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1 Introduction
The investigation of the quantitative convergence to equilibrium of random walks on finite groups has
lead to a prodigious literature devoted to various techniques, see for instance the overview of Saloff-
Coste [20] or the book of Levin, Peres and Wilmer [13]. One of the most probabilistic approaches
is based on the strong stationary times introduced by Aldous and Diaconis [1]. Diaconis and Fill [6]
presented a general construction of strong stationary times via intertwining dual processes, in particular
set-valued dual processes. It was proposed in [16] to obtain the latter processes through the resort
of random mappings, in the spirit of Propp and Wilson [19]. Here we apply this method to deduce
strong stationary times for finite Heisenberg random walks. It will illustrate that the random mapping
technique can be effective in constructing strong stationary times in situations where they are difficult
to find and have lead to numerous mistakes in the past. While there is room for improvement in our
estimates, we hope this new approach will help the understanding of the convergence to equilibrium of
related random walks, see for instance Hermon and Thomas [10], Breuillard and Varjú [2], Eberhard
and Varjú [8] or Chatterjee and Diaconis [5] for very recent progress in this direction.

To avoid notational difficulties, we begin by presenting the case of 3ˆ 3 matrices.
For M ě 3 and M odd, let HM be the Heisenberg group of matrices of the form

¨

˝

1 x z
0 1 y
0 0 1

˛

‚

where x, y, z P ZM . Such matrices will be identified with rx, y, zs P Z3
M , the multiplication correspond-

ing to

rx, y, zs ¨ rx1, y1, z1s “ rx` x1, y ` y1, z ` z1 ` xy1s

for any rx, y, zs, rx1, y1, z1s P Z3
M .

Consider the usual system of generators of HM , tr1, 0, 0s, r´1, 0, 0s, r0, 1, 0s, r0,´1, 0su, as well as the
random walk rX,Y, Zs B prXn, Yn, ZnsqnPZ` , starting from the identity r0, 0, 0s and whose transitions
are obtained by multiplying on the left by one of these elements, each chosen with probability 1{6.
With the remaining probability 1/3, the random walk does not move.

The uniform distribution U on HM is invariant and reversible for the random walk rX,Y, Zs.
A finite stopping time τ with respect to the filtration generated by rX,Y, Zs, possibly enriched with
some independent randomness, is said to be a strong stationary time if

• τ and rXτ , Yτ , Zτ s are independent,

• rXτ , Yτ , Zτ s is distributed as U .
The tail probabilities of a strong stationary time enable to estimate the speed of convergence of

the law LrXn, Yn, Zns of rXn, Yn, Zns toward U , in the separation sense, as shown by Diaconis and Fill
[6]. More precisely, recall that the separation discrepancy spm,µq between two probability measures
m and µ defined on the same measurable space is defined by

spm,µq B ess sup
µ

1´
m

µ

where m{µ is the Radon-Nikodym density of m with respect to µ.
For any strong stationary time τ associated to rX,Y, Zs, we have

@ n P Z`, spLrXn, Yn, Zns,Uq ď Prτ ą ns

It justifies the interest the following bound:
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Theorem 1 There exists a strong stationary time τ for rX,Y, Zs such that for M large enough,

@ r ě 0, Prτ ě rs ď 8 exp

ˆ

´
r

101M4 lnpMq

˙

Taking into account the invariance of the transition matrix of rX,Y, Zs with respect to the right (or
left) group multiplication, the above result can be extended to any initial distribution of rX0, Y0, Z0s.
Note that pX,Y q is an usual random walk on the finite torus Z2

M , so it needs a time of order M2

to reach equilibrium in the strong stationary time sense. This estimate will be made more precise in
Lemma 9. The main contribution in Theorem 1 will come from an upper bound of order M4 lnpMq
on the time required by rX,Y, Zs to reach equilibrium, once pX,Y q has reached equilibrium.

Nevertheless, the puzzling feature of the 3ˆ3 Heisenberg model over ZM is the fast convergence of
Z, mixing more rapidly than pX,Y q, at a time that should be of orderM , up to logarithmic corrections.
In the total variation sense, this is known to be true, see e.g. [3, 4] and the references given there. We
believe this also holds in the strong stationary time sense and that the new approach presented here
can be refined to go in this direction.

Up to our knowledge, no strong stationary time can be found in the literature for finite Heisenberg
models. So the main point of this paper is to show that such a strong stationary time can be constructed
via the random mapping method of [16], even if it is sub-optimal. Indeed in Theorem 1 the right order
should be M2, the same as for the usual random walk pX,Y q on Z2

M , the extra time for Z being
expected to be negligible as said above. Nevertheless, we will be led to new interesting models of
absorbing Markov chains with a statistical physics flavor whose investigation should be pushed further
to get the desired estimate, see Remark 18 in Section 4.

If one is only interested in the convergence to equilibrium of (the non-Markovian) Z, the same
approach gives a better result, even if it remains sub-optimal according to the above observations.
Note that pY,Zq is a Markov chain.

Theorem 2 There exists a strong stationary time rτ for pY,Zq such that for M large enough,

@ r ě 0, Prrτ ě rs ď 5 exp

ˆ

´
r

101M3 lnpMq

˙

One could think that once the equilibrium has been reached for pY,Zq, it is sufficient to wait for
a supplementary time for X of order M2 to equilibrate to get a strong stationary time for the whole
chain rX,Y, Zs. But one has to be more careful with this kind of assertion (despite we made one after
the statement of Theorem 1), see Remark 19 in Section 5 for more details.

These considerations can be extended to the N ˆ N Heisenberg HN,M group model over ZM . It
consists in the matrices of the form

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 x1,2 x1,3 ¨ ¨ ¨ x1,N´1 x1,N

0 1 x2,3 ¨ ¨ ¨ x2,N´1 x2,N

0 0 1 ¨ ¨ ¨ x3,N´1 x3,N
...

...
...

. . .
...

...
0 0 0 ¨ ¨ ¨ 1 xN´1,N

0 0 0 ¨ ¨ ¨ 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‚

where xk,l P ZM for 1 ď k ă l ď N , the group operation corresponds to the matrix multiplication.
Such matrices will be identified with rxk,ls1ďkălďN P Z4N

M , where 4N B tpk, lq : 1 ď k ă l ď Nu.
Consider the usual system of generators of HN,M , tεδpI,I`1q : I P JN ´ 1K and ε P t˘1uu, where

δpI,I`1q is the element of Z4N
M whose entries all vanish, except the one indexed by pI, I ` 1q which

is equal to 1. Let rXs B prXspnqqnPZ` B prXk,lpnqsq1ďkălďN,nPZ` be the random walk starting from
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the identity r0s1ďkălďN and whose transitions are obtained by multiplying on the left by one of the
generators, each chosen with probability 1{p3pN´1qq. With the remaining probability 1/3, the random
walk does not move. The invariant measure is the uniform distribution on HN,M . We have a result
similar to Theorem 1:

Theorem 3 There exists a strong stationary time τ for rXs such that for M large enough,

@ r ě 0, Prτ ě rs ď
11N ´ 17

2
exp

ˆ

´
2r

101pN ´ 1qpN ´ 2qMNpN´1q{2`1 lnpMq

˙

The proof is based on intermediate results exploiting the upper diagonal structure of the model.
More precisely, let us introduce for rxs P HN,M and l P JN ´ 1K, the l-th upper diagonal dlrxs B
pxk,k`lqkPJN´lK, as well as dJlKrxs B pdkrxsqkPJlK. Note that rxs “ dJN´1Krxs. Similarly, for l P JN ´ 1K,
we can associate the stochastic chains Dl B pdlrXpnqsqnPZ` as well as DJlK B pdJlKrXpnqsqnPZ` to the
Markov chain rXs. It is not difficult to see that DJlK is a Markov chain itself (but Dl is not). We will
see that if for some l P JN ´ 2K, DJlK is starting at equilibrium, then there exists a strong stationary
time τl`1 for DJl`1K of order at most pN ´ 1qpN ´ l ` 1qMNl´pl´1qpl`2q{2 lnpMq, see Proposition 25
in Section 6 where τl`1 “ tl`2 ´ tl`1. Theorem 3 will be obtained by summing these estimates. The
estimate of Theorem 3 does match exactly that of Theorem 1 when N “ 3, this is not by chance but
because we carefully look for a faithful generalization to facilitate reading. Again, all these bounds are
very rough and we hope they are a preliminary step toward the conjecture that the order of convergence
for the (non-Markovian) up-diagonal Dl should be M2{l for fixed N and l P JN ´ 1K (see for instance
[3]).

Theorem 2 has equally an extension. Denote CN rXs the last column of rXs and remark this is a
Markov chain.

Theorem 4 There exists a strong stationary time rτ for CN rXs such that for M large enough,

@ r ě 0, Prrτ ě rs ď
6N ´ 7

2
exp

ˆ

´
2r

101pN ´ 1qMN`1 lnpMq

˙

The plan of the paper is as follows. In the next section, as a warming-up computation and to
recall the approach of [16], we construct strong stationary times for quite lazy random walks on
the finite circle ZM (no longer assuming that M ě 3 is odd). This construction is extended in
Section 3 to produce a strong stationary times for the Markov chain pX,Y q extracted from rX,Y, Zs.
This procedure is itself (strongly) distorted in Section 4 to prove Theorem 1. Section 5 presents the
modification needed for Theorem 2. The extensions to random walks on higher dimensional Heisenberg
groups is the object of Section 6. Finally, Appendix A supplements the investigation of random walks
on the finite circle ZM , when the level of laziness is weak.

2 Strong stationary times for finite circles
Here we construct strong stationary times for certain random walks on discrete circles (the remaining
cases will be treated in Appendix A). It will enable us to recall the random mapping approach, as
developed in [16].

We start by presenting the general situation of random walks on discrete circles with at least 3
points.

Let M P Nzt1, 2u and a P p0, 1{2s be fixed. We consider the Markov kernel P on ZM given by

@ x, y P ZM , P px, yq B

$

&

%

a , if y “ x` 1 or y “ x´ 1
1´ 2a , if y “ x
0 , otherwise
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We are looking for strong stationary times for the corresponding random walk starting from 0
(or from any other initial point by symmetry). From Diaconis and Fill [6], it is always possible to
construct such strong stationary times, except when a “ 1{2 and M is odd, then the random walk has
period 2 and does not converge to its equilibrium (instead, we will recover in this case a dual process
related to the discrete Pitman’s theorem [18]).

More precisely, since a ą 0, the unique invariant probability associated to P is π the uniform
distribution on ZM . It is even reversible, so that the adjoint matrix P ˚ of P in L2pπq is just P ˚ “ P .
In the sequel and in Appendix A, we will consider certain sets V consisting of non-empty subsets of
ZM and containing the whole state space ZM . There will be three instances for V, depending on the
values of a andM (a fourth one will be considered in Section A.3). Here we will deal with the simplest
case, when a P p0, 1{3s. We will then take V “ I, the set of intervals in ZM which are symmetric with
respect to 0, namely

I B tBp0, rq : r P J0, tM{2uKu

where t¨u is the usual integer part and Bp0, rq “ t´r,´r ` 1, ..., 0, ..., r ´ 1, ru is the (closed) ball
centered at 0 and of radius r, for the usual graph distance on ZM . Recall that for k ď l P Z, Jk, lK
stand for the set of integers between k and l (included). By convention, for k ě 0, JkK B J1, kK, which
is the empty set if k “ 0. The same notation will also be used for the “projected” intervals on ZM . For
the other definitions of V, when a P p1{3, 1{2s, we refer to Appendix A. These cases, while instructive,
will not be helpful for the next sections. For the sake of the general arguments below, just assume
that we have chosen a V consisting of “nice” subsets of ZM .

For any S P V, we are looking for a random mapping ψS : ZM Ñ ZM satisfying two conditions:

• the weak association with P ˚ “ P , namely

@ x P ZM , @ y P S, PrψSpxq “ ys “
1

ξpSq
P px, yq (1)

where ξpSq ą 0 is a positive number.

• the stability of V: the set

ΨpSq B ψ´1
S pSq (2)

belongs to V.

The interest of such random mappings is that they enable to construct a V-valued intertwining
dual process, and a strong stationary time if the latter ends up being absorbed in the whole set ZM .
Indeed, introduce the Markov kernel Λ from V to ZM given by

@ S P V, @ x P ZM , ΛpS, xq B
πpxq

πpSq
1Spxq

where 1S is the indicator function of S.
Consider next the VˆV-matrix P given by

@ S, S1 P V, PpS, S1q “
ξpSqπpS1q

πpSq
PrΨpSq “ S1s (3)

We have shown in [16] that P is a Markov kernel and that it is intertwined with P through Λ:

PΛ “ ΛP

Note that ZM is absorbing for P, since we always have ΨpZM q “ ZM and ξpZM q “ 1 (by summing
with respect to y P ZM in (1)). Let X B pXnqnPZ` be a Markov chain on V starting from t0u and
whose transition kernel is P. Consider t its absorbing time:

t B inftn P Z` : Xn “ ZMu P N\ t8u
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Let X B pXnqnPZ` be a Markov chain on ZM starting from 0 and whose transition kernel is P .
As in the introduction, a finite stopping time τ for the filtration generated by X (and maybe some
additional independent randomness) is said to be a strong stationary time for X if τ and Xτ are
independent and Xτ is distributed according to π.

According to Diaconis and Fill [6], if t is almost surely finite, then it has the same law as a strong
stationary time for X, since it is possible to construct a coupling between X and X such that t is a
strong stationary time for X (see also [16], where this coupling is explicitly constructed in terms of
the random mappings).

Except when a “ 1{2 and M is even, the t we are to construct here and in Appendix A will be a.s.
finite. Furthermore, when a P p0, 1{3s, t will be a sharp strong stationary time, in the sense that its
law will be stochastically dominated by the law of any other strong stationary time. As a consequence,
we get that

@ n P Z`, spLpXnq, πq “ Prt ą ns (4)

Indeed, this sharpness is a consequence of Remark 2.39 of Diaconis and Fill [6] and the fact that

@ S P IztZMu, ΛpS, tM{2uq “ 0 (5)

This relation, with S P VztZMu, will not be satisfied by the constructions of Appendix A, so we
will not be able to conclude to sharpness when a P p1{3, 1{2q or a “ 1{2 and M odd.

For the remaining part of this section we assume M ě 3 and a P p0, 1{3s. Let us construct the
desired random mappings pψSqSPI. We distinguish S “ t0u from the other cases.

2.1 The random mapping ψt0u

The construction of ψt0u is different from that of the other ψS , for S P Iztt0uu. Choose two mappings
rψ, pψ : ZM Ñ ZM satisfying respectively rψp0q “ 0 “ rψp´1q “ rψp1q and rψpxq ‰ 0 for x P ZMzJ´1, 1K,
and pψp0q “ 0 and pψpxq ‰ 0 for x P ZMzt0u. Take ψt0u to be equal to rψ with some probability
p P r0, 1s and to pψ with probability 1´ p. Let us compute p so that Condition (1) is satisfied, which
here amounts to the validity of

Prψt0upxq “ 0s “
1

ξpt0uq
P px, 0q (6)

for all x P ZM and for some ξpt0uq ą 0.

• When x R J´1, 1K, both sides of (6) vanish.

• When x “ 0, the l.h.s. of (6) is 1, while the r.h.s. is p1´ 2aq{ξpt0uq. This implies that ξpt0uq “
1´ 2a.

• When x P t´1, 1u, (6) is equivalent to

p “
a

1´ 2a

and this number p does belongs to p0, 1s for a P p0, 1{3s.

Next we must check that for this random mapping ψt0u, (2) is satisfied, namely Ψpt0uq P I “ I.
This is true, because rψ´1pt0uq “ J´1, 1K P I and pψ´1pt0uq “ t0u P I.

6



2.2 The other random mappings
We now come to the construction of the random mappings ψS , for S P Iztt0uu, which is valid for all
a P p0, 1{2s and does not depend on the particular value of S P Iztt0uu. So let us call this random
mapping φ. It will takes five values tφ1, φ2, φ3, φ4, φ5u, and to describe them it is better to discriminate
according the parity of M .

When M is odd. Here is the definition of the mappings φl, for l P J5K.

