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Plan of the mini-lectures

1. Strong stationary times for one-dimensional diffusions

In particular we have seen that a positive recurrent elliptic diffusion
on R admits a strong stationary time, whatever its initial
distribution, if and only if —oo and +o0 are entrance boundaries.

2. Duality and hypoellipticity for one-dimensional diffusions
It will be shown that the convergence to equilibrium of hypo-elliptic
diffusions on the circle can also be understood via intertwining
relations.

3. Stochastic evolutions of domains on manifolds
We introduce stochastic modifications of mean curvature flows on
manifolds and prove their existence at least for small times.

4. Algebraic intertwining relations on manifolds
We see how the previous evolutions serve as set-valued duals for
diffusions on manifolds and present some of their properties.



Plan of the second lecture

Duality and hypoellipticity

for one-dimensional diffusions

@ Introduction: a toy model on R
© The toy model on R,

© The toy model on R_

@ A toy example on the circle

© The turning diffusion



@ Introduction: a toy model on R



Duality and hypoellipticity

Let (P;)i>0 be an ergodic Markov semi-group on a manifold M
with invariant probability 7. Assume it can be intertwined with a
Markov semi-group (P;)¢;=0 on D, a set of “nice” subsets of M. In
particular D should contain the singletons and for any D € D which
is not a singleton, we should have 7(D) > 0. We furthermore make
the assumption that the link A from D to M is given by: for any
D € D and any “Borelian dy < M",

0z(dy) ,if D = {zx}

m(Dndy)

A(D,dy) =
( ) D) , otherwise

Namely we have

Vi=0, PA = AP



Duality and hypoellipticity

Applying these intertwining relations at the singleton {z}, we get
for any t > 0 such that P,({z}, {{y} : y€ M}) =0,

Pt(xf) = pt({x}vdD)A(D7)

JD\{{y} :yeM}

This decomposition shows that P;(z,-) admits a density with
respect to m, a first step toward more regularity results.

So we are led to wonder if there exist set-valued intertwining duals
for hypoelliptic diffusions.

We will just investigate toy models of hypoellipticity in
dimension 1. For a generator of the form

L = ad®>+bo

we allow the diffusion coefficient a to vanish at isolated points
(contrary to the situation of the first lecture), but there the drift
coefficient b should not vanish.



A toy model on R

Consider the hypoelliptic s.d.e. on X := (X (%))¢e[o,r), With
7 € (0, +00] the potential explosion time, evolving as

Vtel0,7), dX(t) = ~2X"(t)dB(t)+dt

where n e N :={1,2,3,...} and (B(t)):=0 is a standard Brownian
motion. We will often assume that X (0) is a deterministic point.

It can be transformed into a Stratanovitch s.d.e.: for ¢ € [0, 7),
dX(t) = V2X"(t)odB(t) + (1 —nX* 1(¢t)) dt
The corresponding generator L acts on C*(R) via

VfeC®R),VzeR,  Lifl(x) = 2**f(z)+ of(x)



Hypoellipticity

It can be rewritten under the Hérmander [1965] form L = V2 + 14,
where Vjy and V] are the vector fields on R given by

Vo(z) = (1—nz®1Ho
veek, { Vi(z) = a"0
Define for all [ € Z ., the set of vector fields V; through the iteration

V() = {Vl}
VieZy, Vi Viu{[U,V] : UeV,and V € {Vj, V1}}

where [-, -] stands for the usual Lie bracket. For any = € R, let
Vi(z) ={V(x) : V eV} Forany z € R\{0}, we have

Vo(x) % {0}, so that L is elliptic on R\{0}. At 0, the first [ € Z
such that V;(0) # {0} is [ = n, so that L is hypoelliptic of order n.



The link

Let Z stand for the set of nonempty closed intervals from

[—00, +00], which are either included into [—c0,0) or into [0, +0]
and which are different from {—o0} and {+0}, and

S = {{z} : x € R}. Consider u; an p_ the speed measures
associated to X on R, and (—0,0). We define a Markov kernel A
from Z to R by

VeI,V Ae B(R),

0:(A) , when ¢ = {x},

A A) = { B when e T\S, 1  [~0,0),

%&A) , when 1 € 7\S, ¢ < [0, +o0],

where B(R) stands for the set of Borel subsets from R.



