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Abstract

For N P N, let πN be the law of the number of fixed points of a random permutation of t1, 2, ..., Nu.
Let P be a Poisson law of parameter 1. A classical result shows that πN converges to P for large N
and indeed in total variation

}πN ´ P}tv ď
2N

pN ` 1q!

This implies that πN and P can be coupled to at least this accuracy. This paper constructs such
a coupling (a long open problem) using the machinery of intertwining of two Markov chains. This
method shows promise for related problems of random matrix theory.
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1 Introduction
For N P N B t1, 2, ...u, let πN be the law of the number of fixed points of a random permutation of
t1, 2, ..., Nu. Let P be the Poisson law of parameter 1. A classical result, see de Montmort [5], shows
that πN converges to P for large N . Indeed it is well-known (and estimates of the same order are
proved below) that in total variation

N

N ` 2

2N`1

pN ` 1q!
ď }πN ´ P}tv ď

2N`1 ´ 1

pN ` 1q!
(1)

The total variation distance can be realised by a coupling of πN and P, see e.g. Proposition 4.7
of Levin, Peres and Wilmer [18], and it has been a long open problem to give an explicit realization
of such a coupling. The super-exponential errors bounds in (1) occur in other problems such as the
number of k-cycles in a random permutation, which has a limiting Poisson distribution of parameter
1{k with super-exponential error. Similar results hold for the trace of powers of random matrices
for the compact classical groups ON , UN and SP2N , see e.g. Courteaut, Johansson and Lambert [3].
The method introduced here shows promise for finding couplings for these problems. For a history of
Montmort’s theorem, see Takacs [24]. For extensions and a recent literature review, see Diaconis and
Fulman and Guralnick [9]. At the end of this introduction we will present several attempts, successful
as well as unsuccessful, to get a proof by coupling of (1).

To present our approach, for any N P N and any permutation σ in the symmetric group SN , denote
η1pσq the number of fixed point of σ:

η1pσq B |tx P JNK : σpxq “ xu|

(where JNK B t1, 2, ..., Nu and more generally, for any n ď n1 P Z` B t0, 1, 2, ...u, we write Jn, n1K B
tn, n` 1, ..., n1u). The number η2pσq of 2-cyles of σ will also play an important role:

η2pσq B |tpx, yq P JNK2 : x ă y, σpxq “ y and σpyq “ xu|

Let νN stands for the uniform distribution on SN , so that πN is its image by η1 on Z`. To simplify
the notation, we will often drop the exponent N when referring to these probability measures. As
mentioned in (1), the fixed-point law π is very close to the Poisson distribution P. The bounds in
(1) are for instance recorded in (1.11) page 15 of Arratia, Barbour and Tavaré [1] and are deduced
from computations of David and Barton [4] using properties of alternating series with decreasing terms
coming from the following traditional facts.

We have

@ x P J0, NK, πpxq “
DN´x

pN ´ xq!

1

x!
(2)

where for any n P Z`, Dn stands for the number of derangements from Sn, namely the permutations
of Sn without fixed point (with the convention that D0 “ 1). The formula due to de Montmort [5]
gives the number of derangements:

@ n P N, Dn “ n!
n
ÿ

k“0

p´1qk

k!
(3)

leading to the explicit formula:

@ x P J0, NK, πpxq “
1

x!

N´x
ÿ

k“0

p´1qk

k!
(4)
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As announced above, our purpose is to deduce bounds on }π ´ P}tv, of the same logarithmic order
as that of (1). Here is a sketch of the proof. We use a random transposition to construct a Markov
chain on the symmetric group SN . Then the intertwining-lumping procedure presented in Section 2
and some fiddling around is used to construct a monotone birth-and-death chain with the fixed point
distribution π as reversible distribution. A similar construction gives a monotone birth-and-death
chain with a Poisson stationary distribution. Revisiting next the classical coupling of two monotone
birth-and-death chains leads to our bound. In more detail the intertwining-lumping construction
produces the penta-diagonal Markov kernel P on

V B J0, N ´ 2K\ tNu

given by

@ x P V,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

P px, x´ 1q “
xpN´xq
NpN´1q

P px, x´ 2q “
xpx´1q
NpN´1q

P px, x` 1q “
N´x´2ppxq
NpN´1q

P px, x` 2q “
2ppxq

NpN´1q

P px, xq “ 1´ P px, x´ 1q ´ P px, x´ 2q ´ P px, x` 1q ´ P px, x` 2q

(5)

where

x P V, ppxq B Eνrη2|η1 “ xs (6)

(the conditional expectation is with respect to the uniform measure ν on SN ). As explained in Section 2
below, this chain is a projection of Markov chains on conjugacy classes derived from multiplication
from random transpositions.

Note that P does not allow to get out of V : we have P p0,´1q “ P p0,´2q “ P p1,´1q “ P pN,N ´
1q “ 0 and P pN ´ 3, N ´ 1q “ P pN ´ 2, N ´ 1q “ P pN,N ` 1q “ P pN,N ` 2q “ 0. For the latter
equalities, we need the following observations about p: obviously we have ppNq “ 0 and the value
ppN ´2q is 1, since knowing that η1 “ N ´2, we necessarily have η2 “ 1. Similarly, the value ppN ´3q
is 0, since knowing that η1 “ N ´ 3, we necessarily have η2 “ 0 (and the number of 3-cycles is equal
to 1).

By our construction, the probability measure π will naturally appear to be reversible for the Markov
kernel P . Furthermore the reversibility of P (without even knowing the reversible probability) in
conjunction with ppNq “ ppN ´ 3q “ 0 and ppN ´ 2q “ 1 are sufficient to determine P and by
consequence the other values of p and those of π. These features can be translated into convenient
estimates on p, leading to quantitative couplings of the Markov chains whose transitions are dictated by
P with other Markov chains whose invariant measure is the conditioning of P on V (more conveniently,
we will restrict our attention to the state space J0, N ´ 4K Ă V ). These bounds are carried out in
Section (4) and we will deduce the convergence

lim
NÑ8

1

N lnpNq
lnp}π ´ P}tvq “ ´1 (7)

of the right logarithmic order.

Let us now list several attempts to prove (1) via coupling arguments, as well as some remarks.

1.1 A failed effort
This section records a natural coupling, indeed one that extends to all the classical compact groups
and their Weyl groups. By the law “natural yields right”, this should work to give good error bounds,
alas it doesn’t!

3



Let pXnqnPN be independent t0, 1u-valued random variables with

@ n P N, PrXn “ 1s “
1

n
“ 1´ PrXn “ 0s

Define for all N P N,

SN B X1X2 `X2X3 ` ¨ ¨ ¨ `Xn´1XN `XN

S8 B X1X2 `X2X3 ` ¨ ¨ ¨

In the unpublished paper of Diaconis and Mallows [6], recorded in Diaconis and Forrester [8], it is
shown that for any k P Z`,

PrSN “ ks “ πN pkq and PrS8 “ ks “ Ppkq

Thus the joint law of pSN , S8q makes a natural coupling. Alas, S8 ´ SN “ XN pXN`1 ´ 1q `
XN`1XN`2 `XN`2XN`3 ` ¨ ¨ ¨ has typical distance of order 1{N . For more background and details,
see Diaconis and Forrester [8].

1.2 A successful and strange coupling from computer science
Jim Pitman has explained a fascinating construction of a super exponential coupling due to computer
scientists Duchon and Duvignau [13] and Duchon and Duvignau [14]. Pitman’s development of these
ideas is unpublished [22]. We thank him for permission to state his results. The construction calls for
a countable collection pUnqnPN of independent random variables uniformly distributed on r0, 1s. Define

S B mintn ě 1 : Un ă Un`1u, time of first ascent
T B mintn ě 2 : Un ą maxpUn´1, Un`1qu, time of first peak
M B S ´ δT´S is odd

Theorem 1 The distribution of the random variable M is the Poisson law of parameter 1.

Define further for fixed N P N,

SN B minpS,Nq

T B minpT,Nq

MN B SN ´ δTN´SN is odd

Theorem 2 The random variable MN has the law of the number of fixed points of a random permu-
tation of JNK.

As a consequence of the two previous theorems, we get

Corollary 3 For any N P N, we have

}LpMq ´ LpMnq}tv ď PrT ą N s ď
2N

pN ` 1q!

This result seems magical and the present paper records an effort to find a proof using more
standard tools which might permit generalization. We also hope to study it on its own at least to
generalize to the law of the number of k-cycles.
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1.3 Unstability of the super-exponential bounds
The previous super-exponential bounds are delicate. Consider for example the number of fixed points
in the first N ´ 1 places of a random permutation of JNK. This quantity too has an approximate
Poisson distribution of parameter 1 but the total variation distance between these two laws is of order
1{N .

