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Abstract

Using jointly geometric and stochastic reformulations of nonconvex problems and ex-
ploiting a Monge-Kantorovich (or Wasserstein) gradient system formulation with vanish-
ing forces, we formally extend the simulated annealing method to a wide range of global
optimization methods. Due to the built-in combination of a gradient-like strategy and
particle interactions, we call them swarm gradient dynamics. As in the original paper by
Holley-Kusuoka-Stroock, a functional inequality is the key to the existence of a schedule
that ensures convergence to a global minimizer. One of our central theoretical contribu-
tions is proving such an inequality for one-dimensional compact manifolds. We conjecture
that the inequality holds true in a much broader setting. Additionally, we describe a
general method for global optimization that highlights the essential role of functional
inequalities ‘a la Łojasiewicz.
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1 Introduction

The global minimization of a nonconvex function is one of the most challenging problems
in modern optimization. There are few global optimization methods that provide reason-
able convergence guarantees, the most famous is probably the simulated annealing, whose
premises are found in [36], or the moment method [35], and their many variants1. On the
other hand, metaheuristics methods are numerous and have some notable empirical success:
they orchestrate interactions between local and global strategies, combine random and deter-
ministic procedures, and often end up with methods using optimizing agents. Some examples
of metaheuristics are inspired by analogies with biology, as evolutionary algorithms [25], ethol-
ogy (e.g., ant colonies [20]), or particle swarms, see e.g., [34]. The goal of this paper is to
introduce a new family of swarm methods through gradient descent in the Monge-Kantorovich
(or Wasserstein) space and give general guarantees for their convergence to global minimizers.

Let us be more specific and consider the problem of solving

min
M

U, (P)

where U : M → R is a differentiable function defined on a compact Riemannian manifold
M . In order to introduce our swarm methods, we need first some considerations on simulated
annealing.

Three views on simulated annealing Our starting point is indeed the famous simulated
annealing method. In its time-continuous form, and when the state space is flat M (e.g., a
flat torus), it is a solution X B (Xt)t≥0 of the time-inhomogeneous Langevin-like stochastic
differential equation,

dXt = −βt∇U(Xt) dt+
√

2dBt, (a)

where (Bt)t≥0 is a Brownian motion and βt → +∞ 2 is a time-dependent parameter tuned so
that the expectation of U(Xt) tends to minM U . The formulation (a) can be extended to any
compact Riemannian manifold M , but this requires more involved notations, see e.g., Ikeda
and Watanabe [31] or Emery [23].

The intuitive interpretation is quite natural, the method combines local gradient search
with a vanishing Brownian exploration of the feasible set M . Although the method is of-
ten used as a heuristic, its proof has been made rigorous in various frameworks via different
approaches, the two main ones being based on large deviations, see e.g., Azencott et al. [2],
and on functional inequalities, cf. Holley, Kusuoka and Stroock [29]. Key to the founda-
tional approach of [29], is the establishment of a generalized log-Sobolev inequality followed
by hypercontractivity arguments. This approach was then simplified by Miclo [39] via the

1 In the case of simulated annealing and Langevin like dynamics, see also [29, 39, 27] and modern extensions
[42, 46, 26].

2Often called the inverse temperature
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identification of the relative entropy as a convenient Lyapunov function. In order to explain
the role of the log-Sobolev inequality, the relative entropy, the mechanisms behind the con-
vergence properties, and understand the scope of the method, we view simulated annealing
along three complementary angles:

(a) the SDE form of the algorithm: the overdamped Langevin dynamics (a) above,

(b) the PDE counterpart of (a), which describes the time evolution of the density t 7→ ρ(t)
of Xt. It assumes the form of a Fokker-Planck equation,

d

dt
ρ = βt div(ρ∇U) + ∆ρ, t ≥ 0. (b)

(c) Otto’s formalism [33], which we recall briefly in the Appendix, allows one to interpret
the latter as a gradient-like system in the space of probabilities on M endowed with
Monge-Kantorovich metric:

d

dt
ρ(t) = −gradW Uβt [ρ(t)], (c)

with Uβ[ρ] = β

∫
M
Uρd`+

∫
M
ρ log ρ d`, where ` is the Riemannian measure of M . This

quantity is also known as the relative entropy of ρ with respect to the Gibbs measure
whose density is proportional to exp(−βU).

This triple perspective, mainly due to [33], is not new and has known a recent success in
sampling [16, 21], optimization [38, 37] and machine learning [42, 15].

Depending on the form we adopt to study the dynamics, subsequent results or devel-
opments may be considerably easier to understand. Indeed, while (a) classically provides
operational algorithms through discretization, (b) offers a tractable version amenable to clas-
sical PDE analysis methods as Lyapunov methods. As for the last angle, (c), it confers a sharp
geometrical content to the method and allows to interpret the essential tools of convergence
through classical intuitive geometric ideas. An essential fact about (c) is that functional in-
equalities, as the log-Sobolev inequality, may be seen as Łojasiewicz gradient inequalities. In
our case it means that there exists an exponent γ ∈ (0, 1) such that the slope of (Uβ−minUβ)γ

is bounded away from zero (save at the stationary measure). This reparametrization sharpens
the energy landscape while leaving unchanged level sets: this allows for a direct convergence
analysis of the gradient method (c), see [6] and references therein. In the simulated annealing
case the log-Sobolev inequality of Holley, Kusuoka and Stroock [29] turns out to be an instance
of such an inequality, see [6].

Swarm gradient dynamics The triple-perspective (a)-(b)-(c) we used to describe the strat-
egy of simulated annealing can be generalized to a much larger framework. For this, we adopt
the angle (c) under which we observe that it is natural to consider more general convex func-
tions ϕ than R+ 3 r 7→ r ln(r) in the Boltzmann entropy,

B[ρ] =

∫
M
ρ log ρ d`.
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Referring to the results in [1], we may indeed use a whole family of convex functionals

H[ρ] =

∫
M
ϕ(ρ) d`,

leading to a penalized cost

Uβ[ρ] = β

∫
M
Uρd`+H[ρ]

and to the triplet of “equivalent” minimizing dynamics modeled on (c), (b), (a),

d

dt
ρ(t) = −gradW Uβt [ρ(t)] (1)

d

dt
ρ = βtdiv(ρ∇U) + divρ∇ϕ′(ρ) (2)

dXt = −βt∇U(Xt) dt+
√

2α(ρ)dBt, (3)

with limt→∞ βt = +∞, ϕ, α are some positive functions to be specified, and ρt is the probabili-
ty density of Xt for each t. The fact that a particle interacts with its law may be considered as
a swarm effect, this is why we call these dynamics swarm gradient dynamics3, see Section 4.2
for more insight. Principles and other considerations behind the above dynamics are described
in Sections 2.4, 4.2, and in the Appendix.

The key to convergence: functional inequalities The central question is that of the
convergence properties to a global minimizer. In particular, an essential question is: what
are the assumptions ensuring that the global minimization minM U problem is solved by the
above?

In simulated annealing, the essential tool for convergence is the log-Sobolev inequality of
Holley, Kusuoka and Stroock [29]. We also recalled that this inequality can be advantageously
thought as a Łojasiewicz inequality when considering the problem along the gradient system
angle (c). We follow, therefore, the same protocol but in a reverse way: we formally write
Łojasiewicz inequalities using the Monge-Kantorovich formalism, which reveals, in turn, the
functional inequalities we would like to have at our disposal. This leads us to consider:∫

M
|∇ϕ′(ρ)−∇ϕ′(µβ)|2ρ d` ≥ c(β) Ω

(∫
M
ϕ(ρ)− ϕ(µβ)− ϕ′(µ)(ρ− µβ) d`

)
(4)

where c,Ω : (0,+∞) → R+ are positive functions having specific properties and where µβ is
the unique stationary measure of Uβ . We are at the heart of this paper and our central result:
proving such a functional inequality under adequate assumptions. Our result holds in compact
one-dimensional manifolds for power-like potential functions ϕ. As a consequence, we obtain a
full convergence result of our global methods on compact one-dimensional manifolds. We also
evidence the general mechanisms of global convergence, and for completeness, we sketch the
form that operational algorithms could take (but we postpone their study to another paper).

Apart from the interest of our work for optimization, we believe that it raises important
questions and hopes on the validity domain of the family of inequalities in (4). Positive
outcomes would lead to new results in optimization and in other fields.

3Since β is variable, they are actually time-dependent swarm dynamics.
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Related works The quantitative comparison between entropy-type functional and its time
derivative, often called the entropy production or dissipation, dates back to [39], where it was
exploited through the logarithmic Sobolev inequality of [29]. Using Otto’s formalism, this can
be, in turn, reinterpreted as an approach à la Łojasiewicz [6].

Equation (2) may be seen as a formal generalization of porous media equation and fast
diffusion equations – which corresponds to the case when ϕ is a potential. These have been
studied by several authors using the Monge-Kantorovich framework, see, e.g., Otto [41], and
Carrillo, McCann and Villani [13, 14]. Their asymptotic analysis is through the Bakry-Emery
method [3]: it consists in the second-order time differentiation of the entropy. Contrary to
[29, 39] and our current approach, this approach requires convexity, which makes it unsuitable
for general global minimization.

The article of Iacobelli, Patacchini, and Santambrogio [30] is also connected to our ap-
proach since they consider ultrafast diffusion equations, which corresponds to a negative ex-
ponent m in (7). However, the hypocoercive bounds they obtain do not seem well-suited to
extensions to time-inhomogeneous situations since they do not lead to a differential inequality
satisfied by the entropy-like functionals.

The uniqueness of the stationary measure, i.e., of the minimizer of Uβ , is not a new result,
it can be found in, e.g., Carrillo, Jüngel, Markowich, Toscani and Unterreiter [12]. For the
sake of completeness, we provide a proof in the next section.

