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@ Introduction: simulated annealing



Global optimization

On a compact Riemannian manifold M, consider a smooth function
U : M — R. We would like to find its global minima, or at least a
point close to their set

Simulated annealing is one of the few general algorithms carrying
out this task. It is a time-inhomogeneous diffusion which tends to
concentrate around M in long time.

In practice its slow convergence can be enhanced by sending several
independent particles following the same evolution. Our goal here is
to generalize this procedure by considering interacting particles.



Simulated annealing

Heuristically simulated annealing can be described particle on M
evolving according to the sde

dX(t) = V2dB(t) — B VU(X(t))dt

where

e (B(t))t=0 is a Brownian motion on M (with generator the
Laplacian A/2),

e (Bt)t=0 is an evolution of the inverse temperature, which is
taking non-negative values, is non-decreasing and diverges to +o0
in large time.

Thus (X(t))t=0 is a random perturbation of the gradient descent
associated to U, whose relative strength is increasing with time.



Convergence of simulated annealing

Consider logarithmic evolutions:
Vt=0, B = klin(l+t)

It can be shown there exists a critical constant ¢ > 0 such that if
k = c, for any neighborhood N of M,

Ve>0, lim PX(t)eN] = 1

t—+00

but this convergence is wrong if k < c. We have ¢ > 0 as soon as
there is a least one local minimum which is not global.



Time-inhomogeneous ergodicity

This result has been obtained by several approaches: direct renewal
computations, large deviations, functional inequalities. The latter
method first proves time-inhomogeneous ergodicity: there exists
another critical constant ¢’ > 0 such that if kK > ¢/, in total
variation,

Jim LX) ~ 7], = 0
where £(X(t)) is the law of X(t) and g, is the instantaneous
invariant measure at time t > 0. It is given by the Gibbs measure
associated to the potential U at temperature 1/5;, namely the

density of mg, with respect to the Riemann measure / is
proportional to

exp(—p:U)

In general ¢’ > ¢ and there is equality for instance if there is a
unique global minimum.



Speeding-up?

Unfortunately, these convergences are quite slow, due to the
logarithmic feature of the inverse temperature.

In practice, faster temperature schemes are considered with finite
time horizons. Alternatively, independent simulations (X1(t))¢>o0,
(X2(t))t=0, v (Xn(t))t=0 of (X(t))¢=0 are used.

Is it possible to introduce interactions between these particles to
improve the speed of convergence?

The goal of this talk is to present such an interacting system,
where each particle will boost its Brownian motion when there are
too few or too much particles surrounding it.



© Gradient descent in Wasserstein space



The pde point of view

For any t > 0, denote p(t) the law of X(t).

By ellipticity, it can be seen that for any t > 0, p(t) « £ and the
probability measure p is identified with its density with respect to £.
The probability-measure dynamical system (p(t))¢>0 is solution to
the parabolic equation

Vit>0, p(t) = Pediv(p(t)VU) + Lp(t)

where div, V and A are the divergence, the gradient and the
Laplacian associated to the Riemannian structure of M.



In Wasserstein space

Via Otto's formalism, the flow (p(t)):=0 is a gradient descent in
the Wasserstein space W:

V0, p(t) = —sradyls,[o(t)]

where Uz is relative entropy of p(t) with respect to the Gibbs
measure g, and where the gradient is with respect to the
infinite-dimensional Riemannian-like structure of W.

Recall that W is the space of probability measures on M equipped
with the Monge-Kantorovich distance defined through

W) = inf [ 20cn) ol ) < pe )

where § is the Riemannian distance on M and C(u,v) is the set of
couplings on M? of the two probability measures ; and v on M.



Relative entropy

Up to an additive constant, the relative entropy can be expanded as

Uslp] = BJ Udp+f plog pdl
M M
at least for p « £.

The term §,, U dp can be seen as an up-lift to W of the function U
and §,, plog pdl is a penalization term. The inverse temperature (3
enables to tune their relative importance.

