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1 Introduction
The investigation of the spectra of finite Markov generators was first motivated by the quest of quan-
titative bounds on the convergence to equilibrium of the corresponding processes, see for instance
the reference book [2] of Levin, Peres and Wilmer. There is also a classification reason: what are
the possible spectra of Markov generators?, and for such a given spectrum, is there a simple repre-
sentative Markov process? This structural question is related to the previous motivation, as ergodic
finite isospectral Markov generators can be intertwined and under certain circumstances this relation
enables good transfers of information about the speed of convergence, see e.g. [3, 4]. Our goal here
goes in this general direction, by providing a simple family of Markov generators for real spectra with
geometric multiplicity 1.

Let us start by recalling some general definitions. For fixed n P N, let Mpnq be the space of all
nˆ n matrices with real entries. The Jordan spectrum of a matrix A PMpnq is the multi-set

σJpAq B tpλk, nkq : k P JlKu,

where each pλk, nkq, k P JlK B t1, 2, ..., lu, corresponds to a Jordan block of size nk ˆ nk associated
to the eigenvalue λk. Since several of these blocks can be equal, σJpAq as to be seen as a multi-set.
Note that

ř

kPJlK nk “ n. The traditional geometric and algebraic spectra of A are the multi-sets
respectively defined by

σgpAq B tλk : k P JlKu
σapAq B tλk rnks : k P JlKu

namely each Jordan block corresponding to pλk, nkq, for k P JlK, brings a geometric (respectively
algebraic) multiplicity of 1 (resp. nk) to the eigenvalue λk of A.

Denote byMrpnq the set of matrices A PMpnq whose spectrum is real, i.e. for all pλ,mq P σJpAq,
we have λ P R.

The sets of the form S B tpλk, nkq P C ˆ N : k P JlKu are said to be uni-spectral when they
satisfy the following conditions:

•
ř

kPJlK nk “ n and in particular l P JnK,

• pλ1, n1q “ p0, 1q,
• for all k P J2, nK, the real part of λk is positive,

• for all k ‰ k1 P JlK, we have λk ‰ λk1 .

The uni-spectral set S will be interpreted as a multi-set whose elements all have multiplicity 1
(here multiplicity is understood in the sense of multi-sets, when S will correspond to a spectrum, the
multiplicity will thus stand for the geometrical one). The uni-spectral set S is said to be real when
all the λk are real (and thus λk ą 0 for all k P J2, nK). Note that without lost of generality, we can
and will assume that the elements of a real uni-spectral set S are indexed so that k ă k1 P JlK implies
λk ă λk1 .

The set of (respectively real) uni-spectral multi-sets will be denoted Upnq (resp. Urpnq).
One of the main purpose of this paper, is to see that each uni-spectral set can be seen as the

spectrum of a very simple Markov process, and even of an interesting family of them.
More precisely, we are interested in the following subclasses ofMpnq. First let Spnq be the set of

L PMpnq which are irreducible skip-free Markov generators, namely which satisfy the following
properties:

• Markov generator: off-diagonal entries of L are non-negative and the row sums are null.

• Irreducibility: for any x ‰ y P JnK, there exists a path in JnK, p B pp0, p1, ..., plq with l P N,
such that p0 “ x, pl “ y and for any k P JlK, Lppk´1, pkq ą 0.
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• Skip-free: for all x, y P JnK with y ą x` 1, we have Lpx, yq “ 0.

The second subclass we will study is T pnq, the set of L P Spnq which are irreducible pure-birth
Markov generators, namely which satisfy the additional property:

• Pure-birth: for any x P Jn´ 1K and y R tx, x` 1u, we have Lpx, yq “ 0.

