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Abstract

Dmitriev and Dynkin characterized the set of possible eigenvalues of Markov generators on a set
of N points. We recover this result via decompositions in cycles. This probabilistic approach enables
us to get more specific informations about the possible eigenvalues when assumptions are made on the
lengths of the cycles entering in the decomposition.
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1 Introduction: Dmitriev and Dynkin’s result

Kolmogorov asked in 1938 for a characterisation of the set Uy of complex numbers which are eigenval-
ues of Markov transition kernels on a finite space of cardinal N € N. The survey talk of Besenyei [1]
provides a nice account of the main steps involved in its resolution. The paper of Dmitriev and Dynkin
[2] solves this question for N < 5 and contains important ideas for the general case. In particular they
introduce a geometrical reformulation of the eigenvalues of finite Markov transition kernels, as well
as a minimal angle property. The complete solution was finally given by Karpelevich [4]. The char-
acterisation of the set T of complex numbers which are the opposite of eigenvalues of finite Markov
generators on a finite space of cardinal N € N is simpler and is already contained in Dmitriev and
Dynkin [2]. Indeed, it is a consequence of the localisation of Uy around the eigenvalue 1, due to the
conical structure of T.

Our purpose here is to present another approach to deduce T, more direct and more probabilistic
in spirit. Furthermore, for any A € Ty, we provide a simple Markov generator admitting —\ for
eigenvalue (see the end of the proof of Theorem 1 below). This was the initial motivation for this
investigation, stemming from the search of simple models for the classification of Markov generators
via interweaving relations, see [7|. Our proof is based on the decompositions into cycles of finite
Markov generators. It has the advantage to provide more specific informations about the localisation
of the eigenvalues when some restrictions are put on such decompositions.

Let us be more precise. Consider V a finite set containing N points, N € N. Recall that a Markov
generator on V' is a matrix L = (L(z,y)), yev whose off-diagonal entries are non-negative and whose
row sums vanish. Denote £(V') the set of all such matrices, so that T is the set of all the opposites
of eigenvalues of matrices from L£(V).

Our first task here will be to recover the following result:

Theorem 1 (Dmitriev and Dynkin [2]) The set T is the set Sy of complex numbers whose angle
with the positive real awis is smaller (in absolute value) or equal than 5 — %, with the convention

S1 = {0}.

Recall that a Markov kernel on V' is a matrix K = (K (x,y))s ey Whose entries are non-negative
and whose row sums are equal to 1. Denote KC(V') the set of all such matrices, as well as Uy the set
of all eigenvalues of all matrices from (V). Let Ay be the acute angular sector delimited by the two
half-lines starting from 1 and respectively going through exp (QW”) and exp (7}\2]”). The following result
is contained in Dmitriev and Dynkin [2] and was the main ingredient in their proof of Theorem 1. We

go the reverse way and deduce it from Theorem 1.

Proposition 2 (Dmitriev and Dynkin [2]) We have
UN c AN

For the full description of Uy, see Karpelevich [4] (or Dmitriev and Dynkin [2] for N < 5), or the
survey of Besenyei [1].

The decompositions in cycles of finite irreducible Markov generators are recalled in the next section,
where the alternative proofs of Theorem 1 and Proposition 2 are presented. This approach enables us
to show in the last section that if a Markov generator L can be approximated by irreducible Markov
generators with decompositions in cycles of orders bounded by n € [2, N], then its eigenvalues belong
to T,,, independently from N. When L is non-transient, the existence of such approximations can be
characterized directly on the irreducible classes of L. In the general case, one has to be more careful,
as it will be illustrated on an example.



2 A proof by decompositions in cycles

Here we recover the results by Dmitriev and Dynkin [2] recalled in the introduction, via decompositions
in cycles.

A Markov generator L € L(V) is said to be irreducible when exp(L) has only positive entries. De-
note Z(V) the set of irreducible Markov generators on V and Ry the set of all opposites of eigenvalues
of matrices from Z(V'). A first observation is:

Lemma 3 We have Ry < Ty < cl(Ry), the closure of Ry .

We will check in the proof of Theorem 1 that Ty = Ry.

Proof
The first inclusion is obvious, since Z(V') < L(V).

