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1 Introduction: Dmitriev and Dynkin’s result
Kolmogorov asked in 1938 for a characterisation of the set UN of complex numbers which are eigenval-
ues of Markov transition kernels on a finite space of cardinal N P N. The survey talk of Besenyei [1]
provides a nice account of the main steps involved in its resolution. The paper of Dmitriev and Dynkin
[2] solves this question for N ď 5 and contains important ideas for the general case. In particular they
introduce a geometrical reformulation of the eigenvalues of finite Markov transition kernels, as well
as a minimal angle property. The complete solution was finally given by Karpelevich [4]. The char-
acterisation of the set TN of complex numbers which are the opposite of eigenvalues of finite Markov
generators on a finite space of cardinal N P N is simpler and is already contained in Dmitriev and
Dynkin [2]. Indeed, it is a consequence of the localisation of UN around the eigenvalue 1, due to the
conical structure of TN .

Our purpose here is to present another approach to deduce TN , more direct and more probabilistic
in spirit. Furthermore, for any λ P TN , we provide a simple Markov generator admitting ´λ for
eigenvalue (see the end of the proof of Theorem 1 below). This was the initial motivation for this
investigation, stemming from the search of simple models for the classification of Markov generators
via interweaving relations, see [7]. Our proof is based on the decompositions into cycles of finite
Markov generators. It has the advantage to provide more specific informations about the localisation
of the eigenvalues when some restrictions are put on such decompositions.

Let us be more precise. Consider V a finite set containing N points, N P N. Recall that a Markov
generator on V is a matrix L B pLpx, yqqx,yPV whose off-diagonal entries are non-negative and whose
row sums vanish. Denote LpV q the set of all such matrices, so that TN is the set of all the opposites
of eigenvalues of matrices from LpV q.

Our first task here will be to recover the following result:

Theorem 1 (Dmitriev and Dynkin [2]) The set TN is the set SN of complex numbers whose angle
with the positive real axis is smaller (in absolute value) or equal than π

2 ´
π
N , with the convention

S1 “ t0u.

Recall that a Markov kernel on V is a matrix K B pKpx, yqqx,yPV whose entries are non-negative
and whose row sums are equal to 1. Denote KpV q the set of all such matrices, as well as UN the set
of all eigenvalues of all matrices from KpV q. Let AN be the acute angular sector delimited by the two
half-lines starting from 1 and respectively going through exp

`

i2π
N

˘

and exp
`

´i2π
N

˘

. The following result
is contained in Dmitriev and Dynkin [2] and was the main ingredient in their proof of Theorem 1. We
go the reverse way and deduce it from Theorem 1.

Proposition 2 (Dmitriev and Dynkin [2]) We have

UN Ă AN

For the full description of UN , see Karpelevich [4] (or Dmitriev and Dynkin [2] for N ď 5), or the
survey of Besenyei [1].

The decompositions in cycles of finite irreducible Markov generators are recalled in the next section,
where the alternative proofs of Theorem 1 and Proposition 2 are presented. This approach enables us
to show in the last section that if a Markov generator L can be approximated by irreducible Markov
generators with decompositions in cycles of orders bounded by n P J2, NK, then its eigenvalues belong
to Tn, independently from N . When L is non-transient, the existence of such approximations can be
characterized directly on the irreducible classes of L. In the general case, one has to be more careful,
as it will be illustrated on an example.

2



2 A proof by decompositions in cycles
Here we recover the results by Dmitriev and Dynkin [2] recalled in the introduction, via decompositions
in cycles.

A Markov generator L P LpV q is said to be irreducible when exppLq has only positive entries. De-
note IpV q the set of irreducible Markov generators on V and RN the set of all opposites of eigenvalues
of matrices from IpV q. A first observation is:

Lemma 3 We have RN Ă TN Ă clpRN q, the closure of RN .

We will check in the proof of Theorem 1 that TN “ RN .

Proof
The first inclusion is obvious, since IpV q Ă LpV q.