• φ1 is defined by

@ x P ZM , φ1pxq B

$

&

%

x` 1 , if x P J´pM ´ 1q{2,´1K
1 , if x “ 0
x´ 1 , if x P J1, pM ´ 1q{2K

• φ2 is defined by

@ x P ZM , φ2pxq B

$

&

%

x` 1 , if x P J´pM ´ 1q{2,´1K
´1 , if x “ 0
x´ 1 , if x P J1, pM ´ 1q{2K

• φ3 is defined by

@ x P ZM , φ3pxq B

$

&

%

x´ 1 , if x P J´pM ´ 1q{2,´1K
1 , if x “ 0
x` 1 , if x P J1, pM ´ 1q{2K

• φ4 is defined by

@ x P ZM , φ4pxq B

$

&

%

x´ 1 , if x P J´pM ´ 1q{2,´1K
´1 , if x “ 0
x` 1 , if x P J1, pM ´ 1q{2K

• φ5 is just the identity mapping

The random mapping φ is taking each of the values φ1, φ2, φ3 and φ4 with the probability a{2 and
the value φ5 with the remaining probability 1´ 2a. It is immediate to check (1) can be reinforced into

@ x, y P Z`, PrψSpxq “ ys “ P px, yq (7)

(called the strong association condition with P ˚ “ P in [16]). Furthermore, we have for any r P
JpM ´ 1q{2´ 1K,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

φ´1
1 pBp0, rqq “ Bp0, r ` 1q

φ´1
2 pBp0, rqq “ Bp0, r ` 1q

φ´1
3 pBp0, rqq “ Bp0, r ´ 1q

φ´1
4 pBp0, rqq “ Bp0, r ´ 1q

φ´1
5 pBp0, rqq “ Bp0, rq

(8)

It follows that I is left stable by the random mapping Ψ defined in (2) (since the remaining set
ZM “ Bp0, pM ´ 1q{2q is left stable by any mapping from ZM to ZM ).
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When M is even. The previous mappings have to be slightly modified, due to the special role of
the point M{2.

More precisely, φ1, φ2, φ3, φ4 and φ5 are defined in exactly the same way on ZMztM{2u and in
addition:

φ1pM{2q “ M{2` 1

φ2pM{2q “ M{2´ 1

φ3pM{2q “ M{2` 1

φ4pM{2q “ M{2´ 1

φ5pM{2q “ M{2

The random mapping φ is taking each of the values φ1, φ2, φ3, φ4 and φ5 with the same probabilities
as in the caseM odd. The strong association condition (7) as well as the stability of I by Ψ are similarly
verified ((8) is now true for r P J1,M{2´ 1K).

2.3 The Markov transition kernel P
To simplify the description of P given in (3), let us identify J´r, rK with r, for r P J0, tM{2uK. Then
it appears that P is the transition matrix of a birth and death chain:

@ k, l P J0, tM{2uK, Ppk, lq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1´ 3a , if k “ 0 “ l

3a , if k “ 0 and l “ 1

a 2l`1
2k`1 , if k P J1, tM{2u´ 1K and |k ´ l| “ 1

1´ 2a , if k P J1, tM{2u´ 1K and k “ l

1 , if k “ tM{2u “ l

0 , otherwise

Since P enables to reach the absorbing point tM{2u from all the other points, the absorbing time t
is a.s. finite and due to (5), its law is the distribution of a sharp strong stationary time for X, namely
the tail probabilities of t correspond exactly to the evolution of the separation distance between the
time marginal distribution and π, see (4). Since the starting point X0 “ t0u, identified with 0,
is the opposite boundary point of the absorbing point tM{2u, Karlin and McGregor [12] described
explicitly the law of t in terms of the spectrum of P (see also Fill [9] or [7] for probabilistic proofs via
intertwining relations). In particular when this spectrum is non-negative, t is a sum of independent
geometric variables whose parameters are the eigenvalues (except 1) of P.

Remark 5 When a “ 1{3, Diaconis and Fill [6] gives another illustrative example of a sharp strong
stationary time for P , see also Section 4.1 of Pak [17].

˝

Remark 6 We could have first projected ZM on J0, tM{2uK (sending 0 to 0, ´1 and 1 to 1, etc.) and
lumpX to obtain a birth-and-death process rX. Its transition matrix rP satisfies rP p0, 1q “ 2a, rP p1, 0q “
a, rP p1, 2q “ a, etc. (note that P ptM{2u, tM{2u ´ 1q is equal to a or 2a, depending on the parity of
M). Constructing a corresponding set-valued intertwining dual, we would have ended with the same
strong stationary time. According to Proposition 4.6 of Diaconis and Fill [6] (where we take into
account that rP is reversible and that rX0 “ 0), there exists a dual process to rX taking values in
tJ0, xK : x P J0, tM{2uKu if and only if rX is monotone. It is easy to check that rX is monotone if and
only if a P p0, 1{3s (compare rP p0, J1, tM{2uKq “ 2a with rP p1, J1, tM{2uKq “ 1 ´ a, this special role of
0 is related to difference between Sections 2.1 and 2.2). This explains the critical position of a “ 1{3
and justifies the different treatment of the case a P p1{3, 1{2s in Appendix A.
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˝

Remark 7 If we had chosen for ψt0u a random mapping satisfying the strong association condition (7)
instead of the weak association (1), then we could not have achieved the stability condition ΨpIq Ă I.
Indeed, the condition Prψ´1

0 p0q “ 1s “ a would have implied that Ψpt0uq must have taken values in
the subsets of t´1, 0, 1u not containing 0. Nevertheless, it is possible to choose a random mapping
verifying (7) and such that the only additional value of Ψpt0uq is the empty set, so that Ψpt0uq P
tH, t0u, t´1, 0, 1uu. Due to the fact that necessarily Ppt0u, ¨qΛ “ ΛP p0, ¨q “ p1´ 2aqδ0 ` apδ´1 ` δ1q

(where δ stands for the Dirac mass), we then end up with the same kernel P.
If with positive probability Ψpt0uq takes other values thanH, t0u and t´1, 0, 1u, and if we keep the

same φ for the other random mappings, then t will not be sharp (if is a.s. finite at all, cf. Remark 31),
as it can be deduced from Appendix A.

˝

2.4 Illustration for a “ 1{3 and M odd
When a “ 1{3, the transition matrix P is given on J0, pM ´ 1q{2K by

@ k, l P J0, tM{2uK, Ppk, lq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 , if k “ 0 “ l

1 , if k “ 0 and l “ 1
1
3

2l`1
2k`1 , if k P J1, pM ´ 3q{2K and |k ´ l| “ 1

1
3 , if k P J1, pM ´ 3q{2K and k “ l

1 , if k “ pM ´ 1q{2 “ l

0 , otherwise

Let t be the time a Markov chain X associated to P and starting from 0 hits pM ´ 1q{2. Consider
W a random walk on Z, starting from 0, whose transition probabilities of going one step upward,
one step downward or to stay at the same position are all equal to 1/3. Let ς be the hitting time
by W of the set t´pM ´ 1q{2, pM ´ 1q{2u. Since for k P J1, pM ´ 3q{2K, we have Ppk, k ` 1q ě 1{3
and Ppk, k ´ 1q ď 1{3, a simple comparison with the random walk W enables us to see that t is
stochastically dominated by ς. This elementary observation leads to:

Corollary 8 The strong stationary time t for the random walk on the circle ZM corresponding to
a “ 1{3, constructed as the absorption of the above Markov chain X, has tail distributions satisfying
for M large enough,

@ r ě 0, Prt ě rM2s ď 2 expp´r{4q

Proof
It is sufficient to prove the same bound for ς: for M large enough,

@ r ě 0, Prς ě rM2s ď 2 expp´r{4q (9)

For any α P R, define

ρα B
1` e´α ` eα

3

We have for any n P Z`,

EreαWn`1 |σpWn,Wn´1, ...,W1,W0 “ 0qs “ ραe
αWn
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and as a consequence, the process pMnqnPZ` defined by

@ n P Z`, Mn B eαWn´lnpραqn

is a martingale.
Note that by symmetry and since ς is independent from sgnpWςq, we have

ErMςs “ EreαpM´1q{2´lnpραqς1Wς“pM´1q{2s ` Ere´αpM´1q{2´lnpραqς1Wς“´pM´1q{2s

“ coshpαpM ´ 1q{2qEre´ lnpραqςs

Furthermore, pMn^ςqnPZ` is a bounded martingale (since ρα ě 1), so the stopping theorem gives
us ErMςs “ ErM0s “ 1, and we get

Erρ´ςα s “
1

coshpαpM ´ 1q{2q

By analytic extension, this equality is still valid if α is replaced by αi (where i P C, i2 “ ´1), as
long as |α|pM ´ 1q{2 ă π{2, and we get

E
„ˆ

3

1` 2 cospαq

˙ς

“
1

cospαpM ´ 1q{2q

Apply this equality with α “ 1{M , to deduce that for large M ,

E
„ˆ

3

1` 2 cosp1{Mq

˙ς

„
1

cosp1{2q

For r ą 0, remarking that cosp1{Mq ă 1, we get

Prς ě rM2s ď

ˆ

1` 2 cosp1{Mq

3

˙rM2

E
„ˆ

3

1` 2 cosp1{Mq

˙ς

„
1

cosp1{2q

ˆ

1´
1

3M2

˙rM2

“
1

cosp1{2q
expp´rp1` op1qq{3q

Taking into account that 1{ cosp1{2q « 1.139, we see that (9) is satisfied for M large enough.
�

3 A first stopping time
Here we construct the first epoch of a set-valued dual process associated to the random walk rX,Y, Zs
on the Heisenberg group HM described in the introduction, where the odd number M ě 3 is fixed.

Denote by P the transition kernel of rX,Y, Zs. The uniform probability measure U on HM is
reversible with respect to P , so that P ˚ “ P , where P ˚ is the adjoint operator of P in L2pUq.

As in the previous section, we are looking for a dual process X B pXnqnPZ` taking values in a set
V of non-empty subsets of HM , whose transition kernel P is intertwined with P through:

PΛ “ ΛP (10)

where the Markov kernel Λ from V to HM is given by

@ Ω P V, @ u P HM , ΛpΩ, uq B
Upuq
UpΩq

1Ωpuq
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Since rX,Y, Zs is starting from r0, 0, 0s, we will require furthermore that X0 “ tr0, 0, 0su.
The construction of P will follow the general random mapping method described in [16] and

already alluded to in the previous section. More precisely, for any Ω P V, we are looking for a
random mapping ψΩ : HM Ñ HM satisfying two conditions:

• the weak association with P ˚ “ P , namely

@ u P HM , @ v P Ω, PrψΩpuq “ vs “
1

ξpΩq
P pu, vq (11)

where ξpΩq ą 0 is a positive number.

• the stability of V: the set

ΨpΩq B ψ´1
Ω pΩq (12)

belongs to V.

It is shown in [16] that the Markov kernel defined on V by

@ Ω,Ω1 P V, PpΩ,Ω1q “
ξpΩqUpΩ1q
UpΩq

PrΨpΩq “ Ω1s (13)

satisfies (10). Note that the whole state space HM is absorbing for P, so if

t B inftn P Z` : Xn “ ZMu P N\ t8u

is a.s. finite, then it has the same law as a strong stationary time for rX,Y, Zs, as a consequence of
Diaconis and Fill [6].

Let us now describe V and the corresponding random mappings pψΩqΩPV.
The set V consists of subsets S Ă HM of the form

Ωr,s,A B trx, y, zs P HM : x P Bprq, y P Bpsq, z P Apx, yqu (14)

where r P J0, pM ´ 1q{2K, s P J0, pM ´ 1q{2K, Bprq B J´r, rK seen as the closed ball of ZM centered
at 0 and of radius r, and A is a mapping from Bprq ˆ Bpsq to the non-empty subsets of ZM . It
will be convenient to see A as a restricted field going from the base space Bprq ˆ Bpsq to the fiber
space consisting of the non-empty subsets of ZM . A field will be a restricted field whose base space
is ZM ˆ ZM , they will be mainly be used in the next section.

In order to construct our random mappings pψΩqΩPV, we need to introduce the following 7 map-
pings, inspired by the considerations of the previous section. Denote Z´M B J´pM ´ 1q{2,´1K and
Z`M B J0, pM ´ 1q{2K, seen as subsets of ZM . We define the mapping sgn on ZM via

@ x P ZM , sgnpxq B

#

´1 , if x P Z´M
1 , if x P Z`M

Here are the mappings that will be the values of the random mappings pψΩqΩPV:

• The mapping rφp0q:

@ rx, y, zs P HM , rφp0qprx, y, zsq B

#

r0, y, z ´ xys , if x P t´1, 0, 1u

rx, y, zs , if x R t´1, 0, 1u

• The mapping pφp0q:

@ rx, y, zs P HM , pφp0qprx, y, zsq B

#

rx, 0, zs , if y P t´1, 0, 1u

rx, y, zs , if y R t´1, 0, 1u

11



• The mapping rφp1q:

@ rx, y, zs P HM , rφp1qprx, y, zsq B rx´ sgnpxq, y, z ´ sgnpxqys

• The mapping pφp1q:

@ rx, y, zs P HM , pφp1qprx, y, zsq B rx, y ´ sgnpyq, zs

The mapping rφp2q:

@ rx, y, zs P HM , rφp2qprx, y, zsq B rx` sgnpxq, y, z ` sgnpxqys

• The mapping pφp2q:

@ rx, y, zs P HM , pφp2qprx, y, zsq B rx, y ` sgnpyq, zs

• pφp3q is just the identity mapping on HM .

We can now define the family pψΩqΩPV.
Again we fix a set S B Ωr,s,A as in (14). The underlying probability depends on S through the

following cases.

• If r “ s “ 0. The random mapping ψΩ takes with the values rφp0q and pφp0q with probability
1/2 each. The weak association with P is satisfied with ξpΩq “ 1{3: for any rx, y, zs P HM and
rx1, y1, z1s P Ω,

P
“

ψΩprx, y, zsq “ rx
1, y1, z1s

‰

“ 3P prx, y, zs, rx1, y1, z1sq (15)

Indeed, first note that rx1, y1, z1s P Ω0,0,A implies that x1 “ y1 “ 0. Next, both sides vanish if we
do not have px, yq P tp´1, 0q, p1, 0q, p0, 1q, p0,´1q, p0, 0qu, and z1 “ z.
Consider the case px, yq “ p0, 0q, we have for any z P ZM ,

P rψΩpr0, 0, zsq “ r0, 0, zss “ 1

P pr0, 0, zs, r0, 0, zsq “ 1{3

so (15) is satisfied.
When px, yq “ p´1, 0q, we have for any z P ZM ,

P rψΩpr´1, 0, zsq “ r0, 0, zss “ PrψΩ “
rφp0qs “ 1{2

P pr´1, 0, zs, r0, 0, zsq “ 1{6

so (15) is satisfied again. The other cases are treated in the same way.

• If r “ 0 and s ‰ 0. The random mapping ψΩ takes with the value rφp0q with probability p, pφp1q

and pφp2q each with probability q, and pφp3q with probability 1´ p´ 2q, where p, q P r0, 1s are such
that 1 ´ p ´ 2q P r0, 1s. Let us find p, q such that furthermore the weak association with P is
satisfied with some ξpΩq ą 0: for any rx, y, zs P HM and rx1, y1, z1s P S,

P
“

ψΩprx, y, zsq “ rx
1, y1, z1s

‰

“
1

ξpΩq
P prx, y, zs, rx1, y1, z1sq (16)

Indeed, first note that rx1, y1, z1s P Ω0,s,A implies that x1 “ 0. Next we have

P
“

ψΩprx, y, zsq “ r0, y
1, z1s

‰

“ p1
trφp0qprx,y,zsq“r0,y1,z1su

` q1
tpφp1qprx,y,zsq“r0,y1,z1su

`q1
tpφp2qprx,y,zsq“r0,y1,z1su

` p1´ p´ 2qq1
tpφp3qprx,y,zsq“r0,y1,z1su

12



Let us first investigate the possibility rφp0qprx, y, zsq “ r0, y1, z1s. Necessarily, x P t´1, 0, 1u, y “ y1,
z1 “ z ´ xy. Whatever x P t´1, 0, 1u, we have

P rψΩprx, y, zsq “ r0, y, zss “ p1
trφp0qprx,y,zsq“r0,y,z´xysu

` p1´ p´ 2qq1
tpφp3qprx,y,zsq“r0,y,z´xysu

“

"

p , if x P t´1, 1u
1´ 2q , if x “ 0

On the other hand, we have

P prx, y, zs, r0, y, zsq “

"

1{6 , if x P t´1, 1u
1{3 , if x “ 0

thus we end up with the conditions 1´ 2q “ 2p and ξpΩq “ 1{p6pq.
Next we consider the possibility pφp1qprx, y, zsq “ r0, y1, z1s (the symmetric case pφp2qprx, y, zsq “
r0, y1, z1s is similarly treated). Necessarily x “ 0, z1 “ z and y “ y1 ˘ 1, depending on y P Z`M
or y P Z´M . With these values, it follows that the l.h.s. of (16) is q and the r.h.s. is 1{p6ξpΩqq,
leading us to the equation q “ 1{p6ξpΩqq. Putting together all the equations between p, q and
ξpΩq, we get that p “ q “ 1{4 and ξpΩq “ 2{3. It is then immediate to check that (16) is true.