Hypoelliptic intertwining

Theorem 1
There exists a process I = (I(t));>0 taking values in T such that
100) = {X(0)}

Vt>0, PlI{#)eS] = 0
Vi=0, LXO[0.4) = AU®),)

In particular, we have the decomposition

- [Awocae@)

and the r.h.s. is absolutely continuous with respect to the Lebesgue
measure for t > 0.




Behavior of [

I immediately grows into a segment with non-empty interior. But
contrary to the elliptic case, where the dual process never return to
S, I collapses into the singleton {0} at 7, the time when X hits 0
(this happens in finite positive time when X (0) < 0). The process
I is continuous (for the Hausdorff topology on the compact subsets
of [—o0, +00]), except at 79, when I may be non left-continuous.
The second point in the previous theorem will be deduced from the
fact that the law of 75 has no atom outside 0.

After 7o (or 0 if X (0) = 0), the behavior of I depends on n:

e For n € N\{1}, in finite time the process I hits [0, +o0] and stays
there afterward.

e For n = 1, the process I converges to [0, +00] in large time, but
never reaches it (starting from a singleton).



© The toy model on R,



Scale and speed

The situation here is similar to that treated in the first lecture, with
(0, +00) replacing R. Indeed introduce the scale and speed
densities associated to the restriction of L to R, for any x > 0,

or(x) = exp (— Jj ulﬁ du) = exp((z!™" = 1)/(2n — 1))
pelo) = s = (1= et/ (n 1)

The interest of these functions is that on (0, +o0), we can write

L= 1o (15)
M+ O+

The corresponding scale and speed measures, also written o,
and p, are those admitting oy and . for densities with respect
to the Lebesgue measure.



Scale and speed

We get that

1
L o ([0,2]) s (@)de =+

1 1
f p+([0,z]) o4 (z)dr = J vi(x)op(r)de = 1 < 400
0 0

From the book of Karlin and Taylor [1981], 0 is an entrance
boundary: when X (0) is distributed on R, the positions of the
process X are in (0,4c0) for any positive time.

The status of +00 can be investigated similarly, in particular

[ ntemen@an {22 T

We deduce that +o0 is a natural boundary if n = 1 and an
entrance boundary if n € N\{1}. In both cases, +o0 cannot be
reached, so we have for the explosion time 7 = +0 a.s.



Evolving segment generator

Consider
I = {{y2) : g,z € [0, +00], y < 2\{(+00, +00)}
Iy = {(y,2) € (0,40)* : y <z}
St = {(y.y) ryeRy} Ty

Recall that the element (y, z) € Z; should be interpreted as the
compact interval [y, z] in Ry u {400} and the elements of S, as
singletons. Let A, be the Markov kernel A restricted from Z, to

R,.
Let £, be the diffusion generator on Z., given by

Lp = (2"0, —y"0,)* + (ny* = 1), + (n2" 7t —1)0,

yn:u+(y) + znlLLJr(Z) (Zna o yna )
z Y

A




Evolving segment generator

Complete this definition on {0} x (0,+400) by
£y = (04 (et - 1o 42 g
p+- ([0, 2])
on (0,400) x {+00} by
2 2n—1 Y b+ (y)
£y = Y0+ (ny™ " —1)0, — QW%

and on (0,+o) € Z, by
£+ =0

namely (0, +o0) (alias [0, +00]) is absorbing for £

More precisely, £ is defined on D, the set of continuous and
bounded functions on Z; which are smooth on each of the subsets
Iy, {0} x (0, +0) and (0, +20) x {+o0}.



Evolving segments

Theorem 2

For any probability distribution my on I, there is a unique (in law)
continuous Markov process I := (Y (t), Z(t))i=0 whose initial
distribution is mg and whose generator is £ in the sense of
martingale problems: for any F' € D, the process

MF = (M¥(t))=o defined by

Vi=0, MY@) = FY(),Z(t) - F((0),2(0)
- j 2, [F)(Y (), Z(s)) ds

0

is a local martingale. Furthermore the diagonal S is an entrance
boundary for I: for any t > 0, we have (Y (t), Z(t)) ¢ S;.




