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@ Wave equations on graphs



Wave equations

The classical wave equation on RY writes
. 1

u = —Au
4d

or equivalently,

1
] = ;= —A 1
u v, v 2g 2 (1)
According to a blog of Tao mentioning Peres, the discrete analog

for a Markov transition kernel P on a graph (V, E) is:

u(t+1) = Pu(t)+ v(t)
viez, { Wt+1) = Pu(t)— (I —

where u(t) and v(t) are functions defined on V and [ is the
identity operator.

P?)u(t)



Link between continuous and discrete settings

Consider the following scaling, with small € > 0: on the graph on
¢Z9 endowed with its usual random walk transition kernel P,

u(t+e) = Peue(t) + eve(t)

Vte EZ, { Ve(t + E) — Peve(t) — %(/ — PZ)Ue(t)

Consider a solution (u, v) to the continuous equation (1) starting
from a continuous and compactly supported initial condition
(u(0),v(0)). Take for (ue(0), ve(0)) the restriction of (u(0), v(0))
to €Z9. Then for any given (t,x) € Ry x RY, we have

lim wue(te,x.) = u(t,x), lim ve(te, xe) = v(t, x)
€—>0+ E—>0+

where for any € > 0, t. € €Z, and x. € €Z9 are such that
lime_o, te = t and lim._o, xc = x.



“Diffusions” on graphs

Consider the Markov semi-group dynamics on (V, E, P):
VtelZy, u(t+1) = Pu(t)
Renormalise it on /¢Z9 through
Vteely, u(t+e) = P glu(t)]
then we get the analog of the previous convergence

lim ue(te,x.) = u(t,x)
E—>0+

where u is the solution to the heat equation

1
= —A 2
y Al (2)



Unitary dynamics
In the discrete wave framework, define
VtelZ,, w(t) = /I — P2u(t)
then the wave equation writes as
w(t+1) B w(t)
ceen (W) = (v

with the unitary propagator

v (e )

In particular, the following “energy” quantity

IVI=P2u@)? +v()]* = [w()]*+|v(t)?

is conserved through the evolution.



Chebyshev polynomials

For any t € Z,, the t-step propagator U* writes as

Ut T.(P) VI=PZU,_1(P)
- < —VT=P2U,_1(P) T.(P) >

where (T;)tez, and (Ut)tez, are respectively the families of
Chebyshev polynomials of the first and second kind: for any t € Z
and 0 € R/(27Z),

Ti(cos()) = cos(th)

Ui(cos(0)) = sin(0)

The fact that for any t € Z,, U" is a unitary extension of T;(P),
also known as “block encoding”, is important in the quantum
computing literature, starting with the seminal work of Szegedy,
who constructed a different unitary extension of a Markov
transition kernel.



e Quantum walks on Z



Quantum dynamics

The preceding considerations suggest to define a quantum
dynamics via

VneZy, en = U"[po]

where (g is a given element of L.2(V) @ L2(V). More precisely, we
. . e .

are interested in the case where ¢q = 80 where e, is the

indicator function of an initial vertex xg from V. Then we have

Un eXo — TH(P) eXo
0 —/ 1 — P2U,,,1(P) €xo
We focus our attention on the evolution of u-coordinate, i.e.

(Th(P) €x)nez.. . and more particularly on the associated measures
(Vn)nez, on V given by

VneZo, VxeV, wvpx) = (Ta(P)(x0,x))>2



On Z (1)

Take for P the usual random walk transition kernel on Z.
Consider @ the shift operator on Z: we have

YV x € Z, Qilex] = ext1
where e, is the indicator function of x. We have

QI+Q1_1
2

P —

and for any ne€ Z., P" corresponds to the (shifted and scaled)
binomial distribution centred at 0 of variance n.