Remark 1 When the pure-birth condition is replaced by the following birth-death property:

• Birth-death: for any x P Jn´ 1K and y R tx´ 1, x, x` 1u, we have Lpx, yq “ 0.

we get the class of irreducible birth-death Markov generators, which is intermediary between
Spnq and T pnq, and which plays an important role in the constructive theory of denumerable Markov
processes, see the book [5] of Yang. Irreducible birth-death Markov generators are used as approxi-
mations (as n goes to infinity) of general birth and death processes on Z`. Note nevertheless that the
Markov generators from these three classes can jump from their right-most boundary n to any other
point in the state space.

˝

Here we will be interested in the following subclasses,

Srpnq B Spnq XMrpnq

Trpnq B T pnq XMrpnq

and more precisely into their spectral properties, so denote

σJp´Srpnqq B tσJp´Lq : L P Srpnqu
σJp´Trpnqq B tσJp´Lq : L P Trpnqu

The interest of these classes, is:

Theorem 2 For any fixed n P N, we have

σJp´Srpnqq “ σJp´Trpnqq “ Urpnq

We believe the same result is true without the requirement that the eigenvalues are real, but it
would require a better understanding of the significance of complex eigenvalues:

Conjecture 3 For any fixed n P N, we have

σJp´Spnqq “ σJp´T pnqq “ Upnq

˝

Theorem 2 is a first step in the direction of this challenging conjecture.

In the following section, we will be exhibiting an interesting isospectral family from T pnq whose
spectrum is a given uni-spectral set, this will be the important step in the proof of Theorem 2. In the
last section we will compare the mixing rates of the elements of this family, see Theorem 6.
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2 An isospectral family
The purpose of this section is to prove Theorem 2.

We need some preparations.

Proposition 4 Let L P Srpnq. Then the Jordan spectrum of ´L is a uni-spectral set.

Proof
By irreducibility, the smallest eigenvalue of ´L is 0 and has algebraic multiplicity 1. So we only need
to prove the geometric multiplicity of any eigenvalue of ´L is 1.

Let λ be an eigenvalue of ´L and f “ pfpiqq1ďi,jďn be a corresponding non-zero eigenvector. We
have

@ 1 ď i ă n, ´Lrf spiq “

i`1
ÿ

j“1

´Lpi, jqfpjq “ λfpiq

from which we deduce

fpi` 1q “
1

´Lpi, i` 1q

«

λfpiq `
i
ÿ

j“1

Lpi, jqfpjq

ff

(1)

This means fpi ` 1q can be determined by fp1q, ¨ ¨ ¨ , fpiq. We must have fp1q ‰ 0, otherwise
(1) implies f ” 0. It follows that tcf : c P Rzt0uu is the set of all the eigenvectors associated to λ.
Therefore the dimension of the eigenspace related to λ is 1, which means the geometric multiplicity of
λ is 1. See Horn and Johnson [1, Section 1.4].

�

Proposition 5 Given S “ tpλk, nkq P R` ˆ N : k P JlKu P Urpnq, we denote 0 “ θ1 ă θ2 “ ¨ ¨ ¨ “
θn2`1 ă θn2`2 “ ¨ ¨ ¨ “ θn2`n3`1 ă ¨ ¨ ¨ ď θn the elements of the multiset tλkrnks : k P JlKu. There
exists a family of irreducible pure-birth Markov generators pLxqxPp0,θ2q, such that the Jordan spectra of
´Lx are equal to S for all x P p0, θ2q. More precisely, the isospectral family pLxqxPp0,θ2q is given by

Lx B

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´pθ2 ´ xq θ2 ´ x 0 ¨ ¨ ¨ 0 0 0
0 ´θ3 θ3 ¨ ¨ ¨ 0 0 0
0 0 ´θ4 θ4 ¨ ¨ ¨ 0 0
...

. . . . . . . . . . . .
...

...

