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Global optimization

On a compact Riemannian manifold M, consider a smooth function
U : M Ñ R. We would like to find its global minima, or at least a
point close to their set

M B tx P M : Upxq “ min
M

Uu

Simulated annealing is one of the few general algorithms carrying
out this task. It is a time-inhomogeneous diffusion which tends to
concentrate around M in long time.
In practice its slow convergence can be enhanced by sending several
independent particles following the same evolution. Our goal here is
to generalize this procedure by considering interacting particles.



Simulated annealing

Heuristically simulated annealing can be described particle on M
evolving according to the sde

dX ptq “
?
2dBptq ´ βt∇UpX ptqq dt

where
‚ pBptqqtě0 is a Brownian motion on M (with generator the
Laplacian 4{2),
‚ pβtqtě0 is an evolution of the inverse temperature, which is
taking non-negative values, is non-decreasing and diverges to `8
in large time.

Thus pX ptqqtě0 is a random perturbation of the gradient descent
associated to U, whose relative strength is increasing with time.



Convergence of simulated annealing

Consider logarithmic evolutions:

@ t ě 0, βt “ k´1 lnp1` tq

It can be shown there exists a critical constant c ě 0 such that if
k ě c , for any neighborhood N of M,

@ ε ą 0, lim
tÑ`8

PrX ptq P N s “ 1

but this convergence is wrong if k ă c . We have c ą 0 as soon as
there is a least one local minimum which is not global.



Time-inhomogeneous ergodicity

This result has been obtained by several approaches: direct renewal
computations, large deviations, functional inequalities. The latter
method first proves time-inhomogeneous ergodicity: there exists
another critical constant c 1 ě 0 such that if k ě c 1, in total
variation,

lim
tÑ`8

}LpX ptqq ´ πβt }tv “ 0

where LpX ptqq is the law of X ptq and πβt is the instantaneous
invariant measure at time t ě 0. It is given by the Gibbs measure
associated to the potential U at temperature 1{βt , namely the
density of πβt with respect to the Riemann measure ` is
proportional to

expp´βtUq

In general c 1 ě c and there is equality for instance if there is a
unique global minimum.



Speeding-up?

Unfortunately, these convergences are quite slow, due to the
logarithmic feature of the inverse temperature.
In practice, faster temperature schemes are considered with finite
time horizons. Alternatively, independent simulations pX1ptqqtě0,
pX2ptqqtě0, ..., pXNptqqtě0 of pX ptqqtě0 are used.

Is it possible to introduce interactions between these particles to
improve the speed of convergence?

The goal of this talk is to present such an interacting system,
where each particle will boost its Brownian motion when there are
too few or too much particles surrounding it.
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The pde point of view

For any t ě 0, denote ρptq the law of X ptq.
By ellipticity, it can be seen that for any t ą 0, ρptq ! ` and the
probability measure ρ is identified with its density with respect to `.
The probability-measure dynamical system pρptqqtě0 is solution to
the parabolic equation

@ t ą 0, 9ρptq “ βt divpρptq∇Uq `4ρptq

where div, ∇ and 4 are the divergence, the gradient and the
Laplacian associated to the Riemannian structure of M.



In Wasserstein space

Via Otto’s formalism, the flow pρptqqtě0 is a gradient descent in
the Wasserstein space W:

@ t ě 0, 9ρptq “ ´gradW Uβt rρptqs

where Uβ is relative entropy of ρptq with respect to the Gibbs
measure πβ , and where the gradient is with respect to the
infinite-dimensional Riemannian-like structure of W.
Recall that W is the space of probability measures on M equipped
with the Monge-Kantorovich distance defined through

W 2
2 pµ, νq “ inf

"
ż

M
δ2px , yq ppdx , dyq : p P Cpµ, νq

*

where δ is the Riemannian distance on M and Cpµ, νq is the set of
couplings on M2 of the two probability measures µ and ν on M.



Relative entropy
Up to an additive constant, the relative entropy can be expanded as

Uβrρs “ β

ż

M
U dρ`

ż

M
ρ log ρ d`

at least for ρ ! `.

The term
ş

M U dρ can be seen as an up-lift to W of the function U
and

ş

M ρ log ρ d` is a penalization term. The inverse temperature β
enables to tune their relative importance.
Due to the gradient descent structure, Uβ can serve as a Liapounov
functional for the flow pρptqqtě0, at least when the inverse
temperature is fixed. The comparison between Uβrρptqs and the
“entropy production” term d

dtUβrρptqs uses logarithmic Sobolev
inequalities. Its adaptation to the time-inhomogeneous case leads
to the ergodicity result, because Uβt rρptqs enables us to control

}ρptq ´ πβt }tv



Penalizations (i)

Consider another penalization term:

Hrρs “

$

&

%

ż

M
ϕpρq d` if ρ ! `

`8 otherwise,

where ϕ : R` Ñ R` is a strictly convex function satisfying
ϕp1q “ 0 and smooth on p0,`8q. For the relative entropy, it
corresponds to

@ r ě 0, ϕ1prq B r lnprq ´ r ` 1

Another traditional function, for m ą 0, m ‰ 1:

@ r ě 0, ϕmprq B
rm ´ 1´mpr ´ 1q

mpm ´ 1q



Penalizations (ii)

We generalize the relative entropy to

Fβrρs B β

ż

M
U dρ`Hrρs

As we are to see, for any β ą 0, this functional has a unique local
minimizer µβ , contrary to U, as soon as ϕ1p0q “ ´8. Furthermore
this minimizer concentrates around M for large β.