For the second inclusion, let us recall the following result.
Let A and B be two V ˆ V -matrices with complex entries and for any z P C, consider the matrix

Apzq given by

Apzq B A` zB

For z P C, denote σpzq Ă C the set of eigenvalues of Apzq. Let K be the set of non-empty compact
subsets of C, endowed with the Hausdorff distance. From Section 1 of Chapter 2 of Kato [5], the
mapping σ : CÑ K is continuous.

Consider λ P TN , as well as L P LpV q such that ´λ is an eigenvalue of L. Define the following
Markov generators

@ ε ě 0, Lε B L` εJ (1)

where J is the V ˆ V -matrix whose off-diagonal entries are equal to 1{N and whose diagonal entries
are equal to ´p1 ´ 1{Nq. For ε ą 0, we have Lε P IpV q. From the above continuity result, λ is
approached by eigenvalues of Lε for small ε ą 0, so that λ P clpRN q as wanted. �

Let us recall the decompositions of elements from IpV q into cycles. We need some notations. A
cycle C of V is an injective mapping from Zn B Z{pnZq to V , where n P JNK is called the order of
C. Two cycles C and C 1 are said to be equivalent if they coincide up to a translation, i.e., if have the
same order n P JNK and if there exists m P Zn such that

@ l P Zn, C 1plq “ Cpl `mq

The set of the corresponding equivalent classes is denoted CpV q. To simplify the notations, such
equivalent classes will be identified with representative cycles.

Fix a Markov generator L P LpV q. By irreducibility, it admits a unique invariant measure π, which
furthermore give a positive weight to all points of V . Given C P CpV q of order n P J2, NK, we introduce
the Markov generator Λπ,C via

@ x ‰ y P V, Λπ,Cpx, yq B

$

&

%

1

πpxq
, if D m P Zn such that x “ Cpmq and y “ Cpm` 1q

0 , otherwise

(the diagonal entries are such that the row sums vanishes: for any x P V , Lpx, xq “ ´1{πpxq). Note
that Λπ,C does not depend on the representative cycle C of the equivalence class from CpV q. When C
is of order 1, by convention we take Λπ,C “ 0.

A decomposition of L into cycles is the writing

L “
ÿ

CPCpV q
apCqΛπ,C (2)
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where papCqqCPCpV q is a family of non-negative numbers. The existence of such a decomposition can
be found in [6], see also the book of Kalpazidou [3] for an extensive discussion. In general such a
decomposition is not unique.

When looking for a decomposition in cycles, it seems we first need to know the invariant measure
π. On the contrary, it provides a way to find this invariant probability:

Lemma 4 Assume that a decomposition such as (2) holds for some L P LpV q and some probability π
(giving a positive weight to the images of all cycles C with apCq ą 0). Then π is invariant for L.

Proof
Indeed, note that π is invariant for any Markov generator of the form Λπ,C with C P CpV q. �

Illustrations of this result will be provided by Examples 7 and ?? in the sequel.
The main ingredient of the proof of Theorem 1 is the following result.

Lemma 5 For any C P CpV q and ϕ P CV , we have

πrϕ̄Λπ,Crϕss P SN

where ϕ̄ is the function from CV taking the conjugate values of ϕ.

Proof
For any ϕ P CV , we compute

πrϕ̄Λπ,Crϕss “
ÿ

x,yPV

πpxqΛπ,Cpx, yqϕ̄pxqpϕpyq ´ ϕpxqq

“
ÿ

xPCpZnq
πpxqΛπ,Cpx,CpC

´1pxq ` 1qqϕ̄pxqpϕpCpC´1pxq ` 1qq ´ ϕpxqq

“
ÿ

xPCpZnq
ϕ̄pxqpϕpCpC´1pxq ` 1qq ´ ϕpxqq

“
ÿ

zPZn

φ̄pzqpφpz ` 1q ´ φpzqq

where n is the order of C and φ B ϕ ˝ C.
For any function φ : Zn Ñ C, there exists a family of complex coefficients pbpkqqkPZN such that

