(x) ≤ un(x)

< un+1(x)

≤ u∞(x)

namely φ(x) < u∞(x).
This argument shows that

{x ∈ V : u∞(x) = φ(x)} ⊂ D∞

The reverse inclusion is deduced from Proposition 10.

Another formulation of the functions un, for n ∈ N, will be very useful for the characterization of their
limit u∞. For n,m ∈ Z+, let us modify Definition (4.4) to define a function ũ(m)

n+1 as

∀ x ∈ V, ũ
(m)
n+1(x) B Ex

[
exp(−rτ (m)

n+1)φ(X
τ
(m)
n+1

)
]

(4.8)

A priori there is no monotonicity with respect to m, so we define

∀ x ∈ V, ũn+1(x) B lim inf
m→∞

ũ
(m)
n+1(x)

A key observation is:

Lemma 12. For any n ∈ N, we have ũn = un.

Proof. Since for any n ∈ Z+, we have un ≥ φ, we get from a direct comparison between (4.4) and (4.8)
that for any m ∈ Z+, ũ

(m)
n+1 ≤ u

(m)
n+1, so letting m go to infinity, we deduce that

ũn+1 ≤ un+1 (4.9)

The reverse inequality is proven by an iteration over n.
More precisely, since u0 = φ, we get by definition that ũ1 = u1.

14



Assume that the equality ũn = un is true for some n ∈ N, and let us show that ũn+1 = un+1. For any
m ∈ Z+, we have

∀ x ∈ V, u
(m)
n+1(x) = Ex

[
exp(−rτ (m)

n+1)un(X
τ
(m)
n+1

)
]

= Ex
[
exp(−rτ (m)

n+1)ũn(X
τ
(m)
n+1

)
]

= Ex
[
exp(−rτ (m)

n+1) lim inf
l→∞

ũ(l)n (X
τ
(m)
n+1

)
]

≤ lim inf
l→∞

Ex
[
exp(−rτ (m)

n+1)ũ
(l)
n (X

τ
(m)
n+1

)
]

where we used Fatou’s lemma. From (4.8) and the Strong Markov property, we deduce that

Ex
[
exp(−rτ (m)

n+1)ũ
(l)
n (X

τ
(m)
n+1

)
]

= Ex
[
exp(−rτ (m)

n+1)EX
τ
(m)
n+1

[
exp(−rτ (l)n+1)φ(X

τ
(l)
n+1

)
]]

= Ex
[
exp(−rτ (m+l)

n+1 )φ(X
τ
(m+l)
n+1

)
]

It follows that

u
(m)
n+1(x) ≤ lim inf

l→∞
Ex
[
exp(−rτ (m+l)

n+1 )φ(X
τ
(m+l)
n+1

)
]

= ũn+1(x)

It remains to let m go to infinity to get un+1 ≤ ũn+1 and un+1 = ũn+1, taking into account (4.9).

Let T be the set of R̄+-valued stopping times with respect to the filtration generated by X. For τ ∈ T
and m ∈ Z+, we define

τ (m) B σm ∧ τ

Extending the observation of Remark 7, it appears that for any m ∈ Z+, the quantity

∀ x ∈ V, u(m)(x) B sup
τ∈T

Ex
[
exp(−rτ (m))φ(Xτ (m))

]
(4.10)

is well-defined in R̄+. It is non-decreasing with respect to m ∈ Z+, since for any τ ∈ T and any m ∈ Z+,
τ (m) can be written as τ̃ (m+1), with τ̃ B τ (m) ∈ T . Thus we can define a function û by

∀ x ∈ V, û(x) B lim
m→∞

u(m)(x)

By definition of the value function u given by (2.2), we have u(m)(x) ≤ u(x) for every m ∈ Z+ and thus
û(x) ≤ u(x) for every x ∈ V . To show the reverse inequality, consider any stopping time τ ∈ T and apply
Fatou Lemma to get

Ex [exp(−rτ)φ(Xτ )] = Ex
[
lim inf
m→∞

exp(−rτ (m))φ(Xτ (m))
]

≤ lim inf
m→∞

Ex
[
exp(−rτ (m))φ(Xτ (m))

]
≤ lim inf

m→∞
u(m)(x)

≤ û(x).
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Therefore, the value function u coincides with the limit of the sequence (u(m))m∈Z+ . At this stage, we
recall the definition of the stopping region

D B {x ∈ V : u(x) = φ(x)} (4.11)

We are in a position to state our main result

Theorem 13. We have

u∞ = u

D∞ = D.