Evolving segments (2)

On Z;\S;, the process (Y (t), Z(t))¢=0 is constructed as a solution
to the s.d.e.’s associated to the generator £, . For instance on 7,
we have, up to the corresponding explosion time,

dY (t) = —/2Y"(t)dB(t)
-1y 1 oy ({Y (), Z(O}) (0
(i -1 -2 T ) Yo
dZ(t) = +2Z"(t)dB(t)
-1/, e (Y (), 20N\ .
(2t vl Ty ) 0
where (B(t)):=0 is a standard Brownian motion and where
py o= Y. 2 ()0,
x€(0,+00)

e w (Y (D, Z()}) = Y (s (Y (5) + 27 (0 (Z(2).



Pitman's property

Introduce

+00
o = QL . (21(s)) ds

(where 01(s)) = {Y (s), Z(s)}).
Let the time change (0. (t))e[0,c,] be defined by

0+(t)
Vitel0,¢4), QJ‘ wu,(0I(s))*ds = t
0

and 0+(§+) = Iimt_,(§+)7 9+(t)
We are interested in the process R, = (R (t))i>0 given by

Vit=>0, Ry(t) = ps(I(0+(t A sy)))



Pitman's property

The process R is a Bessel process of dimension 3 starting from
1+ (1(0)) and stopped when it hits pu4((0,+00)). In particular, <
is finite a.s. and is the hitting time of p((0,+o0)) by R,. More
precisely, we have:

o forn € N\{1} or I(0) of the form (yo, +0) for some

Yo € [0, 4+0), we have 04 (c1) < +00 and the process I hits

(0, +0) in finite time (a.s.)

e forn =1 and I1(0) not of the form (yo, +00) for some

Yo € [0, +0), we have 04 (c;) = +0o and the process I does not
hit (0, +o0) in finite time (a.s.).

Thus hypoellipticity does not modify the Pitman property that the
process of the volumes (4 (I(t)))i=0 of the dual process is a
stopped Bessel 3 process, up to a time change. The impact of
hypoellipticity is to be found in the time change:



Pitman's property

Fix (y,z) € I+ and consider the process I defined in Theorem 2
starting from (y, z). There are several behaviors for the time

change 0 ast goes to 04:
o If (y,2z) + (0,0), we have

t
2(y"p+ (y) + 2"p4(2))?

e If (y,2z) = (0,0), we have

0+(t) ~

1
((2n — 1) In(1/t))Y/r=1)

0.(t) ~

Thus in the latter case, the volume . [I(t)] begins by evolving very
slowly, since the inverse function 0, (t) is negligible with respect to
t, fort — 0, the more so as the order n of hypoellipticity is large.




Strong stationary times

The interest of A, and £, is the intertwining relation
L£4Ay = AL, in the sense that,

Y (y,2) e T,\Sy, ¥V f € CP(R,),
Ci[A [y, 2) = AL[L[f]](y,2)

Let mg be a probability distribution on Z, and consider

mg = moA. There exists an coupling by intertwining of X with
initial distribution mg and of I with initial distribution mg such that
for any t > 0,



Strong stationary times

We deduce:

Corollary 5

As in Proposition 3, there are two situations:

e for n € N\{1}, whatever the initial distribution supported by R,
there exists a strong stationary time for X .

e for n =1, for some initial distributions on R (in particular for
any initial Dirac measure), a strong stationary time does not exist
for X.

These results are consequences of general considerations about
intertwining relations between ergodic and absorbed Markov
processes due to Diaconis and Fill [1990].



© The toy model on R_



Scale and speed densities

The investigation of the situation on R_ is similar, but with an
important discrepancy at 0. Putting together the results on R_ and
R will lead to Theorem 1. Introduce for x < 0,

Define the corresponding scale and speed measures on R_.



Scale and speed densities

We compute that
0
fl o_([z,0]) u—(z)dx < +o©
0
J_l p—([z,0])o_(z)dz = +o0

1
J o ((—oo,a)) p_(@)dw — +oo

—0o0

—1 .
= 4w ,ifn=1,
J_OO p-((=o0,2]) o (z)dz { < +oo ,ifneN\{1}.
When X starts from an initial distribution supported by R_, 0 is an
exit boundary (i.e. it is a.s. attained in finite time). Furthermore,
depending on n =1 or n € N\{1}, —c0 is an entrance or a natural
boundary.