Similarly, for any θ P p0, 1q, the number of fixed points in places JtθN uK has a Poisson law of
parameter θ as limiting law. Indeed the point process on r0, 1s which has an event at k{N if and
only if a random permutation σ of SN satisfies σpkq “ k is well approximated by a unit rate Poisson
process. But these approximations are only accurate up to order 1{N .

1.4 Equality of first N moments
For N P N, consider two random variables XN and X8 respectively distributed according to πN and
P. The high order of contact between these two laws can be captured by moments. Indeed Diaconis
and Shahshahani [12] show

@ k P J0, NK, ErXk
N s “ ErXk

8s

Similar results hold for the joint mixed moments of the number of k-cycles and for compact classical
groups.

1.5 The Markov approach
It is related to Stein’s method, see e.g. Diaconis and Holmes [10] or Section 4 of Chatterjee, Diaconis
and Meckes [2], but the underlying philosophy is quite old. Assume we would like to investigate
some features of a given probability measure π. The Markov approach consists in introducing and
studying a Markov process (in continuous time) or chain (in discrete time) encapsulating the “relevant
characteristics” of the underlying state space and admitting π as invariant probability (sometimes no
effort is required in this introduction, as π is already defined as an invariant probability). An example
of this situation is the investigation of absence of phase transition, exponential decay of correlations, or
analyticity of correlation of Gibbs measures, which was done via the use of stochastic Ising processes
leaving these Gibbs measures invariant, see Holley and Stroock [15] or Chapter 4 of the book of Liggett
[19]. Our goal here is to give a new illustration of this Markov approach by recovering the right order
of (1).

The plan of the paper is as follows. In the next section we present a general procedure producing
a Markov chain by projection of another Markov chain. Reversibility is preserved by such projections.
In Section 3, the transposition random walk on SN is projected in this way through η1 to get the
Markov kernel P on V . In Section 4, we deduce the a priori bounds on p that are applied in Section 5
to control our couplings of Markov chains, leading to desired upper bound on the approximation of
π by P. In a spirit similar to that of Section 4, in Appendix A, we directly recover (4), giving an
alternative proof to the classical inclusion-exclusion argument. In Appendix B, some complements are
given about the conditional expectation p.

Acknowledgments: We thank Jim Pitman for telling us about Section 1.2. Diaconis is
funded by NSF grant 1954042. Miclo is funded by grants ANR-17-EURE-0010 and AFOSR-22IOE016.

2 Projections of Markov chains
We present in this short section a general procedure of projection of Markov chains. We will restrict
our attention to finite state spaces to simplify the exposition and since latter we will work only with
such sets, but the underlying principle is much more general.
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Consider a Markov chain pX,Y q B pXn, YnqnPZ` taking values in a product state space V ˆW .
Assume that V and W are finite and that the transition matrix Q of pX,Y q is irreducible. Denote by
µ its invariant measure. Consider r1 : V ˆW Ñ V and r2 : V ˆW Ñ W the canonical projections
and let µ1 B r1pµq be the first marginal distribution of µ. Denote by µ1,2 the Markov kernel from V
to W corresponding to the conditional distribution of r2 knowing r1. So we have the decomposition

@ px, yq P V ˆW, µpx, yq “ µ1pxqµ1,2px, yq

Consider the Markov kernel P given on V via

@ x, x1 P V P px, x1q B
ÿ

y,y1PW

Qppx, yq, px1, y1qqµ1,2px, yq

and the Markov kernel Λ from V ˆW to V given by

@ px, yq P V ˆW, @ x1 P V, Λppx, yq, x1q B µ1px
1q

Lemma 4 We have the intertwining relation

QΛ “ ΛP

Proof
On one hand, Λ can be identified with µ1, so that QΛ “ µ1.

On the other hand, we have for any px, yq P V ˆW and x1 P V ,

ΛP ppx, yq, x1q “ µ1P px
1q

“
ÿ

x2PV

µ1px
2qP px2, x1q

“
ÿ

x2PV

µ1px
2q

ÿ

y1,y2PW

Qppx2, y2q, px1, y1qqµ1,2px
2, y2q

“
ÿ

y1PW

ÿ

px2,y2qPVˆW

µpx2, y2qQppx2, y2q, px1, y1qq

“
ÿ

y1PW

µpx1, y1q

“ µ1px
1q

namely

ΛP “ µ1 “ QΛ

�

In particular, µΛ is invariant is for P , i.e. µ1 is invariant for P (in fact this is just the above proof).
We also have:

Lemma 5 Assume that µ is reversible for Q, then µ1 is reversible for P .

Proof
Consider f, g P RV . We have

µ1rfP rgss “
ÿ

xPV

µ1pxqfpxq
ÿ

yPW

Qrg ˝ r1spx, yqµ1,2px, yq

“
ÿ

px,yqPVˆW

f ˝ r1px, yqQrg ˝ r1spx, yqµpx, yq

“ µrf ˝ r1Qrg ˝ r1ss

“ µrg ˝ r1Qrf ˝ r1ss

“ µ1rgP rf ss
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The construction above corresponds to a lumping procedure. More generally, let W be a finite (or
denumerable) set and pQpw,w1qqw,w1PW be a Markov kernel on W admitting pπpwqqwPW as stationary
distribution. Given a partition of the state space W “

Ů

vPV Av into non-empty subsets, reporting
which Av contains the current state of a Markov chain associated to Q gives a “lumped process”. As is
well-known, see e.g. Theorem 6.3.2 of Kemeny and Snell [17] or Pang [21], this may not be a Markov
chain. The analogous projected Markov kernel pP pv, v1qqv,v1PV on V can defined as

@ v, v1 P V, P pv, v1q B
ÿ

wPAv , w1PAv1

πpwq

πpAvq
Qpw,w1q

Arguing as above, the probability measure pπpAvqqvPV is invariant for P (and reversible when π is
reversible for Q). Defining

@ w PW, @ v P V, Λpw, vq B πpAvq

we get the intertwining relation QΛ “ ΛP . If the classical Dynkin condition holds, namely for any
v, v1 P V , Qpw,Av1q does not depend on the choice of w P Av, then the projected chain P agrees with
the usual lumped chain.

3 A penta-diagonal and two birth and death Markov chains
Here we apply the abstract projection scheme of the previous section in the setting of the symmetric
group SN . It is related to Chapter 12 of Stein’s book [23], which studies the law of the numbers of the
cycles of length l, for all l P JNK, under the uniform distribution on SN , using a random transposition
to build a reversible Markov chain.

Consider the transposition random walk on the symmetric group SN , whose transition matrix T
is given by

@ σ, σ1 P SN , T pσ, σ1q “

" 2
NpN´1q , if there exists a transposition τ such that σ1 “ τσ

0 , otherwise

(where permutations are seen as bijective mappings from JNK and the product corresponds to the
composition).

The Markov kernel T is reversible with respect to the uniform probability distribution ν on SN .
Generalizing η1 and η2, for any l P JNK and σ P SN define ηlpσq as the number of cycles of order l

in σ (singleton cycles corresponding to fixed points). In particular we have

@ σ P SN , η1pσq ` 2η2pσq ` ¨ ¨ ¨ `NηN pσq “ N

Let pσpnqqnPZ` be a Markov chain with transitions dictated by T and denote

@ n P Z`, ηpnq B pηlpσpnqqqlPJNK

It is well-known that η B pηpnqqnPZ` is also a Markov chain whose transition matrix is denoted
Q and is reversible with respect to µ the image of ν in the mapping SN Q σ ÞÑ pηlpσqqlPJNK. Indeed
this is the classical coagulation-fragmentation chain of statistical mechanics, see Diaconis, Mayer-Wolf,
Zeitouni and Zerner [11].

The Markov chain η can be written under the form pX,Y q with

X B η1

Y B ηJ2,NK B pη2, η3, ..., ηN q

7



We are thus in position to apply Lemmas 4 and 5.
Our next goal is to describe the corresponding Markov kernel P . Note that the corresponding state

space is

V “ J0, NKztN ´ 1u (8)

already met in the introduction (it is not possible for a permutation to have N ´ 1 fixed points).
Consider a permutation σ P SN . Denote f1, f2, ..., fk its fixed points (so that η1pσq “ k) and let

C1, C2, ..., Cl be the other cycles of σ.
Consider a transposition τ C pi, jq. Let us describe η1pσ1q with σ1 B τσ.
‚ If both i and j are fixed points of σ, then the fixed points of σ1 are the elements of tf1, f2, ..., fkuzti, ju

and its non-singleton cycles are C1, C2, ..., Cl and pi, jq. Thus we have η1pσ1q “ η1pσq ´ 2.
‚ If i is a fixed point of σ and j P Cr, with r P JlK, then the fixed points of σ1 are the elements of

tf1, f2, ..., fkuztiu and its non-singleton cycles are Cm with m ‰ r in addition to a new cycle containing
Cr and j. Thus we have η1pσ1q “ η1pσq ´ 1.
‚ If i P Cr and j P Cs with r ‰ s, then the cycles and fixed points of σ1 are the same as those of

σ, except that Cs and Cr are merged into a new cycle. In particular we have η1pσ1q “ η1pσq.
‚ The last situation is when i and j belong to the same cycle Cr. We consider three subcases:
- When Cr “ pi, jq, then the fixed points of σ1 are tf1, f2, ..., fk, i, ju and its non-singleton cycles

are the Cs, for s P JlKztru. We deduce η1pσ1q “ η1pσq ` 2.
- When there exists x P Cr such that ti, ju “ tx, σpxqu, assume for instance that i “ x and j “ σpxq

and Cr ‰ pi, jq. Then i is a new fixed point of σ1 and its non-singleton cycles are the same as those of
σ, except that the point i has been removed from Cr. We deduce η1pσ1q “ η1pσq ` 1.

