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Plan of the mini-lectures

1. Strong stationary times for one-dimensional diffusions
In particular we will see that a positive recurrent elliptic diffusion on
R admits a strong stationary time, whatever its initial distribution,
if and only if ´8 and `8 are entrance boundaries.

2. Duality and hypoellipticity for one-dimensional diffusions
It will be shown that the convergence to equilibrium of hypo-elliptic
diffusions on the circle can also be understood via intertwining
relations.

3. Stochastic evolutions of domains on manifolds
We introduce stochastic modifications of mean curvature flows on
manifolds and prove their existence at least for small times.

4. Algebraic intertwining relations on manifolds
We see how the previous evolutions serve as set-valued duals for
diffusions on manifolds and present some of their properties.
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Strong stationary times

Consider a Markov process X B pXtqtě0. A finite stopping time τ
(relative to the filtration generated by X and possibly some
independent randomness) is said to be strong if τ and Xτ are
independent. When furthermore X admits µ as invariant
probability, if Xτ is distributed according to µ, then τ is called a
strong stationary time. The notion was introduced by Aldous and
Diaconis [1986] in the context of finite Markov chains, but an early
example can be found in Dubins [1968], already for one-dimensional
diffusions.



Dubins’ example

Consider for X the Brownian motion on r0, 1s, reflected at 0 and 1
and starting from 1{2. It is positive recurrent with the restriction of
the Lebesgue measure as invariant probability. A strong stationary
time can be constructed as follows: let τ1 be the first time X hits
1{4 or 3{4. Next let τ2 be the first time after τ1 that Xτ1 ˘ 1{8 is
reached. Iteratively, τn`1 is the first time after τn that
Xτn ˘ 1{2n`2 is hit. The limit τ B limnÑ8 τn exists a.s. and is a
strong stationary time for X .
This construction can be extended to any initial distribution, by
first waiting that 1{2 is reached (not always smart, for instance if
X0 was already at equilibrium).



Intertwining

In the finite framework, Diaconis and Fill [1990] developed the tool
of intertwining relations with absorbed Markov chains to construct
strong stationary times. Intertwining of diffusions was also
investigated by Rogers and Pitman [1981] and Carmona, Petit and
Yor [1998], especially to deduce identities in law for particular
processes. Pal and Shkolnikov [2013] studied some conditions
insuring that there exists an intertwining between two Markov
semi-groups and their article also provides a survey of applications
of intertwining relations. Our goal is to come back to the
investigation of strong stationary times through intertwining, but in
the context of diffusions. This subject was also investigated by Fill
and Lyzinski [2016].



One-dimensional diffusions
Consider on R the Markovian generator

L B aB2 ` bB

with regular coefficients a ą 0 and b, and introduce

@ x P R, cpxq B

ż x

0

bpyq

apyq
dy

µpxq B
exppcpxqq

apxq

(µ is the speed density, the scale density is expp´cq). We
assume that µ has a finite mass (then it is renormalized into a
probability measure) and furthermore that the process X associated
to L is positive recurrent (a.k.a. ergodic):
ż 0

´8

expp´cpyqq dy “ `8 and
ż 8

0
expp´cpyqq dy “ `8



Main result

Define

I´ B

ż 0

´8

ˆ
ż 0

x
expp´cpyqq dy

˙

µpdxq

I` B

ż `8

0

ˆ
ż x

0
expp´cpyqq dy

˙

µpdxq

I B maxpI´, I`q

Theorem 1

Assume that X is positive recurrent. There exists a strong
stationary time for X , whatever its initial distribution, if and only if
I ă `8.



Trace class

The same result holds for diffusions on the half-line R`, just
replace I by I`. In this context (but it should be also true on R),
Cheng and Mao [2013] have shown that the condition I` ă `8 is
equivalent to the strong ergodicity of X :

D C , ε ą 0 : @ LpX0q, @ t ě 0, }LpXtq ´ µ}tv ď C expp´εtq

and to the centered Green operator G having a finite trace, where

@ f P BbpR`q, @ x P R`, G rf spxq B
ż `8

0
Ex rf pXtq ´ µrf ss dt

(namely L has no continuous spectrum and the sum of the inverses
its non-zero eigenvalues converges). Nevertheless this equivalence is
not true for general Markov processes.