Let us conclude by mentioning a few works using nonlinear diffusion where nonlinearities
generally affect the drift coefficient but not the diffusion term as here. In Eberle, Guillin, and
Zimmer [22], the authors use coupling techniques, Carillo, Gvalani, Pavliotis and Schlicht-
ing [11] treat the case of interaction potentials while Delarue and Tse [18] consider chaos
propagation.

2 Presentation of the problem

2.1 A family of relaxations in the probability space P(M)

Consider the nonconvex minimization problem:

Find a global minimizer of U : M → R on a compact Riemannian manifold M . (P)

Denote by d the distance onM , and ` the natural Riemannian measure. Up to a normalization
factor, assume `(M) = 1. Let P(M) be the space of probability measures on M equipped
with the Monge-Kantorovich distance defined through

W2
2 (µ, ν) = inf

{∫
M
d2(x, y) p(dx, dy) : p is a coupling of µ and ν on M2

}
,

for any µ, ν in P(M). The extreme values of U play a special role in our approach, one defines

osc(U) := max
M

U −min
M

U, (5)

which we may assume positive –since otherwise, the problem would be trivial.
We make the following regularity assumptions:

Assumption (A). The manifold M and the function U : M → [0,+∞[ are of class C2.
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The C2 regularity assumptions are simple means to obtain existence results for the gradient
evolution in the Monge-Kantorovich space as in [1, 24]
We embed our initial problem minM U in P(M) and consider the relaxed minimization problem

U [ρ] :=

∫
M
Uρ.

Using the monotonicity of the integral, one easily sees that

min
P(M)

U = min
M

U.

Let β > 0, we introduce a penalized relaxation of U in the metric space (P(M),W2) through

Uβ[ρ] = βU [ρ] +H[ρ] = β

∫
M
Uρd`+H[ρ] (6)

where

H[ρ] =


∫
M
ϕ(ρ) d` if ρ is absolutely continuous w.r.t the Riemannian measure

+∞ otherwise,

with ϕ : [0,+∞) → R+ is strictly convex and C2 on (0,+∞). Up to a multiplicative factor,
the first term in (6) is the classical relaxation of U within the probability space over M . On
the other hand, as in simulated annealing, the second term acts as a penalization forcing the
minimizer to be unique and to have a density with respect to ` (see Lemma 1). As we shall
see below, letting β go to infinity allows one to recover the initial problem.

Remark 1. (a) (Power-like penalizations) A strong focus will be put on the class of power-like
functions. For any m ∈ (0,+∞) \ {1}, define the convex function ϕm : R+ → R+ via

∀ r ≥ 0, ϕm(r) B
rm − 1−m(r − 1)

m(m− 1)
(7)

Let us observe that ϕm is a strictly convex function, C2 on (0,+∞) and such that ϕm(1) = 0,
ϕ′m(1) = 0 and ϕ′′m(1) = 1 for every admissible m. By the Taylor-Lagrange formula, we
deduce that ϕm is always positive, except at 1. The convex function ϕ1 : R+ → R+ defined
by ϕ1(r) := r ln(r)− (r−1) is recovered as the limit of ϕm when m goes to 1 and corresponds
to the Boltzmann entropy. Hereafter, we will in particular consider functions ϕ that are
constructed by gluing together two different functions ϕm at 1.
(b) (Regularity of the penalization) Observe as well, from [1, Theorem 9.3.9, p.212] and [1,
Proposition 9.3.2, p.210], that the function H is lower for the Monge-Kantorovich distance,
and geodesically convex in P(M).

The approach we adopt is through the one-parameter family of problems

val(Pβ) := inf
P(M)

Uβ (Pβ)

where the parameter β > 0 is the inverse of a penalization parameter or the inverse of “the
temperature” according to the simulated annealing literature. It ultimately tends to ∞, and
one has an elementary but important fact:
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Proposition 1 (A global optimization principle). Assume (A) and that ϕ : [0,+∞)→ R+ is
strictly convex and C2 on (0,+∞). Then

(i) lim
β→+∞

1

β
val(Pβ) = min

M
U,

(ii) if µβ is a sequence of solutions to (Pβ), the weak* limit points of µβ have a support
concentrated on the set of minimizers of U

Proof. As a first observation, it is clear that

min
P(M)

∫
M
Uρ = min

M
U.

Fix ε > 0 and choose ρε to be an ε-minimizer of U [ρ] =
∫
M Uρ. The above observation yields

U [ρε] ≤ minM U + ε. Since domH contains smooth densities, one can also assume that H(ρε)
is finite. Take β > 0 and let µβ,ε be an ε-solution to (Pβ), that is

1

β
Uβ[µβ,ε] = U [µβ,ε] + 1/βH[µβ,ε] ≤ U(ρ) + 1/βH[ρ] + ε

for all ρ. Thus choosing ρ = ρε yields

1

β
Uβ[µβ,ε] ≤ min

M
U + 1/βH[ρε] + 2ε.

Letting β goes to infinity yields

lim sup
β→∞

1

β
Uβ[µβ,ε] ≤ min

M
U + 2ε.

Whence lim sup
β→∞,ε→0

1

β
Uβ[µβ,ε] ≤ min

M
U . Since Uβ ≥ minM U by positivity of ϕ, (i) follows

readily.
Let us prove (ii). Let ρ be a limit point of µβ for the weak* topology. Since U is continuous, its
mixed extension U is continuous for the weak* topology and thus limβ→∞ U [µβ] = U [ρ]. On the
other hand, by positivity of ϕ, one has U ≤ 1

βUβ , thus (i) gives lim supβ→∞ U [µβ] ≤ minM U
whence U [ρ] ≤ minM U and (ii) follows.

Observe that
gap(β) =

1

β
inf
P(M)

Uβ −min
M

U (8)

tends to zero when β tends to +∞ by the previous result. The quantity gap(β) measures the
global approximation abilities of the problem (Pβ) with respect to the initial problem minM U .

2.2 Variational considerations and stationary measures

Let us denote by 〈·, ·〉x the Riemannian metric on the tangent at x to M and | · |x the
corresponding norm. We generally omit the dependence in x.

Let us analyze the first-order conditions for the above problem (Pβ) through the lenses
of the Monge-Kantorovich metric. We shall freely use the definition of Monge-Kantorovich
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subgradients and related objects. As they are only central to our understanding but not to
our proofs, we refer to [1] for details and to the Appendix for some elementary considerations.
The subgradient of Uβ with respect to the Monge-Kantorovich metric has a domain contained
in L1(M) and is formally given by

gradW Uβ [ρ] = −div(ρ(β∇U +∇ϕ′(ρ)))

for any admissible ρ in L1(M). Stationary solutions of (2), with βt ≡ β, are thus probability
densities µ solution to

div(µ(β∇U +∇ϕ′(µ))) = 0, (9)

which is to be understood in the standard weak sense. By integration by parts, we have for
f ∈ C2(M), ∫

M
div(µ∇ϕ′(µ))f d` = −

∫
M

〈
µ∇ϕ′(µ),∇f

〉
d`

= −
∫
M
µϕ′′(µ) 〈∇µ,∇f〉 d`

= −
∫
M
〈∇(µα(µ)),∇f〉 d`

=

∫
M
µα(µ)4f d`

=

∫
{µ>0}

α(µ)4f µd`

where the function α : (0,+∞)→ R+ is given by

∀ r > 0, α(r) B
1

r

∫ r

0
sϕ′′(s) ds.

On the other hand, we have∫
M

div(µβ∇U)f d` = −
∫
M
〈β∇U,∇f〉µd`.

Finally, µ is a stationary solution to (9) if

∀ f ∈ C2(M),

∫
{µ>0}

Lµ[f ]µd` = 0

with

Lµ[f ] = α(µ)4f − 〈β∇U,∇f〉 .

Remark 2 (Infinitesimal generator). Observe that the choice ϕ = ϕ1 leads to α(r) = 1, that
is to

Lµ[f ] = 4f − 〈β∇U,∇f〉 .

This is the infinitesimal generator of the classical (overdamped) Langevin SDE. Up to a
multiplicative constant, this is the only choice for the operator Lµ to be independent of µ.
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Let us apply formally the above relationship to the function f = βU + ϕ′(µ), assuming
here that the stationary density µ is smooth enough. We obtain4∫

{µ>0}
|∇(βU + ϕ′(µ))|2µd` = −

∫
{µ>0}

Lµ[βU + ϕ′(µ)]µd` (10)

= 0,

where the last equality comes from the stationarity of µ. Therefore, βU + ϕ′(µ) is constant
on every connected component of the set {µ > 0}. We analyze this condition in the next
paragraph.

2.3 Uniqueness of the stationary density

The main ingredient to study the uniqueness of the stationary density is the relation

βU + ϕ′(µ) = c, (11)

where the constant c depends on the considered connected component of the support {µ > 0}.
Define I B ϕ′((0,+∞)) and denote by ψ : I → (0,+∞) the inverse of ϕ′.

Lemma 1 (Existence and uniqueness of the minimizer of (Pβ)). Assume ϕ′(0) = −∞, then
there exists an unique stationary density µβ solution to (9). Moreover,

(i) µβ is positive everywhere on M and is characterized by the relation

µβ = ψ(c∗ − βU), (12)

where c∗ is a normalization parameter characterized by the condition∫
M
ψ(c∗ − βU) d` = 1.

(ii) µβ is the global minimizer of Uβ.