WAV

Taking into account the formula

-1 n —n
v 2 C\{0}, Tn<z+z ) _ "4z
2 2
we get
-1 n —n
Tn(P) _ T,-, Q1+Q1 _ Q1+Ql
2 2
namely

showing that

1
Vp = 1(5,,—1-(5_,,)



Lazy on Z (1)

Rather consider the lazy transition kernel P = (I + P)/2 on Z, the
expansion of T,(P.) is no longer so simple. Instead, we retrieve the
fickle (but still ballistic) behaviour usually associated to the
quantum walk on the line. Here is picture for vgq:
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Lazy on Z (2)

To be compared with the picture for P30(0, ) illustrating the
diffusive behaviour of the usual random walk:
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© Quantum walks on lattices



On 72 (1)

On the 2-dimensional lattice consider the commuting operators @
and Q2 described by Qle(m,) = 6(X+17y) and Qge(x’y) = e(xnyrl) for
any (x,y) € Z2 Set Py = (Qu+ Q%)/2and P, = (@ + @, 1)/2,
we are interested in the usual random walk transition kernel
P11+ P>

2

P =

Introduce the expansion in two commuting variables X, Y

X+Y
Tn( 5 > = Z anp,q Tp(X) T(Y)
(p,9)e[0,n]

for a set of real coefficients (anp.q)p qefo,n]-



On Z2 (2)

Since P; and P, are commuting, we deduce:

P1 + P>
Th ( ) ) = Z anp,q Tp(P1) Tq(P2)
(p,9)€[0,n]
QT +QP\ [Q)+Q,1
= 2 anpg 2 2
(p,q)€[0,n]
and we get:

V(pa)eZh  (ToPNO.0).(p.a)) = &y /22407

where k(|p|, |q|) € {0, 1,2} denotes the number of nonzero entries
among |pl,|g|. We will see that the points of the form (0, g) and
(p, q) do not play an important role.



Weak convergence

Introduce the probability measure yi, on [—1,1]? given by

Zp,q ai,lplalqlé("/”’q/")

2
a
2p.q nlpl

Bn =

where 0,/ q/n) is the Dirac mass at (p/n, q/n) € [0,1]%.
Our main result is:

There exists a continuous probability measure yi on [—1,1]? such
that jin —n_o M-

The measure p will be described through its moments.



Ballistic picture

The ballistic feature of the above theorem is illustrated by the
following picture of vsq:
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Diffusive picture

To be compared with the picture for P59(0, -) illustrating the
diffusive behaviour of the usual random walk:
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@ Elements of proof



Remove the normalisation and consider

— 2
Tno = Z 31,0,9(p/n,a/n)
p,qe[0,n]
Yn
7 (01
We will find a continuous probability measure v on [0, 1]? such that

so that u, =

VK. LeZy,  lim yoloki] = vlekd]

where

ek : (0,123 (x,y) — xRt

The Stone-Weierstrass theorem implies the weak convergence of v,
toward v and by consequence Theorem 1 with = ~.



Moments as an integral

Introduce the function h given for any x, y € [0, 27] by

cos(x) + cos(y))

h(x,y) =T, ( 5 = Z an,p,q cOs(px) cos(qy)

p,qe[0,n]

We have the following approximation

Proposition 1

= 0

lim
n—o0

. (550}l;h(x, y))2 dxdy

1
Vnlew,L] — w2 KD ),




Arguments for Proposition 1 (1)

In one hand, compute the partial derivative in the integral:

Hoth(x,y) = Y anpapa-ex(px)Elay)
p;qe[0,n]

where &,(z) denotes the r-th derivative cos(")(z), and on the other
hand, use the orthogonality relations: for any p,p’ € Z,

1 (2r 1 ,if p=p' =0and r=0[2]
b E(p)E(p'x)dx = 172 Jifp=p' =1
0 0 , otherwise

We get the equality

1 K AL 2
Wf(é@h(x,y)) dxdy = nlpk.ow(n) @ wi(n-)]



Arguments for Proposition 1 (2)

where

2 ,ifkisevenand r =0
VkeZi,Vrels, wi(r) = 0 ,ifkisoddand r=0
1 , otherwise

So to prove Proposition 1 it is sufficient to show that

. 2 .
nll_r)noo Z ahpo = 0
PEZ

This convergence also shows that the behaviours of u, and v, are
the same for large n.