Evolving segment generator

Consider
I = {(y’ Z) S Y,z € [_0070)) Yy < Z}\{(_OO7 _OO)}
To= {(y2) e (—0,0)% ¢y < 2}
S- = {lyy)el :ye(-0,0)

Again, the element (y, z) € Z_ should be interpreted as the

compact interval [y, z] in [—00,0). Let A_ be the Markov kernel
from Z_ to (—o0,0) which is the restriction of A. Let £_ be the
diffusion generator on Z_ given by

£ = (2", —y"0y)* + (ny*™ = 1), + (n2*" 1 —1)0,
Y u—(y) + 2"pu—(2)
+2 2"0, —y"o
) )

and complete this definition on {—o0} x (—0,0) by

= (402 4+ (a2l ZQan(Z)
£ = (2" +( 1)az+27m([072])az



Evolving segment

With the domain D(£_) defined similarly to D(£):
Theorem 6

For any probability distribution mg on Z_, there is a unique (in law)
continuous Markov process I := (Y (t), Z(t))e[o,;) whose initial
distribution is mg and whose generator is £_ in the sense of
martingale problems.

The diagonal S_ is an entrance boundary for I: for any t € (0, 77),
we have (Y (t), Z(t)) ¢ S—. The explosion time 71 corresponds to
the “hitting” time of 0 by Z, in the sense that lim;_,,,  Z(t) = 0.
It is a.s. finite.




Pitman's property

Introduce, with p_ the analogue on R_ of x_,

TI
¢ = QJ p_(0I(s))*ds

0

and the time change (6 (t));e[o,._] defined by
9_(t)

Vie[0,c), 2] u (OI(s)2ds — 1

0

and 0_(¢_) = limy_, () 0_(t).

We are interested in the process R_ = (R_(t)):=0 given by

Vt=0, R_(t) = p_(I(0_(t rs)))

We have ¢_ = +o0, _(+00) = 71 and the process R_ is a Bessel
process of dimension 3 starting from p_(1(0)).




Intertwinings

Again the interest of A_ and £_ is the intertwining relation
£ _A_ = A_L, in the sense that,

Ve TN\S. Y feCP(—2,0), S[A[fII0) = A_[L[FIQ)

We have the corresponding probabilist intertwining:

Theorem 8

Let mg be a probability distribution on Z_ and consider

mg = mgA_. There exists a coupling of X with initial distribution
myg and of I with initial distribution mg such that for any t > 0, we
have on {11 > t},

LX@I0,2]) = A_(I(D),)

Furthermore, the construction of I from X is adapted.




Intertwinings

As a consequence of the Pitman’s property, we have

lim p_(I(t)) = 4+

t—17—
so that in addition to lim; -, Z(t) = 0, we get

lim X(t) = 0 (1)
t—71r_

In general, we do not have lim;_,(,y_ Y (t) = 0, e.g. if we started
with Y'(0) = —oo, then Y (t) = —oo for all ¢ € [0, 7p). Anyway, (1)
enables to set (Y(79), Z(70)) := (0,0) while preserving the validity
of Theorem 8. This is the lack of left-continuity of the process I at
time 19 = 77_. It suggests to replace the process I by the
probability measure-valued Markov process (A(I(t),-))i=0, which is
continuous at 7y, since it takes the value g at this time.

Next we extend the process I after time 7y as in Theorem 2,
starting from (0,0). Theorem 1 follows from the merging of the
previous results.



@ A toy example on the circle



A hypoelliptic generator on the circle

Let a and b be two smooth functions on T = R/Z, such that a is
non-negative, 4/a is analytical and vanishes at most at a finite
number of points, write 91 for their set. Assume that for any

x €M, b(z) £+ 0. Consider on C*(T) the Markov generator

L = ad®>+bo

and let X = (X (t))i=0 be a corresponding diffusion process. The
generator L is hypoelliptic and we are looking for the behavior in
law of X for large times.