- When there does not exist x P Cr such that ti, ju “ tx, σpxqu (in particular the cardinal of Cr is
at least 4), then σ1 has the same fixed points as σ and the only difference in its non-singleton cycles
is that Cr has been divided into two new non-singleton cycles. We deduce η1pσ1q “ η1pσq.

Integrating these observations with respect to τ uniformly distributed among all transpositions,
we end up with the kernel P given in (5), with

ppxq “

ż

η2 µ1,2px, dηJ2,NKq

namely the mean of η2 knowing η1 “ x when ηJ1,NK is distributed according to µ (the above integral is
in fact a sum, but the integral notation is more convenient). Note that this formulation is equivalent
to (6).

The distribution π of the number of fixed points of the uniform permutation is equal to µ1, with the
notation of Section 2. According to Lemma 5, π is reversible for P , as announced in the introduction.

In the sequel it will sometimes be more convenient to work with tri-diagonal kernels than with the
penta-diagonal kernel P , so let us extract two birth and death kernels from P .

The first one, denoted rP , is given by

@ x ‰ y P V, rP px, yq B
1

NpN ´ 1q

$

’

’

’

’

&

’

’

’

’

%

xpN ´ xq , if x ‰ N and y “ x´ 1
N ´ x´ 2ppxq , if x ‰ N ´ 2 and y “ x` 1
2 , if x “ N ´ 2 and y “ N
NpN ´ 1q , if x “ N and y “ N ´ 2
0 , otherwise

(9)

This Markov kernel is obtained by removing all transitions of the form px, x` 2q and px, x´ 2q from
P , except for pN ´ 2, Nq and pN,N ´ 2q (because N ´ 1 is not a value taken by η1), and putting their
weights to the diagonal. For the corresponding Markov chains, it amounts to forbid the jumps of size
two and keep the current position instead (except for the transitions between N ´ 2 and N).
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From the fact that π is reversible for P , we deduce that π is also reversible for rP , since the property
of being reversible is preserved by removing transitions (when the transitions in both directions along
an edge are removed together). As announced, rP corresponds to a birth-and-death Markov transition
on V .

The second birth-and-death Markov transition pP will be useful in Appendix A. It is obtained by
ordering V as N ´ 3, N ´ 5, ..., 3, 1, 0, 2, 4, ..., N ´ 2, N when N is even. When N is odd, rather order
V as N ´ 3, N ´ 5, ..., 2, 0, 1, 3, ..., N ´ 2, N , the following construction leads to similar results in this
case, so let us only consider the situation where N is even.

Thus we define for i P J0, N ´ 1K,

zi B

#

2i , if i P J0, N{2´ 2K

2` 2i´N , if i P JN{2´ 1, N ´ 1K

The Markov kernel pP is given on J0, N ´ 1K by

@ i ‰ j P V, pP pi, jq B

"

P pzi, zjq , if |i´ j| “ 1
0 , otherwise (10)

This construction of pP is somewhat supplementary to that of rP : only the transitions of size two are
kept, all transitions of size 1 being removed, except those between 0 and 1, to insure irreducibility.

For the same reason as for rP , the kernel pP admits pπ B ppπpiqqiPJ0,N´1K for reversible measure, where

@ i P J0, N ´ 1K, pπpiq B πpziq (11)

4 An a priori estimate
A drawback of Definition (5) of the Markov kernel P is that the quantities ppxq, for x P V , are a priori
unknown. We will give an explicit formula for them in Appendix (A), but the control of the couplings
of next section only requires an a priori bound about them, presented in Proposition 6 below.

We have seen in the introduction that ppN´3q “ ppNq “ 0 and that ppN´2q “ 1. These equalities
and the fact that P is reversible are sufficient knowledges to deduce the following bound:

Proposition 6 We have for the mapping p defined in (6),

@ x P J0, N ´ 2K, |2ppxq ´ 1| ď
1

pN ´ x´ 2q!

Proof
Recall that Kolmogorov criterion for reversibility, see e.g. the book of Kelly [16], asserts that for any
finite sequence px0, x1, ..., xnq from V with n P N, we have

P px0, x1qP px1, x2q ¨ ¨ ¨P pxn´1, xnqP pxn, x0q “ P px0, xnqP pxn, xn´1q ¨ ¨ ¨P px2, x1q ¨ ¨ ¨P px1, x0q

For given x P J0, N ´ 4K, assuming N ě 4, let us apply this formula with

x0 “ x

x1 “ x` 1

x2 “ x` 2

We get

P px, x` 1qP px` 1, x` 2qP px` 2, xq “ P px, x` 2qP px` 2, x` 1qP px` 1, xq

9



namely

pN ´ x´ 2ppxqqpN ´ x´ 1´ 2ppx` 1qqpx` 2qpx` 1q

“ 2ppxqpx` 2qpN ´ x´ 2qpx` 1qpN ´ x´ 1q

i.e., since x` 1 ą 0,

pN ´ x´ 2ppxqqpN ´ x´ 1´ 2ppx` 1qq “ 2ppxqpN ´ x´ 2qpN ´ x´ 1q

To simplify notations, let us write kpxq “ 2ppxq, for any x P J0, N ´ 2K. The above formula is
equivalent to the downward iteration, for x P J0, N ´ 4K,

kpxq “
pN ´ xqpN ´ x´ 1´ kpx` 1qq

pN ´ x´ 1q2 ´ kpx` 1q
(12)

Starting from kpN ´ 3q “ 2ppN ´ 3q “ 0, we deduce iteratively kpN ´ 4q, kpN ´ 5q, ... down to
kp0q.

For x P J0, N ´ 4K, denote Fx the rational function

@ r P RztpN ´ x´ 1q2u, Fxprq B
pN ´ xqpN ´ x´ 1´ rq

pN ´ x´ 1q2 ´ r

so that kpxq “ Fxpkpx` 1qq.
For any x P J0, N ´ 4K, 1 is a fixed point of Fx (the only one in fact), since

Fxp1q “
pN ´ xqpN ´ x´ 1´ 1q

pN ´ x´ 1q2 ´ 1

“ 1

Thus (12) can be written in the convenient form

kpxq ´ 1 “ Fxpkpx` 1qq ´ Fxp1q

“

ż kpx`1q

1
F 1xpsq ds (13)

which suggests computing:

@ s P RztpN ´ x´ 1q2u, F 1xpsq “ ´
pN ´ xqpN ´ x´ 1qpN ´ x´ 2q

ppN ´ x´ 1q2 ´ sq2
(14)

These observations lead to a proof of the bound of Proposition 6 by a backward iteration.
Indeed, for x “ N ´ 2 and x “ N ´ 3, the bound is true, since it is respectively implied by

2ppN ´ 2q ´ 1 “ 2´ 1

“ 1

“
1

0!

“
1

pN ´ 2´ pN ´ 2qq!

and

2ppN ´ 3q ´ 1 “ 0´ 1

“ ´1

“ ´
1

1!

“ ´
1

pN ´ 2´ pN ´ 3qq!
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Consider x P J0, N ´ 4K, we have

N ´ x ě N ´ x´ 1 ě N ´ x´ 2 ě 2 (15)

so that F 1x ă 0. This observation and (13) imply that if kpx ` 1q ą 1, then kpxq ă 1 and conversely,
if kpx` 1q ă 1, then kpxq ą 1, namely the sequence pkpzq ´ 1qzPJ0,N´2K is alternating.

Let us consider separately the first case: x “ N ´ 4. Since kpN ´ 3q “ 0 ă 1, we deduce from (14)
with x “ N ´ 4, that for s P rkpN ´ 3q, 1s “ r0, 1s,

|F 1N´4psq| ď
4ˆ 3ˆ 2

p32 ´ 1q2
“

3

8
ď

1

2

It follows from (13) that

|kpN ´ 4q ´ 1| ď
1

2
|kpN ´ 3q ´ 1| ď

1

2
“

1

pN ´ pN ´ 4q ´ 2q!

Let us now assume the bound of Proposition 6 is true for some x` 1 P J1, N ´ 4K and let us prove
it for x.