• If r ‰ 0 and s “ 0. The random mapping ψΩ takes with the values pφp0q, rφp1q, rφp2q and pφp3q, each
with probability 1{4. The treatment of this case is similar to the previous one.

• If r ‰ 0 and s ‰ 0. The random mapping ψΩ takes with the value pφp3q with probability 1{3
and each of the values rφp1q, pφp1q, rφp2q and pφp2q, each with probability 1{6. This situation is the
simplest one, we clearly have for any rx, y, zs P HM and rx1, y1, z1s P S,

P
“

ψΩprx, y, zsq “ rx
1, y1, z1s

‰

“ P prx, y, zs, rx1, y1, z1sq

Our next task is to check that the random mapping Ψ associated to the family pψΩqΩPV lets V
stable and moreover to describe its action.

Fix some S B Ωr,s,A P V, we are wondering in which set it will be transformed by Ψ. Again we
consider the previous situations.

• If r “ s “ 0. Then ΨpΩq is equal either to prφp0qq´1pΩq or to ppφp0qq´1pΩq. Let us consider the
first case. By definition, we have

prφp0qq´1pΩq “ trx1, y1, z1s P HM : rφp0qprx1, y1, z1sq P Su

“ trx1, y1, z1s P HM : D rx, y, zs P S, with rφp0qprx1, y1, z1sq “ rx, y, zsu

“ trx1, y1, z1s P HM : D z P Ap0, 0q, with rφp0qprx1, y1, z1sq “ r0, 0, zsu

“ trx1, y1, z1s P HM : D z P Ap0, 0q, with x1 P t´1, 0, 1u and r0, y1, z1 ´ x1y1s “ r0, 0, zsu
“ trx1, 0, z1s P HM : x1 P t´1, 0, 1u and z1 P Ap0, 0qu
“ Ω1,0,A1

where A1 is defined by:

@ px1, y1q P Bp1q ˆ t0u, Apx1, y1q B Ap0, 0q

Similarly, we get ppφp0qq´1pΩq “ Ω1,0,A1 .

• If r “ 0 and s ‰ 0. There are three possibilities for ΨpΩq: prφp0qq´1pΩq, ppφp1qq´1pΩq, ppφp2qq´1pΩq
or ppφp3qq´1pΩq. The same computation as above shows that

prφp0qq´1pΩq

“ trx1, y1, z1s P HM : D y P Bpsq, D z P Ap0, yq, with x1 P t´1, 0, 1u and r0, y1, z1 ´ x1y1s “ r0, y, zsu
“ trx1, y1, z1s P HM : x1 P t´1, 0, 1u, y1 P Bpsq and z1 P Ap0, y1q ` x1y1u
“ Ω1,s,A1
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where A1 is defined by:

@ px1, y1q P Bp1q ˆBpsq, A1px1, y1q B Ap0, y1q ` x1y1

Next consider ppφp1qq´1pΩq:

ppφp1qq´1pΩq “ trx1, y1, z1s P HM : D y P Bpsq, D z P Ap0, yq with x1 “ 0, y1 ´ sgnpy1q “ y, z1 “ zu

“ Ω0,s´1,A1

where A1 is defined by:

@ px1, y1q P t0u ˆBps´ 1q, A1px1, y1q B Ap0, y1 ´ sgnpy1qq

Similarly, ppφp2qq´1pΩq “ Ω0,s´1,A1 , with another set-valued mapping A1:

@ px1, y1q P t0u ˆBps` 1q, A1px1, y1q B Ap0, y1 ` sgnpy1qq

Of course, we have ppφp3qq´1pΩq “ Ω.

• The other cases where r ‰ 0 are treated in a similar way. For instance for r ‰ 0, pM ´ 1q{2 and
s ‰ 0, we have ppφp1qq´1pΩq “ Ωr`1,s,A1 with

@ px1, y1q P Bppr ` 1q ^ ppM ´ 1q{2qq ˆBpsq, A1px1, y1q B Apx1 ´ sgnpx1q, y1q ` sgnpx1qy1

Let P the transition kernel induced by the above family of random mappings pψΩqΩPV and consider
X B pXnqnPZ` an associated Markov chain starting from t0, 0, 0u. For any n P Z`, let us write
Xn “ ΩRn,Sn,An with the previous notation. Define

σ B inftn P Z` : Rn “ pM ´ 1q{2 “ Snu

Taking into account the considerations of Section 2, σ is a.s. finite and we have

@ n ě σ, Rn “ pM ´ 1q{2 “ Sn

Nevertheless, this Markov chain has a serious drawback:

@ n P Z`, @ x P BpRnq, @ y P BpSnq, |Anpx, yq| “ 1 (17)

Indeed, from the above construction, we deduce that

@ n P Z`, @ x1 P BpRn`1q, @ y
1 P BpSn`1q, D x P BpRnq, D y P BpSnq : |An`1px

1, y1q| “ |Anpx, yq|

This observation is true for any initial condition X0. When X0 “ tr0, 0, 0su, the fiber-valued
component of X0 is only t0u and has size 1. The latter property is inherited by all the following values
of Xn for n P Z`, justifying (17).

For the fiber-valued components of X to reach the whole state space ZM , we need to change our
strategy after time σ. Before doing so in the next section, let us estimate the tail probabilities of σ,
taking into account Corollary 8:

Lemma 9 For M large enough, we have

@ r ě 0, Prσ ě rM2s ď 5 expp´r{10q
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Proof
Let rX B p rXnqnPZ` and rY B prYnqnPZ` be two independent random walks on ZM as in Section 2.4. Let
pBnqnPZ` be a family of independent Bernoulli variables of parameter 1{2 (independent from p rX, rY q)
and define

@ n P Z`, θn B
ÿ

mPJnK

Bm

The chain pX,Y q has the same law as p rXθn ,
rYn´θnqnPZ` and from the above construction, it appears

that

σ “ inftn P Z` : θn ě t1 and n´ θn ě t2u

where t1 (respectively t2) is the strong stationary time constructed as in Section 2.4 for rX (resp. rY ).
It follows that for any n P Z`,

Prσ ě ns ď Prθn ď t1s ` Prn´ θn ď t2s

“ 2Prθn ď t1s

since pθn, t1q and pn´ θn, t2q have the same law.
According to Corollary 8, we have for the conditional expectation knowing θn and for large M :

Prθn ď t1|θns ď 2 expp´θn{p4M
2qq

so that

Prθn ď t1s ď 2Erexpp´θn{p4M
2qqs

“ 2Erexpp´B1{M
2qsn

“ 2

ˆ

1` expp´1{p4M2qq

2

˙n

It follows that if n is of the form rrM2s for some r ě 0, then

Prσ ě rM2s ď 4

ˆ

1` expp´1{p4M2qq

2

˙rM2

ď 5 expp´r{10q

for M large enough (uniformly in r ě 0).
�

4 A second stopping time
Here we modify the family of random mappings considered in the previous section, in order to construct
the second epoch of a set-valued dual process associated to the random walk rX,Y, Zs.

Since we are to work after the stopping time σ, we only consider subsets of the form ΩA B

ΩpM´1q{2,pM´1q{2,A, where A is a mapping from ZM ˆZM to the subsets of ZM , what we called a field
in Section 3. Let A the set of fields, here it is more convenient to index all our objects of interest by
A instead of the set

V: B tΩA : A P Au
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Remark 10 Note that we do not require that the values of A are non-empty, thus V: contains the
empty set, contrary to V (in particular V: is not included in V). Nevertheless the Markov chains that
we will consider on V: will be forbidden to take H as value and will stay in V; B V:ztHu. We will
denote A; the set of fields A such that ΩA ‰ H, namely whose subset-valued fibers are all non-empty.

˝

The main difference between our new family of random mappings pψAqAPA and that pψSqSPV of
Section 3 consists in replacing the function sign acting on the first coordinates of HM by a much more
general mapping. More precisely, let us fix a field A P A. Assume that for any x, y P ZM , we are given
two partitions of ZM into two disjoint subsets respectively rB´A,x,y \

rB`A,x,y and pB´A,x,y \
pB`A,x,y, that

depend on A, x and y. We define corresponding mappings rϕA and pϕA on HM via

@ rx, y, zs P HM , rϕApx, y, zq B

#

´1 , if z P rB´A,x,y
1 , if z P rB`A,x,y

@ rx, y, zs P HM , pϕApx, y, zq B

#

´1 , if z P pB´A,x,y
1 , if z P pB`A,x,y

Next we replace rφp1q, rφp2q, pφp1q and pφp2q respectively by

@ rx, y, zs P HM , rφ
p1q
A prx, y, zsq B rx´ rϕApx, y, zq, y, z ´ rϕApx, y, zqys

@ rx, y, zs P HM , rφ
p2q
A prx, y, zsq B rx` rϕApx, y, zq, y, z ` rϕApx, y, zqys

@ rx, y, zs P HM , pφ
p1q
A prx, y, zsq B rx, y ´ pϕApx, y, zq, zs

@ rx, y, zs P HM , pφ
p2q
A prx, y, zsq B rx, y ` pϕApx, y, zq, zs

The random mapping ψA is constructed as the corresponding ψS in the case r ‰ 0 and s ‰ 0.
Namely, the random mapping ψA takes with the value pφp3q with probability 1{3 and each of the
values rφ

p1q
A , pφ

p1q
A , rφ

p2q
A and pφ

p2q
A , each with probability 1{6. There is no difficulty in checking that ψA is

associated to P :

@ rx, y, zs P HM , @ rx
1, y1, z1s P S, P

“

ψSprx, y, zsq “ rx
1, y1, z1s

‰

“ P prx, y, zs, rx1, y1, z1sq

(note that rφp0q and pφp0q are no longer required, they were only useful to initiate the spread of the evolv-
ing sets associated to pψSqsPV on the base space ZM ˆ ZM corresponding to the two first coordinates
of HM ).

Let us, firstly check that the random mapping Ψ associated to the family pψAqAPA leaves V: stable,
and secondly describe its action.

Fix some A P A, we are wondering what is ΨpΩAq, namely we have to compute prφp1qA q
´1pΩAq,

ppφp1qq´1pΩAq, prφ
p2q
A q

´1pΩAq and ppφp2qq´1pΩAq. Let us start with

prφ
p1q
A q

´1pΩAq “ trx1, y1, z1s P HM : D rx, y, zs P ΩA, with rφ
p1q
A prx

1, y1, z1sq “ rx, y, zsu

The belonging of rx, y, zs to ΩA means that z P Apx, yq, and the equality rφ
p1q
A prx

1, y1, z1sq “ rx, y, zs
is equivalent to

$

&

%

x1 ´ ϕApx
1, y1, z1q “ x

y1 “ y
z1 ´ ϕApx

1, y1, z1qy1 “ z

Thus rx1, y1, z1s belongs to prφp1qA q
´1pSq if and only if

z1 P Apx1 ´ ϕApx
1, y1, z1q, y1q ` ϕApx

1, y1, z1qy1
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namely, either

ϕApx
1, y1, z1q “ ´1 and z1 P Apx1 ` 1, y1q ´ y1 (18)

or

ϕApx
1, y1, z1q “ 1 and z1 P Apx1 ´ 1, y1q ` y1 (19)

Thus defining the new field rAp1q via

@ px1, y1q P Z2
M ,

rAp1qpx1, y1q B
´

pApx1 ` 1, y1q ´ y1q X rB´A,x1,y1
¯

Y

´

pApx1 ´ 1, y1q ` y1q X rB`A,x1,y1
¯

we get that

prφ
p1q
A q

´1pΩAq “ Ω
rAp1q

The other cases are treated in a similar way and we get

ppφ
p1q
A q

´1pΩAq “ Ω
pAp1q

prφ
p2q
A q

´1pΩAq “ Ω
rAp2q

ppφ
p2q
A q

´1pΩAq “ Ω
pAp2q

where for any px1, y1q P Z2
M ,

pAp1qpx1, y1q B
´

Apx1, y1 ` 1q X pB´A,x1,y1
¯

Y

´

pApx1, y1 ´ 1q X pB`A,x1,y1
¯

rAp2qpx1, y1q B
´

pApx1 ` 1, y1q ´ y1q X rB`A,x1,y1
¯

Y

´

pApx1 ´ 1, y1q ` y1q X rB´A,x1,y1
¯

pAp2qpx1, y1q B
´

Apx1, y1 ` 1q X pB`A,x1,y1
¯

Y

´

pApx1, y1 ´ 1q X pB´A,x1,y1
¯

LetP; the transition kernel induced by the above family of random mappings pψAqAPA and consider
X; B pX;nqnPZ` an associated Markov chain starting from ΩA0 , for some initial field A0 P A

;. For any
n P Z`, let us write X;n “ ΩAn . The chain pAnqnPZ` is Markovian and its transition matrix Q is given
by

QpA,A1q B
|A1|

|A|

ˆ

1

6
1

rAp1q
pA1q `

1

6
1

pAp1q
pA1q `

1

6
1

rAp2q
pA1q `

1

6
1

pAp2q
pA1q `

1

3
1ApA

1q

˙

for any fields A,A1, where A P A; and where for any field A, the thickness of A is defined by

|A| B
ź

x,yPZM

|Apx, yq|

Note in particular that a transition to a field with an empty value (equivalently, whose thickness
is 0) has the probability 0.

Our next task is to make an appropriate choice of the partitions ZM “ rB´A,x,y \
rB`A,x,y and

ZM “ pB´A,x,y \
pB`A,x,y so that the Markov chain pAnqnPZ` ends up at the full field A8, defined by

@ x, y P ZM , A8px, yq “ ZM

(note that this field is absorbing).
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A guiding principle behind such a choice should be that there is a chance to get a “big” field
(measured through its thickness). It leads us to following choice:

@ A P A, @ x, y P ZM ,

$

’

’

’

’

’

&

’

’

’

’

’

%

rB´A,x,y B Apx` 1, yq ´ y

rB`A,x,y B ZMz rB´A,x,y
pB´A,x,y B Apx, y ` 1q

pB`A,x,y B ZMz pB´A,x,y

We get that for any A P A and any px, yq P Z2
M ,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

rAp1qpx, yq B
´

Apx` 1, yq ´ y
¯

Y

´

Apx´ 1, yq ` y
¯

rAp2qpx, yq B
´

Apx` 1, yq ´ y
¯

X

´

Apx´ 1, yq ` y
¯

pAp1qpx, yq B Apx, y ` 1q YApx, y ´ 1q

pAp2qpx, yq B Apx, y ` 1q XApx, y ´ 1q

(20)

Remark 11 The fact that rAp1qpx, yq (respectively pAp1qpx, yq) is the biggest possible has to be com-
pensated by the fact rAp2qpx, yq (resp. pAp2qpx, yq) is the smallest possible. But we should not worry so
much about this feature, as Q promotes bigger fields.

˝

Let us check that this choice of dual process goes in the direction of our purposes.

Proposition 12 The Markov kernel P; associated to (20) admits only one recurrence class which is
tA8u, i.e. the Markov chain pAnqnPZ` ends up being absorbed in finite time at the full field.