Proof. Let us start with (i) and by showing that a stationary density µ is everywhere positive.
Towards a contradiction, assume that the set {µ = 0} is nonempty and let M1 be a connected
component of the open set {µ > 0} with ∂M1 6= ∅. Let (xn)n∈N be a sequence of elements
of M1 converging to some point in the boundary ∂M1. According to (11), we have for every
n ∈ N

βU(xn) + ϕ′(µ(xn)) = cM1

where the left-hand side term converges to −∞ which is absurd. Therefore, M1 = M and
equation (11) is valid everywhere on M . Set c B cM1 . Being strictly convex, the function ϕ′

is one-to-one and onto between (0,+∞), and by definition of ψ, equation (11) rewrites:

µ = ψ(c∗ − βU) (13)
4One may observe that the first term in (10) is the squared norm of the Monge-Kantorovich gradient of Uβ

evaluated at µ.
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As µ is a density function, we must have∫
M
ψ(c∗ − βU) d` = 1. (14)

Since ψ is strictly increasing and satisfies liminf I ψ = lim−∞ ψ = 0 and limsup I ψ = +∞, there
is a unique value c∗ ∈ R that satisfies equation (14). We have

µ = ψ(c∗ − βU)

which ends not only the proof of the uniqueness of the stationary density µ but also gives its
existence and its explicit form. To see (ii) and that µ is the global minimizer, we observe that

Uβ[ρ]− Uβ[µ] =

∫
M

(ϕ(ρ)− ϕ(µ)) d`+

∫
M
βU (ρ− µ) d`

=

∫
M

(ϕ(ρ)− ϕ(µ)) d`+

∫
M

(c∗ − ϕ′(µ)) (ρ− µ) d`

=

∫
M

(
ϕ(ρ)− ϕ(µ)− ϕ′(µ)

)
(ρ− µ) d`,

which is positive whenever ρ 6= µ by strict convexity of ϕ.

When no confusion can occur we simply write µ for µβ . We gather the assumptions we
need regarding ϕ within

Assumption (B). ϕ : [0,+∞) → R is convex, twice differentiable on (0,+∞) with ϕ′′ > 0,
and satisfies ϕ′(0) = −∞.

2.4 Global minimization dynamics

Minimizing dynamics We are now in a position to provide dynamical systems meant to
solve the problem (P). Inspired by Holley, Kusuoka, and Stroock’s approach to simulated
annealing [29], as it was simplified in [39], and using as well the gradient view provided by
Otto’s formalism (see Appendix), we consider, formally, the gradient system

d

dt
ρ(t) = −gradW Uβt [ρ(t)] a.e. on R+, ρ(0) = ρ0, (15)

where the term βt is a C1 positive time-varying parameter and where we use Newton’s notation,
d
dtρ here, for time derivatives. The initial distribution ρ0 is chosen in the domain of Uβ , that
is in the domain of H. The time-dependent density ρ turns out to satisfy the following partial
differential equation

d

dt
ρ = div(ρ (βt∇U)) + div(ρ(∇ϕ′(ρ))), ρ(0) = ρ0. (16)

The time-varying parameter βt is traditionally interpreted as an inverse of a temperature
which typically cools down, i.e.,

lim
t→∞

βt = +∞ (17)

Here we also interpret this parameter as the inverse of a penalty term echoing the static
formula (6).

10



Remark 3. (a) (Simulated annealing) When ϕ = ϕ1, (16) boils down to the famous simulated
annealing dynamics

d

dt
ρ = βtdiv(ρ∇U) + ∆ρ (18)

which, by a famous “nonconvex” extension of the log-Sobolev inequality, due to Holley, Kusuoka
and Stroock [29], is known to generate measures concentrating on the set of global minimizers
of U whenever the temperature schedule is finely tuned.
(b) (Porous media) Taking U constant and ϕ = ϕm in (16) with m > 0, the dynamic corres-
ponds to the porous media equation

d

dt
ρ = m∆ (ρm) .

The case m > 1 refers to the slow diffusion case while the case m < 1, for which ϕ′(0) = −∞
refers to the fast diffusion situation, (see Vazquez [45] and Otto [41]).

Existence results and evolution equations Following the pioneering work of [1], the
non-autonomous theory for Monge-Kantorovich gradient flows has recently been developed in
[24]. In the line of [24, Theorem 4.4, Theorem 5.4] and the existence results of [30], we assume
that (15) and (16), have a common unique solution curve t 7→ ρ(t) in (P(M),W2), which
satisfies in addition

t 7→ Uβt [ρ(t)] and t 7→ ρ(t) are absolutely continuous, (19)
d

dt
Uβt [ρ(t)] =

∫
M

(ϕ′(ρ) + βtU)
d

dt
ρ d`+

d

dt
βt

∫
M
Uρd`, (20)

where the time derivatives are taken for almost all times.

Functional inequalities Under hypothesis (A), (B) and some extra-assumptions on ϕ
related to the geometry of the penalized cost, we intend to prove that the dynamics (15)-(16)
has global optimizing properties, in the sense that the global cost

Uβt [ρ] =

∫
M

(ϕ(ρ) + βtUρ) d` (21)

evaluated along the trajectory t 7→ ρ(t) given by (15)-(16) should converge to the value of
(P), i.e.,

lim
t→+∞

Uβt [ρ] = val(P) = min
M

U.

As it is customary in the analysis of PDEs the key to convergence is given by “entropy-
energy” or “entropy-production” functional inequalities. In the “gradient or in the optimization
world” , these can often be seen as Łojasiewicz type inequalities, see [6] and references therein.
They connect the cost Uβ to the norm of its gradient ‖gradWUβ‖ and to the constant β:

‖gradWUβ‖2 ≥ c(β) Ω
(
Uβ(ρ)−minUβ

)
, (22)
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where c,Ω : (0,+∞) → R+ are positive functions, with Ω being increasing and null at zero.
Reexpressing Uβ by means of its stationary density (12) gives

Uβ(ρ)− Uβ(µ) =

∫
M
ϕ(ρ)− ϕ(µ) d`+

∫
M
βU (ρ− µ) d`

=

∫
M
ϕ(ρ)− ϕ(µ) d`+

∫
M

(c∗ − ϕ′(µ)) (ρ− µ) d`

=

∫
M

[
ϕ(ρ)− ϕ(µ)− ϕ′(µ) (ρ− µ)

]
d`.

Because ϕ is convex, we obtain Uβ(ρ) ≥ Uβ(µ) thus Uβ(µ) = minUβ .
As a consequence, inequality (22) writes∫

M
|∇ϕ′(ρ)−∇ϕ′(µ)|2ρ d` ≥ c(β) Ω

(∫
M
ϕ(ρ)− ϕ(µ)− ϕ′(µ)(ρ− µ) d`

)
(23)

where c,Ω : (0,+∞) → R+ are positive functions. A typical example is given by the log-
Sobolev inequality of Holley, Kusuoka, and Stroock which can be written as∫

M
|∇ϕ′(ρ)−∇ϕ′(µ)|2ρ d` ≥ CHKS(β)

(∫
M
ϕ(ρ)− ϕ(µ)− ϕ′(µ)(ρ− µ) d`

)
(24)

where ϕ(r) = ϕ1(r) = r ln(r)− r + 1 and

lim
β→+∞

1

β
ln(CHKS(β)) ≥ −osc(U)

(see [29] for the precise description of the l.h.s. in terms of the landscape of U).
When U is convex and ϕ is power-like, one can also recover Gagliardo-Nirenberg inequal-

ities of [19], see [6] for connections with Łojasiewicz inequalities.

Convergence mechanisms for a fixed penalization parameter As previously men-
tioned, we adapt the approach of [39] developed in the Boltzmann entropy case (ϕ = ϕ1) to
our generalized class of relaxations.

Let us provide a first account of the general method through the constant parameter case.
For ρ ∈ P(M) having a density with respect to `, set

I[ρ] = Uβ(ρ)− min
P(M)

Uβ (25)

J [ρ] =

∫
T
|∇ϕ′(ρ)−∇ϕ′(µ)|2ρ d` (26)

where the quantities may take infinite values and where µ is the unique stationary density
(see Lemma 1), so that I[µ] = 0.

At this stage, we do not assume that β > 0 depends on time.

12



By time differentiation, using (19)-(20) and the evolution equation, we obtain

d

dt
I[ρ(t)] =

∫
M
ϕ′(ρ)

d

dt
ρ d`+

∫
βU

d

dt
ρ d`

=

∫
M

(ϕ′(ρ) + βU)
d

dt
ρ d`

=

∫
M

(ϕ′(ρ) + βU)div(ρ(β∇U +∇ϕ′(ρ))) d`

= −
∫
M
∇(ϕ′(ρ) + βU)(β∇U +∇ϕ′(ρ))) ρd`

= −
∫
M
|∇ϕ′(ρ) + β∇U |2 dρ.

Whence, if we have some inequality à la Łojasiewicz like (23) (as for instance the log-Sobolev
inequality of Holley, Kusuoka, and Stroock [29] when ϕ = ϕ1), we derive a differential inequal-
ity for the one-variable function I[ρ],

d

dt
I[ρ(t)] ≤ −c(β) Ω(I[ρ(t)]) (27)

This implies in turn that I[ρ(t)] converges. If this limit was not zero, the fact that Ω is positive
out of 0 would imply, through (27), that the decrease-rate would be perpetually lower than a
negative constant, which is absurd. This allows proving that I[ρ(t)] tends to zero as t→∞.
We thus have proved the first part of:

Theorem 1 (Convergence with a non-vanishing penalty parameter). Assume that (A), (B)
are satisfied, and that there exist c > 0, Ω : R+ → R+ increasing, such that an inequality of
the type ∫

M
|∇ϕ′(ρ)−∇ϕ′(µ)|2ρ d` ≥ cΩ

(∫
M
ϕ(ρ)− ϕ(µ)− ϕ′(µ)(ρ− µ) d`

)
, (28)

holds true whenever ρ is measurable and the left hand side is finite. Then

(i) Uβ[ρ(t)]→ minUβ.

(ii) If moreover Ω(s) = Θ(s2θ) at 0, with θ ∈ (0, 1), then ρ(t) tends to µβ for the Monge-
Kantorovich metric, i.e., for the weak* topology.