It is then natural to consider the corresponding
(time-inhomogeneous) gradient descent in W and to investigate its
probabilistic translations into interacting particle algorithms.
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Back to pde

For a while, let us fix the inverse temperature β ě 0. For the
generalized relative entropy, we compute that

gradW Fβ rρs “ ´divpρpβ∇U `∇ϕ1pρqqq

and we are led to the non-linear evolution equation

9ρ “ divpρpβ∇U `∇ϕ1pρqqq (1)

A corresponding stationary measure µβ satisfies

divpµβpβ∇U `∇ϕ1pµβqqq “ 0 (2)

Integrating by parts, it appears that βU ` ϕ1pµβq has to be
constant on each connected component of the support of µβ .



The minimizer

Lemma 1
Assume ϕ1p0q “ ´8, then there exists a unique stationary density
µβ solution to (2). Moreover,
(i) µβ is positive everywhere on M and is characterized by the

relation

µβ “ ψpcβ ´ βUq

where ψ the inverse of ϕ1 and cβ is a normalization parameter
characterized by the condition

ż

M
ψpcβ ´ βUq d` “ 1

(ii) µβ is the global minimizer of Fβ .
(iii) For any neighborhood N of M, we have

lim
βÑ`8

µβrN s “ 1



Probabilistic formulation

The integration by parts equally leads to the weak formulation of
(1): for any regular test function f ,

@ t ą 0,
d

dt
ρptqrf s “ ρptqrLρptqrf ss

where

Lρrf s B αpρq4f ´ xβ∇U,∇f y

with

@ r ą 0, αprq B
1
r

ż r

0
sϕ2psq ds.

The generator Lρ depends on ρ through its diffusion coefficient. It
leads to non-linear Markov processes whose evolution at any given
time depends on the time-marginal. Particle systems can be used
to approximate them.



Particular functions ϕ (i)

Consider the case U “ 0 and the power-like function ϕm, for
m ą 0, m ‰ 1. The evolution equation (1) writes

9ρ “ 4ρm´1

This evolution is well studied and is called the porous media
equation for m ą 1 and the fast diffusion equation for m ă 1. It
was rather investigated when M is an Euclidean space, the
long-time behavior is then described by a “convergence” toward a
time-renormalized self-similar distribution, called the Barrenblatt
solution. This is different from our compact situation. Note that
ϕ1mp0q “ ´8 amounts to m ď 1.



Particular functions ϕ (ii)
We will consider functions of the type

@ r ě 0, ϕm,2prq B

$

&

%

ϕmprq if r P p0, 1s,

ϕ2prq “
pr´1q2

2 if r P p1,`8q.

with m P p0, 1{2q. Note that ϕm,2 is C2, since for any m ą 0,
ϕmp1q “ 0, ϕ1mp1q “ 0 and ϕ2mp1q “ 1.
These choices imply

lim
rÑ0`

αprq “ `8 “ lim
rÑ`8

αprq

which corresponds to the qualitative behavior alluded to above.
Furthermore for these functions, there is a unique stationary
measure µβ and we have the estimates:

p1` p1´mqβoscpUqq
1

m´1 ď min
M
µβ ď max

M
µβ ď βoscpUq ` 1.

where oscpUq B maxM U ´minM U.
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Generalized entropy production

Denote

Irρs B Fβpρq ´min
W

Fβ “ Fβpρq ´ Fβpµβq

“

ż

M
ϕpρq ´ ϕpµβq ´ ϕ

1pµβqpρ´ µβq d`

and consider the evolution equation (1). Since it is a gradient
descent, it is natural to investigate the evolution of Ipρptqq. We
compute

d

dt
Irρptqs “ ´J rρptqs

with

J rρs “
ż

M
|∇ϕ1pρq ´∇ϕ1pµq|2ρ d`



Comparison of I and J ?

To get a differential inequality satisfied by Irρptqs, we must
compare it to J rρptqs. Indeed via Łojasiewicz-type arguments:

Theorem 2
Assume there exist cpβq ą 0, Ω : R` Ñ R` increasing, such that
an inequality of the type

ż

M
|∇ϕ1pρq ´∇ϕ1pµβq|2ρ d` (3)

ě cpβqΩ

ˆ
ż

M
ϕpρq ´ ϕpµβq ´ ϕ

1pµβqpρ´ µβq d`

˙

holds true whenever ρ is measurable and the left hand side is finite.
Then for large t ě 0,
(i) Fβrρptqs Ñ Fβpµβq.
(ii) If moreover Ωpsq “ Θps2θq at 0, with θ P p0, 1q, then ρptq tends
to µβ for the Monge-Kantorovich metric, i.e. for the weak
convergence.