Proof
Let be given any A0 P A

;ztA8u. It is sufficient to find a finite sequence pAlqlPJLK with L P N, AL “ A8
and

@ l P J0, L´ 1K, QpAl, Al`1q ą 0

Here is a construction of such a sequence.
Denote rT (respectively pT ) the mapping on fields corresponding to the transition A Ñ rAp1q (resp.

AÑ pAp1q).
We begin by constructing A1, A2, A3 and A4 by successively applying rT , pT , rT and pT . Fix

px, yq P Z2
M as well as z P A0px, yq. Applying rT , we get that z`y P A1px`1, yq and z´y P A1px´1, yq.

Applying pT , we have that z ` y P A2px` 1, y ` 1q and z ´ y P A2px´ 1, y ` 1q. Next rT insures that
z ´ 1 “ z ` y´ py` 1q P A3px, y` 1q and z ` 1 “ z ´ y` py` 1q P A3px, y` 1q. Finally, under rT , we
get that z ´ 1 P A4px, yq and z ` 1 P A4px, yq.

Successively applying again rT , pT , rT and pT , we construct A5, A6, A7 and A8. By the above
considerations, we deduce that z ´ 2, z and z ` 2 belong to A8px, yq. Let us successively apply
M ´ 3 more times rT , pT , rT and pT , to get A9, ..., A4pM´1q. It appears that A4pM´1qpx, yq contains
z ´M ` 1, z ´M ` 3, ..., z `M ´ 3, z `M ´ 1. Due to the fact that M is odd, the latter set is just
ZM .

Thus we get that for any px, yq P Z2
M , A4pM´1q “ ZM , namely A4pM´1q “ A8. It provides the

desired finite sequence with L “ 4pM ´ 1q.
�
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Remark 13 The successive applications of rT , pT , rT and pT is not without recalling the construction
of the bracket of two vector fields in differential geometry. The latter is used to investigate hypo-
ellipticity, see for instance the book of Hörmander [11], the continuous Heisenberg group being a
famous instance. Our objective of showing that the full space is covered by the dual process is a
discrete analogue of the property of hypoelliptic diffusions to admit a positive density at any positive
time (see also [15] for another link between hypoellipticity and intertwining dual processes).

˝

From the above results, we can construct a strong stationary time for the random walk on HM .
Heuristically, we first consider the stopping time σ considered in Section 3. Call Ā0 the field obtained
at time σ (whose subset fibers are all of cardinal 1). Let ζ be the the hitting time of the full field,
starting from Ā0. The time σ` ζ is a strong stationary time for the random walk on HM . Rigorously,
we should check that Ā0 and ζ are independent. There is a simpler way: note that the random
mappings of the previous section and of this section can be put together in a unique family pψΩqΩPV,
where depending if the base part of Ω P V is equal to Z2

M or not, ψΩ is defined as in this section or as
in the previous section. With respect to this family, we can apply the result of [16] to get that σ ` ζ
is indeed a strong stationary time for the random walk on HM .

This ends the qualitative construction of a strong stationary time. To go quantitative, the hitting
time ζ has to be investigated more thoroughly. More precisely, our goal is to prove Theorem 1.

Fix A P A; for the two following lemmas.

Lemma 14 We have
´

| rAp1q| “ |A| “ | pAp1q|
¯

ñ A “ A8

Proof
So let us assume that

| rAp1q| “ |A| “ | pAp1q| (21)

For any px, yq P Z2
M , we have

| rAp1qpx, yq| “

ˇ

ˇ

ˇ

´

Apx` 1, yq ´ y
¯

Y

´

Apx´ 1, yq ` y
¯ˇ

ˇ

ˇ

ě |Apx` 1, yq ´ y|

“ |Apx` 1, yq|

and we get

| rAp1q| ě
ź

px,yqPZ2
M

|Apx` 1, yq|

“
ź

px,yqPZ2
M

|Apx, yq|

“ |A|

Due to (21), the previous inequality must be an equality, and we deduce that

@ px, yq P Z2
M ,

ˇ

ˇ

ˇ

´

Apx` 1, yq ´ y
¯

Y

´

Apx´ 1, yq ` y
¯ˇ

ˇ

ˇ
“ |Apx` 1, yq ´ y|

namely

@ px, yq P Z2
M ,

´

Apx` 1, yq ´ y
¯

Y

´

Apx´ 1, yq ` y
¯

“ Apx` 1, yq ´ y
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Similarly, we get

@ px, yq P Z2
M ,

´

Apx` 1, yq ´ y
¯

Y

´

Apx´ 1, yq ` y
¯

“ Apx´ 1, yq ` y

so that

@ px, yq P Z2
M , Apx` 1, yq ´ y “ Apx´ 1, yq ` y (22)

The same reasoning with pAp1q instead of rAp1q, leads us to

@ px, yq P Z2
M , Apx, y ` 1q “ Apx, y ´ 1q

or equivalently

@ px, yq P Z2
M , Apx, y ` 2q “ Apx, yq

Since M is odd, the mapping ZM Q y ÞÑ y ` 2 has only one orbit, which by consequence covers
ZM . It follows that for any fixed x P ZM , the set Apx, yq does not depend on y, let us call it Apxq.

Coming back to (22), we get

@ px, yq P Z2
M , Apx` 2q “ Apxq ` 2y

Since any element z P ZM can be written under the form 2y for some y P ZM , we deduce

@ px, zq P Z2
M , Apx` 2q “ Apxq ` z

Iterating M times this relation in x, we obtain

@ px, zq P Z2
M , Apxq “ Apxq ` z

and this relations implies that Apxq “ ZM .
This amounts to say that for any px, yq P ZM , Apx, yq “ ZM , namely A “ A8.

�

Here is a quantitative version of the previous lemma:

Lemma 15 When A ‰ A8, then either

| rAp1q|

|A|
ě 1`

1

M
or

| pAp1q|

|A|
ě 1`

1

M

Proof
When A ‰ A8, then either | rAp1q| ą |A| or | pAp1q| ą |A|, since the proof of Lemma 14 shows that we
always have | rAp1q| ě |A| and | pAp1q| ě |A|, and that | rAp1q| “ |A| “ | pAp1q| implies that A “ A8.

Consider the situation where | rAp1q| ą |A|, then there exists px0, y0q P Z2
M such that | rAp1qpx0, y0q| ą

|Apx0 ` 1, y0q| (otherwise |Ap1q| ď |A|, according to the first part of the proof of Lemma 14). We
deduce

lnp| rAp1q|q ´ lnp|A|q “
ÿ

px,yqPZ2
M

lnp| rAp1qpx, yq|q ´ lnp|Apx` 1, yq|q (23)

ě lnp| rAp1qpx0, y0q|q ´ lnp|Apx0 ` 1, y0q|q

Since |Apx0 ` 1, y0q| ` 1 ď | rAp1qpx0, y0q| ďM , by concavity of the logarithm, we get that

lnp| rAp1qpx0, y0q|q ´ lnp|Apx0 ` 1, y0q|q ě lnpMq ´ lnpM ´ 1q

“ ´ ln

ˆ

1´
1

M

˙
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We deduce that

lnp| rAp1q|q ´ lnp|A|q ě ´ ln

ˆ

1´
1

M

˙

which implies

| rAp1q|

|A|
ě

1

1´ 1
M

ě 1`
1

M
(24)

In the situation where | pAp1q| ą |A|, then there exists px0, y0q P Z2
M such that | pAp1qpx0, y0q| ą

|Apx0, y0 ` 1q|. Considerations similar to the previous ones then lead to (24), where rAp1q has been
replaced by pAp1q.

�

Define the stochastic chain R B pRnqnPZ` via

@ n P Z`, Rn B lnp|An|q

The following result is the crucial element of the proof of Theorem 1:

Lemma 16 We have

@ n P Z`, ErRn`1|Ans ě Rn `
1

37M2
on tζ ą nu

(where the filtration pAnqnPZ` is generated by pAnqnPZ`).

Proof
By the Markov property, for any n P Z`, we have ErRn`1|Ans “ ErRn`1|Ans. Furthermore, for any
A P A;, we have

ErRn`1|An “ As “
ÿ

A1PA;

QpA,A1q lnp|A1|q

“
1

|A|

ÿ

A1PA

KpA,A1q|A1| lnp|A1|q (25)

where K is the kernel on A defined by

KpA,A1q B
1

6
1

rAp1q
pA1q `

1

6
1

pAp1q
pA1q `

1

6
1

rAp2q
pA1q `

1

6
1

pAp2q
pA1q `

1

3
1ApA

1q

In (25) is enforced the usual convention that ϕp0q “ 0, where ϕ is the mapping R` Q r ÞÑ r lnprq P
R. This mapping is convex, so we can apply Jensen’s inequality to get that for any A P A;,

ÿ

A1PA

KpA,A1q|A1| lnp|A1|q ě
ÿ

A1PA

KpA,A1q|A1| ln

˜

ÿ

A1PA

KpA,A1q|A1|

¸

“ |A| lnp|A|q

where we took into account that

@ A P A;,
ÿ

A1PA

KpA,A1q|A1| “ |A| (26)

as a consequence of the Markovianity of Q.
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But in the case of the mapping ϕ, Jensen’s inequality can strengthened, as shown in [14]. Indeed,
we have

@ s, t ě 0, t lnptq ě s lnpsq ` p1` lnpsqqpt´ sq ` p
?
t´

?
sq2 (27)

Replacing s by |A|, t by |A1|, multiplying by KpA,A1q and summing over A1 P A, we get
ÿ

A1PA

KpA,A1q|A1| lnp|A1|q

ě |A| lnp|A|q ` p1` lnp|A|qq
ÿ

A1PA

KpA,A1qp|A1| ´ |A|q `
ÿ

A1PA

KpA,A1qp
a

|A1| ´
a

|A|q2

“ |A| lnp|A|q `
ÿ

A1PA

KpA,A1qp
a

|A1| ´
a

|A|q2

where we used (26) again.
Assume now that A ‰ A8. With the above notation, it means that An ‰ A8, i.e. ζ ą n.
According to Lemma 15, either |

rAp1q|
|A| ě 1 ` 1

M or |
pAp1q|
|A| ě 1 ` 1

M . Whatever the case, we deduce
that

1

|A|

ÿ

A1PA

KpA,A1qp
a

|A1| ´
a

|A|q2 ě
ÿ

A1Pt rAp1q, pAp1qu

KpA,A1q

˜

d

|A1|

|A|
´ 1

¸2

ě
1

6

˜

c

1`
1

M
´ 1

¸2

“
1

6

˜

2`
1

M
´ 2

c

1`
1

M

¸

ě

?
3

64M2

ě
1

37M2

where we used the elementary bound (recall that M ě 3):

@ x P r0, 1{3s,
?

1` x ď 1`
1

2
x´

3
?

3

64
x2 (28)

(coming from pd{dxq2
?

1` x ď ´3
?

3{32 for x P r0, 1{3s).
�

The next result goes in the direction of Theorem 1, by proving in a weak sense that ζ is of order
M4 lnpMq.

Proposition 17 We have

Erζs ď 37M4 lnpMq

Proof
According to Lemma 16, the stochastic chain pRζ^n´ 1

37M2 pζ ^nqqnPZ` is a submartingale. It follows
that

@ n P Z`, ErRζ^ns ě
1

37M2
Erζ ^ ns
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Letting n go to infinity, we get, by dominated convergence in the l.h.s. and by monotone convergence
in the r.h.s.,

ErRζs ě
1

37M2
Erζs

To conclude to the desired bound, note that

ErRζs “ lnp|A8|q

“ lnpMM2
q

�

We can now come to the

Proof of Theorem 1
Traditional Markov arguments enable to strengthen the weak estimate of Proposition 17 into a
stronger one about the tail probabilities of ζ. More precisely the previous computations did not take
into account that the Markov chain pAnqnPZ` starts from a field A0 whose fibers are singletons. In
fact they are valid for any initial field A0. So whatever A0, we have

Prζ ě e37M4 lnpMqs ď
Erζs

e37M4 lnpMq

ď
1

e

By the Markov property we deduce

@ n P Z`, Prζ ě ne37M4 lnpMqs ď e´n

For any r ě 0, writing

r ě

Z

r

37eM4 lnpMq

^

37eM4 lnpMq

(where t¨u stands for the integer part), we get

Prζ ě rs ď P
„

ζ ą

Z

r

37eM4 lnpMq

^

37eM4 lnpMq



ď exp

ˆ

´

Z

r

37eM4 lnpMq

^˙

ď e exp

ˆ

´
r

37eM4 lnpMq

˙

Theorem 1 is a simple consequence of this bound and of Lemma 9, since τ “ σ ` ζ and we have

@ n P Z`, Prτ ě ns ď Prσ ě ns ` Prζ ě ns

ď 5 exp
´

´
r

10M2

¯

` 3 exp

ˆ

´
r

37eM4 lnpMq

˙

ď 8 exp

ˆ

´
r

101M4 lnpMq

˙

uniformly over r ě 0, for M large enough.
�
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Remark 18 Lemma 16 cannot be essentially improved under its present form, because it is almost
an equality when An is very close to A8. But away from the latter end, there is a lot of room for
improvements. Hopefully they could lead to bound on ζ of order M up to logarithmic corrections.
This is the kind of results we are looking for. Furthermore, we believe that measuring the size of fields
through | ¨ | is not sufficient for this purpose, this is illustrated by the proof of Lemma 14, where the
translations of the fibers of the field A induced by rAp1q played an important role for the “diversification”
of the fibers. But this feature is lost in Lemmas 15 and 16, where only the size is taken into account.
Better estimates in Theorem 1 (and by consequence in Theorem 2 and Theorem 3, whose proofs will
follow the same pattern) would require to investigate more carefully this point.

˝

5 A reduced strong stationary time
In this section, we indicate the changes in the above arguments needed to prove Theorem 2. It will
give us the opportunity to give a broad view of the whole approach by revisiting it.

First note that pY,Zq is indeed a Markov chain, whose state space is Z2
M and whose generic elements

will be denoted ry, zs. The associated transition matrix P is given by

@ ry, zs, ry1, z1s P Z2
M , P pry, zs, ry1, z1sq “

$

&

%

1{6 , if ry1, z1s P try ˘ 1, zs, ry, z ˘ ysu
1{3 , if ry1, z1s “ ry, zs
0 , otherwise

and the corresponding reversible probability is the uniform distribution on Z2
M . To construct a cor-

responding set-valued intertwining dual X as in [16], we are to specify a set V of non-empty subsets
of Z2

M and a family of random mappings pψΩqΩPV compatible with P , namely satisfying the weak
association and stability recalled in Section 2.

Every non-empty subset Ω Ă Z2
M can be uniquely determined by a subset B Ă ZM and a family

pApyqqyPB of non-empty subsets of ZM (that will be referred to as the fibers in the sequel) such that

ry, zs P Ω ô y P B and z P Apyq

This description is similar in spirit to the decomposition of a probability measure on Z2
M into its

marginal law on the first coordinate and into the Markov kernel corresponding to the distribution of the
second coordinate knowing the first one (in fact it is the same decomposition if uniform distributions
are considered). By analogy with the terminology of Section 3, the representation of Ω given by
B Q y ÞÑ Apyq is called a restricted field with base B and a field when B “ ZM .

We take for V the set of subsets of Z2
M whose base is a closed ball centered at 0 P ZM , denoted

Bprq where r P J0, pM ´ 1q{2K is the radius. The elements Ω of V are of three types:

• type 0 if the base of Ω is the singleton t0u,

• type 1 if the base of Ω is different from t0u and ZM , i.e. with a radius 0 ă r ă pM ´ 1q{2,

• type 2 if Ω is described by a field ZM Q y ÞÑ Apyq.