Duality (1)

Transposing to the setting of an ergodic diffusion generator L the
program described by Diaconis and Fill [1990], we are looking for a
state space E˚, a Markov kernel Λ from E˚ to R and a Markovian
generator L˚ on E˚ satisfying the intertwining relation L˚Λ “ ΛL on
a sufficiently large domain of functions. Assume furthermore that
the generator L˚ leads to an absorbed process Z˚. By ergodicity of
L, it follows that for any absorbing point 8 P E˚, we have
Λp8, ¨q “ µ. In principle and when LpX0q “ LpZ˚0 qΛ, one should
be able to couple X and Z˚ through a probabilistic intertwining,
such that the absorption time of Z˚ is a strong stationary time for
X . At least this is always true for finite state spaces.



Duality (2)

(i) For any t ě 0, the piece of trajectory Z˚
r0,ts is constructed from

Xr0,ts and independent randomness. So that any stopping time τ
with respect to the filtration generated by the process Z˚ is also a
stopping time for X .
(ii) For any finite stopping time τ with respect to the filtration
generated by the process Z˚:

LpXτ |Z˚r0,τ sq “ ΛpZ˚τ , ¨q

In particular, under the previous conditions, if we consider the
absorbing time τ˚ of Z˚, then

LpXτ˚ |Z˚r0,τ˚sq “ µ

so that τ˚ is a strong stationary time for X .



A dual process (1)

Here is a solution: E˚ is the set of extended segments

E˚ B tpx , yq : x , y P r´8,`8s, x ď yuztp´8,´8q, p`8,`8qu

E̊˚ B tpx , yq P R2 : x ă yu

D˚ B tpx , xq P E˚ : x P Ru

Λ is the conditioning of µ on these segments:

Λppx , yq,Aq B

$

&

%

δxpAq , if y “ x

µprx ,ysXAq
µprx ,ysq , otherwise

for any px , yq P E˚ and for any Borelian set A Ă R.
The description of the diffusion generator L˚ is more frightening:



A dual process (2)

‚ on E̊˚,

L˚ B p
a

apyqBy ´
a

apxqBxq
2 ` pa1pxq{2´ bpxqqBx ` pa

1pyq{2´ bpyqqBy

`2

a

apxqµpxq `
a

apyqµpyq

µprx , y sq
p
a

apyqBy ´
a

apxqBxq

‚ on Rˆ t`8u,

L˚ B p
a

apxqBxq
2 ` pa1pxq{2´ bpxqqBx ´ 2

a

apxqµpxq

µprx ,`8qq

a

apxqBx

‚ on t´8u ˆ R,

L˚ B p
a

apyqBy q
2 ` pa1pyq{2´ bpyqqBy ` 2

a

apyqµpyq

µpp´8, y sq

a

apyqBy

and a Dirichlet condition is put at 8 B p´8,`8q.



A dual process (3)

It is not necessary to make precise the boundary condition on the
diagonal D˚, because it is an entrance boundary:

Proposition 2
For any initial distribution on E˚, there is a continuous Markov
process Z˚ B pZ˚t qtě0:
- starting with this condition,
- whose generator is L˚ (in the sense of martingale problems),
- satisfying for all t ą 0, Z˚t P E

˚zD˚,
- which is absorbed at 8 (if it reaches it).
Furthermore the law of such a Z˚ is uniquely determined.

But the generator L˚ is not the uniquely one which can be
intertwined with L through Λ:



Other dual processes

This relation is also true if L˚ is replaced by

Ľ˚ B p
a

apyqBy`
a

apxqBxq
2 ` pa1pxq{2´ bpxqqBx ` pa

1pyq{2´ bpyqqBy

`2

a

apyqµpyq´
a

apxqµpxq

µprx , y sq
p
a

apyqBy`
a

apxqBxq

(on E̊˚ and its natural extensions on Rˆ t`8u and t´8u ˆ R).
But D˚ is no longer an entrance boundary, because the drift
coefficient does not degenerate near D˚: an associated process
starting in D˚ stays in D˚...
For any α P p0, 1q, the generator L˚α B p1´ αqL

˚ ` αĽ˚ also
satisfies the intertwining relation and is elliptic. But this is not an
advantage, as it can be shown that the associated strong stationary
time (if it is finite) stochastically strictly dominates the one
corresponding to L˚ “ L˚0 .



