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@ Introduction



The SIR model (1)

The Covid-19 epidemic has popularized the Susceptible-Infectious-
Recovered model [Kermack and McKendrick, 1927]. Denote by x, y
and z the proportions of susceptible, infectious and recovered (via
immunization or death...) people in a population. Their dynamic
follows a simple system of ordinary differential equations:

x(t) = =By(t)x(t)
y(t) = By(t)x(t) —ay(t) (1)
z(t) = ay(t)

where v > 0 and 8 > 0 are respectively the recovery and

transmission rates.
The famous basic reproduction number is given by Ry = /a.



The SIR model (2)

Since x + y + z = 1, it is sufficient to consider the couple (x, y),
taking values in the simplex

A = {(uv) :u=0,v=0and u+v <1}

We will assume an initial condition (x(0),y(0)) € A is given,
typically (1 — €, €), with € « 1.



The ICU constraint

At any time t > 0, there is a proportion of y(t) which requires an
Intensive Care Unit, which is in limited supply. As a consequence,
when y(t) is too large the health system is overwhelmed, a
situation we would like to avoid. It leads to a constraint

Vit=0, y(t) <~ (2)

where v > 0 is directly linked to the proportion of severe cases
among infectious people and to the ICU capacity.



Policies

Some policies can be implemented so that the constraint (2) is
satisfied. The government can try to modify « or 3, here we will
consider policies acting on the transmission rate 8: washing hands,
social distancing, wearing masks, lockdowns, etc.

It amounts to replacing, at any time t > 0, 5 by some b(t) >0
and we are led to the time-inhomogeneous SIR equations:

{*(t) = —b(t)y(t)x(t)

. (3)
y(t) = b(t)y(t)x(t) — ay(t)

We are only interested in policies b := (b(t))¢=0 such that (2) is
satisfied. Denote by B, the set of such policies, assumed to be
right-continuous with left-limits, with a finite number of jumps, and
a finite number of connected components for {b = 0}.



Each measure reducing the sociability parameter 5 has an economic
cost, assumed to be linear. The total cost of a policy b e B, is

cte) - | 18— b(e)], dt (4)

(so that it is cost-free to increase [3).
We are interested in

¢* (1) = jinf C(b) (5)

and would like to find the optimal policies b where this minimal is
attained.



e The main result



Preliminaries on the laissez-faire policy (1)

The laissez-faire policy consists in letting b(t) = /3 for all t > 0.
On one hand, integrating the first equation of (1), we get

Vt=0, In(x(t)) = In(x(0))— BL y(s)ds

On the other hand, integrating the sum of the first and second
equations of (1), it appears

t

VE0,  x(t)+y(t) = x(0)+y(0)— aL y(s)ds

so we deduce the orbit in A, namely y(t) as a function of x(t):

Vit=0, y(t) = y(0)+ %In [)):28] —x(t) + x(0) (6)



Preliminaries on the laissez-faire policy (2)

From the second equation of (1), when y attains its maximum, we
have x = a/f (independently from the initial condition), and from
(6), the maximum value of y is

T;(;(y(t) = y(0) +x(0) + 3 In {5X(0)] ~3

el

If this value is less than or equal to the ICU constraint ~, the
laissez-faire is an optimal policy and c*() = 0.

From now on, assume we are in the “interesting”’ case is where this
bound does not hold.



Preliminaries on the laissez-faire policy (3)
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Several orbits in A, with a/f = 0.3, v = 0.2.



Preliminaries on the laissez-faire policy (4)

Define two times: first

1

= min{t>0: y(t) =~}

_ min{tZO : X(t):1_7+gln<l)<(—t)€>}

(it is possible to give a formula for 71 in terms of the data, via the
dilogarithm function Li). The value x(71) is the largest of the two

solutions of the equation in x:

x = g|n<1x_6>+l—’y (7)

Consider next

= b e - 5
T2 = T ay T1 B



Optimal policies

Theorem 1

There exist optimal solutions to the minimization of the functional
C on B,. One of them is the policy b* € B, defined by

B fort <m
b*(t) =1 B/[1+pBy(r2—t)] form<t<m (8)
B for t > 1

Every optimal policy b € B, agrees with b* on [0, 2] and satisfies
b(t) = B for all t > 7.




b* in A\

The orbit (solid) in A under the optimal policy b* and the
unregulated orbit (dotted) under the laissez-faire policy.
Parameter values used: « =0.3, 5 =1, vy =0.2, and ¢ = 0.01.



Comparison with the “flattening the curve” strategy

Time 7,

Upper panel: The share of infected over time under the optimal
policy b* (solid) and flattening the curve (dotted). The horizontal
dashed line represents the ICU constraint . Lower panel: Optimal
suppression (solid) and flattening-the-curve suppression (dotted).
The horizontal dashed line represents the baseline spread /.
Parameter values used: @ = 0.3, =1, v = 0.2, and € = 0.01.