Let us write 91 := {y; : k € Zn}, where the representative points in
[0,1] satisfy 0 < pyg <91 <--- <yn—_1 <1 and where N € N. For
k € Zn, let I}, be the projection on T of the interval (9, yr+1) (for
[l =N —1, itis the interval (hy—_1,90 + 1)), to which is added vy, if
b(vr) > 0 and yi4q if b(hr41) < 0. Remark that (Ix)kez, forms a
partition of T. Denote for k € Zy, ui the speed measure
associated to the restriction of L to I.



A segment-valued intertwining dual process

Let 7 stand for the set of non-empty closed intervals from T which
are included into one of the I, for k € Zy and let
S = {{z} : x € T}. Define a Markov kernel A from Z to T by

VeI, V AeB(T),
0:(A) ,when:={z}eS
A, A) = (1nA)
% , when . € 7\S with t < I}, and k € Zn
(in fact 0 < pg(t) < +oo for v € Z\S with ¢ < I, and k € Zy).
Theorem 1 extends to this context:

Theorem 9

Let X be a diffusion on the circle whose generator is the
hypoelliptic operator L. There exists a dual process I associated to
X satisfying all the probabilistic intertwining relations of

Theorem 1, with the above T and A.




Scale and speed densities

Let T be one of the segments I, for k € Zy, up to an affine
transformation we identify T with a segment of R whose interior is
(0,1).

The restriction on I of the generator L can be written

- 2o(2e)
uwo\o

with the help of its scale and speed densities:

Vxe(0,1), o(x) = exp (— f; ziz)) du)
_ 1
M) = @t

Consider the corresponding scale and speed measures, still written
o and p.



Scale and speed densities

There are four possibilities for the status of the boundaries {0,1} of
I, which are determined by the finiteness or not of the quantities

1/2 1/2
5(0) :=f0 o((0,0) p(uw)du,  N(O) : L u((0,0)) o (u)du,

1 1
5(1) = j o((u, 1) plw)du,  N(1) : j p((u, 1)) o (w)du

1/2 1/2

Redefine Z the set of compact subsegments included in T and S the
set of singletons from Z. Consider the Markov kernel A from Z to
0, 1]:

Oy ity = 2z,
v [ya Z] € Iv A([y7 Z], ) = ,u([y,z]m-) otherwise
wlyszl) '



Case (C1): I = [0,1]

It corresponds to b(0) > 0 and b(1) < 0, and we compute that
¥(0) = 40, N(0) < +0, £(1) = 400 and N(1) < 40, so that 0
and 1 are entrance boundaries for X. It follows that under the
initial condition X (0) = xo, where z¢ is fixed in [0, 1], the process
X stays forever in [0, 1] and more precisely in (0, 1) for positive
times. We have lim,_,o, p(z) = 0 = lim,,1_ p(x), so the
measure 4 has a finite weight over I. It is also clear that p is
positive on (0,1). Thus A is indeed well-defined. Furthermore X
(restricted to I) is reversible with respect to 7, the normalization of
1 into a probability measure.

As in the first lecture, we construct a Z-valued process (I(t)):>0 so
that Theorem 1 is valid. Furthermore, the covering time

T o= inf{t>0: I(t) = [0,1]}

is finite a.s. and is a strong stationary time for X (restricted to I).



Case (C2): I=10,1)

It corresponds to b(0) > 0 and b(1) > 0, we get that 3(0) = +oo0,
N(0) < 40, (1) < +00 and N(1) = +00, so that 0 is an
entrance boundary and 1 an exit boundary for X. It follows that
under the initial condition X (0) = xo, where x is fixed in [0, 1),
the process X ends up exiting [0, 1) by hitting 1 in finite time, say
at 7 :=inf{t > 0 : X(¢) = 1}. We have lim,_,o, pu(z) = 0 (but
limy_,; p(x) = +0), so any compact segment included into I has
a finite weight, which is positive if it is not reduced to a singleton.
Again the Markov kernel A is well-defined.

We construct a Z-valued intertwined dual process
I:=([Y(t), Z(t)])se[o,r), S0 that Theorem 8 is valid. We have as.

lim Z(t) = 1

t—7_

and the natural way to extend I after time 7 is to define I(7) = {1}
and to let I start from there into the corresponding segment.