Proof. It is sufficient to show that u∞ = u, since D∞ = D will then follow from Proposition 11 and (4.11).
We begin by proving the inequality u∞ ≤ u. Fix some x ∈ V . By considering in (4.10) the stopping time
τ B τn+1 defined in (4.4), we get for any given m ∈ Z+,

u(m)(x) ≥ Ex
[
exp(−rτ (m)

n+1)φ(X
τ
(m)
n+1

)
]

= ũ
(m)
n+1(x)

considered in (4.8). Taking Lemma 12 into account, we deduce that

u(m)(x) ≥ u
(m)
n+1(x)

and letting m go to infinity, we get u(x) ≥ un+1(x). It remains to let n go to infinity to show that
u(x) ≥ u∞(x).
To prove the reverse inequality u∞ ≥ u, we will show by induction that for every x ∈ V , every m ∈ Z+

and every τ ∈ T , we have

Ex [exp(−r(σm ∧ τ)u∞(Xσm∧τ )] ≤ u∞(x). (4.12)

For m = 1, we have, because u∞(Xτ ) = u∞(x) on the set {τ < σ1},

Ex [exp(−r(σ1 ∧ τ)u∞(Xσ1∧τ )] = Ex [exp(−rσ1)u∞(Xσ1)11σ1≤τ ] + Ex [exp(−rτ)u∞(Xτ )11τ<σ1 ]

= Ex [exp(−rσ1)u∞(Xσ1)11σ1≤τ ] + u∞(x)Ex [exp(−rτ)11τ<σ1 ]

= Ex [exp(−rσ1)u∞(Xσ1)] + u∞(x)E [exp(−rτ)11σ1>τ ]

− E [exp(−rσ1)u∞(Xσ1)11σ1>τ ] .

Focusing on the third term, we observe, that on the set {τ < σ1}, we have σ1 = τ + σ̂1 ◦ θτ where σ̂1
is an exponential random variable with parameter L(x) independent of τ . Therefore, the Strong Markov
property yields

E [exp(−rσ1)u∞(Xσ1)11σ1>τ ] = Ex [exp(−rτ)Ex [exp(−rσ̂1)u∞(Xσ̂1)] 11σ1>τ ]

=
K[u∞](x)

r + L(x)
Ex [exp(−rτ)11σ1>τ ] .
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Hence,

Ex [exp(−r(σ1 ∧ τ)u∞(Xσ1∧τ )] =
K[u∞](x)

r + L(x)
(1− Ex [exp(−rτ)11σ1>τ ]) + u∞(x)Ex [exp(−rτ)11σ1>τ ]

≤ u∞(x)

where the last inequality follows from Proposition 10. This proves the assertion for m = 1. Assume now
that for every x ∈ V and every τ ∈ T , we have

Ex [exp(−r(σm ∧ τ)u∞(Xσm∧τ )] ≤ u∞(x).

Observing that σm+1 ∧ τ = σm ∧ τ + (σ1 ∧ τ) ◦ θσm∧τ , we get

Ex
[
exp(−r(σm+1 ∧ τ)u∞(Xσm+1∧τ )

]
= Ex

[
exp(−r(σm ∧ τ)EXσm∧τ (exp(−r(σ1 ∧ τ)u∞(Xσ1∧τ ))

]
≤ Ex [exp(−r(σm ∧ τ)u∞(Xσm∧τ )]

≤ u∞(x),

which ends the argument by induction. To conclude, we take the limit at the right-hand side of inequality
(4.12) to obtain u(x) ≤ u∞(x) for every x ∈ V .

Remark 14. Because we have financial applications in mind, we choose to work directly with payoffs of
the form e−rtφ(Xt). Observe, however, that our methodology applies when r = 0 pending the assumption
φ(Xτ ) = 0 on the set {τ = +∞}.