0 0 0
. . . ´θn´1 θn´1 0

0 0 0 ¨ ¨ ¨ 0 ´θn θn
u2 u3 u4 ¨ ¨ ¨ un´1 un ´x

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(2)

where for any 0 ă x ă θ2,

u2 B x
n
ź

k“3

θk ´ θ2 ` x

θk
ą 0

@ 3 ď i ď n, ui B
xpθ2 ´ xq

θi

n
ź

k“i`1

θk ´ θ2 ` x

θk
ą 0

(with the usual convention that for i “ n, the empty product is equal to 1, note that x “
řn
i“2 ui).
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Proof
For any fixed x P p0, θ2q, to prove that the Jordan spectrum of ´Lx in (2) is S, by Proposition 4, we
only need to prove the algebraic spectrum of ´Lx is t0, θ2, ¨ ¨ ¨ , θnu. Define the diagonal matrix

L˚ B

¨

˚

˚

˚

˚

˚

˝

´θ2
´θ3 0

. . .
0 ´θn

0

˛

‹

‹

‹

‹

‹

‚

and for any a P R and u B pu2, ..., unq P Rn´1,

Apa, uq B |aI ` Lx| ´ |aI ` L
˚|

If for some given u P Rn´1, we have

@ a P R, Apa, uq “ 0 (3)

then Lx and L˚ have the same eigenvalues with the same corresponding algebraic multiplicities.
By splitting with respect to the last row of the first determinant, we get

Apa, uq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a´ pθ2 ´ xq θ2 ´ x ¨ ¨ ¨ 0 0
0 a´ θ3 θ3 ¨ ¨ ¨ 0
...

...
. . . . . .

...
0 0 ¨ ¨ ¨ a´ θn θn
u2 u3 ¨ ¨ ¨ un a´ x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a´ θ2 θ2 ¨ ¨ ¨ 0 0
0 a´ θ3 θ3 ¨ ¨ ¨ 0
...

...
. . . . . .

...
0 0 ¨ ¨ ¨ a´ θn θn
0 0 ¨ ¨ ¨ 0 a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a´ pθ2 ´ xq θ2 ´ x ¨ ¨ ¨ 0 0
0 a´ θ3 θ3 ¨ ¨ ¨ 0
...

...
. . . . . .

...
0 0 ¨ ¨ ¨ a´ θn θn
u2 u3 ¨ ¨ ¨ un ´x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a´ pθ2 ´ xq θ2 ´ x ¨ ¨ ¨ 0 0
0 a´ θ3 θ3 ¨ ¨ ¨ 0
...

...
. . . . . .

...
0 0 ¨ ¨ ¨ a´ θn θn
0 0 ¨ ¨ ¨ 0 a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a´ θ2 θ2 ¨ ¨ ¨ 0 0
0 a´ θ3 θ3 ¨ ¨ ¨ 0
...

...
. . . . . .

...
0 0 ¨ ¨ ¨ a´ θn θn
0 0 ¨ ¨ ¨ 0 a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x ´x ¨ ¨ ¨ 0 0
0 a´ θ3 θ3 0 0
...

...
. . . . . .

...
0 0 ¨ ¨ ¨ a´ θn θn
0 0 ¨ ¨ ¨ 0 a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a´ pθ2 ´ xq θ2 ´ x ¨ ¨ ¨ 0 0
0 a´ θ3 θ3 0 0
...

...
. . . . . .

...
0 0 ¨ ¨ ¨ a´ θn θn
u2 u3 ¨ ¨ ¨ un ´x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ xpa´ θ3q ¨ ¨ ¨ pa´ θnqa` pa´ θ2 ` xqpa´ θ3q ¨ ¨ ¨ pa´ θnqp´xq `
n
ÿ

i“2

ui ¨Gipuq

“ x ¨ pθ2 ´ xqpa´ θ3q ¨ ¨ ¨ pa´ θnq `
n
ÿ

i“2

ui ¨Gipuq (4)
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where
$

’

&

’

