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@ Interweaving relations



Discrete setting

Contrary to the historical examples of Rogers-Pitman (Brownian
motion and Bessel-3 process) and Aldous-Diaconis (top-to-random
shuffle), here we only consider relations between Markov kernels P
and P defined on the same finite state space V.

Given initial distributions 119 and fig, X = (X;)pez, and
X = ()N(,,),,ez+ will stand for corresponding Markov chains.



Intertwining relations

Intertwining from P to P:
PN = AP

where the link A is another Markov kernel on V. When A is
invertible, the relation is said to be faithful.
Bi-intertwining relation between P and P, when in addition:

PR — Ap

The probabilistic interest of an intertwining relation from an
absorbed P to an ergodic P is that it enables one to construct
strong stationary times for P for certain initial distributions: those
of the form poA.



Interweaving relations (1)

Strengthening of bi-intertwining relations: interweaving relations,
when furthermore there exists a probability distribution
q = (qn)nez, on Z, such that

M = > g,P"

HEZ+

It is a bi-interweaving relation, when for a probability distribution
C~I = (an)nEZJr on Zy,

A = > g,P"

HEZ+

These relations are said to be faithful when A and A are invertible.



Interweaving relations (2)




Interweaving relations (3)

When there are both a faithful bi-intertwining relation between P
and P and an interweaving relation then there is a faithful
bi-interweaving relation with ¢ = q.

In the sequel all faithful bi-interweaving relations are with § = q.

The probabilistic interest of an interweaving relation from P to Pis
to transfer information from X to X, for any initial distribution for
X, but after a warming time distributed according to q.

With Pierre Patie, we introduced interweaving relations, first
between square Bessel processes and their birth-and-death
analogues, with a deterministic warming time equal to 1, in both
directions. Our goal here is to investigate if such relations are
common or not, in the finite context to begin with.



© Characterizations



The irreducible case

Theorem 1

Assume that P and P are irreducible and similar. Then there exists
a faithful bi-interweaving relation between them, with a probability
g whose support contains at most m + 1 points, where m is the
common period of P and P. Thus when P is aperiodic, there exists
a faithful bi-interweaving relation between P and P with a
probability g having a support with at most two points. When in
addition of aperiodicity, we assume that none of the eigenvalues of
P vanishes, then there exists a faithful bi-interweaving relation
between P and P with q a Dirac mass.




The non-transient case (1)

Assume P and P are similar and non-transient kernels. Denote by
G, G, ..., G (respectively 61, 52, 53) the irreducible classes of
P (resp. P). They are in the same number £ € N, because this is
the multiplicity of the eigenvalue 1. For all / € [¢] == {1, 2, ..., ¢},
denote Pc, (resp. FN’a) the restriction of P (resp. P) to C; (resp.

G).
Theorem 2

There exists a faithful bi-interweaving relation between P and P if
and only if there exists a permutation o € Sy and a probability q on
Z such that for any | € [{], |C/| = |5U(,)| and there is a faithful
bi-interweaving relation between Pc, and FN’EU(/ with the same
probability q. It can furthermore be imposed that q has a finite
support.




The non-transient case (2)

By contrast, two non-transient Markov matrices P and P are
similar if and only if there exists a faithful bi-intertwining relation
between them. Thus there is a faithful bi-intertwining relation but
no faithful bi-interweaving relation between

1 0 0 O 12 1/2 0 0

po_ | 013 13 13 5. | w212 0 o0
' 0 1/3 1/3 1/3 ‘ 0 0 1/2 1/2
0 1/3 1/3 1/3 0 0 1/2 1/2



© Sketchs of proofs



The reversible case (1)

Proposition 3

Assume that P and P are similar and that P and P are irreducible
and reversible. Then there exists a faithful bi-interweaving relation
between them, with a probability g whose support contains at most
three points. When P is aperiodic (and by consequence P too ), we
can find such a relation with a probability q whose support contains
at most two points. When in addition to aperiodicity, none of the
common eigenvalues of P and P vanishes, we can furthermore
impose that q is a Dirac mass.