For the second inclusion, let us recall the following result.
Let A and B be two V x V-matrices with complex entries and for any z € C, consider the matrix
A(z) given by

A(z) = A+:zB

For z € C, denote o(z) < C the set of eigenvalues of A(z). Let & be the set of non-empty compact
subsets of C, endowed with the Hausdorff distance. From Section 1 of Chapter 2 of Kato [5], the
mapping o : C — K is continuous.

Consider A\ € Ty, as well as L € L(V) such that —\ is an eigenvalue of L. Define the following
Markov generators

Ve=0, L. = L+el (1)

where J is the V' x V-matrix whose off-diagonal entries are equal to 1/N and whose diagonal entries
are equal to —(1 — 1/N). For ¢ > 0, we have L, € Z(V). From the above continuity result, \ is
approached by eigenvalues of L, for small € > 0, so that A € cl(Ry) as wanted. |

Let us recall the decompositions of elements from Z(V') into cycles. We need some notations. A
cycle C of V is an injective mapping from Z,, = Z/(nZ) to V, where n € [N] is called the order of
C. Two cycles C and C’ are said to be equivalent if they coincide up to a translation, i.e., if have the
same order n € [N] and if there exists m € Z,, such that

VieZ, C'() = Cl+m)

The set of the corresponding equivalent classes is denoted C(V'). To simplify the notations, such
equivalent classes will be identified with representative cycles.

Fix a Markov generator L € L(V'). By irreducibility, it admits a unique invariant measure 7, which
furthermore give a positive weight to all points of V. Given C € C(V) of order n € [2, N], we introduce
the Markov generator A; ¢ via

1
—— ,ifdmeZ, such that z = C(m) and y = C(m + 1
YV x # Yy E VY, Amc(ﬂ?,y) = W(l’) " ( ) Y ( )
0 , otherwise
(the diagonal entries are such that the row sums vanishes: for any z € V, L(z,x) = —1/m(x)). Note

that A, ¢ does not depend on the representative cycle C' of the equivalence class from C(V'). When C
is of order 1, by convention we take Arc = 0.
A decomposition of L into cycles is the writing

L = > alCArc (2)
cec(V)



where (a(C))cec(v) is a family of non-negative numbers. The existence of such a decomposition can
be found in [6], see also the book of Kalpazidou [3] for an extensive discussion. In general such a
decomposition is not unique.

When looking for a decomposition in cycles, it seems we first need to know the invariant measure
m. On the contrary, it provides a way to find this invariant probability:

Lemma 4 Assume that a decomposition such as (2) holds for some L € L(V') and some probability =
(giving a positive weight to the images of all cycles C with a(C) > 0). Then 7 is invariant for L.

Proof
Indeed, note that 7 is invariant for any Markov generator of the form A, ¢ with C e C(V). [
Illustrations of this result will be provided by Examples 7 and 77 in the sequel.

The main ingredient of the proof of Theorem 1 is the following result.

Lemma 5 For any C € C(V) and ¢ € CV, we have

m[pArclell € Sy

where @ is the function from CV taking the conjugate values of .

Proof

For any ¢ € CV, we compute

mlpArclell = D) m(@)Arc(@ v)e(@)(e(y) — ()

z,yeV

= D, m(@)Are(@, C(CTH @) + 1))p(a)((C(C7 @) + 1) — p(x))
2€C(Zn)

= > g@)(e(C(CTH @)+ 1) — ()

2€C(Zn)

= D d(2)(p(z +1) — ¢(2))

2€0m

where n is the order of C and ¢ == p o C.
For any function ¢ : Z, — C, there exists a family of complex coefficients (b(k))kez, such that

V z€Znp, o(z) = Z b(k) exp <27Tikz>
keZn N

It follows that

Yooz +1) - 6(x) = >, Y bk)b(1)exp (_27;;’“> <exp <2ml(;+1)) . <27;\1[lz>>

2€0Lm 2€7m, k€L,

i zezz:nkénb(k)b(l) (e"p (2]7;1[)—1) exp (27“1—% >
= Y b(k)b() (eXp (i@”) _1> 3 exp <2m_ )

k.7 2€Z
_ nkezzj b(k)b(k) <exp (27;\;]“) - 1)
_ nkezzjnw(k)ﬁ <eXp <2Ek> - )



Note that for any k € Z,, we have

o
exp( 7Tle>—1 e S, € Sy

so taking into account that Sy is a cone centered at 0, we get the desired belonging. ]

We can now come to the

Proof of Theorem 1

It is sufficient to show that Ry = Sy. Indeed, from Lemma 3 and the fact that Sy is clearly closed,
we conclude that Ty = Ry = Sn.