Proof. Item (i) is already proved. For (ii), from Ω(s) = Θ(s2θ) holds, we deduce that the lower
semicontinuous function Uβ satisfies a Łojasiewicz inequality as in [6, Theorem 2], so that one
may assert that the curve t 7→ ρ(t) has a finite Monge-Kantorovich length; convergence rates
depending on θ are also available.

What are the conditions for the above inequality (28) to be valid, is a delicate open ques-
tion. The subject of the next section, and the central result of this paper, is to establish such
inequalities for one-dimensional compact manifolds and a family of power-like potentials ϕ.
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3 A functional inequality on the circle

3.1 Main theorem

For m ∈ (0, 1/2), set

∀ r ≥ 0, ϕm,2(r) B

 ϕm(r) if r ∈ (0, 1],

ϕ2(r) = (r−1)2
2 if r ∈ (1,+∞).

(29)

The function ϕm,2 is convex on [0,+∞) and C2 on (0,+∞). The latter property is a conse-
quence of the fact that

ϕm(1) = 0

ϕ′m(1) = 0

ϕ′′m(1) = 1.

Observe also that ϕ′m,2 is concave on (0,+∞) with ϕ′m,2(0) = −∞, so that Lemma 1 applies.
Let us recall that the unique solution of (Pβ) is denoted by µ = µβ and that ψm,2 = [ϕ′m,2]

−1.

This section is devoted to the proof of:

Theorem 2 (A new functional inequality on the circle). Assume that M is the circle T B
R/(LZ) of perimeter L > 0 endowed with its usual Riemannian structure. Then there exists
a constant c(β), depending on µmin and L, such that for any measurable density ρ on T∫

T
|∇ϕ′m,2(ρ)−∇ϕ′m,2(µ)|2ρ d` ≥ c(β) Ω

(∫
T
ϕm,2(ρ)− ϕm,2(µ)− ϕ′m,2(µ)(ρ− µ) d`

)
where, for β large,

c(β) = O

(
β
−3(2−m)
1−2m

)

Ω(r) =


r

3
2 if r ∈ [0, 1)

r
1−2m
2(1−m) if r ≥ 1.

Corollary 1 (An inequality à la Talagrand). Under the assumptions of the previous theorem,
for any measurable density ρ on T,∫

T
ϕm,2(ρ)− ϕm,2(µ)− ϕ′m,2(µ)(ρ− µ) d` ≥ d(β)ω

(
W2(ρ, µ)

)
where d(β) = O

(
β
−3(2−m)
1−2m

)
, and

ω(r) =


8/5 r

5
8 if r ∈ [0, 1)

4(1−m)/(3− 2m) r
3−2m
4(1−m) if r ≥ 1.

(30)
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The rest of this section is devoted to the proof of this theorem (the corollary will follow
easily using a generalization of Otto-Villani theorem [6]). Most of the intermediary results we
provide are valid for a general compact C2 manifold; thus, unless otherwise stated, we assume
that M is arbitrary for the moment. In the remaining subsections of the present section, for
the sake of simplicity, we shall often write ϕ = ϕm,2 and ψm,2 = ψ.

3.2 Some estimates

Let us define the positive quantities

µmin B min
M

µ and µmax B max
M

µ. (31)

Proposition 2 (Bounds for the stationary measure). We have, for any 0 < m < 1,

(1 + (1−m)βosc(U))
1

m−1 ≤ µmin ≤ µmax ≤ βosc(U) + 1.

where we recall that osc(U) = maxM U −minM U .

Proof. The stationary measure µ satisfies for every x ∈ M , µ(x) = ψ(c∗ − βU(x)) for some
real constant c∗ and with β > 0 (recall (13)). Because ψ is nondecreasing , we have

∀x ∈M, ψ(c∗ − βmax
M

U) ≤ µ(x) ≤ ψ(c∗ − βmin
M

U).

Integrating with respect to the probability measure `, we obtain

ψ(c∗ − βmax
M

U) ≤ 1 ≤ ψ(c∗ − βmin
M

U).

Because ϕ′ is nondecreasing and ϕ′(1) = 0, we obtain the following bounds for the constant c∗

βmin
M

U ≤ c∗ ≤ βmax
M

U.

Finally, for every x ∈M , ψ(−βosc(U)) ≤ µ(x) ≤ ψ(βosc(U)). Because βosc(U) ≥ 0, we have
for any m ∈ (0, 1),

(1− (m− 1)βosc(U))
1

m−1 ≤ µmin ≤ µmax ≤ 1 + βosc(U),

which ends the proof.

The following formal observation is essential. When the potential function ϕ is the entropy
function ϕ1, the density of ρ with respect to µ plays a pivotal role in the establishment of the
log-Sobolev inequality (24), see [29]. In our case, the counterpart is the function

ψ(ϕ′(ρ)− ϕ′(µ)).

It is also convenient to use the quantity

g := ϕ′(ρ)− ϕ′(µ) (32)

so that

ρ = ψ(g + ϕ′(µ)). (33)
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An upper bound for the reduced cost I[ρ] This necessitates three steps.

Lemma 3. For any measurable density ρ, we have

ϕ(ρ)− ϕ(µ)− ϕ′(µ)(ρ− µ) ≤ ϕ(ψ(g + ϕ′(µmax)))− ϕ(µmax)− ϕ′(µmax)(ψ(g + ϕ′(µmax))− µmax)

Proof. By definition of g, we have

ϕ(ρ)− ϕ(µ)− ϕ′(µ)(ρ− µ) = ϕ(ψ(g + ϕ′(µ)))− ϕ(µ)− ϕ′(µ)(ψ(g + ϕ′(µ))− µ).

Fix x ∈M and consider the function F defined on (0,+∞) by

∀ r > 0, F (r) B ϕ(ψ(g(x) + ϕ′(r)))− ϕ(r)− ϕ′(r)(ψ(g(x) + ϕ′(r))− r)

To prove the result, it is sufficient to show that F is nondecreasing . For r > 0, we compute

F ′(r) = ϕ′(ψ(g(x) + ϕ′(r)))ψ′(g(x) + ϕ′(r)))ϕ′′(r)− ϕ′(r)− ϕ′′(r)(ψ(g(x) + ϕ′(r))− r)
−ϕ′(r)[ψ′(g(x) + ϕ′(r)))ϕ′′(r)− 1]

=
[
ϕ′(ψ(g(x) + ϕ′(r)))ψ′(g(x) + ϕ′(r))− (ψ(g(x) + ϕ′(r))− r)− ϕ′(r)ψ′(g(x) + ϕ′(r))

]
ϕ′′(r)

=
[
(g(x) + ϕ′(r))ψ′(g(x) + ϕ′(r))− (ψ(g(x) + ϕ′(r))− r)− ϕ′(r)ψ′(g(x) + ϕ′(r))

]
ϕ′′(r)

=
[
g(x)ψ′(g(x) + ϕ′(r))− (ψ(g(x) + ϕ′(r))− r)

]
ϕ′′(r)

=
[
g(x)ψ′(ϕ′(s))− (s− r)

]
ϕ′′(r)

where we set s B ψ(g(x) + ϕ′(r)) in the last equality. Because ψ = (ϕ′)−1, we have

ψ′(ϕ′(s)) =
1

ϕ′′(s)

and we get for r > 0,

F ′(r) = [g(x)− ϕ′′(s)(s− r)]ϕ
′′(r)

ϕ′′(s)

= [ϕ′(s)− ϕ′(r)− ϕ′′(s)(s− r)]ϕ
′′(r)

ϕ′′(s)
.

Because, the function ϕ is convex and ϕ′ is concave, we have ϕ′′(r)/ϕ′′(s) is positive and the
quantity ϕ′(s)−ϕ′(r)−ϕ′′(s)(s− r) is nonnegative, so that F ′ ≥ 0 on (0,+∞) and F is thus
nondecreasing .

We define further ξmax(s) B ψ(s+ϕ′(µmax)) for any real number s and set ρmax B ξmax(g).
Therefore, Lemma 3 can be rewritten

ϕ(ρ)− ϕ(µ)− ϕ′(µ)(ρ− µ) ≤ ϕ(ρmax)− ϕ(µmax)− ϕ′(µmax)(ρmax − µmax). (34)

We are in position to give an upper bound for I[ρ].

Lemma 4 (An upper bound for the reduced cost I). For every ρ ∈ P(M) such that g ∈ L2(`),
we have

I[ρ] ≤
∫
M
g2(x) `(dx).
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Proof. Because ϕ is convex, we have

ϕ(µ)− ϕ(ρ)− ϕ′(ρ)(µ− ρ) ≥ 0

and

ϕ(µmax)− ϕ(ρmax)− ϕ′(ρmax)(µmax − ρmax) ≥ 0.

Adding the latter positive quantity to the right-hand-side of equation (34) gives

0 ≤ ϕ(ρ)− ϕ(µ)− ϕ′(µ)(ρ− µ) ≤ (ϕ′(ρmax)− ϕ′(µmax))(ρmax − µmax)

= g(ξmax(g)− ξmax(0)).

Recalling that ϕ has been constructed by gluing ϕm and ϕ2 at 1 (see equation (29)), we have
that ψ = (ϕ′)−1 is convex and increasing with 0 ≤ ψ′ ≤ 1. Therefore, ξmax is convex and we
have

ψ′(ϕ′(µmax))g ≤ ξmax(g)− ξmax(0) ≤ ψ′(g + ϕ′(µmax))g.

Whence,
|ξmax(g)− ξmax(0)| ≤ |g|,

which gives the desired result.