Arguments for Proposition 1 (3)

The access to the previous quantity is provided by expansion of

SR (5 ) ) o

2 2
an,O,O + Z an,p,O
pe[0,n]

The integral inside the square for fixed x can be transformed by the
change of variable cos(z) = (cos(x) + cos(y))/2. Next an
application of the Riemann-Lebesgue theorem implies that this
integral converges to zero for large n. The desired result follows by
dominated convergence theorem.



Removing the boundary region

For e € (0,1), consider

A€ = {(ij) e [07277]2 : W‘ g 1 — 6}
B. = [0,27]%\A
We have

lim lim
e—04 n—0

1 K AL 2 _
’7n[(10K,L] - m jAe (0X ayh(x,y)> dXdy‘ = 0

It amounts to show that

2
_ 1
lim sup ety | ( > an,p,quqLéx(pX)SL(qy)) dxdy = 0

e—0 n
=l p,qe[0,n]



Arguments for Lemma 2

The proof is based on an approximative orthogonality relations:

K / _ sin((p+p)n)  sin((p—p')n)
fn Sclpticlpx)ax = p+p p—p

where 1 € (0, 7) corresponds to the boundary of B, and is given by
cos(n) = 1 — 2¢. Cauchy-Schwartz inequality implies that the
integral at the end of the previous slide is bounded above by

. 2\ 2

sin(rn)
Zag,p,q (772+2Z ( P ) )
p,q reN

The desired convergence is a consequence of 3} - a2 pqg <4

(consequence of Proposition 1 with K = L = 0) and

I () -

reN



Simplifying the integral (1)

Applying twice Fa di Bruno's formula we can rewrite 658§h(x,y) as

2 i -
milmol---my! nylnyl - ng!
my+2my+--+Kmy =K
ny+2np+--+Lnp =L

s (222 11 (49)° [ (%)

ke[K] le[L]

For (x,y) € Ac with fixed € € (0, 1), it appears the dominant term in
the above sum corresponds to m; = K and n; = L. So introducing

_ 1 (K+L) { cos(x) + cos(y)
/K7L(€, n) -— 71—2,72(’(4-L)JA (Tn <2

(—si;(x))K (—si;(Y)>L>2dxdy




Simplifying the integral (2)

we get

. 1 2
nleoo . 2KiD) L (858)€h(x,y)> dxdy — Ix,1(e,n) = 0

Introduce 0(x, y) the unique solution in [0, 7] of

cos(x) + cos(y)

cos(f(x,y)) = 5

and define
. 1 sin(x) 2K
JK,L(€7 n) = WJAG £2K+L(n9(xay)) (WW)



Simplifying the integral (3)

Applying Fa di Bruno's formula to the derivative 65<+LT,,(cos(9))
and keeping the dominant term, we get

lim limsup|lx ((e,n) — Ik 1(e,n)] = 0
e—04+ poowo

so that
lim lim |ya[ek.i] = k(e n)] = 0
€—>0+

Finally using symmetry, the change of variables

[0,7]% 2 (x,y) = (x,0(x,y)) and the Riemann-Lebesgue theorem
give us:

lim limsup Jk (€, n)
=0+ nooo ’



The limiting probability measure

From the last limit, we deduce the weak convergence for large n of
the v, toward the probability measure v which is the image of the
measure %dxdy on [0,7]2 by the mapping

sin(x) sin(y)
sttty o) ©

In particular it appears that ~y is a probability measure, so that
i =, as announced previously.

Vo [0,7]23 (x,y) — <
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