We start with the inclusion Ry < Sy.

Consider A € Ry and L € Z(V) and ¢ € CV\{0} such that L[p] = —A¢. Decompose L as in (2),

SO we can write

rlgLle]l = ). a(C)n[pArclel]
cec(V)

It follows from Lemma 5 and the fact that Sy is a cone centered at 0 that
m[pL[p]] € Sy

It remains to write

to get the wanted inclusion.
Conversely, consider A € Sy. There exist two non-negative real numbers r, s such that either

A= r<1_exp<2N”i>>+s ()
A= T(l—exp<_§;ri>>+s (4)

To construct a Markov generator admitting —\ as eigenvalue in the first case, identify V with Zy
and introduce the Markov generator L given by

or

. 1 ify=x+1
Vx#yeZy, L(z,y) = {0 otherwise

We compute that

B - - (1-ew ()0

Jlpl = —¢

where J was defined after (1) and ¢ is the function defined by

o
Vxely, o(r) = exp< 7;\?)

It follows that —A is an eigenvalue of the Markov generator L := rL + sJ.



For (4), it is enough to replace L by L given by

. Ly =o—1
Vx#yeln, L(z,y) = {0 otherwise

Let us end this section with the very short

Proof of Proposition 2

For any K € K(V), the matrix K — I is a Markov generator, where [ is the V' x V identity matrix.
It follows that for any 6 € Uy, we have —(0 — 1) € Tly. It remains to note that Ay is the image of Sy
by the mapping C36 — 1 — 6. [ |

3 Extensions

Here we present some improvement of Theorem 1.

For any L € Z(V), define the order v(L) as the minimal n € [N], such that L can be decomposed
under the form (2) where a(C) = 0 for all cycles C of order strictly larger than n. Define

Z,(V) = {LeZ(V) : v(L) <n} (5)

Note that Z;(V) = ¢ as soon as N > 2. In the trivial case where V is a singleton, we have
Z,(V) = L(V) = {0}. The set Zz(V') corresponds to irreducible and reversible Markov generators.

Define £,,(V') as the closure of Z,,(V') in the set of V' x V matrices. We have £, (V) < L(V) by
closure of L(V'). Denote T, the set of all the opposites of eigenvalues of matrices from £, (V). From
a slight modification of the proof of Theorem 1, we get:

Theorem 6 Forn e [2,N], Ty, coincides with Sy,.

This result is not true for n = 1 and N > 2, since Ty = & and S; = {0}.
Proof

Denote Ry, the set of all the opposites of eigenvalues of matrices from Z,,(V)). Lemma 5 extends
into Ry, € TNy © cl(Rn,,). This is now a consequence of Theorem 5.1 page 107 of Kato’s book [5]
showing the continuity of the eigenvalues in terms of the matrix.

Following the first part of the proof of Theorem 1, we get that

RNn = Sn (6)

)

Let us marginally modify the second part of the proof of Theorem 1. We begin by remarking that
any A € S, can be written under the form (3) or (4), with IV replaced by n and still r, s = 0. ~
Consider the first case. Choose a cycle C' of order n and introduce the Markov generator L via

~ 1 ,ifa,ye C(Z,) and y = C(C71(z) + 1
Ve#yeV, Lz,y) = {0 othefwise( ) ! | ) )

Define the function ¢ by

exp (W) ,if z e C(Zy)

Ve ZN7 gO(.’I,') =
0 , otherwise

we compute that



Furthermore, we still have

where J was defined after (1).

It follows that —\ is an eigenvalue of the Markov generator L = rL+ sJ.

Note that J € Zo(V), as an irreducible Markov generator reversible with respect to the uniform
probability. The uniform probability is also invariant for L and thus for L. It follows that when s > 0,
L eZ,(V) (recall that n > 2), so that A € Ry . When s = 0, we have

A= T(l—exp<%)>
n
= limr(l—exp(Qm))—l—s
s—04 n

cl(Rnn)

m

We deduce S,, < cl(Rn ), and in connexion with (6), that Ry, = Sy and finally Ty, = S,,.
The case (4), with N replaced by n, is treated similarly. [

Let us give an example of kind of improvements one can expect from this result.