@ z P Zn, φpzq “
ÿ

kPZn

bpkq exp

ˆ

2πikz

N

˙

It follows that
ÿ

zPZn

φ̄pzqpφpz ` 1q ´ φpzqq “
ÿ

zPZn

ÿ

k,lPZn

b̄pkqbplq exp

ˆ

´
2πikz

N

˙ˆ

exp

ˆ

2πilpz ` 1q

N

˙

´ exp

ˆ

2πilz

N

˙˙

“
ÿ

zPZn

ÿ

k,lPZn

b̄pkqbplq

ˆ

exp

ˆ

2πil

N

˙

´ 1

˙

exp

ˆ

2πipl ´ kqz

N

˙

“
ÿ

k,lPZn

b̄pkqbplq

ˆ

exp

ˆ

2πil

N

˙

´ 1

˙

ÿ

zPZn

exp

ˆ

2πipl ´ kqz

N

˙

“ n
ÿ

kPZn

b̄pkqbpkq

ˆ

exp

ˆ

2πik

N

˙

´ 1

˙

“ n
ÿ

kPZn

|bpkq|2
ˆ

exp

ˆ

2πik

N

˙

´ 1

˙
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Note that for any k P Zn, we have

exp

ˆ

2πik

N

˙

´ 1 P Sn Ă SN

so taking into account that SN is a cone centered at 0, we get the desired belonging. �

We can now come to the

Proof of Theorem 1
It is sufficient to show that RN “ SN . Indeed, from Lemma 3 and the fact that SN is clearly closed,
we conclude that TN “ RN “ SN .

We start with the inclusion RN Ă SN .
Consider λ P RN and L P IpV q and ϕ P CV zt0u such that Lrϕs “ ´λϕ. Decompose L as in (2),

so we can write

πrϕ̄Lrϕss “
ÿ

CPCpV q
apCqπrϕ̄Λπ,Crϕss

It follows from Lemma 5 and the fact that SN is a cone centered at 0 that

πrϕ̄Lrϕss P SN

It remains to write

λ “
πrϕ̄Lrϕss

πrϕ̄ϕs
P SN

to get the wanted inclusion.
Conversely, consider λ P SN . There exist two non-negative real numbers r, s such that either

λ “ r

ˆ

1´ exp

ˆ

2πi

N

˙˙

` s (3)

or

λ “ r

ˆ

1´ exp

ˆ

´2πi

N

˙˙

` s (4)

To construct a Markov generator admitting ´λ as eigenvalue in the first case, identify V with ZN
and introduce the Markov generator pL given by

@ x ‰ y P ZN , pLpx, yq B

"

1 , if y “ x` 1
0 , otherwise

We compute that

pLrϕs “ ´

ˆ

1´ exp

ˆ

2πi

N

˙˙

ϕ

Jrϕs “ ´ϕ

where J was defined after (1) and ϕ is the function defined by

@ x P ZN , ϕpxq B exp

ˆ

2πix

N

˙

It follows that ´λ is an eigenvalue of the Markov generator L B rpL` sJ .
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For (4), it is enough to replace pL by qL given by

@ x ‰ y P ZN , qLpx, yq B

"

1 , if y “ x´ 1
0 , otherwise

�

Let us end this section with the very short

Proof of Proposition 2
For any K P KpV q, the matrix K ´ I is a Markov generator, where I is the V ˆ V identity matrix.
It follows that for any θ P UN , we have ´pθ´ 1q P TN . It remains to note that AN is the image of SN
by the mapping C Q θ ÞÑ 1´ θ. �

3 Extensions
Here we present some improvement of Theorem 1.

For any L P IpV q, define the order νpLq as the minimal n P JNK, such that L can be decomposed
under the form (2) where apCq “ 0 for all cycles C of order strictly larger than n. Define

InpV q B tL P IpV q : νpLq ď nu (5)

Note that I1pV q “ H as soon as N ě 2. In the trivial case where V is a singleton, we have
I1pV q “ LpV q “ t0u. The set I2pV q corresponds to irreducible and reversible Markov generators.

Define LnpV q as the closure of InpV q in the set of V ˆ V matrices. We have LnpV q Ă LpV q by
closure of LpV q. Denote TN,n the set of all the opposites of eigenvalues of matrices from LnpV q. From
a slight modification of the proof of Theorem 1, we get:

Theorem 6 For n P J2, NK, TN,n coincides with Sn.