Explosion

Consider the (complete) explosion time for Z˚:

τ˚ B inftt ě 0 : Z˚t “ p´8,`8qu

Up to the construction of the intertwining between X and Z˚, the
previous arguments, the fact for any initial probability m0 on R, we
can find a distribution m˚0 on E˚ such that m0 “ m˚0Λ (take for
instance m˚0 B

ş

δpx ,xqm0pdxq) and the next result, provide the
direct implication in Theorem 1:

Proposition 3

The random time τ˚ is a.s. finite, whatever LpZ˚0 q, if and only if
I ă `8. In this case, τ˚ is a strong stationary time for the positive
recurrent diffusion X .



Separation discrepancy

The separation discrepancy spν, µq between two probability
measures ν and µ on E is defined by

spν, µq B sup
xPE

1´
dν

dµ
pxq

The computations of Aldous and Diaconis [1986] show that for any
strong stationary time τ for X , we have

@ t ě 0, spLpXtq, µq ď Prτ ą ts

These inequalities may be equalities for all times t ě 0 and such
times τ are then stochastically minimal among all strong stationary
times. They are called sharp stationary times. The converse
implication in Theorem 1 relies on the fact that for initial
distributions of X of the form Λpp´8, xq, ¨q and Λppx ,`8q, ¨q,
with x P R, the random time τ˚ defined as above is indeed a sharp
stationary time.



Langevin diffusions

When is this technique working? Consider Langevin diffusions:
a ” 1 and b “ ´U 1, where U : RÑ R is a smooth potential. The
(density of the) invariant measure µ is then proportional to
expp´Uq. The condition I ă `8 writes down

max
ˆ
ż 0

´8

µpp´8, xqq
1

µpxq
dx ,

ż `8

0
µppx ,`8qq

1
µpxq

dx

˙

ă `8

If for |x | large enough, Upxq “ |x |α, with α ą 0, the above
condition is satisfied if and only if α ą 2, in particular, the
benchmark Ornstein-Uhlenbeck process is not covered. This could
also have been guessed from

ř

nPN 1{n “ `8.
We will see how to get around this difficulty by considering other
strong times τ .



Plan

1 Introduction and results

2 Properties of the dual process

3 Explosion times

4 Intertwining

5 On the Ornstein-Uhlenbeck counter-example

6 References



Evolving sets

Consider the generator given on E̊˚ by

rL B p
a

apyqBy ´
a

apxqBxq
2 ` pa1pxq{2´ bpxqqBx ` pa

1pyq{2´ bpyqqBy

(and its natural extensions on Rˆ t`8u and t´8u ˆ R). The
diagonal is not an entrance boundary, impose Dirichlet boundary
condition there, as well as on p´8,`8q, p´8,´8q and
p`8,`8q, to define an associated process. It is the continuous
equivalent of the evolving sets introduced by Morris and Peres
[2005] for denumerable Markov chains. Consider the mapping h
defined on E˚ by

@ z “ px , yq P E˚, hpzq B µprx , y sq



Doob transform

It is not difficult to check that rLrhs “ 0.
The generator L˚ is the h-transform of rL:

L˚r¨s “
1
h
rLrh ¨ s

“ rLr¨s ` rΓrlnphq, ¨s

where rΓ is the carré du champ associated to rL: for any smooth
functions f , g defined on E˚,

rΓrf , g s B rLrfg s ´ f rLrg s ´ grLrf s

In particular we get L˚r1{hs “ 0.



Martingales

Thus if Z˚ is started with a condition z0 P E̊
˚, then p1{hpZ˚t qqtě0

is a positive (local) martingale. By the usual convergence theorem
for such a martingale, Z˚ cannot approach D˚ and it can only exit
E̊˚ through pRˆ t`8uq \ pt´8u ˆ Rq \ tp´8,`8qu. So there
is no difficulty about the construction of Z˚. Writing
Z˚ “ pX ˚,Y ˚q, it is given as the solution of the s.d.e.

dX ˚t “ ´2

˜

a

apX ˚t qµpX
˚
t q `

a

apY ˚t qµpY
˚
t q

µprX ˚t ,Y
˚
t sq

a

apX ˚t q

¸

dt

`pa1pX ˚t q ´ bpX ˚t qqdt ´
a

2apX ˚t q dBt

dY ˚t “ 2

˜

a

apX ˚t qµpX
˚
t q `

a

apY ˚t qµpY
˚
t q

µprX ˚t ,Y
˚
t sq

a

apY ˚t q

¸

dt

`pa1pY ˚t q ´ bpY ˚t qqdt `
a

2apY ˚t q dBt

where B “ pBtqtě0 is a standard Brownian motion.