We close this section by giving a very simple example on the countable state space Z with a bounded
reward function φ such that the recursive algorithm does not stop in finite time because it only eliminates
one point at each step.

Example 15. Let (Xt)t≥0 be a birth-death process with the generator on Z
L(x, x+ 1) = λ ≥ 0,
L(x, x− 1) = µ ≥ 0,

L(x) = λ+ µ,

We define the reward function as

φ(x) =


0 for x ≤ 0
1 for x = 1
2 for x ≥ 2.

We assume r = 0 and λ ≥ µ. Therefore, D1 = Z \ {1}. It is easy to show that

u1(1) =
2λ

λ+ µ
, and thus L[u1](0) = λu1(1) > 0.

Therefore, D2 = Z \ {1, 0}. At each step n ∈ Z+, because un(1 − n) > 0, the algorithm will only remove
the integer 1 − n in the set Dn. Therefore, it will not reach the stopping region D = {2, 3, . . .} in finite
time.
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4.2 Measurable state space

Up to now, we have only considered continuous-time Markov chains with a discrete state space. But, it
is not difficult to see that the results of the previous section can be extended to the case where the state
space of the Markov chain is a measurable space. More formally, we consider on a measurable state space
(V,V), a non-negative finite kernel K. It is a mapping

K : V × V 3 (x, S) 7→ K(x, S) ∈ R+

such that

• for any x ∈ V , K(x, ·) is a non-negative finite measure on (V,V) (because K(x, V ) ∈ R+),

• for any S ∈ V , K(·, S) is a non-negative measurable function on (V,V).

For any probability measure m on V , let us associate to K a continuous-time Markov process X B (Xt)t≥0
whose initial distribution ism. First we set σ0 B 0 andX0 is sampled according tom. Then we consider an
exponential random variable σ1 of parameter K(X0) B K(X0, V ). If K(X0) = 0, we have a.s. σ1 = +∞
and we take Xt B X0 for all t > 0, as well as σn B +∞ for all n ∈ N, n ≥ 2. If K(X0) > 0, we
take Xt B X0 for all t ∈ (0, σ1) and we sample Xσ1 on V \ {X0} according to the probability distribution
K(X0, ·)/K(X0). Next, still in the case where σ1 < +∞, we sample an inter-time σ2−σ1 as an exponential
distribution of parameter K(Xσ1). If K(Xσ1) = 0, we have a.s. σ2 = +∞ and we take Xt B Xσ1 for all
t ∈ (σ1,+∞), as well as σn B +∞ for all n ∈ N, n ≥ 3. If K(Xσ1) > 0, we take Xt B X0 for all t ∈ (σ1, σ2)
and we sample Xσ2 on V \ {Xσ1} according to the probability distribution (K(Xσ1 , x)/K(Xσ1))x∈V \{Xσ1}.
We keep on following the same procedure, where all the ingredients are independent, except for the
explicitly mentioned dependences.
In particular, we get a non-decreasing family (σn)n∈Z+ of jump times taking values in R̄+ B R+ t {+∞}.
Denote the corresponding exploding time

σ∞ B lim
n→∞

σn ∈ R̄+

When σ∞ < +∞, we must still define Xt for t ≥ σ∞. So introduce 4 a cemetery point not belonging to
V and denote V̄ B V t {4}. We take Xt B 4 for all t ≥ σ∞ to get a V̄ -valued process X.
Let B be the space of bounded and measurable functions from V to R. For f ∈ B, the infinitesimal
generator of X = (Xt)t≥0 is given by

L[f ](x) =

∫
V

f(y)K(x, dy)−K(x)f(x) B K[f ](x)−K(x)f(x).

As in Section 4.1, we set some payoff function φ ∈ F̄+\{0} and r > 0. We will construct a subset D∞ ⊂ V
and a function u∞ ∈ F̄+ by our recursive algorithm as follows:
We begin by taking D0 B V and u0 B φ. Next, let us assume that Dn ⊂ V and un ∈ F̄+ have been built
for some n ∈ Z+ such that

∀x ∈ V \Dn, (r + L(x))un(x) = K[un](x)

∀x ∈ Dn, un(x) = φ(x).