This result is not true for n “ 1 and N ě 2, since TN,1 “ H and S1 “ t0u.

Proof
Denote RN,n the set of all the opposites of eigenvalues of matrices from InpV q. Lemma 5 extends
into RN,n Ă TN,n Ă clpRN,nq. This is now a consequence of Theorem 5.1 page 107 of Kato’s book [5]
showing the continuity of the eigenvalues in terms of the matrix.

Following the first part of the proof of Theorem 1, we get that

RN,n Ă Sn (6)

Let us marginally modify the second part of the proof of Theorem 1. We begin by remarking that
any λ P Sn can be written under the form (3) or (4), with N replaced by n and still r, s ě 0.

Consider the first case. Choose a cycle C of order n and introduce the Markov generator pL via

@ x ‰ y P V, pLpx, yq B

"

1 , if x, y P CpZnq and y “ CpC´1pxq ` 1q
0 , otherwise

Define the function ϕ by

@ x P ZN , ϕpxq B

#

exp
´

2πiC´1pxq
n

¯

, if x P CpZnq
0 , otherwise

we compute that

pLrϕs “ ´

ˆ

1´ exp

ˆ

2πi

n

˙˙

ϕ
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Furthermore, we still have

Jrϕs “ ´ϕ

where J was defined after (1).
It follows that ´λ is an eigenvalue of the Markov generator L B rpL` sJ .
Note that J P I2pV q, as an irreducible Markov generator reversible with respect to the uniform

probability. The uniform probability is also invariant for pL and thus for L. It follows that when s ą 0,
L P InpV q (recall that n ě 2), so that λ P RN,n. When s “ 0, we have

λ “ r

ˆ

1´ exp

ˆ

2πi

n

˙˙

“ lim
sÑ0`

r

ˆ

1´ exp

ˆ

2πi

n

˙˙

` s

P clpRN,nq

We deduce Sn Ă clpRN,nq, and in connexion with (6), that RN,n “ Sn and finally TN,n “ Sn.
The case (4), with N replaced by n, is treated similarly. �

Let us give an example of kind of improvements one can expect from this result.

Example 7 For k P N, consider the state space V B Z2
2k. An element x B px1, x2q P V is said to be

even (respectively odd) if x1 ` x2 “ 0 (resp. x1 ` x2 “ 1) in Z2 seen as Z2k{p2Zkq.
We endow V with the generator L given by

@ x B px1, x2q ‰ y B py1, y2q P V, Lpx, yq B

$

&

%

1 , if x is even, y1 “ x1 ˘ 1 and y2 “ x2
1 , if x is odd, y1 “ x1 and y2 “ x2 ˘ 1
0 , otherwise

Denote e1 B p1, 0q, e2 B p0, 1q and for any x P V even, let Cx,1 (respectively Cx,´1) the cycle
px, x` e1, x` e1` e2, x` e2q (resp. px, x` e1, x` e1´ e2, x´ e2q), identified with its sequential values
on Z4. Let π be the uniform probability on V .

We have the cycle decomposition

L “
1

22k`1

ÿ

xPV,even, sPt˘1u

Λπ,Cx,s

showing first that π is invariant for L, via Lemma 4, and second that L P I4pV q.
Thus Theorem 6 implies that the spectrum of L is included into S4, contrary to Theorem 1, which

only enables us to get that the spectrum of L is included into S4k2 .
While these considerations can be extended to different factors V B Z2k ˆ Z2l, with k ‰ l P N, it

is not so clear how to construct an analogue example in higher dimensions.
˝

Our next goal is to introduce a subset JnpV q of LnpV q generalizing InpV q.
Let L P LpV q be given. A non-empty subset A Ă V is said to be irreducible (relatively to L) when

the A ˆ A matrix exppLAq has only positive entries, where LA B pLpx, yqqx,yPA. In particular, the
singletons are irreducible. The irreducible subset A is furthermore said to be an irreducible class,
when it is maximal for the inclusion among all irreducible subsets. Denote A the set of irreducible
classes. The elements of A form a partition of the state space:

V “
ğ

APA
A
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For A P A, consider the Markov generator L1A on A obtained from LA by possibly modifying the
diagonal entries to make the row sums vanish. Since L1A P IpAq, its order νpL1Aq was already defined.
We extend this definition to L via:

νpLq B maxtνpL1Aq : A P Au

For L P IpV q, we have A “ tV u and this new notion of order νpLq coincides with the previous one
for irreducible Markov generators.