Example 7 For k € N, consider the state space V = Z%k. An element x = (r1,22) € V is said to be
even (respectively odd) if 1 + x2 = 0 (resp. x1 + x2 = 1) in Zg seen as Zoy/(2Zy,).
We endow V with the generator L given by

1 ,ifziseven, y; =x1 + 1 and yo = x9
Vo= (r1,22) #y = (y1,42) €V, L(z,y) = 1 ,ifzisodd, y1 =21 and yo = 29 + 1
0 , otherwise

Denote e; := (1,0), ex := (0,1) and for any x € V even, let Cy ;1 (respectively C, 1) the cycle
(x,x+e1,x+ e +ea,x+e) (resp. (x,z+e1,x +e1 —ea, x — e2)), identified with its sequential values
on Zy. Let m be the uniform probability on V.

We have the cycle decomposition

1
L = & 2 Aec

z€V,even, se{+1}

showing first that 7 is invariant for L, via Lemma 4, and second that L € Z,(V).

Thus Theorem 6 implies that the spectrum of L is included into Sy, contrary to Theorem 1, which
only enables us to get that the spectrum of L is included into Sy2.

While these considerations can be extended to different factors V' := Zg, x Zg;, with k # [ e N, it
is not so clear how to construct an analogue example in higher dimensions.

Our next goal is to introduce a subset J, (V) of L, (V) generalizing Z,, (V).

Let L € £(V) be given. A non-empty subset A — V is said to be irreducible (relatively to L) when
the A x A matrix exp(La) has only positive entries, where L = (L(2,¥y))syea. In particular, the
singletons are irreducible. The irreducible subset A is furthermore said to be an irreducible class,
when it is maximal for the inclusion among all irreducible subsets. Denote A the set of irreducible
classes. The elements of A form a partition of the state space:

v = [ ]4

AcA



For A € A, consider the Markov generator L', on A obtained from L4 by possibly modifying the
diagonal entries to make the row sums vanish. Since L’y € Z(A), its order v(L’;) was already defined.
We extend this definition to L via:

v(L) = max{v(Ly) : Ae A}

For L € Z(V'), we have A = {V'} and this new notion of order v(L) coincides with the previous one
for irreducible Markov generators.
For any n € [N], define

In(V) = {LeL(V):v(L)<n}
In particular we have Z,, (V') < J, (V). Our purpose here is to show the following result:
Theorem 8 For any n € [2, N], we have J,(V) < L, (V).

From the observation following (5), this result is trivially true for n = 1.
Before proving this inclusion, let us present a preliminary result.
Introduce a relation — on A via

VA#A €A, A—A = FrxeA TJyeA : Lz,y >0
We have for any fixed L € L(V):

Lemma 9 There exists a bijection F between A and [[|A|] (recall that | A| € [N] stands for the cardinal
of A) such that

VA Aed A—A = F(A)>F4)

Proof

An irreducible class A € A is said to be recurrent, when L, is a Markov generator on A, i.e. when
L'y = Ly. Or equivalently, if there is no A" € A\{A} such that A ~— A’. An irreducible class
A e A which is not recurrent is said to be transient. The set of recurrent and irreducible classes are
respectively written R and 7. Note that we always have R # ¢ but it may happen that 7 = J. In
the latter case L is said to be non-transient.

When L is non-transient, there is no ~— between the elements of A, so we can choose for F
any bijection between A and [|A|]. Otherwise, for any A € T, consider the longest finite family
(A1, ..., Ageay) of irreducible classes with A1 = A, Ay 4y € R and for any I € [((A) — 1], A — A1
All the elements of this family are distinct. Indeed, otherwise, if Ay = A; with | < k € [|A4]|], then
Ap U Agyq U --- 0 Ap is an irreducible subset, a contradiction. Next choose Ay € T with the largest
¢(A;) among the elements of 7. There is no A’ € T such that A" ~— A, otherwise we would have
0(A") = £(A1) + 1. Then we define F(A;) = |A|. Next we choose Az in T\{A1} with largest possible
¢(A2) among the elements of T\{A;}. There is no A" € T\{A;1} such that A’ — Aj, otherwise we
would have ¢(A’) = ((Az) + 1. We take F(Asz) = |A| — 1. We keep following this procedure until 7 is
exhausted: 7 = {41, Ag, ..., A7} and

v ie [T, F(4) = |A—-1+1

It remains to choose arbitrary the values F/(A) in [[|A| — |T]] for A € R, to get a wanted function
F. |