Due to the gradient descent structure, U can serve as a Liapounov
functional for the flow (p(t))¢=0, at least when the inverse
temperature is fixed. The comparison between U3[p(t)] and the
“entropy production” term SUs[p(t)] uses logarithmic Sobolev
inequalities. Its adaptation to the time-inhomogeneous case leads
to the ergodicity result, because Ug, [p(t)] enables us to control

lo(t) = ma. [y,



Penalizations (i)

Consider another penalization term:

f ep)dl ifp«t
M

+ 0 otherwise,

Hlp] =

where ¢ : R, — R, is a strictly convex function satisfying
(1) = 0 and smooth on (0, +00). For the relative entropy, it
corresponds to

Vr=0, p1(r) = rin(r)—r+1
Another traditional function, for m > 0, m # 1:

rm—1—m(r—1)
m(m—1)

Vr=0,  om(r) =



Penalizations (ii)

We generalize the relative entropy to

Fale] = ﬁfMUderH[p]

As we are to see, for any 3 > 0, this functional has a unique local
minimizer pg, contrary to U, as soon as ¢/(0) = —o0. Furthermore
this minimizer concentrates around M for large .

It is then natural to consider the corresponding
(time-inhomogeneous) gradient descent in W and to investigate its
probabilistic translations into interacting particle algorithms.



e Invariant measures



For a while, let us fix the inverse temperature 5 = 0. For the
generalized relative entropy, we compute that

grady, Fglp] = —div(p(BVU +V¢'(p)))
and we are led to the non-linear evolution equation
p = div(p(BVU + V¢'(p))) (1)
A corresponding stationary measure pg satisfies
div(ug(BVU + V¢'(pg))) = 0 (2)

Integrating by parts, it appears that U + ¢'(13) has to be
constant on each connected component of the support of 13.



The minimizer

Assume ¢'(0) = —oo, then there exists a unique stationary density
g solution to (2). Moreover,

(i) pp is positive everywhere on M and is characterized by the
relation

pg = Y(cg—BU)

where 1) the inverse of ¢’ and cg is a normalization parameter
characterized by the condition

| vtes-suyae - 1
M

(i) pg is the global minimizer of Fg.
(iii) For any neighborhood N of M, we have

lim pg[N] = 1

B—+o0

) I S S S N Sy




Probabilistic formulation

The integration by parts equally leads to the weak formulation of
(1): for any regular test function f,

Vt>0, %p(t)[f] = p(O)[Lyof]]

where
Lo[f] = alp)Af ={BVU,VF)
with
Vr=0, a(r) = 1Lrsg0”(s)ds.

The generator L, depends on p through its diffusion coefficient. It
leads to non-linear Markov processes whose evolution at any given
time depends on the time-marginal. Particle systems can be used
to approximate them.



Particular functions ¢ (i)

Consider the case U = 0 and the power-like function ¢,,, for
m > 0, m # 1. The evolution equation (1) writes

p _ Apmfl

This evolution is well studied and is called the porous media
equation for m > 1 and the fast diffusion equation for m < 1. It
was rather investigated when M is an Euclidean space, the
long-time behavior is then described by a “convergence” toward a
time-renormalized self-similar distribution, called the Barrenblatt
solution. This is different from our compact situation. Note that
¢, (0) = —oo amounts to m < 1.



Particular functions ¢ (ii)

We will consider functions of the type

©m(r) if re (0,1],
Vr=0, Oma(r) =

pa(r) = 2 i re (1, +0).
with m € (0,1/2). Note that ¢, is C2, since for any m > 0,

om(1) =0, ¢rp(1) = 0 and ¢ (1) = 1.
These choices imply

li = = i
Ag et = A= Ipgel)

which corresponds to the qualitative behavior alluded to above.
Furthermore for these functions, there is a unique stationary
measure /i3 and we have the estimates:

(1+ (1 — m)Bosc(U))m1 < minjs < maxps < Bosc(U) + L.

where osc(U) = maxy U — minpy U.



@ Functional inequalities



Generalized entropy production

Denote

Ilpl = Fslp) —minFs = Fy(p) = Fs(us)

= fM ©(p) —@(up) — ¢'(1p)(p — pp) df

and consider the evolution equation (1). Since it is a gradient
descent, it is natural to investigate the evolution of Z(p(t)). We

compute

() = (0]

with

JIlp] = JM V' (p) — V' (1) Ppdl



Comparison of Z and [J7

To get a differential inequality satisfied by Z[p(t)], we must
compare it to J[p(t)]. Indeed via tojasiewicz-type arguments:

Theorem 2

Assume there exist c(f) > 0, Q : Ry — R increasing, such that
an inequality of the type

J IV (p) — V' (ug)?p dt (3)
M
> c(B)Q (JM ©(p) — o(ug) — ' (1g)(p — pg) dﬁ)

holds true whenever p is measurable and the left hand side is finite.
Then for large t = 0,

(i) Falo(t)] = Fa(up).-

(ii) If moreover Q(s) = ©(s??) at 0, with € (0,1), then p(t) tends
to pg for the Monge-Kantorovich metric, i.e. for the weak
convergence.