The description of the random mappings ψΩ depends on the type of the subset Ω P V.
‚ When Ω is of type 0, the random mapping ψΩ takes the values rφp0q with probability 4{5 and the

value pφp0q with probability 1/5, where rφp0q is the identity mapping and pφp0q is defined by

@ ry, zs P Z2
M ,

pφp0qpry, zsq B

#

r0, zs , if y P t´1, 0, 1u

ry, zs , if y R t´1, 0, 1u
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Let us check the weak association property with ξpΩq “ 5{6, i.e. we have to show that

@ ry, zs P Z2
M , ry

1, z1s P Ω, PrψΩpry, zsq “ ry
1, z1ss “

6

5
P pry, zs, ry1, z1sq (29)

Indeed, since Ω is of type 0, we have y1 “ 0, so that if the l.h.s. does not vanish, we must have
y P t0,˘1u and z “ z1. Consider first the case where y P t˘1u. We have on one hand

PrψΩpr˘1, zsq “ r0, zss “ PrψΩ “
pφp0qs

“
1

5

On the other hand,

P pr˘1, zs, r0, zsq “
1

6

so that (29) is satisfied. Consider next the case where y “ 0. We have

PrψΩpr0, zsq “ r0, zss “ PrψΩ “
pφp0q or ψΩ “

rφp0qs

“ 1

while

P pr0, zs, r0, zsq “
1

3
`

2

6
“

5

6

so (29) equally holds. When the l.h.s. of (29) vanishes, it is immediate to check the r.h.s. is also null.
The stability property is satisfied, since p rψp0qq´1pΩq “ Ω and p pψp0qq´1pΩq “ Bp1q ˆ Ap0q, where

Ap0q is the unique fiber in the restrictive field representation of Ω.
‚When Ω is of type 1, the randommapping ψΩ takes either one of the values rφp1,`q, rφp1,´q, pφp1,`q, pφp1,´q

with probability 1{6 each or the identity mapping rφp0q with probability 1/3, where

@ ry, zs P Z2
M ,

#

rφp1,˘qpry, zsq B ry, z ˘ ys

pφp1,˘qpry, zsq B ry ˘ sgnpyq, zs

As in Section 3, the weak association (with ξpΩq “ 1) and the stability properties are not difficult
to check. Note that during this phase, the size of the base is evolving, but the size of the fiber remains
equal to 1.
‚ When Ω is of type 2, the description of the random mapping ψΩ is more involved and follows

the pattern given in Section 4. More precisely, it corresponds to forgetting the x component there.
Denote A : ZM Q y ÞÑ Apyq the field defining Ω. We consider the following sign functions

@ ry, zs P Z2
M , rϕΩpy, zq B

"

´1 , if z P Apyq ´ y
1 , if z R Apyq ´ y

@ ry, zs P Z2
M , pϕΩpy, zq B

"

´1 , if z P Apy ` 1q
1 , if z R Apy ` 1q

as well as the corresponding mappings acting on Z2
M

@ ry, zs P Z2
M ,

rφ
p2,´q
Ω pry, zsq B ry, z ´ rϕΩpy, zqys

@ ry, zs P Z2
M ,

rφ
p2,`q
Ω pry, zsq B ry, z ` rϕΩpy, zqys

@ ry, zs P Z2
M ,

pφ
p2,´q
Ω pry, zsq B ry ´ pϕΩpy, zq, zs

@ ry, zs P Z2
M ,

pφ
p2,`q
Ω pry, zsq B ry ` pϕΩpy, zq, zs
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The random mapping ψΩ takes each of the rφp2,´q, rφp2,`q, pφp2,´q, pφp2,`q with probability 1{6 and the
identity mapping rφp0q with the remaining probability 1/3.

As in Section 4, we check that ψΩ is weakly associated to P , with ξpΩq “ 1. It is also stable. More
precisely, consider the fields rAp2,´q, rAp2,`q, pAp2,´q and pAp2,`q defined by

@ y P ZM ,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

rAp2,´qpyq B
´

Apyq ´ y
¯

Y

´

Apyq ` y
¯

rAp2,`qpyq B
´

Apyq ´ y
¯

X

´

Apyq ` y
¯

pAp2,´qpyq B Apy ` 1q YApy ´ 1q

pAp2,`qpyq B Apy ` 1q XApy ´ 1q

Then prφp2,´qΩ q´1pΩq, prφp2,`qΩ q´1pΩq, ppφp2,´qΩ q´1pΩq and ppφp2,`qΩ q´1pΩq are respectively the elements
of V of type 2 associated to the fields rAp2,´q, rAp2,`q, pAp2,´q and pAp2,`q.

From the family of random mappings pψΩqΩPV, construct the set-valued dual X B pXpnqqnPZ` , as
in [16]. Define two corresponding stopping times

σ B inftn P Z` : Xpnq is of type 2u
τ B inftn P Z` : Xpnq “ Z2

Mu

According to the general intertwining theory of Diaconis and Fill [6], the absorption time τ has
the same law as a strong stationary time for pY, Zq. It remains to investigate the tail probabilities of
τ to prove Theorem 2.

The first step is to evaluate σ. This is easy, since by considering the radius of the base of the
restricted field associated to X while it is of type 0 or 1, it amounts to quantify the absorption at
pM ´ 1q{2 of the birth and death chain W on J0, pM ´ 1q{2K starting from 0 and whose transition
kernel is the matrix Q defined by

@ k ‰ l P J0, pM ´ 1q{2K,

Qpk, lq B

$

’

&

’

%

1{2 , if k “ 0 and l “ 1

p2l ` 1q{p6p2k ` 1qq , if k P J1, pM ´ 1q{2´ 1K and |l ´ k| “ 1

0 , otherwise

(see [16] for the general principles and Section 2 for this kind of birth-and-death dual chain, we took
into account that when the radius of the base is k P J1, pM ´ 1q{2K the cardinal of the corresponding
set is 2k ` 1, because all the fibers are of cardinal 1). This absorbing chain is twice slower than the
one considered in Section 2.4: if ĂW is a Markov chain starting from 0 and whose transition kernel is
the matrix P defined at the beginning of Section 2.4, then W has the same law as

˜

ĂW

˜

n
ÿ

l“0

Bl

¸¸

nPZ`

where pBlqlPZ` is a sequence of independent Bernoulli random variables of parameter 1{2 (and inde-
pendent from ĂW ). From the proof of Lemma 9, we deduce

@ r ě 0, Prσ ě rs ď
5

2
exp

´

´
r

10M2

¯

It remains to estimate τ ´ σ. This random time has the same law as the absorption time ζ at
the full field A8 B pZM qyPZM of the field-valued Markov chain pAnqnPZ` whose transition kernel Q is
given, for any fields A,A1 by

QpA,A1q B
|A1|

|A|

ˆ

1

6
1

rAp2,´q
pA1q `

1

6
1

rAp2,`q
pA1q `

1

6
1

pAp2,´q
pA1q `

1

6
1

pAp2,`q
pA1q `

1

3
1ApA

1q

˙
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where for any field A, the thickness of A is defined by

|A| B
ź

yPZM

|Apyq|

Our first task is to check that Q leads to the absorption at A8 from any starting field. In this
direction the proof of Lemma 14 is still valid and even simpler: it is sufficient to remove the first
component x in the fields. It follows that for any field A,

´

| rAp2,´q| “ |A| “ | pAp2,´q|
¯

ñ A “ A8

As a consequence, Lemmas 15 and 16 provide exactly the same estimates:
When A ‰ A8, then either

| rAp2,´q|

|A|
ě 1`

1

M
or

| pAp2,´q|

|A|
ě 1`

1

M

and

@ n ă ζ, ErRn`1|Ans ě Rn `
1

37M2

where

@ n P Z`, Rn B lnp|An|q

and where the filtration pAnqnPZ` is generated by pAnqnPZ` .
The main difference comes with Proposition 17: since |A8| “MM instead of MM2 , we get

Erζs ď 37M3 lnpMq

The proof of Theorem 1 can then be transposed to show Theorem 2.

Remark 19 Coming back to the whole finite Heisenberg Markov chain rX,Y, Zs, we could think that
after the strong stationary time τ defined above, rX,Y, Zs will reach equilibrium after a new strong
stationary time of order M2. This is not clear from our approach, since at time τ we don’t know how
X and pY, Zq are linked. To get a result in this direction in the spirit of this paper, we should try to
introduce fields describing a subset of values of x P ZM , for any given py, zq P Z2

M , and see if we would
be able to deduce a corresponding strong stationary time with a better order than M4 lnpMq.

˝

6 Extension to higher dimensional Heisenberg walks
Here we explain how the constructions of the two previous sections can be extended to deal with higher
dimensional Heisenberg walks.

Again we apply the random mapping method described in [16] and recalled in Sections 2 and 3.
So our main ingredients are a set V of non-empty subsets of HN,M , and for any Ω P V, a random
mapping ψΩ : HN,M Ñ HN,M .

To present them, recall that in the introduction we associated to any rxs B rxk,ls1ďkălďN P HN,M

and to any l P JN ´ 1K, the lth upper diagonal dlrxs B pxk,k`lqkPJN´lK. Denote Dl the set of such
elements, i.e.

Dl B Ztpk,k`lq : kPJN´lKu
M
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Let d0 be the usual diagonal consisting only of 1, and set D0 “ td0u. We also write

dJ0,lKrxs B pdkrxsqkPJ0,lK P DJ0,lK B
ź

kPJ0,lK

Dk

A set Ω P V is described by a family of numbers prkqkPJN´1K belonging to J0, pM ´ 1q{2K and a
family of characteristic subsets pAlpdJ0,l´1KqqlPJ2,N´1K, dJ0,l´1KPDJ0,l´1K

, in the following way: an element
rxs belongs to Ω if and only if

#

d1rxs P
ś

kPJN´1KBprkq

@ l P J2, N ´ 1K, dlrxs P AlpdJ0,l´1Krxsq
(30)

(recall that Bprq is the closed ball of ZM centered at 0 and of radius r ě 0). For each l P J2, N ´ 1K
and dJ0,l´1K P DJ0,l´1K, AlpdJ0,l´1Kq is a subset of Dl. To simplify the already heavy notations, from
now on, it will be denoted ApdJ0,l´1Kq, since the index l P JN ´ 1K can be extracted from the argument
dJ0,l´1K P DJ0,l´1K.

We say that Ω P V is of type 1, if there exists k P JN ´ 1K such that rk ‰ pM ´ 1q{2. It is of type
b P J2, N ´ 1K, if:

- it is not of type 1,

- for any l P J2, b´ 1K and any dJ0,l´1K P DJ0,l´1K, the subset ApdJ0,l´1Kq is the full set Dl,
- there exists dJ0,b´1K P DJ0,b´1K such that ApdJ0,b´1Kq ‰ Db.
As a natural extension, the set Ω P V is said to be of type N if it is equal to HN,M , which is the

set such that all the radiuses are all equal to pM ´ 1q{2 and whose characteristic subsets are all equal
to ZM .

The idea behind the following construction, is to first wait for the equilibrium to be reached on
D1 “ DJ1K, next on DJ2K, then on DJ3K, etc., each time adding the next upper diagonal, up to DJN´1K,
which corresponds to the full HN,M .

The types will be useful to describe the random mappings ψΩ, for Ω P V. For this purpose, another
notation is required. For I P JN ´ 1K and ε P t˘1u, let FI,ε be the mapping acting on HN,M by adding
(respectively subtracting) the pI ` 1qth row to the Ith row, if ε “ 1 (resp. ε “ ´1). We will also see
FI,ε as a mapping acting on the DJ0,lK, for l P JN ´ 1K (and this is the only reason for the addition of
the diagonal d0 in dJ0,lK).

For fixed Ω P V, ψΩ is defined as follows.
‚ We start with the situation where Ω is not of type 1, so let b P J2, N ´ 1K be its type. The

characteristic subsets of Ω are denoted pApdJ0,l´1KqqlPJ2,N´1K, dJ0,l´1KPDJ0,l´1K
. As a consequence of Ω not

being of type 1, its radiuses rk, for k P JN ´ 1K, are all equal to pM ´ 1q{2.
Aside from the identity, the values of ψΩ are the φΩ,I,ε, for I P JN ´ 1K and ε P t˘1u, where

@ rxs P HN,M , φΩ,I,εprxsq B FI,εϕpI,dJ0,bKrxsqprxsq

where ϕpI, dJ0,bKrxsq P t´1, 1u will be defined below. Note that the dependence on Ω only goes through
its type b.

Each φΩ,I,ε will be chosen with probability 1{p3pN ´ 1qq and the identity with the remaining
probability 1{3. It remains to define the quantity ϕpI, dJ0,bKrxsq. The index I P JN ´ 1K is equally
assumed to be fixed now.

Let be given a family pBI,dJ0,b´1KqdJ0,b´1KPDJ0,d´1K of subsets from Db, that will be specified later on.
Consider an element dJ0,bK P DJ0,bK, that can be naturally decomposed into dJ0,b´1K P DJ0,d´1K and
db P Db. The quantity ϕpI, dJ0,bKq has the form:

ϕpI, dJ0,bKq B

"

1 , if db P BI,dJ0,b´1K

´1 , otherwise
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‚ When the type of Ω is 1, the construction of the random mapping ψΩ is rather extending that
of Section 3. As above, we consider the mappings φΩ,I,ε, for I P JN ´ 1K and ε P t˘1u, where now
ϕpI, dJ0,bKrxsq is replaced by sgnpxI,I`1q.

Due to the particularity of the case where one of the rI vanishes for I P JN ´ 1K, we need to
introduce the mappings φΩ,I,0:

@ rxs P HN,M , φΩ,I,0prxsq “

#

φΩ,I,´1prxsq , if xI,I`1 P t´1, 1u

rxs , otherwise

(with the notations of Section 3, when N “ 3, φΩ,1,0 corresponds to rφp0q and φΩ,2,0 to pφp0q).
The description of the underlying probabilities are as follows. First we sample I P JN´1K uniformly.

Next,

- if rI ‰ 0, then ψΩ is equal to φΩ,I,1, φΩ,I,´1 or the identity, each with probability 1{3.

- if rI “ 0, then ψΩ “ φΩ,I,0 (for the variable xI,I`1 P ZM , this corresponds to the situation
described in Section 2.1, where a “ 1{3 and p “ 1).

Our next task is to check the stability of V by the mappings φΩ,I,ε, for Ω P V, I P JN ´ 1K and
ε P t´1, 0, 1u. Here is a first case:

Lemma 20 When the type of Ω is b P J2, N ´ 1K, for I P JN ´ 1K, Ω1 B φ´1
Ω,I,1pΩq belongs to V, with

a type b1 P Jb,N ´ 1K and with characteristic subsets given by

@ l P J2, N ´ 1K, @ dJ0,l´1K P DJ0,l´1K,

A1pdJ0,l´1Kq “

$

’

’

’

’

’

&

’

’

’

’

’

%

Dl , if l ă b
´

rApFI,1pdJ0,b´1Kqq ´ θIrdb´1ss XBI,dJ0,b´1K

¯

Y
´

rApFI,´1pdJ0,b´1Kqq ` θIrdb´1ss XB
c
I,dJ0,b´1K

¯

, if l “ b

ApFI,ϕpI,dJ0,bKq
pdJ0,l´1Kqq ´ ϕpI, dJ0,bKqθIrdl´1s , if l ą b

where θIrdl´1s is the element of Dl whose coordinates vanish, except the Ith one, which is equal to the
pI ` 1qth coordinate of dl´1 (with the convention that θIrdl´1s “ 0 if this coordinate does not exist, i.e.
I ` 1 ą N ´ l ` 1).

Proof
An element rx1s P HN,M belongs to Ω1 if and only if there exists rxs P Ω such that φΩ,Iprx

1sq “ rxs.
Namely, rxs being defined by

@ 1 ď k ă l ď N, xk,l “

"

x1I,l ` ϕpI, dJ0,bKrx
1sqx1I`1,l , if k “ I

x1k,l , otherwise (31)

it must satisfy (30). In particular, there is no restriction on the xk,k`1, for k P JN ´ 1K, and by
consequence the same is true for the x1k,k`1, leading to the fact that all the r1k are also equal to
pM ´ 1q{2. It already shows that if Ω1 P V, its type is at least 2.