Note that we have

kpx` 1q ď 1`
1

pN ´ x´ 2q!
ď 1`

1

2!
“

3

2

so (15) and (14) imply that for s P r1, Fxpkpx` 1qqs (or s P rFxpkpx` 1qq, 1s if Fxpkpx` 1qq ď 1),

|F 1xpsq| ď
pN ´ xqpN ´ x´ 1qpN ´ x´ 2q

ppN ´ x´ 1q2 ´ 4{3q2

Let us show that the r.h.s. is bounded above by 1{pN ´ x ´ 2q. To simplify notation, write
y B N ´ x´ 1 ě 3, so that the desired bound amounts to

py ` 1qypy ´ 1q

py2 ´ 4{3q2
ď

1

y ´ 1
(16)

namely

py2 ´ 1qpy ´ 1qy ď py2 ´ 4{3q2

i.e.

y4 ´ y3 ´ y2 ` y ď y4 ´
8

3
y2 `

16

9

or gpyq ě 0, where

@ y ě 3, gpyq B y3 ´
5

3
y2 ´ y `

16

9

We compute

@ y ě 3, g1pyq “ 3y2 ´
10

3
y ´ 1

and the largest zero of the r.h.s is

1

18
p10`

?
208q ă 3

11



It follows that g is increasing on r3,`8q and we compute

gp3q “ 27´ 15` 3`
16

9
ą 0

showing the validity of (16).
We deduce from (13) that

|kpxq ´ 1| ď

ˇ

ˇ

ˇ

ˇ

ˇ

ż kpx`1q

1

1

N ´ x´ 2
ds

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

N ´ x´ 2
|kpx` 1q ´ 1|

ď
1

pN ´ x´ 2q!

where we took into account the iteration assumption, namely |kpx` 1q ´ 1| ď 1{ppN ´ x´ 3q!q. �

Remark 7 The observation made after (15) implies more precisely that for x P J0, N ´ 2K, 2ppN ´

2´ xq ´ 1 is positive for even x and negative for odd x. ˝

These computations, especially the iteration relation (12), also show that the reversible couple
pπ, P q is well-defined by ppN ´ 3q “ 0 “ ppNq and ppN ´ 2q “ 1: no further information are needed
for its investigation, in particular not the interpretation of p as a conditional expectation on the larger
space SN . Namely we can work only on V .

Let us state this construction formally:

Remark 8 Consider P̄ defined in (5) with the ppxq replaced by some p̄pxq ě 0, under the constraint
that P̄ is a Markov kernel on J0, NK. Add the constraints p̄pN ´ 1q “ p̄pNq “ 0 (in our previous
case, N ´ 1 becomes a transient point, with P pN ´ 1, Nq “ 1{pNpN ´ 1qq and P pN ´ 1, N ´ 1q “
1 ´ P pN ´ 1, Nq). Assume furthermore that the values p̄pxq satisfy the iteration (12). Thus P̄ is
a function of p̄pN ´ 2q and p̄pN ´ 3q. Then taking p̄pN ´ 2q “ 1{2 and p̄pN ´ 3q “ 1{2 (implying
p̄pxq “ 1{2 for all x P J0, N´4K, due to the fact that 1 is a fixed point of Fx), we end up with a Markov
kernel P̄ which is reversible with respect to the restriction of the Poisson distribution on J0, NK. ˝

This observation is at the heart of the couplings presented in next section.

5 A monotone coupling
Our purpose here is to prove by coupling an upper bound of the Poisson approximation of π, of the
same logarithmic order as that of (1). It would be possible to push further the computations, but our
main emphasis is placed on the method rather than on sharp estimates.

More precisely, we want to show (7) by only using that π is reversible with respect to the Markov
kernel rP defined in (9) and the a priori estimate given in Proposition 6.

Instead of working on V or Z`, we can restrict our attention to J0, N ´ 4K (assuming N ě 4).
Indeed, denote ζ the conditioning of P to J0, N ´ 4K, since

lim
NÑ8

1

N lnpNq
lnpPpJN ´ 3,8Jqq “ ´1

we easily deduce that

lim
NÑ8

1

N lnpNq
lnp}ζ ´ P}tvq “ ´1 (17)

12



Furthermore it is not difficult to see that

lim
NÑ8

1

N lnpNq
lnpπptN ´ 3, N ´ 2, Nuqq “ ´1

since by a direct investigation, we get that

πpNq “
1

N !
(18)

πpN ´ 2q “
1

2

1

N !

πpN ´ 3q “
1

3

1

N !

It follows that

lim
NÑ8

1

N lnpNq
lnp}π ´ π̌}tvq “ ´1 (19)

where π̌ is the conditioning of π to J0, N ´ 4K.
These limiting behaviors imply that (7) amounts to

lim sup
NÑ8

1

N lnpNq
lnp}π̌ ´ ζ}tvq ď ´1 (20)

Indeed, on one hand, from (18) we get

lim inf
NÑ8

1

N lnpNq
lnp}π ´ P}tvq ě lim inf

NÑ8

1

N lnpNq
ln

ˆ

1

2
|πpNq ´ PpNq|

˙

“ lim inf
NÑ8

1

N lnpNq
ln
`

p1´ e´1q{pN !q
˘

“ ´1

and on the other hand, from (17), (19) and (20),

lim sup
NÑ8

1

N lnpNq
lnp}π ´ P}tvq

ď max

ˆ

lim sup
NÑ8

1

N lnpNq
lnp}π ´ π̌}tv , lim sup

NÑ8

1

N lnpNq
lnp}π̌ ´ ζ}tv , lim sup

NÑ8

1

N lnpNq
lnp}ζ ´ P}tv

˙

“ ´1

Thus it remains to prove (20).
By reversibility of rP with respect to π, we have that π̌ is reversible with respect to the birth and

death Markov kernel P̌ given by

@ x ‰ y P J0, N ´ 4K, P̌ px, yq B
1

NpN ´ 1q

$

&

%

xpN ´ xq , if y “ x´ 1
N ´ x´ 2ppxq , if y “ x` 1
0 , otherwise

(as usual the diagonal entries are deduced by the fact that the rows sum to 1).
Consider the birth and death Markov kernel R given by

@ x ‰ y P J0, N ´ 4K, Rpx, yq B
1

NpN ´ 1q

$

&

%

xpN ´ xq , if y “ x´ 1
N ´ x´ 1 , if y “ x` 1
0 , otherwise

which amounts to replacing ppxq by 1{2 in the kernel P̌ , see Remark 8 above.

13



It is immediate to check that ζ is reversible for R, since we have for any x P J0, N ´ 5K,

ζpxqRpx, x` 1q

ζpx` 1qRpx` 1, xq
“

px` 1qRpx, x` 1q

Rpx` 1, xq

“
px` 1qpN ´ x´ 1q

px` 1qpN ´ x´ 1q

“ 1

To simplify the notations, from now on, π̌ and P̌ will be written π and P , we hope it will not bring
confusion with the previous π and P .

Consider X B pXpnqqnPZ` a stationary Markov chain whose transitions are given by P and whose
initial law is π. Similarly let Y B pY pnqqnPZ` be a stationary Markov chain whose transitions are
given by R and whose initial law is ζ. We couple them in a monotone way: namely at any time n P Z`,
the transition from pXpnq, Y pnqq to pXpn`1q, Y pn`1qq is given by sampling an independent uniform
random variable Upnq on r0, 1s and by deciding that

Xpn` 1q “

$

&

%

Xpnq ´ 1 , if Upnq ă P pXpnq, Xpnq ´ 1q
Xpnq , if P pXpnq, Xpnq ´ 1q ď Upnq ă P pXpnq, Xpnq ´ 1q ` P pXpnq, Xpnqq
Xpn` 1q , if P pXpnq, Xpnq ´ 1q ` P pXpnq, Xpnqq ď Upnq

and

Y pn` 1q “

$

&

%

Y pnq ´ 1 , if Upnq ă RpY pnq, Y pnq ´ 1q
Y pnq , if RpY pnq, Y pnq ´ 1q ď Upnq ă RpY pnq, Y pnq ´ 1q `RpY pnq, Y pnqq
Y pn` 1q , if RpY pnq, Y pnq ´ 1q `RpY pnq, Y pnqq ď Upnq

The corresponding Markov kernel on J0, N ´ 2K2 will be denoted S, namely we have

@ px, yq, px1, y1q P J0, N ´ 2K2,
Sppx, yq, px1, y1qq “ PrpXpn` 1q, Y pn` 1qq “ px1, y1q|pXpnq, Y pnqq “ px, yqs

Consider, traditionally τ the coupling time

τ B inftn P Z` : Xpnq “ Y pnqu

but also the auxiliary random chain Z B pZpnqqnPZ`

@ n P Z`, Zpnq B
n´1
ÿ

k“0

1tXpkq“Y pkq, Xpk`1q‰Y pk`1qu

Their interest is that for any time n P Z`, we have

}π ´ ζ}tv ď PrXpnq ‰ Y pnqs

ď Prτ ą ns ` PrZpnq ą 0s (21)

By choosing n of order N4 lnpNq, we will get an estimate of }π ´ ζ}tv of the order we are looking
for.

