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Discrete setting

Contrary to the historical examples of Rogers-Pitman (Brownian
motion and Bessel-3 process) and Aldous-Diaconis (top-to-random
shuffle), here we only consider relations between Markov kernels P
and rP defined on the same finite state space V .

Given initial distributions µ0 and rµ0, X B pXnqnPZ` and
rX B p rXnqnPZ` will stand for corresponding Markov chains.



Intertwining relations

Intertwining from P to rP :

PΛ “ ΛrP

where the link Λ is another Markov kernel on V . When Λ is
invertible, the relation is said to be faithful.
Bi-intertwining relation between P and rP , when in addition:

rPrΛ “ rΛP

The probabilistic interest of an intertwining relation from an
absorbed P to an ergodic rP is that it enables one to construct
strong stationary times for rP for certain initial distributions: those
of the form µ0Λ.



Interweaving relations (1)

Strengthening of bi-intertwining relations: interweaving relations,
when furthermore there exists a probability distribution
q “ pqnqnPZ` on Z` such that

ΛrΛ “
ÿ

nPZ`

qnP
n

It is a bi-interweaving relation, when for a probability distribution
rq “ prqnqnPZ` on Z`,

rΛΛ “
ÿ

nPZ`

rqn rP
n

These relations are said to be faithful when Λ and rΛ are invertible.



Interweaving relations (2)

-

↓ts



Interweaving relations (3)

When there are both a faithful bi-intertwining relation between P
and rP and an interweaving relation then there is a faithful
bi-interweaving relation with rq “ q.
In the sequel all faithful bi-interweaving relations are with rq “ q.

The probabilistic interest of an interweaving relation from P to rP is
to transfer information from rX to X , for any initial distribution for
X , but after a warming time distributed according to q.

With Pierre Patie, we introduced interweaving relations, first
between square Bessel processes and their birth-and-death
analogues, with a deterministic warming time equal to 1, in both
directions. Our goal here is to investigate if such relations are
common or not, in the finite context to begin with.
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The irreducible case

Theorem 1

Assume that P and rP are irreducible and similar. Then there exists
a faithful bi-interweaving relation between them, with a probability
q whose support contains at most m ` 1 points, where m is the
common period of P and rP . Thus when P is aperiodic, there exists
a faithful bi-interweaving relation between P and rP with a
probability q having a support with at most two points. When in
addition of aperiodicity, we assume that none of the eigenvalues of
P vanishes, then there exists a faithful bi-interweaving relation
between P and rP with q a Dirac mass.



The non-transient case (1)

Assume P and rP are similar and non-transient kernels. Denote by
C1, C2, ..., C` (respectively rC1, rC2, ..., rC`) the irreducible classes of
P (resp. rP). They are in the same number ` P N, because this is
the multiplicity of the eigenvalue 1. For all l P J`K B t1, 2, ..., `u,
denote PCl

(resp. rP
rCl
) the restriction of P (resp. rP) to Cl (resp.

rCl).

Theorem 2

There exists a faithful bi-interweaving relation between P and rP if
and only if there exists a permutation σ P S` and a probability q on
Z` such that for any l P J`K, |Cl | “ |

rCσplq| and there is a faithful
bi-interweaving relation between PCl

and rP
rCσplq

with the same
probability q. It can furthermore be imposed that q has a finite
support.



The non-transient case (2)

By contrast, two non-transient Markov matrices P and rP are
similar if and only if there exists a faithful bi-intertwining relation
between them. Thus there is a faithful bi-intertwining relation but
no faithful bi-interweaving relation between

P B

¨

˚

˚

˝

1 0 0 0
0 1{3 1{3 1{3
0 1{3 1{3 1{3
0 1{3 1{3 1{3

˛

‹

‹

‚

rP B

¨

˚

˚

˝

1{2 1{2 0 0
1{2 1{2 0 0
0 0 1{2 1{2
0 0 1{2 1{2

˛

‹

‹

‚
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The reversible case (1)

Proposition 3

Assume that P and rP are similar and that P and rP are irreducible
and reversible. Then there exists a faithful bi-interweaving relation
between them, with a probability q whose support contains at most
three points. When P is aperiodic (and by consequence rP too), we
can find such a relation with a probability q whose support contains
at most two points. When in addition to aperiodicity, none of the
common eigenvalues of P and rP vanishes, we can furthermore
impose that q is a Dirac mass.