The case (C3), I = (0, 1], is symmetrically treated.



Case (C4): T=(0,1) (1)

It corresponds to b(0) < 0 and b(1) > 0, we get that 3(0) < +o0,
N(0) = +o0, 3(1) < 400 and N(1) = 400, so that 0 and 1 are
exit boundaries for X . It follows that under the initial condition
X (0) = xo, where xq is fixed in (0, 1), the process X ends up
exiting (0,1) by hitting 0 or 1 in finite time, say

Tx =inf{t >0 : X(t) € {0,1}}. Any compact segment included
into I has a finite weight, which is positive (except if it is a
singleton), so the Markov kernel A is well-defined.

We construct a Z-valued dual process I := ([Y'(t), Z(t)])se[o,7)
where 77 > 0 is the explosion time, so that Theorem 8 is valid. It
can be proven that

lim Y(¢t) = 0 or lim Z(t) =1

t—o7r— t—71r—

so that 77 = 7x.



Case I = (0,1)

To define I at its explosion time 7y, it is always possible to look at
X (rr) € {0,1}, and to set I(77) = {X(77)}. Immediately after 77,
X and I will evolve in the segment containing {X (77)}.

But in this case we believe in

Conjecture 10 It should hold that

lim A(I(t),") = L(X(r))

t—T11—

Then one can extend the intertwining relation by resorting to
probability measure-valued duals: we should consider at time 77 the
probability P[X (77) = 0]dp + P[X (77) = 1]d1 or the disconnected
set {0,1} (alias {9x, 9x+1}).

In symmetric situations, the above conjecture can be proven and
disconnected subset-valued duals do enable to construct smaller
strong stationary times than those coming from segment-valued
duals.



Proof of Theorem 9

Consider the segments I, for k € Zy, as the vertices of an oriented
graph whose edges are as follows: there is an edge from I to Iy, 1,
if 9xo1 € [xy1 and an edge from T, 1 to Iy, if hroq € I, Except
when the segments are all of type (C2), or all of type (C3),
following the oriented edges, one goes from segments of type (C4)
or springs to segments of type (C1) or sinks, after possibly visiting
a successive sequence of segments of type (C2), turning
anti-clockwise, or a successive sequence of segments of type (C3),
turning clockwise. In particular, it appears that the number of
springs is the number of sinks. Inside each segment, the dual
process is constructed according to its type. Putting them all
together, we get all the requirements on the dual process I
presented in Theorem 1.



Strong stationary times?

Assuming the drift b does not take a fixed sign on 0, for large
times, the process X converges in law, the process I converges a.s.
and the limit law of X is E[A(I(+00),-)], where

I(+00) = limy_, 1o I(t) belongs to Z, the set of the Iy, k € Zy,
of type (C1). Define

7 = inf{t =0: I(t) e Ly}

When Z,, is a singleton, i.e. there is a unique sink, X has a unique
invariant probability, the normalization of the speed measure on the
element of Z,. In this situation 7 is a strong stationary time.
Otherwise, in general, 7 is not independent from X (7), but the
latter is distributed according to an invariant probability associated
to X (a convex combinaison of the normalizations of the speed
measures on the sinks), which depends on its initial condition.



© The turning diffusion



Another dual process

From now on, we consider the situation where b has a fixed sign on
1. The previous process I does not converge a.s. since it appears
that I(7},) = {X(T},)} for all n € N, where (T},)nen is the
unbounded increasing sequence of random times ¢ > 0 such that

X (t) € M. Thus the dual process I is not helpful to understand the
convergence in law of X. Another dual process I should be
considered.

Now, X admits a unique invariant probability measure 7 absolutely
continuous with respect to the Lebesgue measure. The support of
7 is T but its density vanishes on 9. Consider 7 the set of
non-empty closed intervals from T and define a Markov kernel A
fromZ to T by

VeI,V AeB(T),
0z(A) , when .= {z} €S,

A(La A) = T(nA) , when ¢ € i\S



Strong stationary time

Assume b has a constant sign over M. There exists a dual process
I := (I(t))s=0 associated to X taking values in I and satisfying all
the statements of Theorem 1, with T and A replaced byf and A.