Observe that it is trivially true for n = 0. Then, we define the subset Dn+1 as follows

Dn+1 B {x ∈ Dn : K[un](x) ≤ (r +K(x))un(x)}
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where the inequality is understood in R̄+.
Next, we consider the stopping time

τn+1 B inf{t ≥ 0 : Xt ∈ Dn+1}

with the usual convention that inf ∅ = +∞. It is easy to check that the proofs of Section 4.1. are directly
deduced.

5 Applications
The objective of this section is to show on the study of two examples, how the forward algorithm can be
used in practice.

5.1 Optimal stopping with random intervention times

We revisit the paper by Dupuis and Wang [6] where they consider a class of optimal stopping problems
that can only be stopped at Poisson jump times3. Consider a probability space (Ω,F B (Ft)t≥0,P)
satisfying the usual conditions. For x > 0, let (Sxt )t≥0 be a geometric Brownian motion solving the
stochastic differential equation

dSxt
Sxt

= b dt+ σ dWt, Sx0 = x,

where W = (Wt)t≥0 is a standard F -Brownian motion and b and σ > 0 are constants. When x = 0,
we take S0

t = 0 for all times t ≥ 0. The probability space is rich enough to carry a F -Poisson process
N = (Nt)t≥0 with intensity λ > 0 that is assumed to be independent from W . The jump times of the
Poisson process are denoted by Tn with T0 = 0
In [6], the following optimal stopping problem is considered

u(0, x) = sup
τ∈S0

E
[
e−rτ (Sxτ −K)+

]
,

where r > b and S0 is the set of F -adapted stopping time τ for which τ(ω) = Tn(ω) for some n ∈ Z+.
Similarly to [6], let us define Gn = FTn and the Gn-Markov chain Zn = (Tn, S

x
Tn

) to have

u(0, x) = sup
N∈N0

E [ψ(ZN)|Z0 = (0, x)] , where ψ(t, x) = e−rt(x−K)+

and N0 is the set of G-stopping time with values in Z+. To enter the continuous-time framework of the
previous sections, we use the following Remark with an independent Poisson process Ñ = (Ñt)t with
intensity 1.

Remark 16. Our methodology also applies for discrete Markov chains according to the Poissonization
technique that we recall briefly. Consider a Poisson process N = (Nt)t of intensity λ and a discrete

3Let us mention two recent generalizations of the problem by Lempa [16] and Menaldi and Robin [17] for which the
forward algorithm is applicable
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Markov chain (Xn)n∈Z+ with transition matrix or kernel P . Assume that (Xn)n∈Z+ and N = (Nt)t are
independent. Then, the process

Xt =
Nt∑
n=0

Xn

is a continuous-time Markov chain with generator L B λ(P − Id).

To start our recursive approach, we need to compute the infinitesimal generator L̃ of the continuous
Markov chain (Z̃t =

∑Ñt
i=0 Zn)t≥0 with state space V = R+ × R+ in order to define

D̃1 B {(t, x) ∈ V ; L̃[ψ](t, x) ≤ 0}.

Let f be a bounded and measurable function on V . According to Remark 16, we have,

L̃[f ](t, x) = λ

∫ +∞

0

E [f(t+ u, Sxu)] e−λu du− f(t, x).

Because ψ(t, x) = e−rtφ(x) with φ(x) = (x−K)+, we have

L̃[ψ](t, x) = e−rt (λRr+λ[φ](x)− φ(x)) ,

where

Rr+λ[φ](x) =

∫ +∞

0

E[φ(Sxu)]e−(r+λ)u du

is the resolvent of the continuous Markov process Sx = (Sxt )t≥0. Therefore, we have D̃1 = R+ ×D1 with

D1 B {x ∈ R+, λRr+λ[φ](x)− φ(x) ≤ 0}.

First, we observe that D1 is an interval [x1,+∞[. Indeed, let us define

η(x) B λRr+λ[φ](x)− φ(x).