%

G2puq B p´1qn´1pθ2 ´ xqθ3 ¨ ¨ ¨ θn

G3puq B p´1qn´2pa´ θ2 ` xq ¨ θ3 ¨ ¨ ¨ θn

@ 4 ď i ď n, Gipuq B p´1qn`1´ipa´ θ2 ` xqpa´ θ3q ¨ ¨ ¨ pa´ θi´1q ¨ θi ¨ ¨ ¨ θn

(5)

So Apa, uq can be written as

Apa, uq C Fn´2puqa
n´2 ` ¨ ¨ ¨ ` F1puqa` F0puq (6)

where the Fipuq, for 0 ď i ă n, are polynomial functions of u1, ¨ ¨ ¨ , un, and hence (3) is equivalent to

Fn´2puq “ 0, Fn´3puq “ 0, ¨ ¨ ¨ , F0puq “ 0 (7)

Now assume that (7) holds. By (4)-(6), we have

Fn´2puq “ xpθ2 ´ xq ´ θnun

and thus

un “
xpθ2 ´ xq

θn
(8)

Further, by (4)-(6) and (8), we have

Fn´3puq “ ´xpθ2 ´ xq
n
ÿ

i“3

θi ` unθn

n´1
ÿ

i“2

θ
1

i ` un´1θn´1θn

“ ´xpθ2 ´ xq pθn ´ θ2 ` xq ` un´1θn´1θn

where θ12 “ θ2 ´ x, θ
1

i “ θi, for 3 ď i ď n, and thus

un´1 “
xpθ2 ´ xq

θn´1
¨
pθn ´ θ2 ` xq

θn
. (9)

Similarly,

Fn´4puq “ xpθ2 ´ xq
ÿ

3ďi1ăi2ďn

θi1θi2 ´ unθn
ÿ

2ďi1ăi2ăn

θ
1

i1θ
1

i2 ´ un´1

n
ź

k“n´1

θk ¨
n´2
ÿ

i“2

θ
1

i ´ un´2

n
ź

k“n´2

θk

“ xpθ2 ´ xq

«

ÿ

3ďi1ăi2ďn

θi1θi2 ´
ÿ

2ďi1ăi2ăn

θ
1

i1θ
1

i2 ´ pθn ´ θ2 ` xq
n´2
ÿ

i“2

θ
1

i

ff

´ un´2

n
ź

k“n´2

θk

“ xpθ2 ´ xq

«

pθn ´ θ
1

2q

n´1
ÿ

i“3

θi ´ pθn ´ θ2 ` xq
n´2
ÿ

i“2

θ
1

i

ff

´ un´2

n
ź

k“n´2

θk

“ xpθ2 ´ xq pθn ´ θ2 ` xq pθn´1 ´ θ2 ` xq ´ un´2

n
ź

k“n´2

θk,

from which we have

un´2 “
xpθ2 ´ xq

θn´2

n
ź

k“n´1

θk ´ θ2 ` x

θk
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For the iteration argument, suppose that

un´l “
xpθ2 ´ xq

θn´l

n
ź

k“n´l`1

θk ´ θ2 ` x

θk
(10)

“
xθ

1

2

θ
1

n´l

n
ź

k“n´l`1

θ
1

k ´ θ
1

2

θ
1

k

(11)

for l “ 0, 1 ¨ ¨ ¨ ,m´ 1 ă n´ 2, where
śn
k“n`1

θ
1

k´θ
1

2

θ
1

k

:“ 1. We will prove that it also holds for l “ m.

In fact, by (4)-(6), we have

Fn´m´2puq

“ p´1qmxθ
1

2

ÿ

3ďi1ă¨¨¨ăimďn

θi1 ¨ ¨ ¨ θim ´ p´1qmunθ
1

n

ÿ

2ďi1ă¨¨¨ăimăn

θ
1

i1 ¨ ¨ ¨ θ
1

im ´ p´1qmun´1

n
ź

k“n´1

θ
1

k ¨
ÿ

2ďi1ă¨¨¨ăim´1ďn´2

θ
1

i1 ¨ ¨ ¨ θ
1

im´1

´ ¨ ¨ ¨ ´ p´1qmun´m`1

n
ź

k“n´m`1

θ
1

k ¨

n´m
ÿ

i“2

θ
1

i ´ p´1qmun´m

n
ź

k“n´m

θ
1

k.