This resort to coupling is different from its traditional use in the quantitative investigation of
convergence to equilibrium, where different lines of the same transition kernel are coupled. The bound
(21) is neither good for short or long times n, it is interesting only for certain times, enabling us to
estimate the difference between the invariant probabilities of two different transition kernels.

To illustrate the difference between these approaches, let us evaluate the new term in (21):
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Lemma 9 For any n P Z`, we have

PrZpnq ą 0s ď
2Nn

N !

Proof
For any given n P Z`, we have

PrZpnq ą 0s ď ErZpnqs

“

n´1
ÿ

k“0

Er1Xpkq“Y pkq, Xpk`1q‰Y pk`1qs

“

n´1
ÿ

k“0

Er1Xpkq“Y pkqSppXpkq, Y pkqq, Aqs (22)

where

A B tpx1, y1q P J0, N ´ 4K2 : x1 ‰ y1u

Taking into account Proposition 6, we have

@ x P J0, N ´ 4K, Sppx, xq, Aq ď
|1´ 2ppxq|

NpN ´ 1q

ď
1

pN ´ x´ 2q!

1

NpN ´ 1q

ď
1

pN ´ xq!

It follows that for any k P J0, nK,

Er1Xpkq“Y pkqSppXpkq, Y pkqq, Aqs “

N´4
ÿ

x“0

PrXpkq “ x “ Y pkqsSppx, xq, Aq

ď

N´4
ÿ

x“0

PrY pkq “ xsSppx, xq, Aq

ď

N´4
ÿ

x“0

1

ZNx!

1

pN ´ xq!

ď
1

ZN

N
ÿ

x“0

1

x!

1

pN ´ xq!

“
1ˆ 2N

ZNN !

where we used that pY pkqqkPZ` is stationary with common distribution ζ and where

ZN “

N´4
ÿ

x“0

1

x!
ě 1

The desired result follows by remembering (22). �

Note that the bound of the above lemma will be small even of we choose a time n exponential large
in N .
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In view of (21) and Lemma 9, our next task is to get an estimate on Prτ ą ns for given n P Z`. T go
in this direction, we will need two other auxiliary random chains rZ B p rZpnqqnPZ` and pZ B p pZpnqqnPZ` ,
defined respectively through

@ n P Z`,

#

rZpnq B
řn´1
k“0 1XpkqďY pkq, Xpk`1qąY pk`1q

pZpnq B
řn´1
k“0 1XpkqěY pkq, Xpk`1qăY pk`1q

as well as the hitting times of zero by X and Y :

τX0 B inftn P Z` : Xpnq “ 0u

τY0 B inftn P Z` : Y pnq “ 0u

Indeed, it is clear that

@ n P Z`, Prτ ą ns ď PrτX0 ą ns ` PrτY0 ą ns ` Pr rZpnq ą 0s ` Pr pZpnq ą 0s (23)

It remains to estimate each of the terms of the r.h.s.
Let us start with the last two terms. In this respect, it is useful to remark that the Markov chain

Y is monotone, namely that for x ď y P J0, N ´ 4K, if Yx B pYxpnqqnPZ` and Yy B pYypnqqnPZ` are
Markov chain with transition kernel R starting respectively from x and y, then we can couple them
in a monotone fashion (similar to the coupling of X and Y above), so that

Pr@ n P Z`, Yxpnq ď Yypnqs “ 1

(see for instance the book of Lindvall [20]).
Let us prove this monotonicity of Y :

Lemma 10 The Markov chain Y is monotone.

Proof
Since Y is a birth and death chain, to get it is monotone, it is sufficient to check that

@ x P J0, N ´ 5K, Rpx, Jx´ 1, xKq ě Rpx` 1, xq

(again see e.g. Lindvall [20]).
The previous bound amounts to

@ x P J0, N ´ 5K, 1´
N ´ x´ 1

NpN ` 1q
ě

px` 1qpN ´ x´ 1q

NpN ` 1q

or

@ x P J0, N ´ 5K, NpN ` 1q ě px` 2qpN ´ x´ 1q (24)

The maximum of the r.h.s. as x runs in R is attained at the point x “ pN ´ 3q{2 and replacing in
the above r.h.s., the desired inequality is true if we have N ě pN ` 1q{4, which is satisfied as soon as
N ě 1{3. �

Let us come back to the quantities Pr rZpnq ą 0s and Pr pZpnq ą 0s, we have:

Lemma 11 For any n P Z`, we have

Pr pZpnq ą 0s ď
2N`1n

N !

Pr rZpnq ą 0s ď
2N`1n

N !
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Proof
We have

Pr pZpnq ą 0s ď Er pZpnqs

“

n´1
ÿ

k“0

Er1XpkqěY pkq, Xpk`1qăY pk`1qs (25)

Fix some k P J0, n´ 1K. If Xpkq ě Y pkq and Xpk ` 1q ă Y pk ` 1q hold, then either Xpkq “ Y pkq
or Xpkq “ Y pkq ` 1. Let us consider the latter case, we have:

Er1Xpkq“Y pkq`1, Xpk`1qăY pk`1qs “

N´4
ÿ

x“0

PrXpkq “ x` 1, Y pkq “ xsSppx` 1, xq, A´q (26)

where

A´ B tpx1, y1q P J0, N ´ 4K : x1 ă y1u

But for the transition from px` 1, xq to B to happen, the underlying uniform random variable on
r0, 1smust have taken advantage of the discrepancy between 2ppx`1q and 1, otherwise the monotonicity
of Y leads to a contradiction. We deduce

Sppx` 1, xq, A´q ď
|1´ 2ppx` 1q|

NpN ´ 1q

ď
1

pN ´ x´ 1q!

1

NpN ´ 1q

ď
1

pN ´ x` 1q!

and it follows, as in proof of Lemma 9 that

N´4
ÿ

x“0

PrXpkq “ x` 1, Y pkq “ xsSppx` 1, xq, A´q ď

N´4
ÿ

x“0

1

ZNx!

1

pN ´ x` 1q!

ď
2N`1

pN ` 1q!

ď
2N

N !

The treatment of the cases Xpkq “ Y pkq is similar to the proof of Lemma 9, leading to

N´4
ÿ

x“0

PrXpkq “ x, Y pkq “ xsSppx, xq, A´q ď
2N

N !
(27)

It follows that for any k P J0, n´ 1K

Er1XpkqěY pkq, Xpk`1qăY pk`1qs ď
2N`1

N !

and (25) leads to the first desired bound.

The second desired bound is obtained in a similar way, the main difference being that we have to
replace, for k P J0, n´ 1K, (26) by

Er1Xpkq“Y pkq´1, Xpk`1qăY pk`1qs “

N´4
ÿ

x“0

PrXpkq “ x` 1, Y pkq “ xsSppx` 1, xq, A`q
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where

A` B tpx1, y1q P J0, N ´ 4K : x1 ą y1u

Then we rather use

Sppx´ 1, xq, A`q ď
|1´ 2ppx´ 1q|

NpN ´ 1q

ď
1

pN ´ x´ 1q!

1

NpN ´ 1q

ď
1

pN ´ x` 1q!

leading to

Er1Xpkq“Y pkq´1, Xpk`1qăY pk`1qs ď
2N`1

pN ` 1q!

ď
2N

N !

As in (27), we also have

Er1Xpkq“Y pkq, Xpk`1qăY pk`1qs ď
2N

N !

enabling us to conclude to the second desired bound. �

We are left with the evaluation of the tails of τX0 and τY0 in (23).
We start with the last one:

Lemma 12 There exists a constant c ą 0 such that for any N large enough and any n P Z`, we have

PrτY0 ą ns ď e1´cn{N
3

whatever the initial law of Y p0q.

Proof
For any time k P Z` such that Y pkq “ y ‰ 0, we compute

E
„

exp

ˆ

Yk`1 ´ Yk
N

˙
ˇ

ˇ

ˇ

ˇ

Yk “ y



“ e´1{N
ypN ´ yq

NpN ´ 1q
` e1{N

N ´ y ´ 1

NpN ´ 1q
` 1´

ypN ´ yq `N ´ y ´ 1

NpN ´ 1q

“ 1` pe´1{N ´ 1q
ypN ´ yq

NpN ´ 1q
` pe1{N ´ 1q

N ´ y ´ 1

NpN ´ 1q

Denoting FN pyq the r.h.s., it is a second order polynomial whose minimal value is attained at

y B
e1{N ´ 1`N

2p1´ e´1{N q

belonging to J1, N´4K for N large enough. It follows that the maximal value of FN pyq for y P J1, N´4K
is attained either at y “ 1 or y “ N ´ 4.