Furthermore 1 converges in finite time to T.

The classical arguments of Diaconis and Fill [1990] enable to
conclude that

T = inf{t>0:I(t) =T}

is strong stationary time for X.



The invariant measure

Assume e.g. b > 0 on 1.
Fix some k € Zx and on (9, hx+1), consider the equation
(amk) = by —1

where a and b are still the coefficients of L. This decomposition
enables to write
1 1
L = = dlanq0) + —20
Mk Nk

Still denoting 7, the measure on (b, yi41) of density 7, we
deduce that for any f € C*([9k, 9x+1]), we have

mlLUF] = lamf T = LF1o
= —(f(ors1) = flow))

as soon as

lim a(z)n(z) = 0 =  lim  a(z)ne(x)

TP+ ToYe41—



The invariant measure

The general solution of the above equation in 7 is given by

ne(z) = a(lx) (p j[nw] exp <j[uw] S(v) dv) du
+q f[mkﬂ] exp (— f[x’u] g(v) dv) du)

with p, ¢ any constant such that —p + ¢ = 1. For the previous
convergences to hold (and even 7 (9;) = 0 = 1k (vx+1)), we must
take p = 0 and thus consider

1 b
ne(x) = @) J[x’nkﬂ] exp (— J‘[%u] a(v) dv) du



The invariant measure

Define n on T coinciding with 75 on T for all k € Zy. Again
denote 7 the measure admitting 1 as density. It is continuous (and
vanish on N), so that n(T) < +oo. Furthermore we have for any

feC*®(T),
nLIf]] = = > florer) — for) = 0O

kEZN

namely 7 is invariant for L. The invariant probability 7 is just the
normalization of 7 into a probability measure. It no longer
corresponds to the concatenation of the speed measures on the I,
for ke Zy.



The intertwining dual process

Evolution of the dual process I := (Y, Z). Assume that

X(0) = zo € Iy, = [k, Y+1), for some k € Zy. Begin by defining
(Y(t), Z(t))te[o,n)v with liIIlt_,()+ Y(t) =9 = liIIlt_,()+ Z(t), as
the solution of the s.d.e.

(¢ ®) -2 0) + e
n t)) a(Z(t))n Z(t >
_9Va(T(®) g[(y >(t) Zv( )(]f( Da(Z(1)) a(y(t)))dt
—\/2a(Y (1)) dB(1)

_ 1 _ 2
4z = («(20) ~bZ0) + ey
VaF @ 0)+1/aZOE) -7
2 ([ (0.20)) “(Z(t))>dt

+1/2a(Z(1)) dB(1),

2

<

=

~—
Il

for t € (0,71), where 71 is the first time either Y hits 1, or Z hits
Yx+1, and where (B(t))¢=0 is a standard Brownian motion.



The intertwining dual process

First, assume that 5/(7'1) = y,. Extend the process (Y, Z) after
time 71 by letting Y (t) = v, for all ¢ > 71, and by solving for Z
the s.d.e., for t € [11, T2),

az(t) = (d(Z@W)-bZw) + 50

+277(Z(t))a(§(t))>dt +1/2a(Z(t)) dB(t)

n([vx, Z(1)])

where 75 is the first time after 71 that Z hits Dre1. This timeis a.s.
finite, because 1,1 is an exit boundary for A (as well as for X) on
[9k, Dk+1)- Next for t € [12,73), we ask that 7 solves the same
s.d.e., where 73 is the first time after » that 7 hits Di4o. This
time is a.s. finite, because - is an exit boundary for Z on
[Dk+1,9k+2). We keep solving this equation until Z ends up hitting
vk, say at time T, which is also a.s. finite. After T, we take T to be
equal to T.



The intertwining dual process

When Z(71) = 9541, we also impose that Y (1) = ;1. Extend
the process (Y, Z) after time 71 by letting Y (¢) = 41, for all

t = 71, and by proceeding as above.

Since the generator of I:= (}N/, 2) is intertwined with L through A,
we construct a coupling of T with the diffusion X, so that

T = (x)
viz0,  cex@fod) = Adw),)
As announced, T is a strong stationary time for X.

Thus in large time, X converges toward 7 in separation and in total
variation.
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