So

un´m

n
ź

k“n´m

θ
1

k

“ xθ
1

2

ÿ

3ďi1ă¨¨¨ăimďn

θi1 ¨ ¨ ¨ θim ´ unθ
1

n

ÿ

2ďi1ă¨¨¨ăimăn

θ
1

i1 ¨ ¨ ¨ θ
1

im ´

n´1
ÿ

j“n´m`1

»

–uj ¨
n
ź

k“j

θ
1

k ¨
ÿ

2ďi1ă¨¨¨ăij`m´năj

θ
1

i1 ¨ ¨ ¨ θ
1

ij`m´n

fi

fl

“ xθ
1

2

«

ÿ

3ďi1ă¨¨¨ăimďn

θi1 ¨ ¨ ¨ θim ´
ÿ

2ďi1ă¨¨¨ăimăn

θ
1

i1 ¨ ¨ ¨ θ
1

im

ff

´

n´1
ÿ

j“n´m`1

»

–xθ
1

2 ¨

n
ź

k“j`1

´

θ
1

k ´ θ
1

2

¯

¨
ÿ

2ďi1ă¨¨¨ăij`m´năj

θ
1

i1 ¨ ¨ ¨ θ
1

ij`m´n

fi

fl

“ xθ
1

2pθn ´ θ
1

2q

»

–

ÿ

3ďi1ă¨¨¨ăim´1ăn

θ
1

i1 ¨ ¨ ¨ θi1m´1
´

ÿ

2ďi1ă¨¨¨ăim´1ăn´2

θ
1

i1 ¨ ¨ ¨ θ
1

im´1

fi

fl

´

n´2
ÿ

j“n´m`1

»

–xθ
1

2 ¨

n
ź

k“j`1

´

θ
1

k ´ θ
1

2

¯

¨
ÿ

2ďi1ă¨¨¨ăij`m´năj

θ
1

i1 ¨ ¨ ¨ θ
1

ij`m´n

fi

fl

“ xθ
1

2

n
ź

k“n´m`2

´

θ
1

k ´ θ
1

2

¯

¨

«

n´m`1
ÿ

i“3

θ
1

i ´

n´m
ÿ

i“2

θ
1

i

ff

“ xθ
1

2

n
ź

k“n´m`1

´

θ
1

k ´ θ
1

2

¯

“ xθ
1

2

n
ź

k“n´m`1

pθk ´ θ2 ` xq ,

which means the equality (10) holds for l “ m.
Altogether, we have deduced that, if (7) holds, then (10) is true for l P J0, n´ 2K. Conversely, if

(10) holds for l P J0, n´ 2K, then it is easy to check from above deduction that (7) is also true, which
means Lx and L˚ have the same eigenvalues and the same corresponding algebraic multiplicities.
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It remains to see that x “
řn
i“2 ui. Actually, by (4), (5) and (7), we have

0 “ F0puq “

«

x ¨ p´1qn´2 `
n
ÿ

i“2

ui ¨ p´1qn´1

ff

pθ2 ´ xqθ3 ¨ ¨ ¨ θn

from which we get the equality. This completes the proof.
�

Now we are ready to prove Theorem 2.

Proof of Theorem 2
By Proposition 4, we have σJp´Srpnqq Ă Urpnq, while from Proposition 5, we have Urpnq Ă σJp´Trpnqq.
So σJp´Srpnqq Ă σJp´Trpnqq. Besides, it is easy to see that σJp´Trpnqq Ă σJp´Srpnqq, which implies
σJp´Trpnqq “ σJp´Srpnqq “ Urpnq.