We can now come to the

Proof of Theorem 8



Fix n € [2,N] and L € J,(V). To prove the wanted inclusion, it is sufficient to construct a family
(Ls)ee(m) from Z,,(V') such that

lim L, = L (7)

For any A € A, denote m4 the invariant probability on A associated to L,.
For any e € (0,1), introduce the probability 7. given on V' by
F(A)

e Wy (x)

VzeV, me(x) = 7

where A € A is such that z € A, F' is a mapping as in Lemma 9, and Z, is the normalising constant.
Define the Markov generator L. via

L(z,y) ,if L(z,y) > 0
VeryeV,  Lezy) = { Ly z)r(y)/nc(x) if (z,y)e€
0 , otherwise
where
& = {(x,y) e V?: L(y,x) > 0 and z,y belong to different irreducible classes}

Consider (z,y) € £ and let A # A’ € A be such that x € A and y € A’. We have A’ — A, so that
F(A") > F(A) and thus

It follows that

and (7) holds.
For (z,y) € £, introduce the Markov generator L , ) defined by

b, ron ) L@ y) i {al, '} = {z,y}
V T # y e ‘/7 LG,(%Z/) (.%' 7:1/) '_ { 0 , otherwise

Note that 7. is reversible for this Markov generator and thus invariant.
Furthermore 7, is also invariant for the Markov generators L', (seen as operators on V by com-
pleting this matrix by null entries outside A), for any A € A. Since we can write

Le = Y L4+ ) Ley

AeA (‘T’y)eg

it follows that 7 is invariant for L. and even its unique invariant probability by irreducibility.
For any A € A, since L € J,(V), we have L, € Z,,(A), so we can find coefficients (a(C))cec, ()
such that

Ly = ) al@Arc
CeCn(A)



Furthermore, for (z,y) € £, seeing (z,y) as a cycle, we can write

Le,(m,y) = Te (y)L(y7 l‘)AW€7($7y)
so that
a(C)el'A)
Le = Z ()ZAWG,C’ + Z We(y)L(yaw)Aﬂg,(x,y)
CeCn(A) € (z,y)e€

corresponds a decomposition in cycles of L.. These cycles have orders bounded above by 2 v n = n,
since it is assumed to belong to N\{1}. Thus L can be approximated by elements of Z, (V) and by
consequence belongs to £, (V). [ |

The following example shows that in general we have J,(V) # L, (V).

Example 10 Fix [ € N and consider the finite state space V = Zgy; 1 {o0}. For any € > 0, introduce
the Markov generator L, given by

Jifx,yeZogandy=o+1
,if 2 €{0,l} and y = o

, if z = o0 and y € {0, 1}

, otherwise

Vaex#yeV, Le(z,y) =

O MN =

where the elements of Zg; where also identified with their representatives in [0, 2] — 1].
For any ¢ > 0, we have L, € Z(V) and

lim Le = Lo ¢ Z(V) (8)

64>0+

Write L := Lg. Taking into account the terminology introduced in the proof of Lemma 9, relatively
to L, the points of Zg; form a transient irreducible class and the only recurrent point is co. We have

v(Ly,) = 2
V(L{oo}) = 1
It follows that v(L) = 2l and L € J5(V'), but L ¢ Jo;—1(V') and thus L ¢ J;42(V) as soon as [ > 3.

Let us check that L € £;12(V). We will infer that for [ > 3, we have L € L;1o(V )\T142(V).
For € > 0, consider the probability m. given on V by

1

€ ifre ZQZ
1 Jifx=0w
Consider the two cycles Cy := (00,0, 1,...,1) and Cy := (00,l,1 + 1,---2] — 1,0). It appears that
€ €
Lo = — A _° A
S T e R B TP

From Lemma 4, we deduce that 7, is the invariant probability of L.. Furthermore, v(Lc) is bounded
above by [ + 2, the order of C and Cy (for I = 3, v(L¢) = | + 2). From the convergence (8), we get
Le £l+2(V).