Note that (31) can written in terms of the upper diagonals:

@ l P JN ´ 1K, dlrxs “ dlrx
1s ` ϕpI, dJ0,bKrx

1sqθI,lrdl´1rx
1ss (32)

Consider an index l P J2, N ´ 1K, we distinguish several cases.
‚ When l ă b, we have ApdJ0,l´1Kq “ Dl for all dJ0,l´1K P DJ0,l´1K. Thus Ω induces no restriction on

dlrxs nor on dlrx1s. We can take A1pdJ0,l´1Kq “ Dl for all dJ0,l´1K P DJ0,l´1K. This proves that if Ω1 P V,
as it will be shown below, then its type is at least equal to b.
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‚ When l “ b, we consider two subcases.
˝ If dbrx1s P BI,dJ0,b´1Krx

1s, then (32) implies

dbrxs “ dbrx
1s ` θI,brdb´1rx

1ss

Taking into account that

dJ0,b´1Krxs “ FI,ϕpI,dJ0,bKrx
1sqpdJ0,b´1Krx

1sq “ FI,1pdJ0,b´1Krx
1sq

the condition dbrxs P ApdJ0,b´1Krxsq translates into

dbrx
1s P ApFI,1pdJ0,b´1Krx

1sqq ´ θI,brdb´1rx
1ss

and we get

dbrx
1s P

`

ApFI,1pdJ0,b´1Krx
1sq ´ θI,brdb´1rx

1ss
˘

XBI,dJ0,b´1Krx
1s

Conversely, this inclusion implies dbrxs P ApdJ0,b´1Krxsq, since the above arguments can be reversed.
˝ If dbrx1s R BI,dJ0,b´1Krx

1s, then similar considerations lead to the equivalence of dbrxs P ApdJ0,b´1Krxsq
with

dbrx
1s P

`

ApFI,´1pdJ0,b´1Krx
1sqq ` θI,brdb´1rx

1ss
˘

XBc
I,dJ0,b´1Krx

1s

It follows that when l “ b, we can take A1pdJ0,b´1Krx
1sq equal to

´

rApFI,1pdJ0,b´1Krx
1sqq ´ θIrdb´1rx

1sss XBI,dJ0,b´1Krx
1s

¯

Y

´

rApFI,´1pdJ0,b´1Krx
1sqq ` θIrdb´1rx

1sss XBc
I,dJ0,b´1Krx

1s

¯

‚ When l ą b, from (32) and

dJ0,l´1Krxs “ FI,ϕpI,dJ0,bKrx
1sqpdJ0,l´1Krx

1sq

the condition dbrxs P ApdJ0,b´1Krxsq translates into

dlrx
1s P ApFI,ϕpI,dJ0,bKrx

1sqpdJ0,l´1Krx
1sqq ´ ϕpI, dJ0,bKrx

1sqθIrdl´1rx
1ss

whose r.h.s. is a function of dJ0,l´1Krx
1s, since l ą b. It follows that A1pdJ0,l´1Krx

1sq can be defined as
the above r.h.s.

�

Similar arguments, or replacing the sets BI,dJ0,b´1K by their complementary sets, leads to

Lemma 21 When the type of Ω is b P J2, N ´ 1K, for I P JN ´ 1K, Ω1 B φ´1
Ω,I,´1pΩq belongs to V, with

a type b1 P Jb,N ´ 1K and with characteristic subsets given by

@ l P J2, N ´ 1K, @ dJ0,l´1K P DJ0,l´1K,

A1pdJ0,l´1Kq “

$

’

’

’

’

’

&

’

’

’

’

’

%

Dl , if l ă b
´

rApFI,´1pdJ0,b´1Kqq ` θIrdb´1ss XBI,dJ0,b´1K

¯

Y
´

rApFI,1pdJ0,b´1Kqq ´ θIrdb´1ss XB
c
I,dJ0,b´1K

¯

, if l “ b

ApFI,´ϕpI,dJ0,bKq
pdJ0,l´1Kqq ` ϕpI, dJ0,bKqθIrdl´1s , if l ą b
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Due to the guideline recalled in Remark 11, when the type of Ω is b P J2, N ´ 1K, we are lead to
choose

@ I P JN ´ 1K, @ dJ0,b´1K P DJ0,b´1K, BI,dJ0,b´1K “ ApFI,1pdJ0,b´1Kqq ´ θIrdb´1s (33)

It follows from Lemma 20, that when Ω is of type b P J2, N ´ 1K, the characteristic subsets of
Ω1 B φ´1

Ω,I,1pΩq are given by

@ l P J2, N ´ 1K, @ dJ0,l´1K P DJ0,l´1K,

A1pdJ0,l´1Kq “

$

&

%

Dl , if l ă b
`

ApFI,1pdJ0,b´1Kqq ´ θIrdb´1s
˘

Y
`

ApFI,´1pdJ0,b´1Kqq ` θIrdb´1s
˘

, if l “ b

ApFI,ϕpI,dJ0,bKq
pdJ0,l´1Kqq ´ ϕpI, dJ0,bKqθIrdl´1s , if l ą b

From Lemma 21, we deduce that when Ω is of type b P J2, N ´ 1K, the characteristic subsets of
Ω1 B φ´1

Ω,I,´1pΩq are given by

@ l P J2, N ´ 1K, @ dJ0,l´1K P DJ0,l´1K,

A1pdJ0,l´1Kq “

$

&

%

Dl , if l ă b
`

ApFI,1pdJ0,b´1Kqq ´ θIrdb´1s
˘

X
`

ApFI,´1pdJ0,b´1Kqq ` θIrdb´1s
˘

, if l “ b

ApFI,ϕpI,dJ0,bKq
pdJ0,l´1Kqq ´ ϕpI, dJ0,bKqθIrdl´1s , if l ą b

Remark 22 Note that if the ApdJ0,l´1Kq are all singletons for l ą b, then the same will be true for
the A1pdJ0,l´1Kq. Since we will start our dual process from the singleton tr0su, it follows that when the
dual process takes as values subsets of type b, then all the characteristic subsets corresponding to the
upper diagonals strictly above the bth upper diagonal are singletons. Only the characteristic subsets
of the bth upper diagonal will have a certain tendency to increase, as in Section 4.

˝

When the type of Ω P V is 1, similar results hold for φ´1
Ω,I,´1pΩq, φ

´1
Ω,I,0pΩq and φ´1

Ω,I,1pΩq, in
particular these subsets belong to V. We let the reader writes them down as an exercise. More
interestingly, note that while the set-valued dual process stays of type 1, the components of d1 behave
as the random walks described in Section 2.4 (see also Section 3), except that they have to share time.

More precisely, let X B pXpnqqnPZ` be a set-valued dual associated to the random mappings
pψΩqΩPV and starting from tr0su (when rXsp0q “ r0s). Define for any b P JNK, Vb the subset of V
consisting of elements whose type is larger than or equal to b.

Corollary 23 For any b P JNK, Vb is absorbing for X.

Proof
The cases b ě 2 is a consequence of Lemma 20 and 21. For b “ 1, V1 “ V, so the result comes from
the exercise left to the reader.

�

For any b P JNK, define

tb “ inftn P Z` : Xpnq P Vbu

Note that t1 “ 0 and tN is the absorption time of X at VN “ tHN,Mu. In particular, tN has
the same law as a strong stationary time for rXs, it is the τ of Theorem 3. The proof of Theorem 3
is based on the analysis of the differences tb`1 ´ tb conditioned by the past of X up to time tb, for
b P J1, N ´ 1K. For b “ 1, this conditioning is void, since we have rXsp0q “ r0s and X0 “ tr0su.
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Lemma 24 For M large enough, we have

@ N ě 3, @ r ě 0, Prt2 ě rs ď 5
N ´ 1

2
exp

ˆ

´
r

5pN ´ 1qM2

˙

(the factor 5/2 is here just to recover Lemma 9 when N “ 3).

Proof
The arguments are very close to those of Lemma 9. For k P JN ´ 1K, let rXk B p rXkpnqqnPZ` be N ´ 1
independent random walks on ZM as in Section 2.4. Let pBnqnPZ` be a family of independent variables
uniformly distributed on JN ´ 1K (and independent from the rXk, for k P JN ´ 1K) and define

@ k P JN ´ 1K, @ n P Z`, θkpnq B
ÿ

mPJnK

1tBm“ku

The chain rXk,k`1pnqskPJN´1K, nPZ` “ pd1rXspnqqnPZ` has the same law as p rXkpθkpnqqqkPJN´1K, nPZ`
and from the above construction, it appears that

t2 “ inftn P Z` : @ k P JN ´ 1K, θkpnq ěrtku

where for any k P JN ´ 1K, rtk is the strong stationary time constructed as in Section 2.4 for rXk.
It follows that for any n P Z`,

Prt2 ě ns ď
ÿ

kPJN´1K

Prθkpnq ďrtks

“ pN ´ 1qPrθ1pnq ďrt1s

since the pθkpnq,rtkq have the same law for all k P JN ´ 1K.
According to Corollary 8, we have for the conditional expectation knowing θkpnq and for large M :

Prθ1pnq ďrt1|θ1pnqs ď 2 expp´θ1pnq{p4M
2qq

so that

Prθ1pnq ďrt1s ď 2Erexpp´θ1pnq{p4M
2qqs

“ 2Erexpp´1tB1“1u{M
2qsn

“ 2

ˆ

N ´ 2` expp´1{p4M2qq

N ´ 1

˙n

“ 2

ˆ

1`
expp´1{p4M2qq ´ 1

N ´ 1

˙n

ď 2 exp

ˆ

´
n

5pN ´ 1qM2

˙

for M large enough, uniformly in n P Z` and in N P N, N ě 3.
As a consequence, for any r ě 0, we have

Prt2 ě rs ď Prt2 ě trus

ď 2pN ´ 1q exp

ˆ

´
tru

5pN ´ 1qM2

˙

ď 2pN ´ 1q exp

ˆ

´
r ´ 1

5pN ´ 1qM2

˙

ď 2pN ´ 1q exp

ˆ

´
1

5pN ´ 1qM2

˙

exp

ˆ

´
r

5pN ´ 1qM2

˙

ď 5
N ´ 1

2
exp

ˆ

´
r

5pN ´ 1qM2

˙
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since we have 2 expp´1{p5ˆ 2ˆ 32qq » 2.02234613753 ă 5{2.
�

The above estimate implies the more telling bound, for M large enough and uniformly in N P N,
N ě 3,

@ r ě 0, Prt2 ě N lnpNqM2 ` rNM2s ď 5 expp´r{5q

but for our purposes the formulation of Lemma 24 will be more convenient.
The important step is the following result, whose proof will follow the arguments of Section 4.

Proposition 25 For b P J2, N ´ 1K and M large enough (uniformly in b and N), we have

@ r ě 0, Prtb`1 ´ tb ě r|XJ0,tbKs ď 3 exp

ˆ

´
2r

101pN ´ 1q2MNpN´1q{2`1 lnpMq

˙

As in Section 4, this result is to be proven by getting an estimate on the tendency of Xpnq to grow,
while Xpnq says in Vb. With this respect, introduce the quantity

@ Ω P Vb, RrΩs B
ÿ

dJ0,b´1KPDJ0,b´1K

lnp|ApdJ0,b´1Kq|q (34)

where b P J2, N ´ 1K is fixed.
To any family A B pApdJ0,b´1KqqdJ0,b´1KPDJ0,b´1K of subsets of Db and to any I P JN´1K, associate the

new families AY,I B pAY,IpdJ0,b´1KqqdJ0,b´1KPDJ0,b´1K and AX,I B pAX,IpdJ0,b´1KqqdJ0,b´1KPDJ0,b´1K defined
by taking for any dJ0,b´1K P DJ0,b´1K,

AY,IpdJ0,b´1Kq B
`

ApFI,1pdJ0,b´1Kqq ´ θIrdb´1s
˘

Y
`

ApFI,´1pdJ0,b´1Kqq ` θIrdb´1s
˘

AX,IpdJ0,b´1Kq B
`

ApFI,1pdJ0,b´1Kqq ´ θIrdb´1s
˘

X
`

ApFI,´1pdJ0,b´1Kqq ` θIrdb´1s
˘

Note that the definition (34) can be extended to a family such as A, let us denote RrAs the
corresponding quantity. The following result is the generalization of Lemma 14:

Lemma 26 We have

@ I P JN ´ 1K, RrAY,Is ě RrAs

and if for all I P JN´1K, RrAY,Is “ RrAs, then A “ Ab,8, where Ab,8 B pAb,8pdJ0,b´1KqqdJ0,b´1KPDJ0,b´1K

is defined via

@ dJ0,b´1K P DJ0,b´1K, Ab,8pdJ0,b´1Kq B Db

Proof
Concerning the first point, for any dJ0,b´1K P DJ0,b´1K and I P JN ´ 1K, we have

|AY,IpdJ0,b´1Kq| “ |
`

ApFI,1pdJ0,b´1Kqq ´ θIrdb´1s
˘

Y
`

ApFI,´1pdJ0,b´1Kqq ` θIrdb´1s
˘

|

ě |ApFI,1pdJ0,b´1Kqq ´ θIrdb´1s| (35)
“ |ApFI,1pdJ0,b´1Kqq|

so that

RrAY,Is “
ÿ

dJ0,b´1KPDJ0,b´1K

lnp|AY,IpdJ0,b´1Kq|q

ě
ÿ

dJ0,b´1KPDJ0,b´1K

lnp|ApFI,1pdJ0,b´1Kqq|q

“
ÿ

dJ0,b´1KPDJ0,b´1K

lnp|ApdJ0,b´1Kq|q

“ RrAs
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where we used that the mapping FI,1 is a bijection in DJ0,b´1K, with inverse mapping given by FI,´1.
Assume next that the family A is such that RrAY,Is “ RrAs, for any I P JN ´ 1K. According to

the above computation, we must have for any dJ0,b´1K P DJ0,b´1K,

|
`

ApFI,1pdJ0,b´1Kqq ´ θIrdb´1s
˘

Y
`

ApFI,´1pdJ0,b´1Kqq ` θIrdb´1s
˘

| “ |ApFI,1pdJ0,b´1Kqq ´ θIrdb´1s|

namely
`

ApFI,1pdJ0,b´1Kqq ´ θIrdb´1s
˘

Y
`

ApFI,´1pdJ0,b´1Kqq ` θIrdb´1s
˘

“ ApFI,1pdJ0,b´1Kqq ´ θIrdb´1s

Similarly, replacing (35) by

|
`

ApFI,1pdJ0,b´1Kqq ´ θIrdb´1s
˘

Y
`

ApFI,´1pdJ0,b´1Kqq ` θIrdb´1s
˘

| ě |ApFI,´1pdJ0,b´1Kqq ` θIrdb´1s|

we get for any dJ0,b´1K P DJ0,b´1K,
`

ApFI,1pdJ0,b´1Kqq ´ θIrdb´1s
˘

Y
`

ApFI,´1pdJ0,b´1Kqq ` θIrdb´1s
˘

“ ApFI,´1pdJ0,b´1Kqq ` θIrdb´1s

and we deduce

ApFI,1pdJ0,b´1Kqq ´ θIrdb´1s “ ApFI,´1pdJ0,b´1Kqq ` θIrdb´1s

i.e.

ApdJ0,b´1Kq “ ApFI,´1 ˝ F
´1
I,1 pdJ0,b´1Kqq ` 2θIrpF

´1
I,1 pdJ0,b´1Kqqb´1s

“ ApF 2
I,´1pdJ0,b´1Kqq ` 2θIrpFI,´1pdJ0,b´1Kqqb´1s

where F 2
I,´1 is the composition of FI,´1 with itself.

Recall from Lemma 20 that if I ě N ´ b ` 1, then the θIrpFI,´1pdJ0,b´1Kqqb´1s vanishes. First
consider the case I “ N ´ 1, where this condition is satisfied, so that

ApdJ0,b´1Kq “ ApF 2
N´1,´1pdJ0,b´1Kqq (36)

Let us identify dJ0,b´1K as an incomplete N ˆN matrix from HN,M whose bth, pb` 1qth, ... pN ´

1qth upper diagonals have been removed, i.e. let us write it rxk,ls1ďkălďk`b´1. Similarly, identify
F 2
N´1,´1pdJ0,b´1Kq P DJ0,b´1K with rx1k,ls1ďkălďk`b´1. Then we have x1k,l “ xk,l, except for pk, lq “
pN ´ 1, Nq, where x1N´1,N “ xN´1,N ´ 2. Since the mapping ZM Q z ÞÑ z ´ 2 P ZM is a bijection, it
follows from (36) that ApdJ0,b´1Kq does not depend on the coordinate xN´1,N of dJ0,b´1K.