A lower bound for the squared Monge-Kantorovich gradient J [ρ] Once more several
steps are necessary to obtain a bound. Let us define the function θ : R→ R via

∀ r ∈ R, θ(r) =

∫ r

0

√
ψ(s+ ϕ′(µmin)) ds. (35)

We observe first that:

Lemma 5 (Lower bound for θ). Assume 0 < m < 1
2 . For any r ∈ R,

|θ(r)| ≥ 2

3

(
min

(
1

(C0 + (1−m))
3
2
−η
,
√
ψ′(ϕ′(µmin))

))
min(|r|3/2, |r|η),

where C0 = 1− (1−m)ϕ′(µmin) and η := 1−2m
2(1−m) ∈ (0, 1/2).

Proof. Assume first that r > 0. Because ψ is convex, we have for every s,

ψ(s+ ϕ′(µmin)) ≥ µmin + ψ′(ϕ′(µmin))s.

But µmin > 0 thus

θ(r) ≥
√
ψ′(ϕ′(µmin))

∫ r

0

√
s ds

=
2

3

√
ψ′(ϕ′(µmin))r3/2.

Now, assume that r < 0. By a change of variables, t = −s and τ = −r > 0, we get

−θ(r) =

∫ τ

0

√
ψ(ϕ′(µmin)− t) dt.
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Remembering that ψ is both convex and positive, we get, for all t,

ψ(ϕ′(µmin)− t) ≥ ψ′(ϕ′(µmin)− τ)(τ − t).

We deduce that
−θ(r) ≥ 2

3

√
ψ′(ϕ′(µmin)− τ)r3/2.

We shall now use the explicit form of the derivative of ψ given by

ψ′(τ) B

 (1 + (m− 1)τ)
2−m
m−1 if τ ∈ (−∞, 0)

1 if τ ∈ (0,+∞)
(36)

By definition of µmin, we have µmin < 1 whenever U is not constant over M . Therefore
ϕ′(µmin) ≤ 0 < τ , so that√

ψ′(ϕ′(µmin)− τ) =
(
1− (1−m)ϕ′(µmin) + (1−m)τ

) 2−m
2(m−1) .

Set
C0 = 1− (1−m)ϕ′(µmin), α =

2−m
2(1−m)

∈ (1, 3/2)

and
η = 3/2− α = (3(1−m)− (2−m))/(2(1−m)) = (1− 2m)/2(1−m).

Therefore,

−θ(r) ≥ 2

3

τ3/2

(C0 + (1−m)τ)α

=
2

3

(
τ3/2

(C0 + (1−m)τ)α
10<τ≤1 +

τ3/2

(C0 + (1−m)τ)α
1τ>1

)

≥ 2

3

(
τ3/2

(C0 + (1−m))α
10<τ≤1 +

τ3/2

(C0τ + (1−m)τ)α
1τ>1

)
≥ 2

3

1

(C0 + (1−m))α
min(τ3/2, τη).

Remark 4 (On constants). For reasons that will appear later during the study of our global
optimization method, it is useful to have a compact expression for the inverse of the constant
2/(3(C0 + (1−m))α) appearing in Lemma 5. Using the equality ψ′(ϕ′(µmin)) = 1/ϕ′′(µmin),
this inverse writes

C1(µmin) :=
3

2
max

[
(1 + (1−m)(1− ϕ′(µmin)))

2−m
2(1−m) ,

√
ϕ′′(µmin)

]
> 1.

Observe that, as a function of µmin, C1 is decreasing and therefore is bounded above by

3

2
max

{[
1 + (1−m)

[
1− ϕ′

(
[1 + (1−m)βosc(U)]1/(m−1)

)]] 2−m
2(1−m)

;√
ϕ′′((1 + (1−m)βosc(U))1/(m−1))

}
,
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according to Proposition 2. When β goes to +∞, this bound behaves as O
(
β

2−m
2(1−m)

)
. Finally,

note that
C1(µmin)|θ(r)| ≥ min(|r|3/2, |r|η) for all r. (37)

We now turn to the desired lower bound for the squared Monge-Kantorovich gradient J [ρ].

Lemma 6 (Lower bound for the squared Monge-Kantorovich gradient). We have

J [ρ] =

∫
M
|∇ϕ′(ρ)−∇ϕ′(µ)|2ρ d` ≥

∫
M
|∇θ(g)|2 d`.

Proof. Taking into account that both ϕ′ and ψ are nondecreasing functions, we get

ρ = ψ(g + ϕ′(µ)) ≥ ψ(g + ϕ′(µmin))

= (θ′(g))2.

It ensues ∫
M
|∇ϕ′(ρ)−∇ϕ′(µ)|2ρ d` =

∫
M
|∇g|2ρ d`

≥
∫
M
|∇g|2(θ′(g))2 d`

=

∫
M
|θ′(g)∇g|2 d`

=

∫
M
|∇θ(g)|2 d`

3.3 Proof of Theorem 2 and its corollary

Assume for the moment that M is arbitrary.
In the previous section, we have proved two inequalities:

I[ρ] ≤
∫
M
g2 d` and J [ρ] ≥

∫
M
|∇θ(g)|2 d`.

To reach a conclusion, it suffices to relate the quantities∫
M
g2 d` and

∫
M
|∇θ(g)|2 d`.

Since η ∈ (0, 1/2), Lemma 5 and (37) (see Remark 4) gives

C1(µmin)|θ(r)| ≥ |r|3/2, when |r| < 1 and C1(µmin)|θ(r)| ≥ |r|η otherwise.

When β is large enough C1(µmin) ≥ 1, we may thus write

g2 ≤ C2(µmin) max(|h|
4
3 , |h|

2
η ),
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where we have set h := θ(g) and C2 = C
2
η

1 (µmin). Whence, taking the supremum and inte-
grating yields ∫

M
g2 d` ≤ C2(µmin) max(||h||

4
3∞, ||h||

2
η
∞).

Recall that the function Ω : R+ → R+ is such that

Ω(r) B

{
r

3
2 if r ∈ [0, 1)

rη if r ≥ 1.

Let us prove that the increasing function Ω satisfies the inequality

∀x > 1, ∀y > 0, Ω(xy) ≤ x
3
2 Ω(y). (38)

Let us consider two cases:
First case: y ≥ 1. Because x > 1, this implies xy > 1. Thus,

Ω(xy) = (xy)η = xηΩ(y) ≤ x
3
2 Ω(y).

Second case: y < 1. When xy > 1, the inequality follows as above. On the other hand, if
xy < 1, we have

Ω(xy) = (xy)
3
2 = x

3
2 Ω(y).

Therefore, by using the fact that Ω is increasing and satisfies (38), we get

Ω(I[ρ]) ≤ Ω

(∫
M
g2 d`

)
≤ (C2(µmin))

3
2 ||h||2∞.

To end the proof, it remains to compare

||h||2∞ and
∫
M
|∇h|2 d`.

It is only at this point that we use the assumption about the dimension of M .
Let us start first by an observation regarding regularity and prove that if J is finite then

ρ must be continuous. Observe first that for γ > 0 and any measurable ρ, we have

J (ρ) =

∫
M
|∇ϕ′(ρ)−∇ϕ′(µ)|2ρ d` (39)

=

∫
M
|∇ϕ′(ρ)|2ρ d`+

∫
M
|∇ϕ′(µ)|2 d`− 2

∫
M
∇ϕ′(µ)∇ϕ′(ρ)ρ d` (40)

≥ 1

2

∫
M
|∇ϕ′(ρ)|2ρ d`−

∫
M
|∇ϕ′(µ)|2ρ d` (41)

where we have used 2|∇ϕ′(µ)∇ϕ′(µ)| ≤ 2|∇ϕ′(µ)|2 + 1
2 |∇ϕ

′(ρ)|2. Setting

v(r) =

∫ r

1

√
sϕ′(s) ds, for r > 0
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we see that ∫
M
|∇ϕ′(ρ)|2ρ d` =

∫
M
|∇v(ρ)|2 d`.

Thus the finiteness of J [ρ] implies that
∫
M |∇v(ρ)|2 d` is finite too.

Assuming now that dimM = 1, standard results ensures that v(ρ) is absolutely continuous
and thus so is ρ (so that we have furthermore

∫
(v(ρ))2 d` < +∞ and v(ρ) belongs to the

Sobolev space W 1,2(M)).
Observe that we also obtain that ρ is positive everywhere. Since the function ρ − µ is

continuous and satisfies
∫
M ρ − µd` = 0, there exists at least one point x0 in M , such that

ρ(x0) − µ(x0) = 0. It follows from (32) that g(x0) = 0 and from (35) that h(x0) = 0 (where
h = θ(g)). For any x ∈ R/(LZ), denote by [x0, x] the shortest segment in R/(LZ) with
boundary points {x0, x}. Since h is absolutely continuous:

h2(x) =

(∫
[x0,x]

h′(y) `(dy)

)2

≤ `([x0, x])

∫
[x0,x]

(h′(y))2 `(dy)

≤ L

2

∫
M
|∇h|2 d`.

Gathering the previous results gives

J [ρ] ≥ c(β)Ω(I[ρ]),

with
c(β) =

2

L
C2(µmin)−

3
2 (42)

Since 2/η = 4(1 − m)/(1 − 2m) and for β large enough, C1 = O
(
β

2−m
2(1−m)

)
, one has C2 =

O

(
β

2(2−m)
1−2m

)
and

c(β) = O

(
β
−3(2−m)
1−2m

)
.

Let us conclude with the proof of Corollary 1. The key is to observe that 1/
√

Ω is inte-
grable at 0, so that the inequality is a Łojasiewicz gradient inequality. It suffices to use the
generalization of Otto-Villani theorem provided in [6, Theorem 1(i)].

4 Time-dependent swarm gradient methods

Time dependence is key to obtain convergence to the actual global minimum: the penalty
schedule β is tuned so that the exploratory forces embodied in H are sufficiently active at the
beginning of the process while progressively loosing their influence on the dynamics as global
goals have been achieved. In this second phase, as the diffusion process generated by H fades
away, the gradient dynamics of U dominates and somehow terminates the process. As in the
famous simulated annealing method, the presence of a functional inequality is fundamental
for the dynamical system to converge.