Clearly, η(x) > 0 for x ≤ K. Moreover, for x > K,

η′(x) =

(
λ

∫ +∞

0

∂xE[φ(Sxu)]e−(r+λ)u du

)
− φ′(x).

It is well-known that ∂xE[φ(Sxu)] ≤ ebu for any x ≥ 0 and thus, because r > b,

η′(x) ≤ λ

r − b+ λ
− 1 < 0,

which gives that η is a decreasing function on [K,+∞). It follows that if D1 is not empty, then it will be
an interval of the form [x1,+∞). Now,

η(x) = x

(
λ

∫ +∞

0

E[φ(Sxu)]

x
e−(r+λ)u du

)
− φ(x).
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Because
E[φ(Sxu)]

x
≤ ebu, we have η(x) ≤

(
λ

r−b+λ − 1
)
x + K and therefore, η(x) ≤ 0 for x ≥

(
1 + λ

r−b

)
K

which proves that D1 is not empty.
We will now prove by induction that for every n ∈ N, D̃n = R+ × Dn with Dn = [xn,+∞) and xn > K.
Assume that it is true for some n ∈ N. Following our monotone procedure with Remark 14, we define the
solution un+1 : R+ × R+ → R of the equation{

L̃[un+1] = 0 , on D̃c
n

un+1 = ψ , on D̃n

and define
D̃n+1 B {(t, x) ∈ D̃n, L̃[un+1] ≤ 0}.

Let us check that D̃n+1 = R+ ×Dn+1 with Dn+1 = [xn+1,+∞) and xn+1 ≥ xn.
To do this, we look for a function of the form

∀ (t, x) ∈ R+ × R+, un+1(t, x) = exp(−rt)vn+1(x) (5.1)

We end up with the following equation on vn+1:{
λRr+λ[vn+1]− vn+1 = 0 , on Dc

n

vn+1 = φ , on Dn
(5.2)

or equivalently, (see [9], Proposition 2.1 page 10){
LS[vn+1]− rvn+1 = 0 , on Dc

n

vn+1 = φ , on Dn

where LS is the infinitesimal generator of Sx = (Sxt )t≥0, that is, acting on any f ∈ C2(R+) via

LS[f ](x) =
σ2x2

2
f ′′(x) + bxf ′(x),

With this formulation we see that vn+1 is given by

∀ x ∈ R+, vn+1(x) = Ex[exp(−rτxxn)φ(Sxτxn )]

where τxn is the first hitting time of Dn = [xn,+∞[ by our induction hypothesis.
By definition, we have

D̃n+1 B {(t, x) ∈ D̃n : L̃[un+1](t, x) ≤ 0}
= R+ × {x ∈ Dn : λRr+λ[vn+1](x)− vn+1(x) ≤ 0}
= R+ × {x ∈ Dn : λRr+λ[vn+1](x)− φ(x) ≤ 0}

thus D̃n+1 = R+ ×Dn+1 where

Dn+1 B {x ∈ Dn : ζn+1(x) ≤ 0}

with

∀ x ≥ 0, ζn+1(x) B λRr+λ[vn+1](x)− φ(x)
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To prove that Dn+1 is of the form [xn+1,+∞), we begin by showing that

∀ y ≥ x ≥ xn, ζn+1(x) = 0 ⇒ ζn+1(y) ≤ 0 (5.3)

To do so, introduce the hitting time

τ yx B inf{t ≥ 0 : Syt = x}

Recall that the solution of (5.1) is given by

∀ x ∈ R+, ∀ t ≥ 0, Sxt = x exp

(
σWt −

σ2

2
t+ bt

)
It follows that

τ yx = inf{t ≥ 0 : Wt −
σ2

2
t+ bt = ln(x/y)}

In particular τ yx takes the value +∞ with positive probability when b > σ2/2, but otherwise τ yx is a.s.
finite. Nevertheless, taking into account that for any z ≥ xn, we have vn+1(z) = φ(z), we can always write
for y ≥ x ≥ xn:

Rr+λ[vn+1](y)