We compute that

FN p1q “ 1`
pe´1{N ´ 1qpN ´ 1q ` pe1{N ´ 1qpN ´ 2q

NpN ´ 1q

FN pN ´ 4q “ 1`
4pe´1{N ´ 1qpN ´ 4q ` 3pe1{N ´ 1q

NpN ´ 1q

18



and we deduce there exists a constant c ą 0 such that for N large enough,

maxpFN p1q, FN pN ´ 4qq ď 1´
c

N3

leading to

@ k P Z`, Yk ‰ 0 ñ E
„

exp

ˆ

Yk`1
N

˙ˇ

ˇ

ˇ

ˇ

Yk



ď

´

1´
c

N3

¯

exp

ˆ

Y pkq

N

˙

implying

@ k P Z`, E
„

exp

ˆ

Yk`1
N

˙ˇ

ˇ

ˇ

ˇ

Yk



1Y pkq‰0 ď

´

1´
c

N3

¯

exp

ˆ

Y pkq

N

˙

i.e.

@ k P Z`, E
„

exp

ˆ

Yk`1
N

˙

1Y pkq‰0

ˇ

ˇ

ˇ

ˇ

Y pkq



ď

´

1´
c

N3

¯

exp

ˆ

Y pkq

N

˙

or, using the Markov property,

@ k P Z`, E
„

exp

ˆ

Yk`1
N

˙

1Y pkq‰0

ˇ

ˇ

ˇ

ˇ

FY pkq



ď

´

1´
c

N3

¯

exp

ˆ

Y pkq

N

˙

where FY pkq is the sigma-field generated by Y p0q, Y p1q, ..., Y pkq.
Iterating this relation, we get for any k P N,

E
„

E
„

exp

ˆ

Yk`1
N

˙

1Y pkq‰0

ˇ

ˇ

ˇ

ˇ

FY pkq



1Y pk´1q‰0

ˇ

ˇ

ˇ

ˇ

FY pk ´ 1q



ď

´

1´
c

N3

¯2
exp

ˆ

Y pk ´ 1q

N

˙

Pushing further the iteration, we end up with

E
„

¨ ¨ ¨E
„

E
„

exp

ˆ

Yk`1
N

˙

1Y pkq‰0

ˇ

ˇ

ˇ

ˇ

FY pkq



1Y pk´1q‰0

ˇ

ˇ

ˇ

ˇ

FY pk ´ 1q



¨ ¨ ¨1Y p0q‰0

ˇ

ˇ

ˇ

ˇ

FY p0q



ď

´

1´
c

N3

¯k
exp

ˆ

Y p0q

N

˙

Taking into account that Yk`1 ě 0 and that Y p0q ď N , we get

E
“

¨ ¨ ¨E
“

E
“

1Y pkq‰0
ˇ

ˇFY pkq
‰

1Y pk´1q‰0
ˇ

ˇFY pk ´ 1q
‰

¨ ¨ ¨1Y p0q‰0
ˇ

ˇFY p0q
‰

ď e
´

1´
c

N3

¯k

Taking expectation and simplifying conditional expectation iteratively (starting with FY p0q, next
FY p1q, etc.), we end up with

PrY pkq ‰ 0, Y pk ´ 1q ‰ 0, ..., Y p0q ‰ 0s ď e
´

1´
c

N3

¯k

implying

PrτY0 ą ks ď e
´

1´
c

N3

¯k

ď e1´
ck
N3

which is desired bound, taking k “ n. �

The tail of τX0 is evaluated similarly:
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Lemma 13 There exists a constant rc ą 0 such that for N large enough and any n P Z`, we have

PrτX0 ą ns ď e1´rcn{N
3

whatever the initial law of Xp0q.

Proof
According to Proposition 6, we have 2ppxq ě 1{2 for all x P J0, N ´ 4K, fact which suggests to consider
Markov chains rY B prY pnqqnPZ` associated to the transition kernel rR given by

@ x ‰ y P J0, N ´ 4K, rRpx, yq B
1

NpN ´ 1q

$

&

%

xpN ´ xq , if y “ x´ 1
N ´ x´ 1{2 , if y “ x` 1
0 , otherwise

which differs from R only the replacement of N ´ x´ 1 by N ´ x´ 1{2.
Consider the corresponding hitting time of 0:

τ
rY
0 B inftn P Z` : rY pnq “ 0u

Coupling in a monotone way X and rY and starting with rY p0q “ Xp0q, we get that

@ n P Z`, Xpnq ď rY pnq

at least if rY is monotone. This is true and is proven as for Lemma 10, where (24) has to be replaced
by

@ x P J0, N ´ 5K, NpN ` 1q ě px` 2qpN ´ x´ 1{2q

We deduce that

@ n P Z`, PrτX0 ą ns ď Prτ rY
0 ą ns

It is thus sufficient to find a constant rc ą 0 such that for any N ě 5 and any n P Z`, we have

Prτ rY
0 ą ns ď e1´rcn{N

3

whatever the initial law of rY p0q.
This done as in the proof of Lemma 12. �

Summarizing the previous computation, we have shown there exist two constants c,rc ą 0 such that
for any N large enough and n ě 0,

}π ´ ζ}tv ď
2Nn

N !
` 2

2N`1n

N !
` e1´cn{N

3
` e1´rcn{N

3

ď
5ˆ 2Nn

N !
` 2e1´pcn{N

3

with pc B c^ rc.
Taking n “ N lnpNq{pc, we conclude (20).
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A Recovering classical results on π through the Markov
approach
Working in the same spirit as in Section 4, it is possible to recover the exact formula for the number
of fixed points πpxq (see (4)) from the reversibility of the Markov chain P (see (5)) with respect to
π, leading to an alternative proof for Montmort’s formula (3) (the traditional argument goes through
the inclusion-exclusion principle, see e.g. [25] or Chapter 1 of Arratia, Barbour and Tavaré [1]).

We will use the birth and death chain pP defined in (10) above and it’s stationary distribution pπ
defined in (11). Using that notation, the reversibility says

@ i P J0, N ´ 1K, pπpiq pP pi, i` 1q “ pπpi` 1q pP pi` 1, iq

or

@ i P J0, N ´ 1K, πpziqP pzi, zi`1q “ πpzi`1qP pzi`1, ziq

namely

πp0qP p0, 1q “ πp1qP p1, 0q and @ x P V ztNu, πpxqP px, x` 2q “ πpx` 2qP px` 2, xq (28)

i.e.

πp0qpN ´ 2pp0qq “ πp1qpN ´ 1q and @ x P V ztNu, 2πpxqppxq “ πpx` 2qpx` 2qpx` 1q

The last condition implies that

@ x P V ztNu, ppxq “
πpx` 2q

2πpxq
px` 2qpx` 1q

This formula also holds for x “ N , since both terms vanish, thus we have shown:

Lemma 14 We have

@ x P V, ppxq “
πpx` 2q

2πpxq
px` 2qpx` 1q

Replacing this expression in the definition of the first associated birth and death kernel rP (defined
in (9)), we will deduce the following expression for the reversible probability π:

Proposition 15 We have

@ x P V, πpxq “
1

x!

N´x
ÿ

k“0

p´1qk

k!

Proof
From Lemma 14, we get for any x ‰ y P V ,

rP px, yq “
1

NpN ´ 1q

$

’

’

’

’

’

&

’

’

’

’

’

%

xpN ´ xq , if x ‰ N and y “ x´ 1

N ´ x´ πpx`2q
πpxq px` 2qpx` 1q , if x ‰ N ´ 2 and y “ x` 1

2 , if x “ N ´ 2 and y “ N
NpN ´ 1q , if x “ N and y “ N ´ 2
0 , otherwise
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Thus for x P J0, N ´ 3K, the relation πpxq rP px, x` 1q “ πpx` 1q rP px` 1, xq becomes

πpxqpN ´ xq ´ πpx` 2qpx` 2qpx` 1q “ πpx` 1qpx` 1qpN ´ x´ 1q (29)

For x “ N ´ 2, the relation πpN ´ 2q rP pN ´ 2, Nq “ πpNq rP pN,N ´ 2q becomes

πpN ´ 2q2 “ πpNqNpN ´ 1q (30)

These relations lead us to introduce the function f on V defined by

@ x P J0, NK, fpxq B
πpxq

Ppxq

where P is the Poisson distribution of parameter 1 (with the convention fpN ´ 1q “ 0 “ πpN ´ 1q).
Indeed, (29) and (30) reduce to

@ x P J0, N ´ 3K, fpxqpN ´ xq ´ fpx` 2q “ fpx` 1qpN ´ x´ 1q

2fpN ´ 2q “ fpNq

namely

@ x P J0, N ´ 2K, pfpxq ´ fpx` 1qqpN ´ xq “ fpx` 2q ´ fpx` 1q

This relation leads to the introduction of the function g on V defined by

@ x P J0, N ´ 1K, gpxq B fpx` 1q ´ fpxq

since we get

@ x P J0, N ´ 2K, gpxq “ ´
gpx` 1q

N ´ x

“
gpx` 2q

pN ´ xqpN ´ x´ 1q

“ p´1qN´x
gpN ´ 1q

pN ´ xq!