The reversible case (2)

Since P is irreducible and reversible, denote 7, 1 = 61 > 6> > 03
> .- >0y > —1and (¢x)re[n, the invariant probability, the
ordered eigenvalues and a corresponding orthonormal basis of
IL2(7) of eigenvectors, with N := |V/|.

Similarly for P with the same eigenvalues and a corresponding
orthonormal basis of eigenvectors (F)kepny in L2(7). We assume
that 1 = @1 = 1.

To any sequences b := (by)e[2,|v|] and b= (Ek)ke[p,\vn] of real
numbers, associate the operators Ap, and ANE defined by

VkelNl,  Apldi]

brpr ,if k=2
0 Jif k=1

~ bk if k=2



The reversible case (3)

We have for the corresponding matrices, for any x,y € V,

1
A < m b |7
[Ap(x: )l TATA ke[[Za,)Iil]]| k7 (y)

- 1 ~
Az (x, < ——— max _|bg|m
’ b( y)‘ mkE[P,N]]‘ k‘ (y)
where 7, = minyey 7(x) and T, = mingey T(x).
The operator

Ay = T+ Ap

is Markovian as soon as

=

VX,_)/EV, 7?(y)_|Ab(X7.y)| = 0

and in particular when

b < A/mAFA 1
k&fﬁﬁ' Kl TAT (1)



The reversible case (4)

Similar arguments hold for 7\5 =7+ ’KE' so we get a faithful
bi-intertwining relation between P and 5 with Ap and /N\E as links,
by choosing any b and b with coordinates belonging to

[—V7ATAVTATANO}

Note that
. (@ Jifk=1
Y k e [N], NoNglok] = { bibrpr ,if k=2
and
VY ke [N], D1 P ekl = ) anfiek
neZy neZy

So a bi-interweaving relation is equivalent to

V ke [2,N], D anfp = buby

n€Z+



The reversible case (5)

In particular if we look for a Dirac mass q = 6, while respecting
(1), we can take

by = 6,°
V ke [2,N], {f vIoEl
b = +/|0°]sign(6;°)
with
B In(wATA)
Mo = ”M«)J
¢ = max{|0] : ke[2,N]}

This is possible if P is aperiodic (¢ < 1). Furthermore the
quantities by and b, do not vanish if none of the eigenvalues of P
vanish.



The reversible case (6)

If some of the eigenvalues of P vanish, take

TAT A TAT
q = A2 50+<1— A2A>5n1

with

If P is periodic (necessarily of period 2 by reversibility), rather take

TATA 7T,\7T,\) 6n1 + 5n1+1

q = 5 50+<1—

2 2



Proof of Theorems 1 and 2 (1)

e Theorem 1 requires more care in the handling of the bases
associated to the Jordan blocks, especially when some of the
eigenvalues are non-real.

e Concerning Theorem 2, the reverse implication is simple: up to
renaming the points it is sufficient to work with block diagonal
matrices. For the direct implication, we first note that A must
preserve the eigenspaces associated to the eigenvalue 1, which are
respectively generated by the indicator functions 1¢, and 1s, for
e [].



Proof of Theorems 1 and 2 (2)

Thus there exist Markov matrices M := (M /) je[¢) and
M = (Mk,/>k7/€[m] so that for any / € [/],

Nigl = D) Mg
ke[4]

Nigl = ) Mlg
ke[4]

From the interweaving relation, we deduce

Allc] = Z qnP"[1c] = Z dnlc = 1g

nEZ+ HEZ+

Thus AA restricted to eigenspace associated to the eigenvalue 1 of
P is the identity, namely MM is the identity matrix. The Markovian
feature of M and M implies the latter are permutation matrices.



@ Matthews' result



Framework and notations (1)

Let P be an irreducible Markov kernel on V with a reversible
probability . Assume its eigenvalues are non-negative and denote
them1l=0; >0, >03> --- >0y =0. Let (‘;Dk)ke[[N]] be a
corresponding orthonormal eigenvector basis of I.?(rr).