= E
[∫ ∞

0

vn+1(S
y
u) exp(−(r + λ)u) du

]
= E

[∫ τyx

0

vn+1(S
y
u) exp(−(r + λ)u) du+

∫ ∞
τyx

vn+1(S
y
u) exp(−(r + λ)u) du

]

= E

[∫ τyx

0

φ(Syu) exp(−(r + λ)u) du

]
+ E

[
exp(−(r + λ)τ yx )

∫ ∞
0

vn+1(S
y
τyx+u

) exp(−(r + λ)u) du

]

= E

[∫ τyx

0

φ(Syu) exp(−(r + λ)u) du

]
+ E [exp(−(r + λ)τ yx )]Rr+λ[vn+1](x)

where we use the strong Markov property with the stopping time τ yx . Reversing the same argument, with
vn+1 replaced by φ, we deduce that

Rr+λ[vn+1](y) = E

[∫ τyx

0

φ(Syu) exp(−(r + λ)u) du

]
+ E [exp(−(r + λ)τ yx )]Rr+λ[φ](x)

+E [exp(−(r + λ)τ yx )] (Rr+λ[vn+1](x)−Rr+λ[φ](x))

= Rr+λ[φ](y) + E [exp(−(r + λ)τ yx )] (Rr+λ[vn+1](x)−Rr+λ[φ](x))

Thus, we have

ζn+1(y) = λRr+λ[φ](y)− φ(y) + λE [exp(−(r + λ)τ yx )] (Rr+λ[vn+1](x)−Rr+λ[φ](x))

In the first part of the above proof, to get the existence of x1, we have shown that the mapping ζ1 B
Rr+λ[φ]− φ is non-increasing on [x1,+∞) ⊃ [xn,+∞), and in particular

λRr+λ[φ](y)− φ(y) ≤ λRr+λ[φ](x)− φ(x)

= ζ1(x)
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so we get

ζn+1(y) ≤ ζ1(x)E [exp(−(r + λ)τ yx )] (λRr+λ[vn+1](x)− λRr+λ[φ](x))

Assume now that ζn+1(x) = 0. It means that

λRr+λ[vn+1](x) = φ(x)

implying that

ζn+1(y) ≤ ζ1(x) + E [exp(−(r + λ)τ yx )] (φ(x)− λRr+λ[φ](x))

≤ (1− E [exp(−(r + λ)τ yx )]) ζ1(x)

≤ 0

since x ≥ xn ≥ x1 so that ζ1(x) ≤ 0.
This proves (5.3) and ends the induction argument.
According to Proposition 10 and Theorem 13 (more precisely its extension given in Subsection 4.2), the
value function u and the stopping set D = {x ∈ R+, u(x) = φ(x)} satisfy u(t, x) = e−rtv(x), where

v(x) = λRr+λ[v](x) on R+ \ D,

v = φ on D

and

D =
⋂
n∈N

[xn,+∞[.

The stopping set is an interval [x∗,+∞[ that may be empty if x∗ is not finite. Using again [9], Proposition
2.1, we obtain

LS[v](x)− rv(x) = 0 ∀x ∈ R+ \ D.

Therefore, the function w given by w(x) B λRr+λ[v](x) for any x ∈ (0,+∞) also satisfies

LS[w](x)− rw(x) = 0 ∀x ∈ R+ \ D.

Moreover,

(−LS + (r + λ))[w](x) = λv(x) = λφ(x) ∀x ∈ D,

which yields

LS[w](x)− rw(x) + λ(φ(x)− w(x)) = 0 ∀x ∈ D.

This corresponds to the variational inequality (3.4)-(3-9) page 6 solved in [6], establishing that D is
non-empty.
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5.2 Stochastic time constraints

Our last example builds on the paper [7]. Let us consider a standard Brownian motion B B (Bt)t≥0
on a filtered probability space (Ω,F ,Ft,P), and denote by T0 the set of all Ft-stopping times. We are
interested in the following optimal stopping problem with stochastic constraints

v(x) = sup
τ∈TZ

E
[
φ(Xx

τ∧τ0)
]
, (5.4)

where x ≥ 0, Xx
t = x+Bt for all t ≥ 0, φ is a bounded function, τ0 = inf{t ≥ 0, Xx

t = 0}, and

TZ+ = {τ ∈ T0, such that Xx
τ ∈ Z+}.