“ p´1qN´x
fpNq

pN ´ xq!

Taking into account that gpN ´ 2q “ fpN ´ 1q “ 0, we deduce that

@ x P J0, N ´ 2K, fpxq “ ´gpxq ´ gpx` 1q ´ ¨ ¨ ¨ ´ gpN ´ 2q

“ fpNq
N´x
ÿ

k“0

p´1qk

k!

a formula also valid for x “ N , so finally

@ x P V, πpxq “
1

ANx!

N´x
ÿ

k“0

p´1qk

k!
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where AN “ e{fpNq. This quantity is also the normalization factor, since π is a probability, so we
compute

AN “
ÿ

xPV

1

x!

N´x
ÿ

k“0

p´1qk

k!

“

N´2
ÿ

x“0

1

x!

N´x
ÿ

k“0

p´1qk

k!
`

1

N !

“

N
ÿ

x“0

1

x!

N´x
ÿ

k“0

p´1qk

k!
´

1

pN ´ 1q!

1
ÿ

k“0

p´1qk

k!
´

1

N !

0
ÿ

k“0

p´1qk

k!
`

1

N !

“

N
ÿ

x“0

1

x!

N´x
ÿ

l“0

p´1qN´x´l

pN ´ x´ lq!
´

1

pN ´ 1q!
p1´ 1q ´

1

N !
`

1

N !

“

N
ÿ

l“0

N´l
ÿ

x“0

p´1qN´x´l

x!pN ´ x´ lq!

“

N
ÿ

l“0

1

pN ´ lq!
p1´ 1qN´l

“ 1

�

From this formula, we recover an upper bound on the total variation distance between π and P
almost as good as that of (1), but which is not going through a coupling. Indeed, we compute:

}π ´ P} “
ÿ

nPZ`

pπpnq ´ Ppnqq`

“
ÿ

nPJ0,NK

ˆ

DN´n

pN ´ nq!
´ e´1

˙

`

1

n!

“
ÿ

nPJ0,NK

ˆ

Dn

n!
´ e´1

˙

`

1

pN ´ nq!

“
ÿ

nPJ0,NK

˜

n
ÿ

k“0

p´1qk

k!
´ e´1

¸

`

1

pN ´ nq!

“
ÿ

nPJ0,NK

˜

ÿ

kěn`1

p´1qk

k!

¸

`

1

pN ´ nq!

ď
ÿ

nPJ0,NK, n odd

1

pn` 1q!

1

pN ´ nq!

(where we used the alternance of the terms of the series
ř

kě0
p´1qk

k! ).
The last term is also equal to

ÿ

nPJ0,NK, n even

1

n!

1

pN ` 1´ nq!
ď

ÿ

nPJ0,NK

1

n!

1

pN ` 1´ nq!

“
1

pN ` 1q!

ÿ

nPJ0,NK

ˆ

N ` 1

n

˙

“
2N`1

pN ` 1q!
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For completeness, let us also recall a simple proof of the well-known formula (2):

Lemma 16 For any x P V , we have

πpxq “
DN´x

pN ´ xq!

1

x!

Proof
Fix x P V and denote Ix the set of subsets of JNK whose cardinal is x. By symmetry we have, denoting
by σ a generic permutation,

πrη1 “ xs “
ÿ

IPIx

πr@ i P I, σpiq “ i, @ j P JNKzI, σpjq ‰ js

“

ˆ

N

x

˙

πr@ j P JN ´ xK, σpjq ‰ j, @ i P JN ´ x` 1, NK, σpiq “ is

“

ˆ

N

x

˙

DN´x

N !

“
DN´x

pN ´ xq!

1

x!

�

Montmort’s formula (3) is now a consequence of the above lemma and of Proposition 15:

Corollary 17 We have for any n P N,

Dn “ n!
n
ÿ

k“0

p´1qk

k!

Remark 18
a) It seems from (28) that we have an extra relation for pp0q: πp0qpN ´ 2pp0qq “ πp1qpN ´ 1q,

which amounts to

pp0q “
N

2

ˆ

1´
DN´1

DN
pN ´ 1q

˙

Comparing with (31), which gives for x “ 0,

pp0q “
1

2

DN´2

pN ´ 2q!

N !

DN

we deduce

DN “ pN ´ 1qpDN´1 `DN´2q

This is the well-known iteration formula for the derangement numbers, see e.g. [25].
b) Note that π is not close to P is the separation discrepancy

spπ,Pq “ sup

"

1´
πpxq

Ppxq
: x P Z`

*

since the r.h.s. is trivially 1. But with the notations of Section 5, we even have

lim inf
NÑ8

spπ̌, ζq ě lim inf
NÑ8

1´
π̌pN ´ 4q

ζpN ´ 4q

“ lim
NÑ8

1´
πpN ´ 4q

PpN ´ 4q

“ 1´ e
D4

4!
ą 0
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This fact a priori excludes a proof via strong stationary times (see Diaconis and Fill [7]) in Section 5.
˝

B Complements on the conditional expectation p

Some observations about p are gathered here.

Note that Lemma 16 also leads to an expression of the quantities ppxq in terms of the number of
derangements, from Lemma 14:

@ x P V, ppxq “
1

2

DN´x´2

pN ´ x´ 2q!

pN ´ xq!

DN´x
(31)

“
1

2

řN´x´2
k“0

p´1qk

k!
řN´x
l“0

p´1ql

l!

This formula leads to an estimate of our quantities of interest, the |2ppxq ´ 1|, for x P J0, N ´ 2K,
of the same order as that of Proposition 6:

Lemma 19 We have

@ x P J0, N ´ 2K, |2ppxq ´ 1| ď 3
N ´ x´ 1

pN ´ xq!

ď
3

pN ´ x´ 1q!

and in particular we get, for N ě 4,

@ x P J0, N ´ 4K,
1

4
ď ppxq ď

3

4

Proof
From (31) we deduce:

@ x P V, 2ppxq “

řN´x´2
k“0

p´1qk

k!
řN´x
l“0

p´1ql

l!

“ 1´

řN´x
N´x´1

p´1qk

k!
řN´x
l“0

p´1ql

l!

implying

@ x P V, |2ppxq ´ 1| “

ˇ

ˇ

ˇ

1
pN´x´1q! ´

1
pN´xq!

ˇ

ˇ

ˇ

řN´x
l“0

p´1ql

l!

“
1

pN ´ x´ 1q!

1´ 1
N´x

řN´x
l“0

p´1ql

l!

“
N ´ x´ 1

pN ´ xq!

1
řN´x
l“0

p´1ql

l!

Note that the series
řn
l“0

p´1ql

l! provide alternating approximations of e´1, it follows that

@ x P J0, N ´ 2K,
3
ÿ

l“0

p´1ql

l!
ď

N´x
ÿ

l“0

p´1ql

l!
ď

2
ÿ

l“0

p´1ql

l!
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namely

@ x P J0, N ´ 2K,
1

2!
´

1

3!
ď

N´x
ÿ

l“0

p´1ql

l!
ď

1

2!

i.e.

@ x P J0, N ´ 2K,
1

3
ď

N´x
ÿ

l“0

p´1ql

l!
ď

1

2

whose lower bound leads to the first desired estimate.
For the second estimate, note that

@ x P J0, N ´ 4K,
3

pN ´ x´ 1q!
ď

3

pN ´ pN ´ 4q ´ 1q!

ď
3

3!
“

1

2

�

Lemma 19 can be used similarly to Proposition 6 in Section 5, leading to the same conclusion.

Coming back to the formulation (6) of p as a conditional expectation of η2, it is natural to wonder
if it could not be deduced from symmetry arguments. Remark it is true for the whole expectation:
Eνrη2s “ 1{2 (see the proof of Lemma 22 below with k “ 0), in the same way one immediately gets
Eνrη1s “ 1. So to finish this appendix, let us show that symmetry arguments lead to a natural linear
equation satisfied by p, even if we did not find how to use it to deduce the a priori bounds similar to
those of Proposition 6 or Lemma 19.