�

3 Comparison of the speed of convergence
It is interesting to compare the mixing rates between the elements of the family described in Proposition
5.

For x P p0, θ2q, let Lx be the Markov generator defined in (2) and consider πx the associated
invariant measure on JnK, as well as pPxptqqtě0 the corresponding semi-group. For any x P p0, θ2q and
t ě 0, Pxptq is just the JnKˆ JnK matrix expptLxq. Any probability measure µ on JnK is seen as a row
vector and µPxptq then stands for the law of the position at time t of a Markov process starting with
µ as initial distribution and whose generator is Lx. For large t ě 0, this law converges toward πx and
let us evaluate its mixing rate through

Exptq B maxt}πx ´ µPxptq}tv : µ P PpJnKqu
“ maxt}πx ´ δzPxptq}tv : z P JnKu

where }¨}tv stands for the total variation norm, PpJnKq is the convex set of probability measures on
JnK and δz is the Dirac mass at z P JnK. The last equality is a consequence of the fact that the Dirac
masses are exactly the extreme points of PpJnKq.

Our goal here is to prove the following comparison:

Theorem 6 For any x, y P p0, θ2q, we have

@ t ě 0, Exptq ď
θ2 ` px_ yq ´ 2px^ yq

θ2 ´ px_ yq
Eyptq

Note that when x “ y, the inequality is indeed and equality.
Let us start by a general observation on the intertwining relations that can be abstractly deduced

from Theorem 2.

Corollary 7 Consider L an irreducible Markov generator on JnK whose Jordan spectrum belongs to
Urpnq. Then there exist rL P Trpnq and two invertible Markov matrices Λ and rΛ such that

LΛ “ ΛrL

rLrΛ “ rΛL
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Proof
It was seen in [3] that two irreducible Markov generators with the same Jordan spectrum can be
intertwined via invertible Markov kernels. To apply this result, it is sufficient to use Proposition 5,
which provides with an irreducible pure-birth Markov generator rL with the same Jordan spectrum as
L.

�

Now let us study the similarity between any two Markov generators Lx and Ly as defined in (2).
Define the JnKˆ JnK lower triangular matrix Λa,b p0 ď a, b ă θ2q as follows.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Λa,bp1, 1q B 1

Λa,bp2, 1q B
b´a
θ2´a

@ 2 ď i ď n, Λa,bpi, iq B
θ2´b
θ2´a

@ 1 ď j ă i ď n, Λa,bpi, jq B
θ
1

2

θ
1

j`1

„

śi
k“j`2

θk´θ
1

2
θk



Λa,bp2, 1q

(12)

where θ12 “ θ2 ´ b, θ
1

i “ θi, for 3 ď i ď n, with the convention
śi
k“i`1

θk´θ
1

2
θk

“ 1. Then we have the
following intertwining results.

Proposition 8 For any two irreducible pure-birth Markov generators Lx and Ly as defined in (2),
with 0 ă x ă y ă θ2, there exist two invertible Markov matrices Λ and rΛ such that

LxΛ “ ΛLy (13)

LyrΛ “ rΛLx (14)

More precisely, we can take

Λ “ Λx,y
rΛ “ rΛx,y B p1` εq´1 rπx ` εΛy,xs

where, by slightly abusing notations, πx stands for the matrix whose rows are equal to πx, the stationary
distribution of Lx, and ε is a constant with absolute value small enough. In fact,

@ 1 ď i, j ď n, πxpi, jq “ Λ0,xpn, jq (15)

and it is sufficient to take

´
xpθ2 ´ yq

θ2θn

n
ź

k“3

θk ´ θ2 ` x

θk
ď ε ď

xpθ2 ´ xqpθ2 ´ yq

py ´ xqθ2θn

n
ź

k“3

θk ´ θ2 ` x

θk
(16)