Minimal cost

From the minimal policy b*, we can deduce the minimal cost, we
get:

c*(v) ==

v

« o

(%

1[ﬁ—a mﬂﬂ—d]_ﬁ

In the previous continuous population model, the limit € — 0, is
relevant and we get a cost only depending on the “structural data"™

1[B—a_mﬁ} g

o «

c*(v) == -

~



Numerical illustration (1)

In the previous simple model, all the parameters are easily available,
at least for a back-of-the-envelope calculation.

For Covid-19, we have, very approximatively, Ry = 2.5 and with a
week as time unit, & = 0.5, corresponding to an infectious period
of 2 weeks. So 8 = aRy = 1.25.

To evaluate ~, assume 0.5% of those who are ill need intensive
care. At least in 2013, the density of critical care beds in France
was 11.6/100,000 inhabitants. Let N the population of France, the
constraint on the ICU writes

0.5 11.6
2N <
100 100000

i.e. v =11.6/(0.5 x 1000) = 0.0232.

Vit=0, y(t)



Numerical illustration (2)

To get the minimal cost, note that 52 x (3 is proportional to the
French GDP. It follows that c*(y)/(52 x ) is the cost expressed in
terms of the French GDP. We get

1 [1 1 1 8 1
<52x'y{a_ﬁ_ﬁ ]_52><a>GDP

~ 0.35GDP




Strategy of the proof

Our strategy consists of the following steps:

The optimization problem is written in the phase space A.

The new formulation admits a natural extension on a
signed-measure space.

Topological properties of this measure space and of the
functional C imply the existence of a global minimizer.

A priori a global minimizer is a general signed measure, but it
turns out to be an absolutely continuous, bringing us back to a
functional setting.

Calculus of variation arguments show that the minimizer is
uniquely determined until the time when x reaches the level
o/, and this leads to Theorem 1.



© The phase space A



Lagrangian formulation

In (3), x is always non-increasing and thus admits a limit for large
time, say x(o0). First assume that b > 0. Then x is decreasing, so
we can write

Vi=0, y(t) = ox(t)

where ¢ : (x(o0), x(0)] — (0,1) is piecewise C!, its left and right
derivatives exist everywhere and ¢'(r) > —1, where ¢’ stands for
the right derivative. Furthermore, the cost can be written under a
Lagrangian form:

ja
=
I
p
)
i

x(0)
f L5090 de

x(c0

where for any (&, x, X’) € (x(0),x(0)] x (0,1) x (=1, +00),

1 /
LExx) = fé( ;X _BZX>
+




When b =0

When b = 0, say between the times t; < t», the lockdown is
complete during this period, it is an attempt to suppress the
disease. For t € (t1, ta),

{)’((t) =0
y(t) = —ay(t)

{X(t) = x(t1)

namely

y(t) = y(t1)exp(—a(t —t1))

To circumvent the difficulty that x remains constant while y is
changing, we allow ¢ to jump at x(t1), taking

p(x(t1) = y(t1)
p(x(t1)=) = y(t2) = y(t1)exp(—a(t2 — t1))



The functional J

The contribution of the period (t1, t2] to the cost C(b) is

f2<6—0>+dt — Blo—t) =L (y“”):ﬁm (M)

) o y(t2) « (x(t1

It follows that in general,

ue(x(20) x(0)] : () o (u—)

and we are led to minimize 7 under appropriate conditions on ¢,
among which, ¢(u) > ¢(u—) at any discontinuity point

u € (x(00),x(0)] and ¢’ > —1 where this right derivative is defined.
We can also restrict our attention to function ¢ such that

pla/B) = 1.



@ Extension to measures



To any function ¢ as in the previous section, associate the (signed)
measure p on | == [a/3,x(0)] defined by

p(dx) = #(x) dx + 2 In ( o(u) >5u(dx)

() we(a/Bx (@) rpwrolumy NPT

Conversely, we recover ¢ from p via

V xel, p(x) = ’YeXP(Fu(X))

where F, is the repartition function of 1. Another relation between
wand @ is:
2exp(BT (¢)/c)

lulley < (xo —a/B) +In(yo/7)  (9)
Yo




Two more measures

Define two non-negative measures on [ via

(o = R,
(0 eelR)
vu(dx) = <1 BX> 5 d

In interest of the latter is

7 = Lru)) = k@

a
Furthermore the conditions on ¢ (coming from B, ) can be written
as

p(l) =In(y(0)/7),  F.<0, p+v¢,=0

Call M., the corresponding set of measures on /.