For any n P JNK, define

JnpV q B tL P LpV q : νpLq ď nu

In particular we have InpV q Ă JnpV q. Our purpose here is to show the following result:

Theorem 8 For any n P J2, NK, we have JnpV q Ă LnpV q.

From the observation following (5), this result is trivially true for n “ 1.
Before proving this inclusion, let us present a preliminary result.
Introduce a relation � on A via

@ A ‰ A1 P A, A� A1 ô D x P A, D y P A1 : Lpx, yq ą 0

We have for any fixed L P LpV q:

Lemma 9 There exists a bijection F between A and J|A|K (recall that |A| P JNK stands for the cardinal
of A) such that

@ A,A1 P A, A� A1 ñ F pAq ą F pA1q

Proof
An irreducible class A P A is said to be recurrent, when LA is a Markov generator on A, i.e. when
L1A “ LA. Or equivalently, if there is no A1 P AztAu such that A � A1. An irreducible class
A P A which is not recurrent is said to be transient. The set of recurrent and irreducible classes are
respectively written R and T . Note that we always have R ‰ H but it may happen that T “ H. In
the latter case L is said to be non-transient.

When L is non-transient, there is no � between the elements of A, so we can choose for F
any bijection between A and J|A|K. Otherwise, for any A P T , consider the longest finite family
pA1, ..., A`pAqq of irreducible classes with A1 “ A, A`pAq P R and for any l P J`pAq ´ 1K, Al � Al`1.
All the elements of this family are distinct. Indeed, otherwise, if Ak “ Al with l ă k P J|A|K, then
Ak \ Ak`1 \ ¨ ¨ ¨ \ Al is an irreducible subset, a contradiction. Next choose A1 P T with the largest
`pA1q among the elements of T . There is no A1 P T such that A1 � A1, otherwise we would have
`pA1q ě `pA1q ` 1. Then we define F pA1q B |A|. Next we choose A2 in T ztA1u with largest possible
`pA2q among the elements of T ztA1u. There is no A1 P T ztA1u such that A1 � A2, otherwise we
would have `pA1q ě `pA2q ` 1. We take F pA2q B |A| ´ 1. We keep following this procedure until T is
exhausted: T “ tA1, A2, ..., A|T |u and

@ l P J|T |K, F pAlq “ |A| ´ l ` 1

It remains to choose arbitrary the values F pAq in J|A| ´ |T |K for A P R, to get a wanted function
F . �

We can now come to the

Proof of Theorem 8
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Fix n P J2, NK and L P JnpV q. To prove the wanted inclusion, it is sufficient to construct a family
pLεqεPp0,1q from InpV q such that

lim
εÑ0`

Lε “ L (7)

For any A P A, denote πA the invariant probability on A associated to L1A.
For any ε P p0, 1q, introduce the probability πε given on V by

@ x P V, πεpxq B
εF pAqπApxq

Zε

where A P A is such that x P A, F is a mapping as in Lemma 9, and Zε is the normalising constant.
Define the Markov generator Lε via

@ x ‰ y P V, Lεpx, yq B

$

&

%

Lpx, yq , if Lpx, yq ą 0
Lpy, xqπεpyq{πεpxq , if px, yq P E
0 , otherwise

where

E B tpx, yq P V 2 : Lpy, xq ą 0 and x, y belong to different irreducible classesu

Consider px, yq P E and let A ‰ A1 P A be such that x P A and y P A1. We have A1 � A, so that
F pA1q ą F pAq and thus

lim
εÑ0`

πεpyq

πεpxq
“ 0

It follows that

lim
εÑ0`

Lεpx, yq “ 0

and (7) holds.
For px, yq P E , introduce the Markov generator Lε,px,yq defined by