Proof
Denote the rows of Λ by Λpi, ¨q, for 1 ď i ď n. From (13), we have

@ 1 ď i ă n, ´θ
2

i`1Λpi, ¨q ` θ
2

i`1Λpi` 1, ¨q “ Λpi, ¨qLy (17)
n´1
ÿ

i“1

ui`1pxqΛpi, ¨q ´ xΛpn, ¨q “ Λpn, ¨qLy (18)

where θ22 “ θ2 ´ x, θ
2

i “ θi, for 3 ď i ď n. By (17), we get

@ 1 ď i ă n, Λpi` 1, ¨q “ θ
2´1
i`1 Λpi, ¨q

”

θ
2

i`1I ` Ly

ı

(19)
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Let us choose Λp1, ¨q “ p1, 0, ¨ ¨ ¨ , 0q. Then for any 2 ď i ď n, Λpi, ¨q can be derived from a step by
step calculation, and this exactly leads to (12). And it is not difficult to check that (12) also satisfies
(18). Besides, it is easy to see that for all j ď i, Λpi, jq ą 0 when x ă y, and by (19), we have

@ 1 ď i ă n, Λpi` 1, ¨q1 “ Λpi, ¨q1 “ Λp1, ¨q1 “ 1

So, Λ “ Λx,y is a Markov matrix and satisfies (13).
Next, we prove that (14) and (15) hold. Actually, exchanging x and y in (13), we get

Λy,xLx “ LyΛy,x. (20)

Note that, when y “ 0, (20) is also true and Λ0,x is also a Markov matrix. In this case, the n-th line
of L0 is zero and we get

Λ0,xpn, ¨qLx “ 0

So, the n-th row Λ0,xpn, ¨q is just the stationary distribution of Lx, and hence (14) follows directly.
Finally, we prove that rΛ is a Markov matrix under (16). In fact, similar to Λx,y, it holds Λy,x1 “ 1

and thus rΛ1 “ 1. Furthermore, it is easy to check that (16) implies rΛpi, jq ą 0, for all j ď i. This
completes the proof.

�

Despite the kernels rΛx,y are Markov for x ă y, they are not very useful to transfer information on
convergence between the Markov processes generated by Lx and Ly. This is due to the component πx
which prevents the existence of an interweaving relation in the sense of [4]. Nevertheless, we believe
(14) holds with more appropriate Markov kernels rΛ than rΛx,y, so that an interweaving relation could
indeed be worked out. But here, instead of using rΛx,y, we will only take into account the kernels Λx,y,
even for x ą y, when they are no longer Markovian.

Here is a semi-group type property satisfied by the family pΛx,yqx,yPp0,θ2q.

Lemma 9 For any x, y, z P p0, θ2q, we have

Λx,yΛy,z “ Λx,z

Particularly, we have

Λx,yΛy,x “ Λx,x “ I

Proof
Since

LxΛx,y “ Λx,yLy

LyΛy,z “ Λy,zLz

it holds that

LxΛx,yΛy,z “ Λx,yLyΛy,z “ Λx,yΛy,zLz

Note that if Λ is a lower triangular matrix and
#

Λp1, ¨q “ p1, 0, ¨ ¨ ¨ , 0q

LxΛ “ ΛLz
(21)

then Λpi, ¨q, for 2 ď i ď n, can be determined by a step by step calculation. It is easy to see Λx,yΛy,z
and Λx,z are both lower triangular matrices and satisfy (21), so they are equal.