In words, the holder of such an American option can only exercise when the Brownian motion has integer
values, and this as long as the Brownian remains non-negative. The idea is to embed the constrained
optimal stopping problem (5.4) into an unconstrained stopping problem written on a birth-death process
killed at 0. To do this, let us define the continuous increasing process

Lt B
∑
n∈Z+

L
(n)
t (X) (5.5)

where L(n)
t (X) is the local time of X at n ∈ Z+, and its pseudo-inverse

At = inf{s > 0, Ls > t}.

Let us define the process Y B (Yt)t≥0 B (Xx
At

)t≥0 starting from Xx
A0
∈ Z+. The process (Yt)t≥0 is a

continuous-time Markov chain with values in Z+ whose generator is denoted by L. Observe that when
x /∈ Z+ and in some sense, Y has immediately jumped from the entrance state x at 0− to bxc or bxc+ 1,
where bxc is the integer part of x. Because the Brownian motion has continuous paths, it is clearly
a birth-death process. By the strong Markov property and the translation invariance of the Brownian
motion, the infinitesimal generator of X is fully determined by the two numbers: L(n, n + 1) = L(1, 2)
and L(n, n− 1) = L(1, 0) for all n ≥ 1. Moreover, by symmetry, we have L(1, 2) = L(1, 0).

Proposition 17. Let T B inf{t ≥ 0, |Bt| = 1} be the hitting time of {−1, 1} by the Brownian motion.
We have

L(1) =
1

E
(
L
(0)
T (B)

) = 1

where we recall that L(1) = L(1, 2) +L(1, 0) is the total jump rate of Y from 1 (and from all n ≥ 1). We
deduce that L(1, 2) = L(1, 0) = 1

2
.

Proof. Take any n ≥ 1 and consider τ B inf{t ≥ 0 : |Yt − n| = 1}, when Y0 = n = Xn
0 . Note that for

any t ≥ 0, in the r.h.s. of (5.5), there is only a finite number of terms which are non-zero (this statement
as the following ones are to be understood a.s.). It follows that the mapping R+ 3 t 7→ Lt is continuous,
by continuity of each of the local times (L

(n)
t )t≥0, for n ∈ Z+. As a consequence, we get that LAt = t, for

any t ≥ 0. Thus, we have

τ = inf{LAt ≥ 0 : |BAt | = 1}
= Linf{At : |BAt |=1}
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A priori, we only have inf{At : |BAt| = 1} ≥ inf{s ≥ 0 : |Bs| = 1}, because the former infimum is on a
smaller set than the latter one. We deduce

τ ≥ Linf{s≥0 : |Bs|=1} = LT

Conversely, note that by the strong Markov property applied to T , we have for any ε > 0, LT+ε > LT ,
because any level set of the Brownian motion has no isolated point, so that ALT = T and |BALT

| = |BT | =
1. In particular, we get

τ = inf{LAt ≥ 0 : |BAt | = 1}
≤ LALT = LT

Putting together these two inequalities, we obtain τ = LT . It is clear, on one hand that LT = L
(0)
T (B)

by definition of T and on the other hand that the total jump rate from n of Y satisfies L(n) = 1/E[τ ].
These facts lead to the first equality.
Next, observe that the process (Mt)t≥0 B (|Bt| − L(0)

t (B))t≥0 is a Brownian motion by Tanaka’s formula.
Because, the stopping time T is integrable, the optional sampling theorem gives

E
(
L
(0)
T (B)

)
= E

(
|BT |

)
= 1,

which ends the proof.

We are in a position to embed the constrained optimal stopping problem (5.4) in the setting of uncon-
strained optimal stopping problems on a birth-death process killed at 0. We first build on [7],Theorem 3.3,
to characterize the optimal stopping time for (5.4). Let us consider the hitting time

HZ+ B inf{t ≥ 0, Xx
t ∈ Z+}

and the function h given by

∀x ∈ R+, h(x) B E[φ(Xx
HZ+

)]

Note that h is harmonic on R+ \ Z+. Finally, let us define

∀x ∈ R+, v̂(x) B sup
τ∈T0

E
[
h(Xx

τ∧τ0)
]
,

and the associated stopping set S B {x ≥ 0, v̂(x) = h(x)}. Using Strong Markov property, Theorem 3.3
in [7] proves both v = v̂ and the entrance time in S is the smallest optimal time for v̂, because h is
bounded. Next lemma is key to show our result.