Bessel (1)

A Pitman-type property enables so solve almost all technical
difficulties. For z0 P E̊˚, designate by Pz0 the law on the set of
trajectories CpR`,E˚q of Z˚ starting from z0. Consider

ς B 2
ż τ˚

0
p
a

apX ˚s qµpX
˚
s q `

a

apY ˚s qµpY
˚
s qq

2 ds P p0,`8s

and the time change pθtqtPr0,ςs given by

2
ż θt

0
p
a

apX ˚s qµpX
˚
s q `

a

apY ˚s qµpY
˚
s qq

2 ds “ t



Bessel (2)

We are interested in the process R B pRtqtě0 given by

@ t ě 0, Rt B hpZ˚θt^ς
q

Proposition 4

Under Pz0 with z0 P E̊
˚, R has the law of a Bessel process of

dimension 3 starting from hpz0q P p0, 1q and stopped at 1. In
particular ς is distributed as the first reaching time of 1 for this
process.

Recall that the 3-dimensional Bessel process R solves the s.d.e.

dRt “
1
Rt

dt ` dWt



Bessel (3)
The proof is based on usual stochastic calculus and on

L˚rhs “
1
h
p2hrLrhs ` rΓrh, hsq “

1
h
rΓrh, hs

By taking into account that

lim
tÑτ˚´

hpZ˚t q “ lim
tÑς´

Rt “ 1

we get as a first consequence that (almost surely),

lim
tÑτ˚´

X ˚t “ ´8

lim
tÑτ˚´

Y ˚t “ `8

The question is now to determine if τ˚ ă `8.
The Pitman property also enables to deduce the existence and
uniqueness of the law of Z˚ starting from a point of D˚, essentially
due to the fact that 0 is an entrance boundary for R .
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Comparison (1)

Our next goal is to check that I ă `8 implies that τ˚ ă `8
(a.s.).
By symmetry, it is sufficient to work with Y ˚ and to show that
τ` B inftt ě 0 : Y ˚t “ `8u ă `8 if I` ă `8. This leads to
consider on R` the reflected diffusion

dUt B
`

a1pUtq ´ bpUtq ` 2apUtqk
1pUtq

˘

dt `
a

2apUtq dBt ` dltpUq

up to the explosion time τpUq “ inftt ě 0 : Ut “ `8u, where
pltpUqqtě0 is the local time of U at 0 and where k is the mapping
R Q x ÞÑ lnpµpp´8, xsqq. Indeed, a traditional comparison result
says that if Y ˚ and U start from the same initial condition and are
driven with the same Brownian motion, then U stays below Y ˚ up
to the time when U reaches 0.



Comparison (2)

Taking into account a renewal property, it is enough to obtain:

Lemma 5

The explosion time τpUq is finite almost surely if and only if
I` ă `8.

After symmetrization of U, the proof is based on the well-known
criterion: if V is a diffusion solution of

dVt “ pbpVtqdt `
a

2papV ˚t q dBt

with odd/even coefficients, then inftt ě 0 : limsÑt´ |Vs | “ `8u

is a.s. finite if and only if

ż `8

0
exp

˜

´

ż x

0

pbpyq

papyq
dy

¸

ż x

0
exp

˜

ż z

0

pbpuq

papuq
du

¸

dz

papzq
dx ă `8



Comparison (3)

The reverse part is important when the initial law of Z˚ is
p´8, y˚q, with some y˚ ą 0: in this case X ˚ ” ´8 and Y ˚

coincides with U, up to its reaching time of 0. If follows easily that
τ˚ ă `8 if and only if I` ă `8.
In this particular situation, τ˚ is a sharp stationary time, because
LpXtq “ ErΛpp´8,Y ˚t q, ¨ qs

spLpXtq, µq “ sup
xPR

E
„

1´
dΛpp´8,Y ˚t q, ¨ q

dµ
pxq



“ 1´ lim
xÑ`8

E
„

dΛpp´8,Y ˚t q, ¨ q

dµ
pxq



“ 1´ PrY ˚t “ `8s
“ Prτ˚ ď ts

Thus if there exists a strong stationary time for X , τ˚ must be
finite a.s.
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Commutation relations for the generators (1)