Let X = (X(n))nez, be a Markov chain admitting P for transition
kernel. Let uo be the law of X(0). For any n € Z,, consider the

probability distribution ﬁ(()") on [N] given by

Z(po,n)
0 Jifk=1

(2)

~(n) H‘Pk”oomo[@k“ez ' if k > 2
vkeN], A =

with

Z(noon) = D leiloluolenler
le[NT\{1}



Framework and notations (2)

Introduce the times

ng = min{neZy : Z(po,n) <1}
o = minsneZy : 2 Oy <
N ke[2,N]

Consider (G )ye2,n @ family of independent geometric random
variables of respective parameters (0 )ye2,n], Namely

Vke[2N,VjeN, PlGi=j] = 6'1-60) (3)

Construct a random variable G taking values in Z in the following

way. First we sample an element K from [2, N] according to ,u("o).

We take G := Gg.



Matthews' result

Recall that a strong stationary time for X is a finite stopping time
7 such that 7 and X, are independent and X is distributed
according to .

Theorem 4 (Matthews)

Assume that P is irreducible, reversible and that its eigenvalues are
all non-negative. Then there exists a strong stationary time for X
which is stochastically dominated by

np+ G (4)

This random variable is itself stochastically dominated by

g + Go < [ITI]((I\{%;” + Gy, where Gy is a geometric random

variable of parameter 6-.




|dea of the proof

A proof of this result adapts that of Proposition 3 to the
degenerate setting where P is an “absorbed model” for P:

1 Jifk=1=1
~ P Jifk=1>=2
V k,l€[N], P(k,l) =
1-6, ,ifk=2and/=1

0 , otherwise

and A is not Markovian:

VxeV,Vke[N], Axk) = Z(jo,0) ko
0 Jifk=1

(once the @y, k € [N], have been chosen so that po(pk) = 0).
The main job is to construct a “true” link A from [N] to V
ensuring a generalised interweaving relation with warming time ng.



Example of the discrete hypercube (1)

For d € N, consider the state space V := {—1,1}9, endowed with
the transition kernel P of the lazy random walk whose entries are

given by
I ifx=x
P(x,x") = % , if x and x’ only differ at one coordinate
0 , otherwise

The uniform distribution 7 on V is reversible for P.
Products over subsets of coordinates give eigenvectors which are

thus well-controlled in the ||| ,-norm.



Example of the discrete hypercube (2)

We compute that, on one hand, for any X’ < In(2) < x”, for d
large enough, we have

din(d/x") < no(d) < dlIn(d/x")
and on the other hand that

o EG@)] 1)k
d—w d keNk k!

It follows that the estimate of Theorem 4 provides the right order
for the upper bound in the separation cut-off on the hypercube
{—1,1} for large d.



© Markov kernels with non-negative eigenvalues



Jordan blocs

Recall that a Jordan block of type (6, n) is a n x n matrix whose
diagonal entries are equal to 0, whose first above diagonal entries
are equal to 1 and whose other entries vanish. Any N x N-matrix
P is similar to a block matrix, whose blocks are of Jordan types
(01,71), (02,72), .., (Or,7r), where 01,02, ..., 0, are the eigenvalues
of P. The Jordan blocks are characterised by the existence of a
basis (k1)) (k,nes with S :={(k, /) : k € [r] and I € [«]}, such
that

V(k,I)eS, Plegwn] = Okpun + Pki-1) (5)

where by convention, ¢, ) = 0 for all k € [r].

Assume now that P is an irreducible transition matrix on V whose
eigenvalues are non-negative. Then all the above objects are real,
we order the eigenvalues by

l=01>0>203=>--->20,>20

and take ¢ 1) = 1.



Preliminary definitions (1)

Consider Sp := S\{(1,1)} and the Gramian matrix Ry
V (k,, I,), (k//, ///) € SO R()((k,, I,), (k”, ///)) = W[‘P(k’,l’)SO(k”,l”)]
where 7 is the invariant probability associated to P.

Let v, > v, > 0 be the largest and the smallest eigenvalues of Ry.