Lemma 18. The boundaries of all connected components of Sc, the complementary set of S in R+, are
in Z+. Therefore, the smallest optimal stopping time for v̂ belongs to TZ+.

Proof. According to optimal stopping theory, the value function v̂ is sub-harmonic on (0,∞) and harmonic
on (0,∞) \ S. Let x ∈ (0,∞) \ S and define a B sup(S ∩ [0, x)) (this supremum is attained, because S
is closed and 0 ∈ S) and b B inf(S ∩ (x,+∞)) ≤ +∞. Thus, on one hand, v̂ is linear on (a, b). Denote
by p̂ the slope of v̂ on (a, b). On the other hand, h is linear both on (bac, bac + 1) with slope pa and on
(bbc, bbc+ 1) with slope pb.
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Assume that a /∈ Z+. First, we will show either a is the unique point of (bac, b) in S or all the interval
[bac, a] lies in S. Assume there exists some bac ≤ c < a (which is possible because a /∈ Z+) that belongs
to S. Both functions v̂ and h are linear and coincide on c and a, therefore they are equal everywhere on
the interval [c, a] and thus [bac, a] ⊂ S. In that case, because v̂(y) > h(y) for y ∈ (a, b) and v̂(y) = h(y)
for bac ≤ y ≤ a, we have pa < p̂ which contradicts the sub-harmonicity of v̂.
On the other hand, if a is the unique point of (bac, b) in S, v̂ is linear at both sides of a with slopes p−
for y < a and p̂ for y > a. Since h is below or equal to v̂, we must have p− ≤ pa ≤ p̂, yielding to the same
contradiction of sub-harmonicity, if p− < p̂. If on the contrary p− = p̂, then h and v̂ coincide on [bac, a],
in contradiction with the assumption that {a} = (bac, b)∩ S. Therefore, a must be in Z+. By symmetry,
the same reasoning applies to prove that b ∈ Z+.

For n ∈ Z+, let us define the following optimal stopping problem on the birth-death process Y ,

u(n) B sup
σ∈T Y0

E (φ(Y n
σ )) (5.6)

where T Y0 is the set of all FY stopping time. We have,

Proposition 19. For any n ∈ Z+, v(n) = u(n) and thus for every x > 0,

v(x) = (bxc+ 1− x)u(bxc) + (x− bxc)u(bxc+ 1).

Proof. According to Lemma 18, the stopping time

T̂ = inf{t ≥ 0, Xt∧τ0 ∈ S} ∈ TZ+

and is optimal for v = v̂. Moreover, proceeding analogously as in the proof of Proposition 17, the stopping
time

σ̂ = LT̂ = inf{t ≥ 0, Yt∧σ0 ∈ S} ∈ T Y0
where σ0 = Lτ0 . Therefore,

v(n) = E[φ(Xn
T̂

)]

= E[φ(Y n
σ̂ )]

≤ u(n).

To prove the converse inequality, let us define T Y0 (M) as the set of all Markov stopping times of type
inf{t ≥ 0, Yt ∈ A} for A a subset of Z+. Optimal stopping theory tells us the smallest optimal time
associated to problem (5.6) belongs to T Y0 (M). Moreover, if σ ∈ T Y0 (M) then Aσ ∈ TZ+ and thus

u(n) = sup
σ∈T Y0 (M)

E (φ(Y n
σ ))

= sup
σ∈T Y0 (M)

E
(
φ(Xn

Aσ)
)

≤ v(n),

which ends the proof.
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6 Conclusion
The paper brings up to date the forward algorithm that seems to be very effective for Markovian optimal
stopping problems. In particular, we want to draw attention to this constructive method which provides
an alternative to tackle some class of constrained optimal stopping problems.
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