The reversible case (2)

Since P is irreducible and reversible, denote π, 1 “ θ1 ą θ2 ě θ3
ě ¨ ¨ ¨ ě θN ě ´1 and pϕkqkPJNK, the invariant probability, the
ordered eigenvalues and a corresponding orthonormal basis of
L2pπq of eigenvectors, with N B |V |.
Similarly for rP with the same eigenvalues and a corresponding
orthonormal basis of eigenvectors prϕkqkPJNK in L2prπq. We assume
that ϕ1 “ rϕ1 “ 1.
To any sequences b B pbkqkPJ2,|V |K and rb B prbkqkPJ2,|V |K of real
numbers, associate the operators Ab and rA

rb
defined by

@ k P JNK, Abrrϕk s B

"

bkϕk , if k ě 2
0 , if k “ 1

@ k P JNK, rA
rb
rϕk s B

"

rbk rϕk , if k ě 2
0 , if k “ 1



The reversible case (3)
We have for the corresponding matrices, for any x , y P V ,

|Abpx , yq| ď
1

?
π^rπ^

max
kPJ2,NK

|bk |rπpyq

| rA
rb
px , yq| ď

1
?
π^rπ^

max
kPJ2,NK

|rbk |πpyq

where π^ B minxPV πpxq and rπ^ B minxPV rπpxq.
The operator

Λb B rπ ` Ab

is Markovian as soon as

@ x , y P V , rπpyq ´ |Abpx , yq| ě 0

and in particular when

max
kPJ2,NK

|bk | ď
a

π^rπ^ (1)



The reversible case (4)

Similar arguments hold for rΛ
rb
B π ` rA

rb
, so we get a faithful

bi-intertwining relation between P and rP , with Λb and rΛ
rb
as links,

by choosing any b and rb with coordinates belonging to
r´
?
π^rπ^,

?
π^rπ^szt0u.

Note that

@ k P JNK, Λb
rΛ
rb
rϕk s “

"

ϕ1 , if k “ 1
rbkbkϕk , if k ě 2

and

@ k P JNK,
ÿ

nPZ`

qnP
nrϕk s “

ÿ

nPZ`

qnθ
n
kϕk

So a bi-interweaving relation is equivalent to

@ k P J2,NK,
ÿ

nPZ`

qnθ
n
k “ rbkbk



The reversible case (5)

In particular if we look for a Dirac mass q “ δn0 while respecting
(1), we can take

@ k P J2,NK,

#

bk B
a

|θn0
k |

rbk B
a

|θn0
k |signpθn0

k q

with

n0 B 1`
Z

lnpπ^rπ^q
lnpζq

^

ζ B maxt|θk | : k P J2,NKu

This is possible if P is aperiodic (ζ ă 1). Furthermore the
quantities bk and rbk do not vanish if none of the eigenvalues of P
vanish.



The reversible case (6)

If some of the eigenvalues of P vanish, take

q B
π^rπ^
2

δ0 `

ˆ

1´
π^rπ^
2

˙

δn1

with

n1 B 1`
Z

lnpπ^rπ^{4q
lnpζq

^

If P is periodic (necessarily of period 2 by reversibility), rather take

q B
π^rπ^
2

δ0 `

ˆ

1´
π^rπ^
2

˙

δn1 ` δn1`1

2



Proof of Theorems 1 and 2 (1)

‚ Theorem 1 requires more care in the handling of the bases
associated to the Jordan blocks, especially when some of the
eigenvalues are non-real.