In the remainder, unless otherwise stated we use a general potential ϕ.
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4.1 Main convergence results

Convergence under a functional inequality The following general theorem shows the
global optimization properties of (16), provided that a functional inequality is available (as in
simulated annealing or as in Theorem 4 below).

Theorem 3 (Global optimization under a weak functional inequality). Assume the set of
hypothesis A, B are met, and that β, U, satisfy a functional inequality of the type:∫

M
|∇ϕ′(ρ)−∇ϕ′(µ)|2ρ d` ≥ c(β) Ω

(∫
M
ϕ(ρ)− ϕ(µ)− ϕ′(µ)(ρ− µ) d`

)
where c,Ω : (0,+∞)→ R are positive with Ω being nondecreasing. If the penalization schedule
t 7→ β(t) satisfies

lim
t→+∞

β̇(t)/c(β(t)) = 0 (43)∫ +∞

1
c(β(t)) dt = +∞ (44)

then
U [ρ(t)]−min

M
U =

∫
M
Uρ(t)−min

M
U ≤ gap(βt) + o(β−1t ), (45)

where the quantity gap(βt)→ 0 was defined in (8).

Remark 5 (Existence of a schedule). Assume that the function c satisfies for large β > 0,

c(β) = O(β−γ)

for some exponent γ > 0 (as it is the case in Proposition 2). Then for any α ∈ (0, 1/(1 + γ)),
any penalization schedule t 7→ β(t) such that for large enough t > 0, β(t) = tα satisfies the
assumptions of the convergence theorem, as it is readily checked.

Proof of Theorem 3

Proof. Recall that the evolution equation (16) writes

∀ t ≥ 0,
d

dt
ρ(t) = div(ρ(βt∇U +∇ϕ′(ρ))).

In view of (12), the curve of stationary measures νt B µβt , satisfies, for each fixed t

βt∇U +∇ϕ′(νt) = 0. (46)

The functionals I and J used in Section 2.4 are adapted to the time-inhomogeneous case as
follows

I[t, ρ] B

∫
M
ϕ(ρ) d`+

∫
M
βtU ρd`−

(∫
M
ϕ(νt) d`+

∫
M
βtU νt d`

)
,

and
J [t, ρ] =

∫
M
|∇ϕ′(ρ)−∇ϕ′(νt)|2ρ d`,
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for any admissible ρ and time t ≥ 0. Using regularity results (19)-(20), the differentiation of
the objective along the evolution curve t 7→ ρ of (16) yields

d

dt
I[t, ρ(t)] =

∫
ϕ′(ρ)

d

dt
ρ d`+

∫
βtU

d

dt
ρ d`+

d

dt
βt

∫
M
U(ρ− νt) d`

=

∫
(ϕ′(ρ) + βtU)div(ρ(βt∇U +∇ϕ′(ρ))) d`+ β̇t

∫
M
U(ρ− νt) d`

= −
∫
∇(ϕ′(ρ) + βtU)(βt∇U +∇ϕ′(ρ))) ρd`+ β̇t

∫
M
U(ρ− νt) d`

= −
∫
M
|∇ϕ′(ρ) + βt∇U |2 ρd`+ β̇t

∫
M
U(ρ− νt) d`

= −J [t, ρ(t)] + β̇t

∫
M
U(ρ− νt) d`,

where we have used (46) in the first equality, the evolution equation in the second-one, and
finally integration by parts. Let us set v(t) = I(t, ρ). Using the functional inequality gives

v̇(t) ≤ −c(βt)Ω(v(t)) + β̇t

∫
M
U(ρ− νt) d`.

To give an upper bound of the second term, we write∣∣∣∣β̇t ∫
M
U(ρ− νt) d`

∣∣∣∣ =

∣∣∣∣β̇t(∫
M
Uρd`−

∫
M
Uνt d`

)∣∣∣∣ ≤ osc(U)
∣∣∣β̇t∣∣∣ ,

where the last inequality uses that ρ and νt are probability densities on M . Finally, we obtain

v̇(t) ≤ −c(βt)Ω(v(t)) + osc(U)
∣∣∣β̇t∣∣∣ ,

We are thus led to consider differential inequalities of the type

v̇ ≤ −c(β)Ω(v) + δ
∣∣∣β̇∣∣∣

where v : R+ → R+ is a nonnegative function, d > 0 is a positive constant and Ω is an
nondecreasing function taking positive values on (0,+∞).

Our goal is now to give conditions on the inverse temperature scheme β : R+ → (0,+∞)
ensuring that v converges to zero for large times:

Proposition 7 (Schedule conditions). Assume that for large times, (43) and (44) hold, then

lim
t→+∞

v(t) = 0.

The proof of Proposition 7 is based on the two following observations.

Lemma 8. Under the assumptions of Proposition 7, we have

lim inf
t→+∞

v(t) = 0.
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Proof. Towards a contradiction assume that there exist ε > 0 and T0 ≥ 0 such that v(t) ≥ ε
for all t ≥ T0. Then, Ω being nondecreasing,

∀ t ≥ T0, v̇(t) ≤ −c(β(t))Ω(ε) + δ
∣∣∣β̇(t)

∣∣∣ .
From the first condition (43), there exists T1 ≥ T0 such that

∀ t ≥ T1,
∣∣∣β̇(t)

∣∣∣ ≤ 1

2
c(β(t))Ω(ε)

and thus

∀ t ≥ T1, v̇(t) ≤ −1

2
c(β(t))Ω(ε).

This implies

∀ t ≥ T1, v(t) ≤ v(T1)−
1

2
Ω(ε)

∫ t

T1

c(β(s)) ds,

so letting t go to infinity, due to the second condition (44), limt→+∞ v(t) = −∞, in contra-
diction with the nonnegativity of v.

Our second ingredient is:

Lemma 9. Under the assumptions of Proposition 7, fix ε > 0. Then there exists T ≥ 0, such
that

∀ t ≥ T,
(
v(t) = ε ⇒ v̇(t) < 0

)
.

Proof. Indeed, consider

T B inf

{
τ ≥ 0 : ∀ t ≥ τ, −1

2
c(β(t))Ω(ε) + δ

∣∣∣β̇(t)
∣∣∣ ≤ 0

}
which is finite by assumption (43). Proceeding as in Lemma 8, for any t ≥ T such that
v(t) = ε, we may assert that

v̇(t) ≤ −1

2
c(β(t))Ω(ε) < 0.

The proof of Proposition 7 is as follows: by Lemma 8, for any arbitrary small level ε > 0,
v will always go below ε at some point, but by Lemma 9 there exists a time T after which it
will no longer be able to cross it upward. Whence v must be below ε for large times. This
concludes the proof of Proposition 7.

Let us now come back to the proof of Theorem 3: since v(t) tends to zero, we have for all
ε > 0 a T0 such that

I[t, ρ] B

∫
M
ϕ(ρ) d`+

∫
M
βtU ρd`−

(∫
M
ϕ(νt) d`+

∫
M
βtU νt d`

)
≤ ε
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that is ∫
M
U ρd`−

∫
M
U νt d` ≤ β−1t

(∫
M
ϕ(νt) d`−

∫
M
ϕ(ρ) d`+ ε

)
which implies in turn∫

M
U ρd`−min

M
U ≤ β−1t

(∫
M
ϕ(νt) d`+ ε

)
+

(∫
M
U νt d`−min

M
U

)
≤ gap(βt) + εβ−1t .

The value of ε being arbitrary, the results follows.

One-dimensional global optimization We may now combine Theorem 3 with the func-
tional inequality we obtained previously in Theorem 2.

Theorem 4 (Global optimization by swarm gradient in dimension 1). Assume that M is the
circle T B R/(LZ) endowed with its usual Riemannian structure, that the function ϕ is as in
(29), i.e., ϕ = ϕm,2 and that the schedule is given by

β(t) = kt1/γ , with k > 0 and γ = 3(2−m)
1−2m ∈ [6,+∞).

Then
lim
t→∞
U [ρ(t)] = min

M
U (47)

Proof. Theorem 2 provides a functional inequality as required by Theorem 3. From this
inequality we may assume that c(β) = κβ−γ for some κ > 0. Now, using Remark 5, we choose
β(t) = c−1(t) = κ−1t

1
γ . This is the choice made by assumption provided that k = κ−1. One

easily checks that the assumptions of Theorem 3 are satisfied, hence the result.

4.2 A stochastic view on the dynamics: particles swarm optimization

The time discretization of Langevin diffusion and simulated annealing has a long history, see,
e.g., [27, 8, 16, 21, 10]. It has experienced a revival with the advent of machine learning applica-
tions and the necessity of developing stochastic optimization algorithms with global minimiza-
tion properties, see, for instance, [42, 46] for stochastic gradient descent (SGD) and variance
reduction techniques, or [26] for momentum-based "acceleration" methods with Bayesian sam-
pling methods. In this last section, we do not delve into the details of such a discretization
process, but we nevertheless outline a possible approach for the swarm gradient dynamics. It
will be properly developed in future works. It relies on the diffusion process associated with
the evolution equation

∀ t ≥ 0,
d

dt
ρ = div(ρ(βt∇U +∇ϕ′(ρ))). (48)

To evidence this link, let us use the formal integration by parts presented in Section 2.2 to
obtain at any time t ≥ 0 and for every f ∈ C∞(M),∫

{ρt>0}
Lt,ρ[f ] ρtd` =

∫
M
fdiv(ρ(βt∇U +∇ϕ′(ρ))) d`
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where

Lt,ρ[f ] = α(ρ)4f − 〈βt∇U,∇f〉 (49)

with α : (0,+∞)→ R+ given by

∀ r > 0, α(r) B
1

r

∫ r

0
sϕ′′(s) ds.