A functional inequality

While we conjecture an inequality such as (3) holds for any
compact manifold and for more general functions ¢, for the
moment it is only proved in a restricted setting:

Theorem 3

Assume M is the circle T and ¢ = pm 2, with m e (0,1/2). Then
(3) holds with

ra if re0,1)

1-2m )
r2@-m  jfr>1

A corresponding Talagrand-type inequality holds between Z[p] and
Wa(p; 1g)-



e Time-inhomogeneous convergence



Time-inhomogeneous mean-field evolution

We come back to a time-dependent inverse temperature scheme
t — [B¢. We restrict our attention to the restricted setting of the
previous theorem and we consider the evolution

V=0, p(t) = div(p(t)(B:VU + V&' (p(t))  (4)

starting from a given initial distribution p(0).

Define Z[t, p] and J|[t, p] as before, except these quantities now
explicitly depend on time through S;.

We compute that for any time t > 0,

STEAO] = ~TTep(0)] + Fr | UG — )



A differential inequality

Writing v(t) := Z[t, p(t)] and using the functional inequality, we
end up with

v(t) < —c(Be)Qv(t)) + osc(U) |Be

Elementary arguments enable to see that

lim v(t) = 0

t—+00

as soon as

I
o

imA(0)/c(8(0)
Fooc(ﬁ(t))dt —
1



Admissible temperature schemes

The previous conditions are satisfied if we take
Vt=0, B(t) = kt7

with kK > 0 and 7 := 3%27_2% (which belongs to (0,1/6)).

Then we get in particular,

t_llToop(t)[U] = mA/lan

or equivalently, for any € > 0,

lim p(t)[U)mALnU—&-e] =0

t—+00

i.e. the concentration of p(t) around M.



@ Towards interacting particle systems



A non-linear Markov process

Let us come back to (4). A corresponding non-linear diffusion is a
continuous stochastic process (X(t))¢=o satisfying

Ve o { dX(t) = +/2a(p(X(D)dB(t) — BV U(X(1)) dt
= L) = pede

say on the torus TP of dimension D > 1. This formulation is
non-linear, due to the presence of p;, the density of the law of X(t).

The existence and uniqueness of such processes is not obvious, but
some results can be found in the literature.
The direct sampling of (X(t))¢=0 remains problematic.



Regularization

The situation becomes easier through some regularization
procedure. Consider K : TP — R, a smooth function with a
support localized in a small ball and satisfying { K d¢ = 1. For any
probability density p on M and a bandwidth parameter h € (0,1),
set

VXM () = O | K((x= /B ply)e(dy)
We can replace the previous non-linear sde by
Vit=0, dX(t) = 2a(pp e (X(t))dB(t) — B:VU(X(t)) dt
whose non-linearity is less radical and thus simpler to investigate

via classical mean field theory, even if h was to depend on time and
going to zero in large time.



The previous evolution can be approximated by interacting particles
systems. Consider a system of N particles, X1, Xz, ..., Xy whose
joint evolution is described by the stochastic differential equations,

VnelN, dXu(t) = —B:VUXn(t)) +1/alonne(Xa(t)) dBa(t)

where the (B,(t))t=0, for n € [N], are independent Brownian
motions of dimension d, and where

VxeM,  punelx) = ilo (—X())

This quantity “counts” the number of particles which are close to x
in the scale h « 1.



For large N and small h, py 4+ should be close to p;, with the
advantage to be samplable. Ideally, both N and h should also
depend on time, and respectively going to infinity and zero (with
certain rates to be determined...). In particular new particles are
born as N increases. The corresponding stochastic algorithm should
provide a new global swarm optimization procedure. It seems to
perform better than simulated annealing in preliminary numerical
experiments provided by Lénaic Chizat comparing (1 avec 5.
In particular, compare at the end of the simulations the
concentrations of the particules at the bottom of the wells: for
¢1)2,2 they are in better positions to go towards the well containing
the global minimum.
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