‚ Concerning Theorem 2, the reverse implication is simple: up to
renaming the points it is sufficient to work with block diagonal
matrices. For the direct implication, we first note that Λ must
preserve the eigenspaces associated to the eigenvalue 1, which are
respectively generated by the indicator functions 1Cl

and 1
rCl
, for

l P J`K.



Proof of Theorems 1 and 2 (2)

Thus there exist Markov matrices M B pMk,lqk,lPJ`K and
rM B p rMk,lqk,lPJ`K so that for any l P J`K,

Λr1
rCl
s “

ÿ

kPJ`K

Mk,l1Ck

rΛr1Cl
s “

ÿ

kPJ`K

rMk,l1 rCk

From the interweaving relation, we deduce

ΛrΛr1Cl
s “

ÿ

nPZ`

qnP
nr1Cl

s “
ÿ

nPZ`

qn1Cl
“ 1Cl

Thus ΛrΛ restricted to eigenspace associated to the eigenvalue 1 of
P is the identity, namely M rM is the identity matrix. The Markovian
feature of M and rM implies the latter are permutation matrices.
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Framework and notations (1)

Let P be an irreducible Markov kernel on V with a reversible
probability π. Assume its eigenvalues are non-negative and denote
them 1 “ θ1 ą θ2 ě θ3 ě ¨ ¨ ¨ ě θN ě 0. Let pϕkqkPJNK be a
corresponding orthonormal eigenvector basis of L2pπq.
Let X B pX pnqqnPZ` be a Markov chain admitting P for transition
kernel. Let µ0 be the law of X p0q. For any n P Z`, consider the
probability distribution rµ

pnq
0 on JNK given by

@ k P JNK, rµ
pnq
0 pkq B

#

}ϕk}8|µ0rϕk s|

Zpµ0,nq
θnk , if k ě 2

0 , if k “ 1
(2)

with

Z pµ0, nq B
ÿ

lPJNKzt1u

}ϕl}8|µ0rϕl s|θ
n
l



Framework and notations (2)

Introduce the times

n0 B mintn P Z` : Z pµ0, nq ď 1u

n̄0 B min

$

&

%

n P Z` :
1
π^

ÿ

kPJ2,NK

θnk ď 1

,

.

-

Consider pGkqkPJ2,NK a family of independent geometric random
variables of respective parameters pθkqkPJ2,NK, namely

@ k P J2,NK, @ j P N, PrGk “ js “ θj´1
k p1´ θkq (3)

Construct a random variable G taking values in Z` in the following
way. First we sample an element K from J2,NK according to rµ

pn0q
0 .

We take G B GK .



Matthews’ result

Recall that a strong stationary time for X is a finite stopping time
τ such that τ and Xτ are independent and Xτ is distributed
according to π.

Theorem 4 (Matthews)

Assume that P is irreducible, reversible and that its eigenvalues are
all non-negative. Then there exists a strong stationary time for X
which is stochastically dominated by

n0 ` G (4)

This random variable is itself stochastically dominated by
n̄0 ` G2 ď

Q

lnpN{π^q
lnp1{θ2q

U

` G2, where G2 is a geometric random
variable of parameter θ2.



Idea of the proof

A proof of this result adapts that of Proposition 3 to the
degenerate setting where rP is an “absorbed model” for P :

@ k , l P JNK, rPpk , lq B

$

’

’

’

’

’

&

’

’

’

’

’

%

1 , if k “ l “ 1

θk , if k “ l ě 2

1´ θk , if k ě 2 and l “ 1

0 , otherwise

and Λ is not Markovian:

@ x P V , @ k P JNK, Λpx , kq B

#

}ϕk}8ϕk pxq
Zpµ0,n0q

θn0
k , if k ě 2

0 , if k “ 1

(once the ϕk , k P JNK, have been chosen so that µ0pϕkq ě 0).
The main job is to construct a “true” link rΛ from JNK to V
ensuring a generalised interweaving relation with warming time n0.