For k P J0, NK, denote

Ak “ tpi1, i2, ..., ikq P JNKk : m ‰ n P JkK ñ im ‰ inu

In particular, we have

|Ak| “ NpN ´ 1q ¨ ¨ ¨ pN ´ k ` 1q (32)

(by convention, A0 “ tHu and |A0| “ 1).
For k P J0, NK, we define the mapping Fk on the symmetric group SN via

@ σ P SN , Fkpσq B
ÿ

pi1,...,ikqPAk

ź

jPJkK

1tσpijq“iju

Let us check these mappings are functions of η1 (the number of fixed points):

Lemma 20 For any k P J0, NK, we have

Fk “ η1pη1 ´ 1q ¨ ¨ ¨ pη1 ´ k ` 1q (33)

Proof
Indeed, for any given σ P SN , denote Fpσq the set of fixed points of σ. We have

Fkpσq “ |Ak X Fpσqk|
“ η1pσqpη1pσq ´ 1q ¨ ¨ ¨ pη1pσq ´ k ` 1q

�
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Remark 21 Since Fk is a polynomial of order k in η1, any function of η1 can be expressed as a linear
combination of the Fk for k P J0, NK, and even only for k P J0, N ´ 1K or alternatively k P V , since η1
is taking N values, those of V B J0, NKztN ´ 1u. ˝

It follows that if we want to prove that

Eνrη2|η1s “ fpη1q

for a given function f : V Ñ R`, it is sufficient to check that

@ k P J0, NK, Eνrη2Fks “ Eνrfpη1qFks

We are thus led to compute the l.h.s.

Lemma 22 For any k P J0, NK, we have

Eνrη2Fks “

#

1{2 , if k P J0, N ´ 2K

0 , if k P tN ´ 1, Nu

Proof
Note that

@ σ P SN , η2pσq “
1

2

ÿ

mPJNK

1tσpmq‰m,σ2pmq“mu

“
1

2

ÿ

m‰nPJNK

1tσpmq“n, σpnq“mu

so that

2Eνrη2Fks “
ÿ

m‰nPJNK

ÿ

pi1,...,ikqPAk

Eν

»

–1tσpmq“n, σpnq“mu

ź

jPJkK

1tσpijq“iju

fi

fl

Note that the above expectation vanishes if m P ti1, ..., iku or n P ti1, ..., iku, so writing ik`1 “ m
and ik`2 “ n, we end up with

2Eνrη2Fks “
ÿ

pi1,...,ik,ik`1,ik`2qPAk`2

Eν

»

–1tσpik`1q“ik`2, σpik`2q“ik`1u

ź

jPJkK

1tσpijq“iju

fi

fl

“
ÿ

pi1,...,ik,ik`1,ik`2qPAk`2

πrσpi1q “ i1, σpi2q “ i2, ..., σpikq “ ik, σpik`1q “ ik`2, σpik`2q “ ik`1s

For any pi1, ..., ik, ik`1, ik`2q P Ak`2, the above probability can be computed by first choosing
σpi1q “ i1, whose probability is 1{N , next choosing σpi2q “ i2, whose subsequent probability is
1{pN ´ 1q, etc, up to choosing σpik`2q “ ik`1, whose probability is 1{pN ´ k ´ 1q. We deduce

πrσpi1q “ i1, σpi2q “ i2, ..., σpikq “ ik, σpik`1q “ ik`2, σpik`2q “ ik`1s “
1

NpN ´ 1q ¨ ¨ ¨ pN ´ k ´ 1q

and by consequence

2Eνrη2Fks “
|Ak`2|

NpN ´ 1q ¨ ¨ ¨ pN ´ k ´ 1q

“ 1

due to (32), at least when k ` 2 ď N . Obviously, when k P J0, N ´ 1K satisfies k ` 2 ą N , namely
when k P tN ´ 1, Nu, we end up with 2Eνrη2Fks “ 0.

�
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Lemma 23 For any k P J0, NK, we have

EνrFks “ 1

Proof
Indeed, as in the above proof,

EνrFks “
ÿ

pi1,...,ikqPAk

πrσpi1q “ i1, σpi2q “ i2, ..., σpikq “ iks

“
ÿ

pi1,...,ikqPAk

1

NpN ´ 1q ¨ ¨ ¨ pN ´ k ` 1q

“
|Ak|

NpN ´ 1q ¨ ¨ ¨ pN ´ k ` 1q

“ 1

�

It follows that if f : V Ñ R is a function satisfying

@ k P V, Eνrfpη1qFks “ 1 (34)

then we can conclude that f “ 1, the function only taking the value 1.
Consider : V Ñ R given by the conditional expectation

fpη1q “ Er2η2|η1s

According to Lemma 22, f almost satisfies (34), the only discrepancy being the case k “ N .
Of course it can not satisfy (34), otherwise we would get from Section 5 that the law of η1 is the
conditioning of the Poisson distribution of parameter 1 to V and this is not true (e.g. due to (4)).

Nevertheless, Lemma 22 leads to a linear equation for f . Denote a B pakqkPV the vector of the
coefficients in the writing

fpη1q C
ÿ

kPV

akFk

we have

Ga “

¨

˚

˚

˚

˚

˚

˝

1
1
...
1
0

˛

‹

‹

‹

‹

‹

‚

i.e.

a “ G´1

¨

˚

˚

˚

˚

˚

˝

1
1
...
1
0

˛

‹

‹

‹

‹

‹

‚

where G B pGk,lqk,lPV is the Gram matrix given by

@ k, l P V, Gk,l B EνrFkFls (35)
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In accordance with Remark 21, the family pFkqkPV is linearly independent in L2pπ1q, due to the
fact that π1pxq ą 0 for all x P V , which implies that dimpL2pπ1qq “ N . As a consequence, G is
invertible.

As seen in Section 5, more interesting for us is the function g B f ´1 defined on V . Since Lemma
23 shows that

1 “
ÿ

kPV

bkFk

with
¨

˚

˚

˚

˚

˚

˝

b0
b1
...

bN´2
bN´1

˛

‹

‹

‹

‹

‹

‚

“ G´1

¨

˚

˚

˚

˚

˚

˝

1
1
...
1
1

˛

‹

‹

‹

‹

‹

‚

we deduce that gpη1q “
ř

kPV ckFk, with
¨

˚

˚

˚

˚

˚

˝

c0
c1
...

cN´2
cN´1

˛

‹

‹

‹

‹

‹

‚

“ G´1

¨

˚

˚

˚

˚

˚

˝

0
0
...
0
1

˛

‹

‹

‹

‹

‹

‚

More precisely, the computations of Section 5 show the only a priori informations we need to control
our coupling constructions are estimates on expressions such as

ÿ

xPJ0,N´2K

|gpxq|
1

ex!
(36)

Below we compute the entries of G directly via symmetry arguments, without a priori knowledge
of the law π of η1, nevertheless, it does not seem very helpful to estimate expressions such as (36).

Proposition 24 The matrix G is symmetric and extending Definition (35) to any k, l P J0, NK, we
have

@ k ď l P J0, NK, Gk,l “ k!

k^pN´lq
ÿ

r“0

1

r!

ˆ

l

k ´ r

˙

Proof
For any i “ pi1, ..., ikq P Ak, denote tiu the set ti1, ..., iku Ă JNK, as well as

rAk B ttiu : i P Aku

“ tS Ă JNK : |S| “ ku

We compute, for any k ď l P JNK,

EνrFkFls “ k!l!
ÿ

SP rAk, TP rAl

Pr@ s P S, σpsq “ s, @ t P T, σptq “ ts

“ k!l!
ÿ

SP rAk, TP rAl

1

NpN ´ 1q ¨ ¨ ¨ pN ´ |S Y T | ` 1q

“ k!l!
ÿ

uPJl,pl`kq^NK

Ak,lpuq
pN ´ uq!

N !
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where

@ u P Jl, pl ` kq ^NK, Ak,lpuq B |tpS, T q P rAk ˆ rAl : |S Y T | “ uu|

Note that for any fixed T P rAl and r P J0, k ^ pN ´ lqK, we have

|tS P rAk : |SzT | “ ru| “

ˆ

N ´ l

r

˙ˆ

l

k ´ r

˙

the r.h.s. corresponding to the number of choices of r elements in JNKzT and k ´ r elements in T .
It follows that, with the change of variable u “ l ` r,

Ak,lpl ` rq “

ˆ

N

l

˙ˆ

N ´ l

r

˙ˆ

l

k ´ r

˙

and by consequence

Gk,l “ k!l!
ÿ

rPJ0,k^pN´lqK

ˆ

N

l

˙ˆ

N ´ l

r

˙ˆ

l

k ´ r

˙

pN ´ l ´ rq!

N !

“
k!l!

N !

ˆ

N

l

˙

ÿ

rPJ0,k^pN´lqK

ˆ

N ´ l

r

˙ˆ

l

k ´ r

˙

pN ´ l ´ rq!

“
k!l!

pN ´ lq!

ÿ

rPJ0,k^pN´lqK

pN ´ lq!

r!pN ´ l ´ rq!

l!

pl ´ k ` rq!pk ´ rq!
pN ´ l ´ rq!

“ k!
ÿ

rPJ0,k^pN´lqK

1

r!

l!

pl ´ k ` rq!pk ´ rq!

“ k!

k^pN´lq
ÿ

r“0

1

r!

ˆ

l

k ´ r

˙

�
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