Next assume that b ě 3 and take I “ N ´ 2. We have

ApdJ0,b´1Kq “ ApF 2
N´2,´1pdJ0,b´1Kqq (37)

Writing rxk,ls1ďkălďk`b´1 the l.h.s. and rx1k,ls1ďkălďk`b´1 the r.h.s., these coordinates coincide, except
that x1N´2,N´1 “ xN´2,N´1 ´ 2 and x1N´2,N “ xN´2,N ´ 2xN´1,N . Since both side of (37) do not
depend on xN´1,N , it follows that they also do not depend on the coordinate xN´2,N . Resorting
again to the bijectivity of the mapping ZM Q z ÞÑ z ´ 2 P ZM , we see they equally do not depend
on xN´2,N´1. By iteration, considering successively I “ N ´ 2, ..., I “ N ´ b ` 1, it appears that
ApdJ0,b´1Kq does not depend on the coordinates xk,l, where k ą N ´ b (and k ă l ď k ` b´ 1).

For I “ N ´ b, we have

ApdJ0,b´1Kq “ ApF 2
N´b,´1pdJ0,b´1Kqq ` 2θN´brpFN´b,´1pdJ0,b´1Kqqb´1s (38)

Note that the diagonal FN´b,´1pdJ0,b´1Kqqb´1 P Db´1 is different from db´1 only in the last-but-one of
its coordinates. It follows that θN´brpFN´b,´1pdJ0,b´1Kqqb´1s “ θN´bpdb´1q “ p0, 0, ..., 0, xN´b`1,N q P

DJ0,b´1K, with the above notation. Denote y B pxN´b`1,N´b`2, xN´b`1,N´b`3, ..., xN´b`1,N´1q. We
have that
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• the set ApdJ0,b´1Kq does not depend on y nor on xN´b`1,N ,

• the set ApF 2
N´b,´1pdJ0,b´1Kqq a priori depends on y, but not on xN´b`1,N ,

• the vector 2θN´brpFN´b,´1pdJ0,b´1Kqqb´1s only depends on xN´b`1,N .

It follows that ApdJ0,b´1Kq is preserved by the translations by vectors of the form p0, 0, ..., 0, zq P

DJ0,b´1K with z P ZM . Namely, we can write ApdJ0,b´1Kq “ Ap1qpdJ0,b´1Kq ˆ ZM , where Ap1qpdJ0,b´1Kq is
a subset of Ztpk,b`kq : kPJN´b´1Ku

M . Coming back to (38), we deduce that Ap1qpdJ0,b´1Kq do not depend on
y (nor on the row indexed by JN ´ b` 1, NK of dJ0,b´1K.

The previous arguments can be iterated with I “ N ´ b ´ 1, ..., I “ 1. At the end we get that
ApdJ0,b´1Kq “ Db, as desired.

�

The next result is the generalization of Lemma 15.

Lemma 27 When A B pApdJ0,b´1KqqdJ0,b´1KPDJ0,b´1K ‰ Ab,8, there exist I P JN ´ 1K such that

RpAY,Iq ě RpAq ´ ln

ˆ

1´
1

MN´b

˙

so that exppRpAY,Iq ´RpAqq ě 1` 1{MN´b.

Proof
Lemma 26 shows that when A ‰ Ab,8, there exists rI P JN ´ 1K such that RpAY,rIq ą RpAq. Further-
more, from the beginning of the proof of Lemma 26, there exists rdJ0,b´1K P DJ0,b´1K such that

|AY,
rIprdJ0,b´1Kq| ą |ApF

rI,1
prdJ0,b´1Kqq|

otherwise we would end up with the contradiction RpAY,rIq ď RpAq.
It follows that

RpAY,
rIq ´RpAq “

ÿ

dJ0,b´1KPDJ0,b´1K

lnp|AY,
rIpdJ0,b´1Kq|q ´ lnp|ApdJ0,b´1Kq|q

ě lnp|AY,
rIprdJ0,b´1Kq|q ´ lnp|AprdJ0,b´1Kq|q

Since |AprdJ0,b´1Kq| ` 1 ď |AY,
rIprdJ0,b´1Kq| ď cardpDbq “ MN´b, by concavity of the logarithm, we

get that

lnp|AY,
rIprdJ0,b´1Kq|q ´ lnp|AprdJ0,b´1Kq|q ě lnpMN´bq ´ lnpMN´b ´ 1q

“ ´ ln

ˆ

1´
1

MN´b

˙

The first desired bound follows:

RpAY,Iq ´RpAq ě ´ ln

ˆ

1´
1

MN´b

˙

and the last inequality is deduced as in the proof of Lemma 15.
�

Let us keep following the path of Section 4 by presenting the generalization of Lemma 16. We need
the following notations:

@ n P Z`,

#

An B σpXp0q,Xp1q, ...,Xpnqq

Rn B RrXpnqs
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Lemma 28 We have for any n P Z` such that Xpnq is of type b, with fixed b P J2, N ´ 1K,

ErRn`1|Ans ě Rn `
2

37pN ´ 1qM2pN´bq

Proof
From the general theory developed in [16], from Lemmas 20 and 21 and from the choice (33), the
conditional law of the characteristic subsets A1 of Xpn ` 1q knowing An, in particular knowing the
characteristic subsets A of Xpnq, is given by

QpA,A1q B
1

3
δApA

1q `
1

3pN ´ 1q

ÿ

IPJN´1K

|A1|

|A|
pδAY,I pA

1q ` δAX,I pA
1qq

where

|A| B
ź

dJ0,b´1KPDJ0,b´1K

|ApdJ0,b´1Kq|

This is a Markov kernel on Ab, the set of families of non-empty subsets of Db indexed by DJ0,b´1K.
As in the proof of Lemma 16, the kernel Q is the modification through the cardinal weights of the
kernel K defined by

KpA,A1q B
1

3
δApA

1q `
1

3pN ´ 1q

ÿ

IPJN´1K

pδAY,I pA
1q ` δAX,I pA

1qq

Note that since Q is a Markov kernel, we have for any A P Ab,

ÿ

A1PAb

KpA,A1q|A1| “ |A|
ÿ

A1PAb

KpA,A1q
|A1|

|A|

“ |A|
ÿ

A1PAb

QpA,A1q

“ |A| (39)

With the above notations, it follows that while Xpnq is of type b,

ErRn`1|Ans “
ÿ

A1PAb

QpA,A1q lnp|A1|q

“
ÿ

A1PAb

KpA,A1q
|A1|

|A|
lnp|A1|q

From (27), we have

|A1| lnp|A1|q ě |A| lnp|A|q ` p1` lnp|A|qqp|A1| ´ |A|q ` p
a

|A1| ´
a

|A|q2
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so we deduce

ErRn`1|Ans ě
1

|A|

ÿ

A1PAb

KpA,A1q|A1| lnp|A1|q

ě
1

|A|

ÿ

A1PAb

KpA,A1q
´

|A| lnp|A|q ` p1` lnp|A|qqp|A1| ´ |A|q ` p
a

|A1| ´
a

|A|q2
¯

“ lnp|A|q `
1` lnp|A|q

|A|

ÿ

A1PAb

KpA,A1qp|A1| ´ |A|q `
1

|A|

ÿ

A1PAb

KpA,A1qp
a

|A1| ´
a

|A|q2

“ lnp|A|q `
1

|A|

ÿ

A1PAb

KpA,A1qp
a

|A1| ´
a

|A|q2

“ lnp|A|q `
1

3pN ´ 1q|A|

ÿ

IPJN´1K

pp

b

|AY,I | ´
a

|A|q2 ` p
b

|AX,I | ´
a

|A|q2q

ě lnp|A|q `
1

3pN ´ 1q|A|

ÿ

IPJN´1K

p

b

|AY,I | ´
a

|A|q2

“ lnp|A|q `
1

3pN ´ 1q

ÿ

IPJN´1K

˜

d

|AY,I |

|A|
´ 1

¸2

“ lnp|A|q `
1

3pN ´ 1q

ÿ

IPJN´1K

ˆ

exp

ˆ

RpAY,Iq ´RpAq

2

˙

´ 1

˙2

where we took into account (39) in the second equality. From Lemma 27, when A ‰ Ab,8, there exists
I P JN ´ 1K such that

ˆ

exp

ˆ

RpAY,Iq ´RpAq

2

˙

´ 1

˙2

ě

˜

c

1`
1

MN´b
´ 1

¸2

“ 2`
1

MN´b
´ 2

c

1`
1

MN´b

ě
6
?

3

64M2pN´bq

due to (28). So we get when Xpnq is of type b (and so the corresponding A is not equal to Ab,8,
otherwise we would have Xpnq P Vb`1),

ErRn`1|Ans ě lnp|A|q `
2

37pN ´ 1qM2pN´bq

“ Rn `
2

37pN ´ 1qM2pN´bq

�

We deduce a weak estimate on tb`1 ´ tb, as in Proposition 17

Proposition 29 We have, for b P J2, N ´ 1K,

Ertb`1 ´ tbs ď 37
N ´ 1

2
pN ´ bqMNpb`1q´bpb`3q{2 lnpMq

ď 37
pN ´ 1qpN ´ 2q

2
MNpN´1q{2`1 lnpMq
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Proof
According to Lemma 28, the stochastic chain

ˆ

Rtb`1^ptb`nq ´
2

37pN ´ 1qM2pN´bq
pptb`1 ´ tbq ^ nq

˙

nPZ`

is a submartingale. It follows that

@ n P Z`, ErRtb`1^ptb`nqs ě
2

37pN ´ 1qM2pN´bq
Erptb`1 ´ tbq ^ ns

Letting n go to infinity, we get, by dominated convergence in the l.h.s. and by monotone convergence
in the r.h.s.,

ErRtb`1
s ě

2

37pN ´ 1qM2pN´bq
Ertb`1 ´ tbs

To get the first announced bound, note that

ErRtb`1
s “ lnp|Ab,8|q

“ lnp|Db||DJ0,b´1K|q

“ lnpM pN´bqMpN´1q`pN´2q`¨¨¨pN´b`1q
q

“ pN ´ bqM p2N´bqpb´1q{2 lnpMq

so that

Ertb`1 ´ tbs ď 37
N ´ 1

2
M2pN´bqpN ´ bqM p2N´bqpb´1q{2 lnpMq

“ 37
N ´ 1

2
pN ´ bqMNpb`1q´bpb`3q{2 lnpMq

To conclude to the second bound, note that the quadratic mapping R Q b ÞÑ Npb` 1q ´ bpb` 3q{2
attains its maximum value at b “ N ´ 3{2 and on Z` its maximum value is attained at b “ N ´ 1
and at b “ N ´ 2. It follows that

Ertb`1 ´ tbs ď 37
N ´ 1

2
pN ´ bqMNpN´1q{2`1 lnpMq

ď 37
pN ´ 1qpN ´ 2q

2
MNpN´1q{2`1 lnpMq

�

Proposition 25 is now obtained via the Markovian arguments recalled in the proof of Theorem 1.
Note that Proposition 25 provides the justification of the assertion made after the statement of

Theorem 3. Following the indication given there, we come to the

Proof of Theorem 3
Since X is a set-valued process deduced from a family of random mappings satisfying the conditions
of [16], it is an intertwining dual for rXs and its absorbing time tN at HN,M has the same law as a
strong stationary time fo rXs.
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It remains to write that for any r ě 0,

PrtN ě rs “ P

»

–

ÿ

bPJN´1K

tb`1 ´ tb ě r

fi

fl

ď P rD b P JN ´ 1K : tb`1 ´ tb ě rs

ď
ÿ

bPJN´1K

P rtb`1 ´ tb ě rs

“ P rt2 ě rs `
ÿ

bPJ2,N´1K

P rtb`1 ´ tb ě rs

ď 5
N ´ 1

2
exp

ˆ

´
r

5pN ´ 1qM2

˙

` 3pN ´ 2q exp

ˆ

´
2r

101pN ´ 1qpN ´ 2qMNpN´1q{2`1 lnpMq

˙

ď
11N ´ 17

2
exp

ˆ

´
2r

101pN ´ 1qpN ´ 2qMNpN´1q{2`1 lnpMq

˙

where we used Lemma 24 and Proposition 25 in the last-but-one bound.
�

To end this section, let us mention the modifications required by the proof of Theorem 4. They
extend to higher dimensions the arguments of Section 5.

First note that the last column CN rXs B rXk,N skPJN´1K is indeed a Markov chain, whose state
space is ZN´1

M and whose generic elements will be denoted rxs B rxkskPJN´1K. The associated transition
matrix P is given by

@ rxs, rx1s P ZN´1
M , P prxs, rx1sq “

$

’

&

’

%

1{p6pN ´ 1qq , if rx1s “ FI,εrxs for some I P JN ´ 1K and ε P t˘1u

1{3 , if rx1s “ rxs
0 , otherwise

where for anyrxs B rxkskPJN´1K P ZN´1
M , k P JN ´ 1K, I P JN ´ 1K and ε P t˘1u, the k-th coordinate

of FI,εrxs is given by

pFI,εrxsqk B

"

xk , if k ą I
xk ` εxk`1 , if k ď I

with the convention xN “ 1.
The transition kernel P admits the uniform distribution on ZN´1

M as reversible probability.
Let us describe the subset V of non-empty subsets of ZN´1

M and the family of random mappings
pψΩqΩPV which are the primal ingredients to apply the method of [16].

Any non-empty subset Ω of ZN´1
M is uniquely determined by a non-empty subset B Ă ZM and a

family pAlpxJl`1,N´1KqqlPJ1,N´2K, xJl`1,N´1KPZ
Jl`1,N´1K
M

of non-empty subsets of ZM (called characteristic

subsets in the sequel) such that

rxs P Ω ô xN´1 P B and for all l P Jl ` 1, N ´ 1K, xl P AlpxJl`1,N´1Kq

(where xJl`1,N´1K “ pxkqkPJl`1,N´1K).
We take for V the set of subsets Ω of ZN´1

M such that B is a closed ball Bprq with radius r P
J0, pM ´ 1q{2K. As above, such Ω will of several types, defined iteratively:

• type 0, if B is the singleton t0u,

• type 1, if the radius of B satisfies 0 ă r ă pM ´ 1q{2,
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• type l P J2, N ´ 1K, if it is not of type k for any k P J0, l ´ 1K and if there exists at least one
xJN´l`1,N´1K P Z

JN´l`1,N´1K
M such that AN´lpxJN´l`1,N´1Kq ‰ ZM .

• type N , if Ω “ ZN´1
M .

The construction of the random mappings is similar to the one presented earlier in this section, just
keeping the effects on the last column. The most important feature to retain is the action on the subsets
of type b, for any fixed b P J2, N´1K, and even only on the characteristic subsets AN´bpxJN´b`1,N´1Kq,
for xJN´b`1,N´1K P Z

JN´b`1,N´1K
M . More precisely, given such a family

A B pAN´bpxJN´b`1,N´1KqqxJN´b`1,N´1KPZ
JN´b`1,N´1K
M

(40)

and I P JN ´ 1K, associate two other families of the same nature AY,I and AX,I defined by taking for
any xJN´b`1,N´1K P Z

JN´b`1,N´1K
M ,

AY,IpxJN´b`1,N´1Kq B
`

ApFI,`pxJN´b`1,N´1Kqq ´ δbpIqxN´b`1

˘

Y
`

ApFI,´pxJN´b`1,N´1Kqqq ` δbpIqxN´b`1

˘

AX,IpxJN´b`1,N´1Kq B
`

ApFI,`pxJN´b`1,N´1Kqq ´ δbpIqxN´b`1

˘

X
`

ApFI,´pxJN´b`1,N´1Kqqq ` δbpIqxN´b`1

˘

where δbpIq is the Kronecker symbol whose value is 1 if I “ b and 0 otherwise.
Remark that for I ă b, we end up with AY,I “ AX,I “ A.
Let Ab be the set of families of the form (40). Following meticulously the method described in

the first part of this section, we are led to investigate Markov chains pAnqnPZ` on Ab whose transition
kernel Q is given by

@ A,A1 P Ab, QpA,A1q B
1

3
δApA

1q `
1

3pN ´ 1q

ÿ

IPJN´1K

|A1|

|A|
pδAY,I pA

1q ` δAX,I pA
1qq

where

@ A P Ab, |A| B
ź

xJN´b`1,N´1KPZ
JN´b`1,N´1K
M

|ApxJN´b`1,N´1Kq|

Specifying Lemma 26 to the last column of the objects considered there, it appears that pAnqnPZ`
ends up being absorbed into Ab,8, the element of Ab whose fibers are all equal to ZM . Denote τb the
corresponding absorbing time. Our approach relies on the possibility to estimate the tail probabilities
of τb. Here is the equivalent of Proposition 25:

Proposition 30 For b P J2, N ´1K and for any initial distribution of A0, we have for M large enough
(uniformly in b and N),

@ r ě 0, Prτb ě rs ď 3 exp

ˆ

´
2r

101pN ´ 1qMN`1 lnpMq

˙

The proof of these bounds is similar to that of Proposition 25. The only differences are:
‚ Since the fibers are included into ZM (instead of Db), we can replace 1{MN´b by 1{M , in

Lemmas 27 and 28.
‚ Since the base is ZJN´b`1,N´1K

M (instead of DJ0,b´1K), we can replace

lnp|Db||DJ0,b´1K|q “ pN ´ bqM p2N´bqpb´1q{2 lnpMq

by lnp|ZZJN´b`1,N´1K
M
M |q “M b lnpMq ďMN´1 lnpMq, in Proposition 29.