Example of the discrete hypercube (1)

For d P N, consider the state space V B t´1, 1ud , endowed with
the transition kernel P of the lazy random walk whose entries are
given by

Ppx , x 1q B

$

’

’

&

’

’

%

1
2 , if x “ x 1

1
2d , if x and x 1 only differ at one coordinate

0 , otherwise

The uniform distribution π on V is reversible for P .
Products over subsets of coordinates give eigenvectors which are
thus well-controlled in the }¨}8-norm.



Example of the discrete hypercube (2)

We compute that, on one hand, for any χ1 ă lnp2q ă χ2, for d
large enough, we have

d lnpd{χ2q ď n0pdq ď d lnpd{χ1q

and on the other hand that

lim
dÑ8

ErGpdqs
d

“
ÿ

kPN

1
k

lnp2qk

k!

It follows that the estimate of Theorem 4 provides the right order
for the upper bound in the separation cut-off on the hypercube
t´1, 1ud for large d .
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Jordan blocs
Recall that a Jordan block of type pθ, nq is a n ˆ n matrix whose
diagonal entries are equal to θ, whose first above diagonal entries
are equal to 1 and whose other entries vanish. Any N ˆ N-matrix
P is similar to a block matrix, whose blocks are of Jordan types
pθ1, γ1q, pθ2, γ2q, ..., pθr , γr q, where θ1, θ2, ..., θr are the eigenvalues
of P . The Jordan blocks are characterised by the existence of a
basis pϕpk,lqqpk,lqPS with S B tpk, lq : k P JrK and l P JγkKu, such
that

@ pk , lq P S , Prϕpk,lqs “ θkϕpk,lq ` ϕpk,l´1q (5)

where by convention, ϕpk,0q “ 0 for all k P JrK.
Assume now that P is an irreducible transition matrix on V whose
eigenvalues are non-negative. Then all the above objects are real,
we order the eigenvalues by

1 “ θ1 ą θ2 ě θ3 ě ¨ ¨ ¨ ě θr ě 0

and take ϕp1,1q “ 1.



Preliminary definitions (1)

Consider S0 B Sztp1, 1qu and the Gramian matrix R0

@ pk 1, l 1q, pk2, l2q P S0 R0ppk
1, l 1q, pk2, l2qq B πrϕpk 1,l 1qϕpk2,l2qs

where π is the invariant probability associated to P .

Let υ_ ě υ^ ą 0 be the largest and the smallest eigenvalues of R0.

Introduce for any x P V , the vector

ϕ0pxq B pϕpk,lqpxqqpk,lqPS0 P R
S0

and define another vector α0pxq B pαpk,lqpxqqpk,lqPS0 P R
S0 by

α0pxq B R´1
0 ϕ0pxq



Preliminary definitions (2)

Define

@ k P J2, rK, Bk B max

$

&

%

ÿ

lPJγkK

|αpk,lqpxq| : x P V

,

.

-

and

n0 B min

$

&

%

n ě 2Γ :
ÿ

pk,lqPS0

Bkθ
n
k |µ0rϕpk,lqs| ď 1

,

.

-

with Γ B maxtγk : k P JrKu.
Furthermore introduce

n̄0 B p2Γq _

R

1
2 lnp1{θ2q

ln
ˆ

Γ|V |υ_
π2
^υ^

˙V



Preliminary definitions (3)
Introduce a probability on S and supported by S0 via

@ pk, lq P S0, rµ0ppk, lqq B
Bkθ

n0
k |µ0rϕpk,lqs|

Z0

where µ0 is the initial distribution of X , Z0 is the normalising
constant, and the Markov kernel rP on S whose entries are given by

rPppk, lq, pk 1, l 1qq B

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1 , if pk , lq “ pk 1, l 1q “ p1, 1q