It is then natural to associate to equation (48) a Markov process (Xt)t≥0 whose infinitesimal
generator is given by (49) and whose law has density ρ(t) for all t ≥ 0. Due to the dependence
of the evolution on the density, such a Markov process is said to be nonlinear. When M is a
flat torus of dimension d, consider the stochastic differential equation

Xt = X0 −
∫ t

0
βs∇U(Xs) ds+

∫ t

0

√
α(ρ(Xs)) dBs, (50)

where (Bs)s≥0 is a Brownian motion of dimension d. If (X, ρ) is a solution of the stochastic
differential equation (50) then an application of the Itô formula shows that ρ is a solution of
equation (48). This observation can be extended to any compact Riemannian manifold.

Two particular choices for which the existence of (X, ρ) has been established in the litera-
ture are

(i) ϕ(ρ) = ρ log(ρ), we have α ≡ 1, so Lt,ρ does not depend on ρ and is the Langevin
generator 4 · −βt 〈∇U,∇·〉. The existence and uniqueness of a strong solution to the
extension of (50) on a compact Riemannian is well-known, as soon as ∇U is Lipschitz,
which is true if U is smooth.

(ii) ϕ(ρ) = ρm which corresponds to the equation of porous media. On R, the existence and
uniqueness of a strong solution to (50) is proven by Benachour, Chassaing, Roynette
and Vallois [5] (see Belaribi and Russo [4] for more general functions ϕ).

The main difficulty in investigating the existence and uniqueness of (50) is the presence of
the density ρs. It can be relaxed if it could be replaced by integrals of smooth functions with
respect to ρs(x) `(dx). It leads us to consider convolutions of ρs with respect to some smooth
kernels, as those traditionally used in statistics for density estimation, cf. e.g. Silverman [43].
In our geometric setting, it seems natural to resort to the heat kernel (associated to the
Laplace-Beltrami operator). To avoid the introduction of further notation, let us just consider
the case of a flat torus M = (R/Z)d, endowed with its usual Riemannian structure. Let
K : (R/Z)d → R+ be a smooth function with support in [−1/4, 1/4]d (seen as a subset of
(R/Z)d) and such that

∫
M K d` = 1. For any probability density ρ onM and h ∈ (0, 1), which

is a bandwidth parameter, set

∀ x ∈M, ρh(x) B h−d
∫
M
K((x− y)/h) ρ(y)`(dy). (51)

When h is small, ρh is an approximation of ρ. Replacing in (50), ρs by ρh,s, we end up
with the stochastic differential equation

Xt = X0 −
∫ t

0
βs∇U(Xs) ds+

∫ t

0

√
α(ρh(Xs)) dBs, (52)
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which is simpler to investigate, taking into account the usual mean field theory (see for instance
Del Moral [17]).

Furthermore, (50) admits natural particles approximations. Indeed, (51) can be extended
to any probability measure π on M , by replacing ρ(y)`(dy) by π(dy). In particular, it makes
sense for the empirical measure of N particles, which is a crucial feature for particle approxi-
mations. More precisely, consider a system ofN particles, X1, X2, ..., XN whose joint evolution
is described by the stochastic differential equations,

∀ n ∈ JNK, dXn(t) = −βt∇U(Xn(t)) +
√
α(ρN,h(Xn(t))) dBn(t) (53)

where the (Bn(t))t≥0, for n ∈ JNK, are independent Brownian motions of dimension d, and
where

∀ x ∈M, ρN,h(x) B
1

N

N∑
n=1

1

h
K

(
x−Xn(t)

h

)
namely ρN,h is given by (51) when ρ is replaced by the empirical measure

ρN (t) B
1

N

N∑
n=1

δXn(t)

Resorting to mean field theory and chaos propagation, when N tends to infinity, the
random evolution (ρN (t))t≥0 converges in probability toward the dynamical system (ρ(t))t≥0
(for related initial conditions), the law of (X1(t))t≥0 converges toward that of (Xt)t≥0, solution
of (52), and the trajectories of any fixed finite number of particles become asymptotically
independent.

Putting together these observations, we believe that in addition to (βt)t≥0, schemes (ht)t≥0
and (Nt)t≥0 can be found, with limt→+∞ ht = 0 and limt→+∞Nt =∞, so that for large times
t, the corresponding empirical measures ρNt concentrate around the set of global minima of
U . There are several ways to increase the number of particles, the most natural one might
be to duplicate some of the current particles –but it is also possible to make them appear in
independent random positions.

This procedure would provide a new stochastic algorithm for global minimization. At
least up to the simulation of particle systems such as (53), but this can be done through the
traditional Euler-Maruyama scheme.

5 On swarm gradient algorithms vs. simulated annealing

At the current stage of our understanding, we are not able to properly compare the theoretical
or practical performances of both approaches. We merely provide some thoughts in that
direction. One of the motivations of our study was to use approximating particles in order
to improve the global knowledge of the energy landscape, with the hope that a swarm of
interacting particles might do better than a swarm of independent ones (as in simulated
annealing where particles follow simulated annealing dynamics with independent Brownian
motions).

What follows is therefore informal: it is only meant to illustrate through rough approxi-
mations and simple dynamics that interacting swarm methods may be more advantageous.
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Exit times of swarm methods: interacting particles vs. independent particles
We examine exit times from wells for both the classical Langevin dynamics and our swarm
method. For simplicity, we assume the schedule βt to be constant (and large).

Consider the d-dimensional torus Td and the stochastic differential equation:

dZt =
√

2dBt − β∇U(Zt) dt. (54)

where (Bt)t≥0 is a d-dimensional Brownian motion and U a Morse mapping, i.e., a C2 function
whose critical points are non-degenerated, we also assume. Given a time t ≥ 0, a local
minimizer b of U over M , a given height h > 0, denote by W the connected component
of {x ∈ Td : U(x) ≤ U(b) + h} containing b. Shrinking h if necessary we assume that
U(b) = minW U . We assume Zt to be close to b and consider the exit time τLangt from W :

τLangt B inf{s ≥ 0 : Zs+t 6∈W}

For the "swarm-like" Markov process, we consider X B (Xt)t≥0 whose evolution is de-
scribed by (3) with the choice of ϕ = ϕm,2 defined in (29), we proceed similarly and consider
the exit time

τ swarmt B inf{s ≥ 0 : Xt+s 6∈W}.

As it will be pleaded below through heuristic considerations, when β is large enough, we
expect:

— when b is a non-global minimizer:

τ swarmt << τLangt , (55)

— when b is a global minimizer:

τ swarmt >> τLangt . (56)

In other words, in the presence of interaction forces as in (3), particles escape faster from
non-global minimizers and stay longer in the vicinity of global ones.

Heuristic elements for the comparison For large β > 0, the time t and the position
Zt = z being fixed, τLangt is of order exp(hβ) in the following sense:

lim
β→+∞

1

β
ln(Ez[τLangt ]) = h (57)

Actually, finer results are available, Eyring-Kramers formula provides the pre-exponential
factors in terms of the Hessian of U at b and on the boundary of W , see, e.g., Chapter 11 of
Bovier and den Hollander [9].
Let us come back to our swarm dynamics and the Markov processX B (Xt)t≥0 whose evolution
is described by (3) (with ϕ = ϕm,2 as in (29)). Suppose that at some time t ≥ 0, Xt is close
to b and consider the exit time τ swarmt . This random time is more complex to apprehend
than the exit time of the Langevin dynamic – since the evolution of (Xs)s≥0 uses its marginal
distributions. Yet, as we will see, several natural approximations heuristically suggest that it
is generally shorter than τLangt when b is a local but non-global minimizer.
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Let us investigate the approximations we mentioned. The diffusive coefficient of Xs at time
s ≥ 0 within (3) is α(ρs(Xs)). According to the previous sections, for large s ≥ 0, the law ρs
of Xs is close to the invariant probability measure µβ = ψm(c(β)−βU) with ψm = (ϕ

′
m,2)

−1.
When t is large, it is thus natural to approximate the swarm dynamics by the process (X̂s)s≥0
defined by

∀ s ≥ 0, dX̂s =

√
2α(µβ(X̂s))dBs − β∇U(X̂s) ds

and denote

τ̂t B inf{s ≥ 0 : X̂t+s 6∈W}

assuming once more that X̂t is close to b.
We now provide two lemmas suggesting an even simpler approximation and an estimation

of the exit time. To simplify the notation, we assume, with no loss of generality, that minTd U =
0.

Lemma 10 (An approximation of the diffusive coefficient). There exists a constant C > 0
such that for β ≥ 1 large enough,

c(β) ≤ Cβ
d
d+2 .

Furthermore, for any x ∈ Td such that U(x) > 0,

lim
β→+∞

1

β
α(µβ(x)) =

1−m
m

U(x).

Proof. Denote x0 a global minimum of U , namely satisfying U(x0) = 0. Due to the regularity
of U , there exists r > 0 small enough and C̃ > 0 big enough so that

∀ x ∈ B(x0, r), U(x) ≤ C̃ ‖x− x0‖2

where B(x0, r) is the ball centered at x0 and of radius r in Td. We deduce:

1 ≥
∫
B(x0,r)

ψ(c(β)− βU(x)) `(dx)

≥
∫
B(x0,r)

(c(β)− βU(x)) `(dx)

≥
∫
B(x0,r)

(
c(β)− C̃β ‖x− x0‖2

)
`(dx)

= `(B(x0, r))c(β)− C̃β
∫
B(x0,r)

‖x− x0‖2 `(dx)

where in the second bound, we used that

∀ s ∈ R, ψm(s) ≥ s

due to the fact that

∀ s ∈ R+, ϕ′m,2(s) ≤ s
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by our choice of the convex function ϕm,2. Thus we have

c(β) ≤ 1

`(B(x0, r))

(
1 + C̃β

∫
B(x0,r)

‖x− x0‖2 `(dx)

)

Note that for small r > 0, `(B(x0, r)) is of order rd and
∫
B(x0,r)

‖x− x0‖2 `(dx) of order rd+2.