Existence of a global minimizer

We are thus led to the minimization of K on M., and more
precisely, due to (9), on M, n{p : |ul,, < M}, for an appropriate
M = 0 such that M., n {p : |pl,, < M} # . Standard
arguments on the weak topology on measures defined on / enable
to get:

e Theset M, n{u : |ul,, < M} is compact.

@ The mapping £ : M, n{p : ||plly, < M} — R is lower
semi-continuous.

It follows that K admits a minimizer on M.,.



@ Characterization of the minimizer



Reduction to absolutely continuous measures

Denote p* a minimizer of K on M.,.

Decompose any measure y on | into a sum pu, + s + e, Where i,
is atomic, s is diffuse and singular with respect to A and p is
absolutely continuous with respect to ), i.e. admits a (signed)
density f : | — R with respect to A, e = - A

The cost functional K can be written

K = 2 (i) + ) + [ (w1 0n)

A first step consists in proving u* is absolutely continuous with
respect to A, the Lebesgue measure on /, i.e. pf = p¥ = 0.

This is done by contradiction: if it was not true, some mass of p}
or pX could be pushed to the left under an absolutely continuous
form to get a measure with smaller K.



We are thus led to a minimization problem over measures p of the
form f - A, namely over a functional space of (signed) densities f.
Define x* as the unique solution belonging to [/, x(0)] of the
equation

x* — 3 In(x*) = 1—~-— 3 In(x(0)) (10)

The value x* coincides with x(71) solution of (7). By separating
the analysis on [/, x*] and on [x*,x(0)], we end up by finding
that a.e.

0 Jif x < x*
*(x) =

_ (,Y — (X — x* — % |n(x/x*))>_1<1 — %) i x> x*



Proof of Theorem 1

From the explicit form of f*, we compute

ik = K770 = i<|n<g>—1+

This is also the value of C(b*) and even only of

B

(%

n(x(0)) - -

(%

F 8 — b*(1)], dt

0

Theorem 1 follows.



@ Future works?



On the cost function

Consider a cost of the form

+00

C(b) = f F(B — b(t)) dt

0

for some mapping F : R — R,. Of course, if F coincides with
(1)+ on Ry, Theorem 1 still holds.
But it is more natural to assume that F is strictly convex on R (in
the discutable assumption there is a continuum range of possible
actions): the government should first apply the measures with the
best ratio (reduction of Ry)/cost. In this case we think that
Theorem 1 is no longer true: early measures should appears and the
optimal orbit will be solution to some Euler-Lagrange equations.
Nevertheless, once the level v will be reached by y, the end of the
orbit coincides with b*, in particular the optimal policy will
generically have a jump.



Cost of deaths

The cost C does not take into account the cost of deaths. It can
be included as follows: among the total number of recovered
people, which is 1 — x(c0) times the total population, a certain
proportion has died. So the cost of deaths can be modeled by an
additional term to C of the form

0(1 —x(w0)) = 6(1-x(0)) + — x(0))

5(1—x(0 —(5f

51— x(0)) + 5L b(6)x(t)y (t) dt

where § > 0.
It leads to a Euler-Lagrange formulation. We believe that the
optimal policy remains b* if § is small enough, but not for large §.



Types (1)

The population can be partitioned in several types (e.g. young,
worker and retired), indexed by a finite set Z. Each type i € Z has a
proportion of susceptible (respectively infectious) people x; € [0, 1]
(resp. y; € [0,1 — x;]). The whole state is (x, y) := (x;, yi)ier € AZ.
The government can impose different policies to each type and the
evolution of (x, y) is given by

xi = —bi(t) (Zjel' Mi,jyj> X;
yi = bi(t) (Zjez Mi,jyj) Xj — Qiyi

where for all type i € Z,
@ «; > 0 is the "recovering” rate,
@ (bi(t))t=0 is the (non-negative) “sociability” policy,
® (ij)ijez is the Markov matrix of type meetings: for i,j €/,
pij is the probability that a type i meets a type j.



Types (2)

Under the constraint

Ve=0, D xiilt) < v
ieZ

where x; = 0 is the impact of the infectious of type i on the health
system and v > 0 is the global limitation of the health system, we
would like to find the optimal policy b = (b;);ez for costs C(b) of
the form

400

Cclb) — ZJ &1(bi(8)) dt + 5i(1 — xi(0))
iez 70

where for all i € Z,

o & : Ry — R, gives the elementary cost of deviation of b;
from f3;, the natural sociability of i: typically &; is convex and
vanishes at f3;,

@ J; = 0 is the death cost.



Types (3)

In this framework, we don't expect to find a closed form for the
optimal policies. Nevertheless, we would like to construct a
stochastic algorithm finding them, by mixing Euler-Lagrange
equations and simulated annealing.
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