θk , if k “ k 1 ě 2 and l “ l 1

1´ θk , if k “ k 1 ě 2 and l 1 “ l ´ 1 ě 1

1´ θk , if k ě 2, l “ 1 and pk 1, l 1q “ p1, 1q

0 , otherwise

Consider rX B p rX pnqqnPZ` a Markov chain associated with prµ0, rPq
and define

G B inftn P Z` : rX pnq “ p1, 1qu



Extension of Matthews’ result

Theorem 5

Assume that P is irreducible and that its eigenvalues are all
non-negative. Then there exists a strong stationary time for X
which is stochastically dominated by

n0 ` G (6)

This random variable is itself stochastically dominated by n̄0 `H2,
where H2 is the convolution of Γ independent geometric random
variables of parameter θ2.

The proof uses rX as a simple “spectral model” for X and provides a
generalised interweaving between them.
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Interweaving in continuous time

Replace the transition matrices by Markov generators on V and the
Markov chains by Markov processes.
Interweaving relations now require the existence of a probability q
on R` such that

ΛrΛ “

ż

R`
expptLq qpdtq

The previous considerations can be extended to this framework.
E.g. the analogue of Proposition 1 is:

Proposition 6

Assume that the Markov generators L and rL are irreducible and
similar. Then there exists a faithful bi-interweaving relation between
them, with a probability q which can be taken to be a Dirac mass.



Non-transient generators

Consider L and rL two non-transient Markov generators and
introduce their irreducible classes as in the discrete-time setting.
Here is the equivalent of Theorem 2:

Theorem 7

There exists a faithful bi-interweaving relation between L and rL if
and only if there exists a permutation σ P S` and a probability q on
R` such that for any l P J`K, |Cl | “ |

rCσplq| and there is a faithful
bi-interweaving relation between LCl

and rL
rCσplq

with probability q.
It can furthermore be imposed that q is a Dirac mass.



Real eigenvalues (1)
Let L be an irreducible Markov generator whose eigenvalues are
real. The eigenvalues of ´L are denoted

0 “ λ1 ă λ2 ď λ3 ď ¨ ¨ ¨ ď λr

We consider again the decomposition of L into Jordan blocks and
in particular pϕpk,lqqpk,lqPS is an adapted basis satisfying

@ pk, lq P S , Lrϕpk,lqs “ ´λkϕpk,lq ` ϕpk,l´1q

Given an initial distribution for X and with similar definitions as
before, define

t0 B min

$

&

%

t ě Γ :
ÿ

pk,lqPS0

Bk expp´λktq|µ0rϕpk,lqs| ď 1

,

.

-

t̄0 B Γ_
1
λ2

ln
ˆ

Γ|V |υ_
π2
^υ^

˙



Real eigenvalues (2)

Introduce a probability on S and supported by S0 via

@ pk, lq P S0, rµ0ppk, lqq B
Bk expp´λkt0q|µ0rϕpk,lqs|

Z0

where Z0 is the normalising constant, and the Markov generator rL
on S whose off-diagonal entries are given by

rLppk , lq, pk 1, l 1qq B

$

’

’

&

’

’

%

λk , if k “ k 1 ě 2 and l 1 “ l ´ 1 ě 1

λk , if k ě 2, l “ 1 and pk 1, l 1q “ p1, 1q

0 , otherwise

Consider rX B p rX ptqqnPR` a Markov process associated with prµ0, rLq
and define

G B inftt P R` : rX ptq “ p1, 1qu



Real eigenvalues (3)

Here is the analogue of Theorem 5 for continuous time:

Theorem 8

Assume that L is irreducible and that its eigenvalues are all real.
Then there exists a strong stationary time for X which is
stochastically dominated by

t0 ` G

This random variable is itself stochastically dominated by t̄0 `H2,
where H2 is a gamma distribution of shape Γ and scale 1{λ2.
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