@ x1 ‰ y1 P V, Lε,px,yqpx
1, y1q B

"

Lεpx
1, y1q , if tx1, y1u “ tx, yu

0 , otherwise

Note that πε is reversible for this Markov generator and thus invariant.
Furthermore πε is also invariant for the Markov generators L1A (seen as operators on V by com-

pleting this matrix by null entries outside A), for any A P A. Since we can write

Lε “
ÿ

APA
L1A `

ÿ

px,yqPE
Lε,px,yq

it follows that πε is invariant for Lε and even its unique invariant probability by irreducibility.
For any A P A, since L P JnpV q, we have L1A P InpAq, so we can find coefficients papCqqCPCnpAq

such that

L1A “
ÿ

CPCnpAq
apCqΛπA,C

“
ÿ

CPCnpAq

apCqεF pAq

Zε
Λπε,C

9



Furthermore, for px, yq P E , seeing px, yq as a cycle, we can write

Lε,px,yq “ πεpyqLpy, xqΛπε,px,yq

so that

Lε “
ÿ

CPCnpAq

apCqεF pAq

Zε
Λπε,C `

ÿ

px,yqPE
πεpyqLpy, xqΛπε,px,yq

corresponds a decomposition in cycles of Lε. These cycles have orders bounded above by 2 _ n “ n,
since it is assumed to belong to Nzt1u. Thus L can be approximated by elements of InpV q and by
consequence belongs to LnpV q. �

The following example shows that in general we have JnpV q ‰ LnpV q.

Example 10 Fix l P N and consider the finite state space V B Z2l \ t8u. For any ε ě 0, introduce
the Markov generator Lε given by

@ x ‰ y P V, Lεpx, yq B

$

’

’

&

’

’

%

1 , if x, y P Z2l and y “ x` 1
1 , if x P t0, lu and y “ 8
ε , if x “ 8 and y P t0, lu
0 , otherwise

where the elements of Z2l where also identified with their representatives in J0, 2l ´ 1K.
For any ε ą 0, we have Lε P IpV q and

lim
εÑ0`

Lε “ L0 R IpV q (8)

Write L B L0. Taking into account the terminology introduced in the proof of Lemma 9, relatively
to L, the points of Z2l form a transient irreducible class and the only recurrent point is 8. We have

νpL1Z2l
q “ 2l

νpLt8uq “ 1

It follows that νpLq “ 2l and L P J2lpV q, but L R J2l´1pV q and thus L R Jl`2pV q as soon as l ě 3.
Let us check that L P Ll`2pV q. We will infer that for l ě 3, we have L P Ll`2pV qzJl`2pV q.
For ε ą 0, consider the probability πε given on V by

@ x P V, πεpxq B
1

1` 2lε

"

ε , if x P Z2l

1 , if x “ 8

Consider the two cycles C1 B p8, 0, 1, ..., lq and C2 B p8, l, l ` 1, ¨ ¨ ¨ 2l ´ 1, 0q. It appears that

Lε “
ε

1` 2lε
Λπε,C1 `

ε

1` 2lε
Λπε,C2

From Lemma 4, we deduce that πε is the invariant probability of Lε. Furthermore, νpLεq is bounded
above by l ` 2, the order of C1 and C2 (for l ě 3, νpLεq “ l ` 2). From the convergence (8), we get
L P Ll`2pV q.

˝

The previous example leaves open the problem of a more concrete description of LnpV q. Neverthe-
less if our attention is restricted to non-transient Markov generators, the situation is clearer. Denote
N pV q the set of non-transient Markov generators.

Proposition 11 For any n P J2, NK, we have N pV q X JnpV q “ N pV q X LnpV q.
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For n “ 1 and N ě 2, this equality does not hold: N pV q X J1pV q “ t0u while N pV q X L1pV q “ H.

Proof
Due to Theorem 8, it is sufficient to show that N pV q XLnpV q Ă N pV q XJnpV q, for given n P J2, NK.