All the previous considerations are relevant if there exists an
intertwining of X with Z˚. We begin with

Lemma 6

For any f P C2pRq such that f and Lrf s belong to L1pµq, we have

@ z P E˚zpD˚ \ tp´8,`8quq, ΛrLrf sspzq “ L˚rΛrf sspzq

Indeed, in one hand, by definition,

L˚rΛrf sspzq “
1

hpzq
rLrF spzq

where

@ px 1, y 1q P E˚, F px 1, y 1q B

ż y 1

x 1
f puqµpduq



Commutation relations for the generators (2)

Since BxF px , yq “ ´µpxqf pxq and ByF px , yq “ µpyqf pyq, it follows
from the expression for µ that for px , yq P E̊˚,

L˚rΛrf sspx , yq “
1

hpx , yq
papyqµpyqBy f pyq ´ apxqµpxqBy f pxqq

On the other hand, factorizing L under the form 1
µBpaµB ¨q, we get

ż y

x
Lrf spuqµpduq “

ż y

x
BpaµBf qpuq du

“ apyqµpyqBf pyq ´ apxqµpxqBf pxq

The commutation relation follows on E̊˚. Similar computations are
valid on t´8u ˆ R and Rˆ t`8u.



Commutation relations for the semi-groups

Writing Pt “ expptLq and P˚t “ expptL˚q, the next result could
seem obvious:

Proposition 7

Assume that X is positive recurrent. Then for all T ě 0 and all
bounded and continuous function f on R, we have

@ z P E˚, ΛrPT rf sspzq “ P˚T rΛrf sspzq

But technically it was not so simple, since we did not find an
appropriate Banach setting for pP˚t qtě0. Instead, we resorted to the
classical trick of investigating the evolution of

r0,T s Q t ÞÑ P˚t rΛrPT´trf sss

and to the martingale problem satisfied by Z˚.



Skeletons (1)
Applied with T “ 2´N , the previous result enables to adapt the
construction of Diaconis and Fill [1990], to obtain an intertwining
Markov chain pX̄ pNq

n2´N , Z̄
pN,˚q

n2´N qnPZ` , assuming that
LpX0q “ LpZ˚0 qΛ:

‚ pX̄
pNq

n2´N qnPZ` and pXn2´N qnPZ` have the same law

‚ pZ̄
pN,˚q

n2´N qnPZ` and pZ˚
n2´N qnPZ` have the same law

‚ @ m P Z`, the conditional law of X̄ pNq
m2´N knowing

Z̄
pN,˚q
0 , Z̄

pN,˚q

2´N , ..., Z̄
pN,˚q

m2´N is ΛpZ̄
pN,˚q

m2´N , ¨ q

‚ @ m P Z`, the conditional law of pZ̄ pN,˚q0 , Z̄
pN,˚q

2´N , ..., Z̄
pN,˚q

m2´N q

knowing pX̄ pNq
n2´N qnPZ` only depends on X̄

pNq
0 , X̄

pNq

2´N , ..., X̄
pNq

m2´N



Skeletons (2)

Considering the natural extension to continuous time:

@ t ě 0, pX̄
pNq
t , Z̄

pN,˚q
t q B pX̄

pNq

tt2N u2´N , Z̄
pN,˚q

tt2N u2´N q

we get that the sequence of the laws of pX̄ pNq, Z̄ pN,˚qq, for N P N,
on the Skorokhod space DpR`,Rˆ E˚q, is relatively compact. We
can thus extract a subsequence converging to a probability measure
P which is necessarily supported by the set of continuous
trajectories. Under this law, the canonical coordinate process
pX̄t , Z̄

˚
t qtPR` is a coupling of X with Z˚ satisfying for all t P R`,

‚ the conditional law of X̄t knowing Z̄˚
r0,ts is ΛpZ̄˚t , ¨ q

‚ the conditional law of Z̄˚
r0,ts knowing X̄ depends only on X̄r0,ts

This is the wanted intertwining relation.
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Ornstein-Uhlenbeck process

An Ornstein-Uhlenbeck process X is a solution of

@ t ě 0, dXt “ ´Xt dt `
?
2dBt

and the variation of parameters method gives:

Xt “ expp´tqX0 `
?
2
ż t

0
expps ´ tq dBs

Let us deal with the case X0 “ 0. Explicit computations furnish the
exponential rate for the convergence in total variation:

Lemma 8

We have

lim
tÑ`8

1
t
lnp}LpXtq ´ γ}tvq “ ´2



Dual diffusion

Despite that there is no strong stationary time, could this result be
recovered with strong times? The previous constructions are still
valid and we get by symmetry that Z˚ “ p´Y ˚,Y ˚q, with

@ t ą 0, dY ˚t “ pY ˚t ` gpY ˚t qq dt `
?
2 dBt

where g is the mapping defined by

@ y ą 0, gpyq B 2
γpyq

γpr0, y sq

X and Y ˚ can be intertwined as before: let L: be the generator of
Y ˚ and Λ: be the kernel given by Λ:py˚, ¨q B Λpp´y˚, y˚q, ¨q for
y˚ ě 0. We have

L:Λ: “ Λ:L



Strong times

From the intertwining, we deduce that for any M ą 0,

τ˚M B inftt ě 0 : Y ˚t “ Mu

is a strong time for X . Let γr´M,Ms be the conditioning of γ on the
interval r´M,Ms. We have

Lemma 9

For all t ě 0 and M ą 0, we have

}mt ´ γ}tv ď Prτ˚M ą ts `
›

›γr´M,Ms ´ γ
›

›

tv

The independence of τ˚M and Xτ˚M
is crucial in the proof: it is a kind

of stochastic renewal property, which enables to use after time τ˚

the non-increasingness of the mapping

R` Q s ÞÑ }LpXsq ´ γ}tv



A sub-optimal idea

The second term is easy to bound: for all M ą 0,

›

›γr´M,Ms ´ γ
›

›

tv ď

?
2

?
πM

expp´M2{2q

For the first term, we could use a comparison of Y ˚ with |Y |, where

@ t ě 0, dYt “ Yt dt `
?
2dBt

But this process is more lazy near 0 and this leads to the
sub-optimal bound

Prτ˚M ą ts ď PrτMp|Y |q ą tss

ď

d

2
p1´ e´2tqπ

Me´t



L2 framework (1)

To recover the exponent 2, we resort to a L2 point of view. Note
that L: “ expp´V qB exppV qB, which makes it apparent that L: is
symmetric in L2pνq, where ν is the σ-finite measure on R` whose
density is exppV q, with

@ y P R`, V pyq B
y2

2
` 2 lnpγpr0, y sqq

Thus L: can be extended into its Freidrich extension in L2pνq. We
will denote pP:t qtě0 the associated semi-group.
Consider pHnqnPZ` the Hermite polynomials defined by

@ n P Z`, @ x P R, Hnpxq B p´1qn exppx2{2qBn expp´x2{2q

They form a orthogonal basis of L2pγq and diagonalize L:

@ n P Z`, LrHns “ ´nHn



L2 framework (2)

Note that Hn is even (respectively odd) if n is even (resp. odd). It
follows that Λ:rHns “ 0 if n is odd. Since H0 ” 1, we get that
Λ:rH0s ” 1 and this function does not belong to L2pνq. For the
remaining Hermite polynomials, denote H:2n B Λ:rH2ns, for n P N.
These functions can be computed explicitly: they belong to
L2pνqzt0u, and satisfy L:H:2n “ ´2nH

:

2n. Furthermore pH:2nqnPN is
an orthogonal Hilbertian basis of L2pνq. Thus the spectrum of L: is
´2N. By self-adjointness, we deduce that

@ t ě 0, @ f P L2pνq,
›

›

›
P:t rf s

›

›

›

L2pνq
ď expp´2tq }f }L2pνq

This is the main ingredient in a series of classical computations
leading to the existence of a constant C ą 0 such that

@ t ě σ, @ M ą 1, P0rτ
˚
M ą ts ď CM2 expp´2tq



Quasi-stationary measure

It remains to choose M “ 2
?
t to recover the rate 2 of exponential

convergence in total variation.
Another related approach consists in remarking that the σ-finite
measure η which admits the density H:2 ą 0 with respect to ν is a
quasi-stationary measure for L: (η admits the density
R` Q y ÞÑ yγpr0, y sq with respect to the Lebesgue measure):
for any t ě 0 and any measurable function f : R` Ñ R`, we have
(in R` \ t`8u),

ηrP:t rf ss “ expp´2tqηrf s

Again up to a traditional series of computations, this can be
transformed in the same bound as before on the queues of τ˚M .
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