10
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Define the matrix norm ||| ¨ ||| via

@ A PMpnq, |||A||| B max
i

ÿ

j

|Api, jq|

Another useful observation is:

Lemma 10 For any a, b P p0, θ2q, we have

|||Λa,b||| ď

"

1 , if a ď b
θ2`a´2b
θ2´a

, otherwise

Proof
‚ When a ď b, since Λa,b is Markovian, it is clear that |||Λa,b||| “ 1.
‚ When a ą b, since

@ j ă i, Λa,bpi, jq ă 0

@ i, Λa,bpi, iq ą 0
ÿ

j

Λa,bpi, jq “ 1

we have

|||Λa,b||| “ max

#

Λa,bpi, iq ´
ÿ

j‰i

Λa,bpi, jq : 1 ď i ď n

+

“ maxt2Λa,bpi, iq ´ 1 : 1 ď i ď nu

“ 2Λa,bp2, 2q ´ 1

“
θ2 ` a´ 2b

θ2 ´ a

�

We can now come to the

Proof of Theorem 6
Fix x, y P p0, θ2q. First let us show that

πxΛx,y “ πy (22)

From (13), we deduce that

πxΛx,yLy “ πxLxΛx,y

“ 0

since πx is the only probability measure such that πxLx “ 0. It is also the only measure µ on JnK with
µp1q “ 1 (where 1 is the function always taking the value 1 on JnK) such that µLx “ 0. So to get (22),
it remains to check that πxΛx,yp1q “ 1. This is clear when x ď y, since Λx,y is Markovian. It is in
fact always true, as it can be directly checked on (12). A shorter proof is to use again the intertwining
relation (13): we get

LxΛx,y1 “ Λx,yLy1

“ 0

11



so by irreducibility of Lx, the vector Λx,y1 is constant. Its first value is Λx,yp1, 1q “ 1. It follows that
Λx,y1 “ 1 and πxΛx,yp1q “ 1.

Note that the intertwining relation implies (in fact is equivalent to)

@ t ě 0, PxptqΛx,y “ Λx,yPyptq

Taking into account the last assertion of Lemma 9, we write for any µ P PpJnKq,

πx ´ µPxptq “ πxΛx,yΛy,x ´ µPxptqΛx,yΛy,x

“ πyΛy,x ´ µΛx,yPyptqΛy,x

“ pπy ´ νPyptqqΛy,x (23)

where

ν B µΛx,y

When x ď y, ν is a probability measure, otherwise it may only be a (signed) measure, but at least
it satisfies νp1q “ µpΛx,y1q “ µp1q “ 1. Consider the decomposition of ν into its non-negative and
non-positive parts: ν “ ν` ´ ν´. Recall that ν` and ν´ are two non-negative measures and that
}ν}tv “ ν`p1q ` ν´p1q. We have ν`p1q ´ ν´p1q “ 1 and by consequence,

πy ´ νPyptq “ ν`p1q

ˆ

πy ´
ν`

ν`p1q
Pyptq

˙

´ ν´p1q

ˆ

πy ´
ν´

ν´p1q
Pyptq

˙

It follows that

}πy ´ νPyptq}tv ď ν`p1q

›

›

›

›

πy ´
ν´

ν´p1q
Pyptq

›

›

›

›

tv

` ν´p1q

›

›

›

›

πy ´
ν`

ν`p1q
Pyptq

›

›

›

›

tv

ď ν`p1qEyptq ` ν´p1qEyptq
“ }ν}tv Eyptq

From the definition of the matrix norm ||| ¨ |||, for any measure ν on JnK and any JnK ˆ JnK matrix
A, we have

}νA}tv ď |||A||| }ν}tv

We deduce from (23)

}πx ´ µPxptq}tv ď |||Λy,x||| }πy ´ µPyptq}tv
ď |||Λy,x||| }ν}tv Eyptq

Recall that ν “ µΛx,y, so that

}ν}tv ď |||Λx,y||| }µ}tv
“ |||Λx,y|||

Finally, we get

}πx ´ µPxptq}tv ď |||Λy,x||||||Λx,y|||Eyptq

and taking the supremum over µ P PpJnKq,

Exptq ď |||Λy,x||||||Λx,y|||Eyptq

The desired result follows from Lemma 10.
�
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