Note that 0 P N pV q X JnpV q, so consider L P N pV q X LnpV qzt0u and a sequence pLkqkPZ` from
InpV q converging to L. Denote pπkqkPZ` the corresponding sequence of invariant probability measures
and for k P Z`,

Lk “
ÿ

CPCpV q
akpCqΛπk,C (9)

a cycle decomposition with akpCq “ 0 for any cycle C of order strictly larger than n.
Let A1, ..., A` be the recurrent irreducible classes of L: since L P N pV q, we have V “ A1 \ A2 \

¨ ¨ ¨ \A`.
We will need the following observation:

Lemma 12 There exists η P p0, 1q and k1 P Z` such that

@ k ě k1, @ l P J`K, @ x, y P Al, ηπkpxq ď πkpyq ď
1

η
πkpxq

Proof
Introduce

λ B maxt|Lpx, xq| : x P V u

K B
L

λ
` I

as well as for k P Z`,

λk B maxt|Lkpx, xq| : x P V u

Kk B
Lk
λk
` I

The matrix Kk is a Markov kernel on V and πk is an invariant probability for Kk, i.e. πk “ πKk.
Furthermore, we have (since L ‰ 0),

lim
kÑ8

Kk “ K

Consider

E B tpx, yq P V : Kpx, yq ą 0u “ tpx, yq P V : Lpx, yq ą 0u

ε B mintKpx, yq : px, yq P Eu “
1

λ
mintLpx, yq : px, yq P Eu

We prove the above lemma with η B pε{2q|E|´1.
Define

k1 B mintk P Z` : @ j ě k, @ px, yq P E, Kjpx, yq ě ε{2u

Fix l P J`K and x, y P Al. Consider an injective sequence px0, x1, ..., xmq with x0 “ x, xm “ y and
pxj , xj`1q P E for all j P J0,m´ 1K. We have for k ě k1,

πkpyq ě πkpxqKkpx, x1qKkpx1, x2q ¨ ¨ ¨Kkpxm´1, yq

ě πkpxqpε{2q
m
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ě ηπkpxq

which is the wanted bound. �

Consider C : Zm Ñ V a cycle whose image is not included into one of the irreducible classes of
L: we can find j P Zm such that x B Cpjq P Al and y B Cpj ` 1q P Al1 with l ‰ l1 P J`K. Since
Lpx, yq “ 0, we get from (9) that

lim
kÑ8

akpCq

πkpxq
“ 0

Taking Lemma 12 into account, we get that

@ x1 P Al, lim
kÑ8

akpCq|Λπk,Cpx
1, x1q| “ 0

Since this is true for all the irreducible classes crossed by C, we deduce

lim
kÑ8

akpCqΛπk,C “ 0

It follows that

L “ lim
kÑ8

ÿ

lPJ`K

ÿ

CPCpAlq
akpCqΛπk,C

(where CpAlq is identified with the set of cycles taking values in Al, for l P J`K).
We infer that for any l P J`K,

LAl “ lim
kÑ8

ÿ

CPCpAlq
ak,lpCqΛπk,l,C (10)

with, for any k P Z` and l P J`K, πk,l the probability on Al defined by

@ x P Al, πk,lpxq B
πkpxq

πkpAlq

and

@ C P CpAlq, ak,lpCq B
akpCq

πkpAlq

Note that for any given l P J`K, the sequences ppak,lpCqqCPCpAlqqkPZ` and pπk,lqkPZ` are relatively
compact (respectively in RCpAlq

` and on the set of probability measures on Al), so we can extract a sub-
sequence such that both the coefficients and the probability measures converge toward pralpCqqCPCpAlq
and rπl. We deduce from (10) that

LAl “
ÿ

CPCpAlq
ralpCqΛrπl,C

where ralpCq “ 0 if the order of C is strictly larger than n.
Since this is true for all the irreducible classes of L, we get that νpLq ď n and finally L P N pV q X

JnpV q. �

Note that N pV q X J2pV q is the set of Markov generators decomposable into cycles of order 2
and admitting an invariant probability charging all the points of V , which amounts to say they are
reversible with respect to a positive probability. Since S2 “ R`, we recover from Theorem 6 the
well-known fact that the eigenvalues of such matrices are real valued.
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