Thus taking r = β−
1
d+2 for β ≥ 1 large enough, we end up with the first announced result.

Recall that for r small enough,

α(r) =
1

m
rm−1.

Because µβ is the invariant measure, for any x ∈ Td with U(x) > 0, we have µβ(x) close
to 0 for large β > 0 (recall indeed that we assumed that minTd U = 0) and thus

α(µβ(x)) =
1

m
(ψm(c(β)− βU(x)))m−1.

On the other hand, we have for large β,

ψm(c(β)− βU(x)) = (1 + (m− 1)(c(β)− βU(x)))1/(m−1).

Thus, we deduce that

α(µβ(x)) =
1

m
+
m− 1

m
(c(β)− βU(x)),

which implies the second announced result.

The above lemma suggests that the swarm process may be seen, for large times, close to
the process Xapp B (Xapp

s )s≥0 given by

∀ s ≥ 0, dXapp
t =

√
2

1−m
m

βU(Xapp
s )dBs − β∇U(Xapp

s ) ds. (58)

The corresponding exit time is:

τappt B inf{s ≥ 0 : Xapp
t+s 6∈W}

assuming that Xapp
t is close to b. In order to estimate this quantity, we shall use the following:

Lemma 11 (On exit times and parametrization). Consider the diffusion Z̃(β) B (Z̃
(β)
s )s≥t

satisfying

dZ̃(β)
s =

√
2βS(Z̃

(β)
s )dBs − β∇U(Z̃(β)

s ) ds (59)

where S is a positive smooth function on Td. Then, assuming Z̃(β)
t = z for some time t, we

have

∀ β > 0,∃C > 0 Ez[τ̃t,β] =
C

β
(60)

where
τ̃t,β = inf{s ≥ 0 : Z̃

(β)
t+s 6∈W}

30



Proof. Let us define the Brownian motion B̂ = (B̂s)s≥0 as B̂s = Bt+s − Bt. We consider for
s ≥ 0 the solution of (59),

dẐ(β)
s =

√
2βS(Ẑ

(β)
s )dB̂s − β∇U(Ẑ(β)

s ) ds,

starting with Ẑ
(β)
0 = z, so that (Ẑ

(β)
s )s≥0 has the same law as (Z̃

(β)
t+s)s≥0 conditioned by

Z̃
(β)
t = z. Consider furthermore the solution of (59) with β = 1,

dẐs =

√
2S(Ẑs)dB̂s −∇U(Ẑts) ds,

starting with Ẑ0 = z. We define

τ̂ = inf{s ≥ 0 : Ẑs /∈W}.

By the scaling property of the Brownian motion, the process Y = (Yu)u≥0 defined by Yu =√
βB̂u/β is a Brownian motion and we have

dẐ
(β)
u/β =

√
2S(Ẑ

t,(β)
u/β )dYu −∇U(Ẑ

(β)
u/β) du.

Therefore, (Ẑ
(β)
u/β)u≥0 has the same law as (Ẑu)u≥0, so the stopping time τ̃t,β has the same law

as τ̂ /β. In particular τ̃t,β is of order 1/β in the sense that

∀ β > 0, Ez[τ̃t,β] =
Ez[τ̂ ]

β
(61)

Let us now proceed to a discussion on the exit times of interacting and independent
particles process from a well with bottom b.

— The local minimum b is not global. In this case, we may “infer” from (61) that τappt is
of order 1/β � 1, implying that Xapp exits very rapidly from W and in the interval
[t, t + τappt ]. Due to our approximations, we hope for the same behavior for τ swarmt : X
should indeed escapes from W in a time of order 1/β.
On the other hand, when at a large time t ≥ 0, the position of the simulated annealing
algorithm Xt happens to be close to b, then the exit time τ swarmt is of order exp(hβ).

This is the reason behind the exit time comparison (55).

— The local minimum b is global. In that case, Lemma 11 does not apply since U ap-
proaches 0 (recall that minM U = 0). But this also means that the diffusive coefficient
vanishes as one is closer to b, so that gradient forces dominate, yielding a trapping effect
near b. This trapping effect is very likely to be superior to the case when the diffusion
is constant as for the Langevin diffusion.

This suggests the exit time comparison (56).

Gathering these observations, and assuming our heuristic considerations have some validity,
we expect the swarm algorithm to converge faster (and, hopefully, in a stronger sense) towards
the global minima than the classical simulated annealing method.
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6 Appendix

6.1 On the differential calculus in the probability space P(M)

In this section, we provide some ingredients for an understanding of the equivalence between
(a), (b), and (c).

We recall beforehand that the pushforward of a measure µ through a Borel map T : M 7→
M , denoted T#µ, is defined by (T#µ)(A) = µ(T−1(A)) for all Borel sets A ⊂ M . We recall
that for f : M 7→ R bounded, we have∫

M
f(x)(T#µ)(d`) =

∫
M
f(T (x))µ(d`).

Let us sketch some essential ideas to view (P(M),W2) through a “Riemannian space"
perspective. To do this, we use, sometimes very informally, elements of [1, Chapter 8].

First, we need to have a notion of an absolutely continuous path on P(M). Given a family
of sufficiently regular vector fields5 on M denoted by bt, t ∈ (−η, η) for η > 0, we consider the
ordinary differential equation

∂tφt(x) = bt(φt(x)), φ0(x) = x ∈M. (62)

This defines a family of diffeomorphisms φt on M ; for any µ ∈ P(M), we define µt = φt#µ.
If we consider vector fields on M such that∫ η

−η

∫
M
|bt(x)|2 dµt dt < +∞,

one may derive, using integration by parts, that µt satisfies the continuity equation

∂tµt + divM (µtbt) = 0

in the sense of distribution. Roughly speaking, curves (µt)t∈(−η,η) defined by the above equa-
tion are the absolutely continuous curves on P(M) (see [1, Theorem 8.3.1.]). When one uses
the derivative ∂tµt |t=0

to define a “tangent space" to P(M) at µ, we might proceed to the
following identification:

T̄µP(M) = {−divM (µb) : b vector field on M,

∫
M
|b(x)|2 dµ < +∞}

or
T̃µP(M) = {b vector field on M :

∫
M
|b(x)|2 dµ < +∞} = L2(M ;µ).

This provides a “differential structure" to P(M), so we can now turn to the “Riemannian"
interpretation of the Monge-Kantorovich distance by Otto to understand the equivalence be-
tween the views (b) and (c). For this, we may use the two following “metrics":

〈〈divM (µb),divM (µb′)〉〉 =

∫
M
〈b(x), b′(x)〉 dµ.

5See, e.g., [1, Lemma 8.1.4]
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Consider a functional J : P(M) 7→ R, a probability µ and assume that for every b ∈ L2(M ;µ),
the following quantity exists

dJ [µ](b) = lim
ε→0

1

ε

(
J (φbε#µ)− J (µ)

)
where φbt is the flow associated to the ODE (62) with vector field b. Then by using Riesz
representation idea, we may formally associate two “concepts" of gradients to this differential
mapping, gradWJ [µ] ∈ T̄µP(M) and ∇WJ [µ] ∈ T̃µP(M)

dJ [µ](b) = 〈〈gradWJ [µ],divM (µb′)〉〉 = −
∫
M
〈∇WJ [µ], b(x)〉 dµ,

where b is an arbitrary L2 vector field. Once gradients are defined, one can consider gradient
curves for J through:

∂ρt = divM (ρt∇WJ [ρt]) = −gradWJ [ρ].

The interested reader may consult [1] for a proper derivation of these concepts and the use
of subgradient curves which are actually necessary to define properly the gradient systems we
use in this paper.

6.2 On the “equivalence" between (a), (b), (c)

We start by connecting (b) to (c) thanks to the previous paragraph. For this, one formally
applies the previous considerations to the relative entropy functional

Uβ(µ) = β

∫
M
U(x)µ(x)d`(x) +

∫
M
ρ(x) log(ρ(x)) d`(x).

Even though J = Uβ is not differentiable (it is not actually defined on the whole of P(M)),
we proceed formally and we obtain

∇WUβ[µ] = β∇U +
∇ρ
ρ
.

The corresponding Monge-Kantorovich gradient equation therefore writes

d

dt
ρ(t) = −gradW Uβt [ρ(t)],

that is
d

dt
ρ = βt divM (ρ∇U) + ∆ρ, t ≥ 0.

which is exactly the Fokker-Planck equation (b). This shows the equivalence between (b) and
(c). Similar considerations apply to the general swarm methods considered in Section 2.

We now establish the connection between the points of view (a) and (b). We consider the
solution (Xt)t to the time-inhomogenous Langevin-like stochastic differential equation where
βt is assumed to be continuous. For every smooth function φ on M , Itô’s formula gives for
t ≥ 0 and h > 0,

E[φ(Xt+h)] = E[φ(Xt)] + E
[∫ t+h

t
(−βs〈∇U(Xs),∇φ(Xs)〉+ ∆φ(Xs)) ds

]
.
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Denoting by p(t, x) the density function of the probability distribution of Xt, we deduce∫
M
φ(x)(p(t+ h, x)− p(t, x)) d` =

∫ t+h

t

∫
M

(−βs〈∇U(x),∇φ(x)〉+ ∆φ(x))p(s, x) d` ds.

Dividing by h and letting h tend to zero, we obtain∫
M
φ(x)∂tp(t, x) d` =

∫
M

(−βt〈∇U(x),∇φ(x)〉+ ∆φ(x))p(t, x) d`.

Integrating by parts the right-hand side, we have for every smooth function φ,∫
M
φ(x)∂tp(t, x) d` =

∫
M
φ(x) (βtdivM (p(t, x)∇U(x)) + ∆p(t, x)) d`,

which shows that the density function of Xt satisfies the Fokker-Planck equation (b).
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