In addition to Proposition 30, we furthermore need an estimate on the strong stationary time
required by the coordinate XN´1,N . It is the analogue of Lemma 24, where the factor N ´ 1 in
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the r.h.s. can be removed (since we don’t have to wait for the whole first upper diagonal to reach
equilibrium).

Putting together all these estimates as in the proof of Theorem 3, we end up with a strong stationary
time rτ whose tail probabilities satisfies for M large enough,

@ r ě 0, Prrτ ě rs ď
5

2
exp

ˆ

´
r

5pN ´ 1qM2

˙

` 3pN ´ 2q exp

ˆ

´
2r

101pN ´ 1qMN´1`2 lnpMq

˙

ď
6N ´ 7

2
exp

ˆ

´
2r

101pN ´ 1qMN`1 lnpMq

˙

This ends the proof of Theorem 4.

A The finite circle: remaining cases
In the context of the beginning of Section 2, we deal here with the remaining cases where a P p1{3, 1{2s.
To construct the sets V and the corresponding random mappings pψSqSPV satisfying the conditions of
weak association with P and of stability of V, we distinguish two situations, depending on the parity
of M P Nzt1, 2u.

A.1 When M is even
For a P p1{3, 1{2s, we need to add new kinds of sets in V, in addition to the segments from I. More
precisely, for r P J0,M{2K, let B´p0, rq be the set of x P Bp0, rq which have the same parity as r (there
is no ambiguity in the definition of the parity in ZM , since M is even). Consider

I´ B tB´p0, rq : r P J1,M{2Ku
V B I\ I´

Note that the only subset of the form B´p0, rq that belongs to I is B´p0, 0q “ t0u, which does not
belong to I´.

A.1.1 The random mapping ψt0u

When a P p1{3, 1{2s, the construction of ψt0u given in Section 2.1 is no longer valid. So here is
another construction (an alternative one will be provided in Section A.3.1). Choose two mappings
rψ, pψ : ZM Ñ ZM satisfying respectively rψp0q “ 0 “ rψp´1q “ rψp1q and rψpxq ‰ 0 for x P ZMzJ´1, 1K,
and pψp´1q “ 0 “ pψp1q and pψpxq ‰ 0 for x P ZMzt´1, 1u. Take ψt0u to equal to rψ with some
probability p P r0, 1s and to pψ with probability 1 ´ p. Let us compute p so that Condition (1) is
satisfied, which here still amounts to (6).

• When x R J´1, 1K, both sides of (6) vanish.

• When x P t´1, 1u, the l.h.s. of (6) is 1, while the r.h.s. is a{ζpt0uq. This implies that ζpt0uq “ a.

• When x “ 0, (6) is equivalent to

p “
1´ 2a

a

and this number p does belongs to r0, 1s for a P p1{3, 1{2s.

Next we must check that for this random mapping ψt0u, (2) is satisfied, namely Ψpt0uq P V “ I\I´.
This is true, because rψ´1pt0uq “ J´1, 1K P I and pψ´1pt0uq “ t´1, 1u “ B´p0, 1q P I´.
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A.1.2 The other random mappings and the Markov transition kernel P

For S P I\ I´zt0u, take the same random mapping ψS “ φ defined in Section 2.2. It is clear that (7)
is still satisfied, since the proof is valid for any a P p0, 1{2s (and any M ě 3). Concerning the stability
of I\ I´ by φ, note that in addition to (8), we also have for any r P J1,M{2K,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

φ´1
1 pB´p0, rqq “ B´p0, r ` 1q

φ´1
2 pB´p0, rqq “ B´p0, r ` 1q

φ´1
3 pB´p0, rqq “ B´p0, r ´ 1q

φ´1
4 pB´p0, rqq “ B´p0, r ´ 1q

φ´1
5 pB´p0, rqq “ B´p0, rq

(41)

(where M{2` 1 has to be understood as M{2´ 1).

As in Section 2.3, we identify Bp0, rq with r, for r P J0,M{2K, and furthermore, for r P J1,M{2K,
we identify B´p0, rq with ´r.

It appears that P is also the transition matrix of a birth and death chain, but this time on
J´M{2,M{2K:

@ k, l P J´M{2,M{2K, Ppk, lq “

$
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’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

1´ 2a , if k “ 0 and l “ 1

3a´ 1 , if k “ 0 and l “ ´1

a 2l`1
2k`1 , if k ě 1, k ‰M{2 and |k ´ l| “ 1

a |l|`1
|k|`1 , if k ď ´1, and |k ´ l| “ 1

1´ 2a , if |k| ě 1, k ‰M{2 and k “ l

1 , if k “M{2 “ l

0 , otherwise

(we used that |B´p0, rq| “ r ` 1, for r P J0,M{2K).
When p P p1{3, 1{2q, P enables to reach the absorbing point M{2 from all the other points, thus

the absorbing time t is a.s. finite and its law is the distribution of a strong stationary time for X. A
different feature is that the starting point X0 “ t0u, identified with 0, is at the middle of the discrete
segment J´M{2,M{2K and the left boundary is not absorbing.

When p “ 1{2, the transition from 0 to 1 is forbidden: Pp0, 1q “ 0. Starting from 0, the Markov
chain X stays on the irreducible state space J´M{2, 0K and never reaches M{2, i.e. t “ 8 a.s. This
result could have been guessed, as due to the periodicity of order 2, X does not converge to π in large
times. The Markov chain ´X is a finite equivalent of the process on Z` introduced by Pitman in [18]
(see also [16] for an approach via random mappings).

Remark 31 It is important that ψt0u is different from the random mapping φ considered in Sections 2.2
and A.1.2. Indeed, whatever a P p0, 1{2s, if we had taken ψt0u “ φ, we would have ended up with
X1 P tt´1, 1u, t0uu and from (41), we can deduce that for any n P Z`, we would have Xn P tt0uu\I´.
In particular t “ `8 when M is even.

˝

A.2 When M is odd
In this situation, we enrich the set I´. For r P J0, pM ´ 1q{2K, B´p0, rq is defined as at the beginning
of Section A.1. Now the parity of an element x P ZM is the parity of its representative in J´pM ´

1q{2, pM ´ 1q{2qK. Furthermore, for r P JpM ` 1q{2,M ´ 1K, we consider

B´p0, rq “ B´p0, pM ´ 1q{2q YBp´pM ´ 1q{2, r ´ pM ´ 1q{2q YBppM ´ 1q{2, r ´ pM ´ 1q{2q
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namely this subset contains all the points encountered when going clock-wise from r ´ pM ´ 1q to
M´1´r, and all the other points which have the parity of r´pM´1q. In particular when r “M´1,
we get B´p0,M ´ 1q “ ZM . We take

I´ B tB´p0, rq : r P J1,M ´ 1Ku
V B IY I´

Note that the only element in the intersection of I and I´ is the whole state space ZM “ Bp0, pM´

1q{2q “ B´p0,M ´ 1q, nevertheless, it will be convenient to see Bp0, pM ´ 1q{2q and B´p0,M ´ 1q as
different (i.e. to interpret V as a multiset, with ZM of multiplicity 2), namely to write V “ I\ I´.

We consider the same random mappings as those constructed in Section A.1: The random mapping
ψt0u is the one of Section A.1.1 and for S P Vztt0uu, ψS “ φ, defined in Sections 2.2 and A.1.2.

It follows that (1) holds (with ζpt0uq “ a and ζpSq “ 1, for S P Vztt0uu). Furthermore, due to
the fact that M is odd, we get that (41) is still true for r P J1,M ´ 1K, with the convention that
B´p0,Mqq “ ZM .

Now we identify Bp0, rq with r, for r P J0, pM ´ 1q{2K, and B´p0, rq with ´r, for r P J1,M ´ 1K.
In accordance with the multiplicity 2 of ZM mentioned above, the whole state space ZM is seen as the
two points pM ´ 1q{2 and ´pM ´ 1q.

This identification enables us to see P as the transition matrix of a birth and death chain on
J´pM ´ 1q, pM ´ 1q{2K:

@ k, l P J´pM ´ 1q, pM ´ 1q{2K, Ppk, lq “
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’

’

&

’

’

’

’

’

’

’

’

’

%

1´ 2a , if k “ 0 and l “ 1

3a´ 1 , if k “ 0 and l “ ´1

a 2l`1
2k`1 , if k ě 1, k ‰M{2 and |k ´ l| “ 1

a |l|`1
|k|`1 , if k ď ´1, k ‰ ´pM ´ 1q and |k ´ l| “ 1

1 , if k “ l P t´pM ´ 1q, pM ´ 1q{2u

0 , otherwise

(we used that |B´p0, rq| “ r ` 1, for r P J0,M ´ 1K).
When p P p1{3, 1{2q, P enables to reach the two absorbing points pM ´ 1q{2 and ´pM ´ 1q from

all the other points, thus the absorbing time t is a.s. finite and its law is the distribution of a strong
stationary time for X. The Markov chain X still starts from 0 and ends up being absorbed in one of
boundary points pM ´ 1q{2 or ´pM ´ 1q.

When p “ 1{2, the transition from 0 to 1 is still forbidden: Pp0, 1q “ 0. Starting from 0, the
Markov chain X stays on the irreducible state space J´pM ´ 1q, 0K and ends up being absorbed at
´pM ´ 1q. Thus t is a.s. finite and X admits a strong stationary time, it was expected as there is no
problem of periodicity when M is odd.

A.3 Alternative random mappings, still for a P r1{3, 1{2q
The constructions of the previous subsections could also have been obtained by first lumping X (see
Remark 6, whose “projection” is valid for all a P p0, 1{2s). Here we propose another construction which
is no longer compatible with this procedure. We take for V the set of all balls Bpx, rq, for x P ZM and
r P J0, tM{2uK. All these balls are different, except that Bpx, tM{2uq “ ZM for any x P ZM . The space
V can be seen as a wheel: the tyre is the discrete circle consisting of the Bpx, 0q “ txu for x P ZM .
For any fixed x P ZM , the set tBpx, rq : r P J0, tM{2uu is a ray going from the tyre to the center of
the wheel, represented by ZM . The Markov kernel P that we are to construct will respect this wheel
graph.
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A.3.1 The alternative random mappings ψtxu, for x P ZM
Fix some x P ZM . We sightly modify the random mapping considered in Section A.1.1 (after rotating
ZM by ´x). Choose three mappings rψx, pψx, qψx : ZM Ñ ZM satisfying respectively

• rψxpxq “ x “ rψxpx´ 1q “ rψxpx` 1q and rψxpyq ‰ x for y P ZMzJx´ 1, x` 1K

• pψxpx´ 1q “ x and pψxpyq ‰ x for y P ZMztx´ 1u

• qψxpx` 1q “ x and qψxpyq ‰ x for y P ZMztx` 1u

Take ψtxu to equal to rψx with some probability p P r0, 1s and to each of pψx and qψx with probability
p1´ pq{2. Let us compute p so that Condition (1) is satisfied, which here amounts to

@ y P ZM , Prψtxupyq “ xs “
1

ζptxuq
P py, xq (42)

• When y R Jx´ 1, x` 1K, both sides of (42) vanish.

• When y P tx ´ 1, x ` 1u, the l.h.s. of (42) is 1 ´ p1 ´ pq{2, while the r.h.s. is a{ζptxuq. This
implies that ζptxuq “ 2a{p1` pq.

• When y “ x, (42) is equivalent to

p “
p1´ 2aqp1` pq

2a

namely p “ p1´ 2aq{p4a´ 1q, which belongs to r0, 1q for a P p1{3, 1{2s.

For the computations of the next section, note that according to (3),

Pptxu, tx´ 1, x, x` 1uq “ 3ζptxuqp

“ 3
2a

1` p

p1´ 2aqp1` pq

2a

“ 3p1´ 2aq

and

Pptxu, tx´ 1uq “ Pptxu, tx` 1uq

“
1´Pptxu, tx´ 1, x, x` 1uq

2
“ 3a´ 1

Next we must check that for this random mapping ψtxu, (2) is satisfied, namely ψxptxuq P V. This
is true, because rψ´1

x ptxuq “ Bpx, 1q, pψ´1
x ptxuq “ Bpx´ 1, 0q and qψ´1

x ptxuq “ Bpx` 1, 0q.

A.3.2 The other random mappings and the Markov transition kernel P

For any x P ZM , the mappings φ1,x, φ2,x, φ3,x, φ4,x and φ5,x, as well as the random mapping φx, are
constructed as φ1, φ2, φ3, φ4, φ5 and φ in Sections 2.2 and A.1.2, but are centered at x instead of 0.
Then we take ψS “ φx, for any S “ Bpx, rq, with r P J1, tM{2uK. By the same proofs as before
(“rotated” by ´x), we get that these random mappings are strongly associated to P and that (2) is
satisfied, since we have for any r P J1, tM{2uK,
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’

’
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’

&

’

’

’

’

’

’

%

φ´1
1,xpBpx, rqq “ Bpx, r ` 1q

φ´1
2,xpBpx, rqq “ Bpx, r ` 1q

φ´1
3,xpBpx, rqq “ Bpx, r ´ 1q

φ´1
4,xpBpx, rqq “ Bpx, r ´ 1q

φ´1
5,xpBpx, rqq “ Bpx, rq
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(where Bpx, tM{2uq “ Bpx, tM{2u` 1q “ ZM ).
The corresponding Markov kernel P is compatible with the wheel structure of V and we have for

any S, S1 P V which are neighbors in this graph, and where x is the center of S,

PpS, S1q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

3a´ 1 , if S “ txu and S1 “ tx` 1u or S1 “ tx´ 1u

3´ 6a , if S “ txu and S1 “ tx´ 1, x, x` 1u

a 2l`1
2k`1 , if S “ Bpx, kq and S “ Bpx, lq with k P J1, tM{2u´ 1K and |k ´ l| “ 1

1´ 2a , if S “ Bpx, kq “ S1 with x P ZM and k P J1, tM{2u´ 1K
1 , if S “ S1 “ ZM

For a corresponding Markov chain, X starting from t0u, we are interested in the absorption time t
in ZM , since its distribution is the law of a strong stationary time for X. Note that we can again come
back to a birth and death chain: for any ball S P V, denote ρpSq its radius (with ρpZM q “ tM{2u).
Remark that ρpXq is a birth and death chain, starting from 0, absorbed at tM{2u and whose transition
matrix is:

@ k, l P J0, tM{2uK, Qpk, lq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

3a´ 1 , if k “ 0 “ l

3´ 6a , if k “ 0 and l “ 1

a 2l`1
2k`1 , if k P J1, tM{2u´ 1K and |k ´ l| “ 1

1´ 2a , if k P J1, tM{2u´ 1K and k “ l

1 , if k “ tM{2u “ l

0 , otherwise

The absorption time of ρpXq at tM{2u has the same law as t and Karlin and McGregor [12] enable
to compute it in terms of the spectrum of Q.
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