Introduce for any x € V/, the vector
2o(x) = (P (X)) (kpes, € R
and define another vector ag(x) = (a k(X)) (k,nes, € R% by

ao(x) = Rytpo(x)



Preliminary definitions (2)

Define

V ke[2r], By = max{ 2 e (X)) x € V}

le[v]
and
ng = min<n=2l: Z Bk‘gmﬂo[go(k,l)“gl
(k,/)GSO

with I := max{yx : k € [r]}.
Furthermore introduce

o= 0 | ()|




Preliminary definitions (3)
Introduce a probability on S and supported by Sy via

Bik0° | o[k,

V (k,))eSo,  Tio((k, 1) = Z

where g is the initial distribution of X, Zj is the normalising
constant, and the Markov kernel P on S whose entries are given by

(1 Cif (k1) = (K, 1) = (1,1)
O Jifk=K=2and ="/
P((k,1),(K', 1)) = { 1—6, ,ifk=K=2and/ =1—-1>1

1-60c ,ifk=21=1and (K,I') = (1,1)

0 , otherwise

Consider X := ()N((n)),,eZJr a Markov chain associated with (io, P)
and define

~

G = inf{neZy : X(n) =(1,1)}



Extension of Matthews' result

Theorem 5

Assume that P is irreducible and that its eigenvalues are all
non-negative. Then there exists a strong stationary time for X
which is stochastically dominated by

ng + G (6)

This random variable is itself stochastically dominated by fg + Ho,
where Hy is the convolution of I independent geometric random
variables of parameter 0.

v

The proof uses X as a simple “spectral model” for X and provides a
generalised interweaving between them.



@ The continuous-time situation



Interweaving in continuous time

Replace the transition matrices by Markov generators on V and the
Markov chains by Markov processes.

Interweaving relations now require the existence of a probability g
on R such that

A — JR exp(tL) q(dt)

The previous considerations can be extended to this framework.
E.g. the analogue of Proposition 1 is:

Proposition 6

Assume that the Markov generators L and L are irreducible and
similar. Then there exists a faithful bi-interweaving relation between
them, with a probability q which can be taken to be a Dirac mass.




Non-transient generators

Consider L and L two non-transient Markov generators and
introduce their irreducible classes as in the discrete-time setting.
Here is the equivalent of Theorem 2:

Theorem 7

There exists a faithful bi-interweaving relation between L and Lif
and only if there exists a permutation 0 €8 and a probability q on
R such that for any I € [{], |G| = |Cy(p)| and there is a faithful

bi-interweaving relation between L¢, and Z@ " with probability q.

It can furthermore be imposed that q is a Dirac mass.




Real eigenvalues (1)

Let L be an irreducible Markov generator whose eigenvalues are
real. The eigenvalues of —L are denoted

O=XAM<Xs<A3<--< )\,

We consider again the decomposition of L into Jordan blocks and
in particular (¢ 1)) (k,nes is an adapted basis satisfying

V(k,)eS,  Llewnl = =P + Pki-1)

Given an initial distribution for X and with similar definitions as
before, define

to

mnt>T: Z Bk exp(—Axt)|pole,nll <1
(k.DESo

— 1 rVviuv,
to = I'vIn(' |U>

A2 T2 U,




Real eigenvalues (2)

Introduce a probability on S and supported by Sy via

By exp(—Axto)|to[e(k,n]l
2y

V(k,1)eSo,  Rol(k,]) =

where Z, is the normalising constant, and the Markov generator L
on S whose off-diagonal entries are given by

M ,ifk=k>=2and/'=/-1>1
L((k, 1), (K, 1)) = { A ,ifk=2I=1and (K,I')=(1,1)

0 , otherwise

Consider X := ()?(t))nERJr a Markov process associated with (Jig, Z)
and define

~

G = inf{teR, : X(¢) = (1,1)}



Real eigenvalues (3)

Here is the analogue of Theorem 5 for continuous time:

Theorem 8

Assume that L is irreducible and that its eigenvalues are all real.
Then there exists a strong stationary time for X which is
stochastically dominated by

to+ G

This random variable is itself stochastically dominated by ty + Ha,
where Hy is a gamma distribution of shape I' and scale 1/)\,.
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