A functional inequality

While we conjecture an inequality such as (3) holds for any
compact manifold and for more general functions ϕ, for the
moment it is only proved in a restricted setting:

Theorem 3
Assume M is the circle T and ϕ “ ϕm,2, with m P p0, 1{2q. Then
(3) holds with

cpβq “ O
´

β
´3p2´mq

1´2m

¯

Ωprq “

$

&

%

r
3
2 if r P r0, 1q

r
1´2m

2p1´mq if r ě 1

A corresponding Talagrand-type inequality holds between Irρs and
W2pρ, µβq.
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Time-inhomogeneous mean-field evolution

We come back to a time-dependent inverse temperature scheme
t ÞÑ βt . We restrict our attention to the restricted setting of the
previous theorem and we consider the evolution

@ t ě 0, 9ρptq “ divpρptqpβt∇U `∇ϕ1pρptqqqq (4)

starting from a given initial distribution ρp0q.
Define Irt, ρs and J rt, ρs as before, except these quantities now
explicitly depend on time through βt .
We compute that for any time t ą 0,

d

dt
Irt, ρptqs “ ´J rt, ρptqs ` 9βt

ż

M
Upρ´ µβt q d`



A differential inequality

Writing vptq B Irt, ρptqs and using the functional inequality, we
end up with

9vptq ď ´cpβtqΩpvptqq ` oscpUq
ˇ

ˇ

ˇ

9βt

ˇ

ˇ

ˇ

Elementary arguments enable to see that

lim
tÑ`8

vptq “ 0

as soon as

lim
tÑ`8

9βptq{cpβptqq “ 0
ż `8

1
cpβptqq dt “ `8



Admissible temperature schemes

The previous conditions are satisfied if we take

@ t ě 0, βptq B ktγ

with k ą 0 and γ B 1´2m
3p2´mq (which belongs to p0, 1{6q).

Then we get in particular,

lim
tÑ`8

ρptqrUs “ min
M

U

or equivalently, for any ε ą 0,

lim
tÑ`8

ρptqrU ě min
M

U ` εs “ 0

i.e. the concentration of ρptq around M.
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A non-linear Markov process

Let us come back to (4). A corresponding non-linear diffusion is a
continuous stochastic process pX ptqqtě0 satisfying

@ t ě 0,
"

dX ptq “
a

2αpρtpX ptqqdBptq ´ βt∇UpX ptqq dt
LpX ptqq “ ρt d`

say on the torus TD of dimension D ě 1. This formulation is
non-linear, due to the presence of ρt , the density of the law of X ptq.

The existence and uniqueness of such processes is not obvious, but
some results can be found in the literature.
The direct sampling of pX ptqqtě0 remains problematic.



Regularization

The situation becomes easier through some regularization
procedure. Consider K : TD Ñ R` a smooth function with a
support localized in a small ball and satisfying

ş

K d` “ 1. For any
probability density ρ on M and a bandwidth parameter h P p0, 1q,
set

@ x P M, ρhpxq B h´D
ż

M
K ppx ´ yq{hq ρpyq`pdyq

We can replace the previous non-linear sde by

@ t ě 0, dX ptq “

b

2αpρh,tpX ptqqdBptq ´ βt∇UpX ptqq dt

whose non-linearity is less radical and thus simpler to investigate
via classical mean field theory, even if h was to depend on time and
going to zero in large time.



Particles

The previous evolution can be approximated by interacting particles
systems. Consider a system of N particles, X1,X2, ...,XN whose
joint evolution is described by the stochastic differential equations,

@ n P JNK, dXnptq “ ´βt∇UpXnptqq `
b

αpρN,h,tpXnptqqq dBnptq

where the pBnptqqtě0, for n P JNK, are independent Brownian
motions of dimension d , and where

@ x P M, ρN,h,tpxq B
1
N

N
ÿ

n“1

1
hD

K

ˆ

x ´ Xnptq

h

˙

This quantity “counts” the number of particles which are close to x
in the scale h ! 1.



Hope

For large N and small h, ρN,h,t should be close to ρt , with the
advantage to be samplable. Ideally, both N and h should also
depend on time, and respectively going to infinity and zero (with
certain rates to be determined...). In particular new particles are
born as N increases. The corresponding stochastic algorithm should
provide a new global swarm optimization procedure. It seems to
perform better than simulated annealing in preliminary numerical
experiments provided by Lénaïc Chizat comparing ϕ1 avec ϕ1{2,2.
In particular, compare at the end of the simulations the
concentrations of the particules at the bottom of the wells: for
ϕ1{2,2 they are in better positions to go towards the well containing
the global minimum.
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