The previous example leaves open the problem of a more concrete description of £,,(V'). Neverthe-
less if our attention is restricted to non-transient Markov generators, the situation is clearer. Denote
N (V) the set of non-transient Markov generators.

Proposition 11 For any n € [2, N], we have N(V) n To(V) = N(V) n L, (V).

10



For n =1 and N > 2, this equality does not hold: N'(V) n J1(V) = {0} while N(V) n L1(V) = &.
Proof

Due to Theorem 8, it is sufficient to show that N'(V) n L, (V) € N (V) n T, (V), for given n € [2, N].

Note that 0 € N (V) n J,(V), so consider L € N (V) n L,(V)\{0} and a sequence (Lj)kez, from
T, (V') converging to L. Denote (7)ez, the corresponding sequence of invariant probability measures
and for ke Z.,

Ly = ), a(C)Arc 9)
cec(V)

a cycle decomposition with a;(C) = 0 for any cycle C of order strictly larger than n.

Let Ay, ..., Ay be the recurrent irreducible classes of L: since L € N (V), we have V = A; u Ay U
U Ay

We will need the following observation:

Lemma 12 There exists n € (0,1) and ki € Z such that

1
Vkzk,Viell,Voyed, nmr) < mly) < 57%@)
Proof
Introduce
A = max{|L(z,z)|] : xeV}
L
K = —+1
h\ +
as well as for ke Z,
A = max{|Lg(z,x)| : z €V}
Ly,
Ky, = —+1
k " +

The matrix Kj is a Markov kernel on V' and 7 is an invariant probability for Ky, i.e. mp = 7K.
Furthermore, we have (since L # 0),

lim K, = K

k—o0

Consider

&
I

{(z,y) eV : K(z,y) >0} = {(z,y) eV : L(z,y) > 0}
e = min{K(z,y) : (z,y) e E} = %min{L(x,y) : (z,y) € B}

We prove the above lemma with 7 := (e/2)/FI-1.

Define
ki = min{keZ, :Vj=k VvV (z,y) e E, Kj(z,y) > €/2}

Fix [ € [¢] and z,y € A;. Consider an injective sequence (xg, Z1, ..., Tym) With zg = x, 2, = y and
(xj,xj41) € E for all j € [0,m —1]. We have for k > ky,

ﬂk(x)Kk(l',lbl)Kk(:El,wg) cee Kk(:nm_l, y)

m(y) =
> m(z)(e/2)™

11



> nmi(x)

which is the wanted bound. ]

Consider C' : Z,, — V a cycle whose image is not included into one of the irreducible classes of
L: we can find j € Z,, such that z == C(j) € A and y = C(j + 1) € Ay with [ # ' € [¢]. Since
L(z,y) = 0, we get from (9) that
k(C)

li =0

IS

Taking Lemma 12 into account, we get that
V' e A klim ar(C)|Ar,c@,2')] = 0
—00
Since this is true for all the irreducible classes crossed by C', we deduce

lim ax(C)Ar,.c = 0

k—o0

It follows that

L = kh_)HOIOZ Z ax(C)Ax, ¢
le[¢] CeC(A;)

(where C(4;) is identified with the set of cycles taking values in A;, for [ € [¢]).
We infer that for any [ € [¢],

La, = Jim > ari(C)Ar o 10
_)OOCEC(AZ)

with, for any k € Z, and [ € [{], 7 the probability on A; defined by

()
VazeA, Mh(r) = (A7)
and
_a(0)
vV CeC(4), al(C) = (A7)

Note that for any given [ € [£], the sequences ((ax(C))cec(a,))kez, and (T )kez, are relatively
compact (respectively in Ri(A’) and on the set of probability measures on A;), so we can extract a sub-
sequence such that both the coefficients and the probability measures converge toward (d;(C))cec(a,)

and 7. We deduce from (10) that

La, = ), a(C)hsc
CGC(AZ)

where @;(C) = 0 if the order of C is strictly larger than n.
Since this is true for all the irreducible classes of L, we get that v(L) < n and finally L € N'(V) n
In(V). |
Note that N(V) n J2(V) is the set of Markov generators decomposable into cycles of order 2
and admitting an invariant probability charging all the points of V', which amounts to say they are
reversible with respect to a positive probability. Since So = Ry, we recover from Theorem 6 the
well-known fact that the eigenvalues of such matrices are real valued.

12
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