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Plan of the mini-lectures

1. Strong stationary times for one-dimensional diffusions
In particular we have seen that a positive recurrent elliptic diffusion
on R admits a strong stationary time, whatever its initial
distribution, if and only if ´8 and `8 are entrance boundaries.

2. Duality and hypoellipticity for one-dimensional diffusions
It was shown that the convergence to equilibrium of hypo-elliptic
diffusions on the circle can also be understood via intertwining
relations.

3. Stochastic evolutions of domains on manifolds
We introduce stochastic modifications of mean curvature flows on
manifolds and prove their existence at least for small times.

4. Algebraic intertwining relations on manifolds
We see how the previous evolutions serve as set-valued duals for
diffusions on manifolds and present some of their properties.



Plan of the third lecture

Stochastic evolutions of domains on manifolds
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Riemannian metric

A Riemannian manifold M : a differentiable manifold endowed with
smoothly-varying positive-definite inner products g on its tangent
spaces. Write m for the dimension of M .
On any smooth coordinate chart x B pxiqiPJmK : U Ñ Rm, we
denote

gpxq B pgi,jpxqqi,jPJmK B pgpxqrBi, Bjsqi,jPJmK

where Bi is the vector field associated to the differentiation with
respect to xi. The inverse matrix gpxq´1 is written pgi,jpxqqi,jPJmK.
The scalar products lead to the Riemannian measure λ given in any
chart by

λpdxq B
a

|g|pxqdx1dx2 ¨ ¨ ¨ dxm

where |g|pxq is the absolute value of the determinant of gpxq.
When the total weight of λ is finite, we normalize it into a
probability measure.



Gradient

The scalar products also lead to the gradient operator: for any
f P C8pMq and x PM , ∇fpxq is the unique vector in the tangent
space TxM such that

@ v P TxM, dfpxqrvs “ x∇fpxq, vyx

where x¨, ¨yx B gpxqr¨, ¨s. In any chart, we have

@ i P JmK, p∇fqi “
ÿ

jPJmK

gi,jBjf

and in particular

}∇f}2 B x∇f,∇fy “
ÿ

i,jPJmK

gi,jBifBjf



Laplace-Beltrami operator

The Dirichlet form E is the bilinear form on C8pMq given by

@ f, g P C8pMq, Epf, gq B
ż

M
x∇f,∇gy dλ

The Laplace-Beltrami operator acts on C8pMq so that

@ f, g P C8pMq,
ż

f4g dλ “ ´Epf, gq

In any chart

4f “
1

a

|g|

ÿ

i,jPJmK

Bi

´

a

|g|gi,jBjf
¯

The operator 4
2 is a Markov generator whose associated diffusion is

called the Brownian motion on M . When λ is a probability
measure, it is an invariant (and even reversible) probability measure
for this Brownian motion.



Mean curvature (1)

Example of a surface C in R3. Consider x P C and νCpxq a unit
normal vector to C at x. Let P a plane of R3 containing x “as well
as” the vector νCpxq. Locally around x, C X P is a curve and let
pxpuqqu be a parametrization at unit speed, with xp0q “ x. Let
T puq B dxpuq

du be the speed vector. Denote hpx, P q P R the
curvature at 0, which is such that d

duT puq|u“0 “ hpx, P qνCpxq.
Parametrise such planes P by the angle θ P r0, 2πq with a fixed
element of TxC. The mean curvature at x of C is

κCpxq B
1

2π

ż 2π

0
hpx, Pθq dθ

Euler’s theorem asserts that

κCpxq “
h1 ` h2

2

where h1 and h2 are the principal curvatures at x of C.



Mean curvature (2)

This geometric approach extends to any hypersurface C of Rm`1,
the mean curvature κCpxq at x P C being a mean of the principal
curvatures, and more generally, with more care, to any hypersurface
of Riemannian manifolds.
Here are other points of view, but they correspond to the sum of
the principal curvatures (nevertheless we still call it the “mean”
curvature).
A more analytical point of view. Let C be an hypersurface of a
Riemannian manifold. Consider x P C and νCpxq a unit normal
vector. Define in a neighborhood of x the signed distance rρ to C,
positive in the direction of νCpxq. The “mean curvature” κCpxq is
defined as 4rρpxq. In the same spirit, νCpxq “ ∇rρpxq.



Mean curvature (3)

The variational point of view is more convenient for our purposes.
Consider D a compact domain (connected and coinciding with the
closure of its interior) whose boundary C B BD is smooth. At each
y P C, νCpyq stands for the unit outward normal vector.
Let v be a vector field on M . We use it to let the domain D0 “ D
evolves into pDtqt:

@ y P BDt, 9y “ vpyq

For any f P C8pMq, consider the mapping Ff defined on any
compact domain D via

Ff pDq “

ż

D
f dλ



Mean curvature (4)

Then we have

d

dt
Ff pDtq “

ż

BDt

f xνBDt , vy dσ

where σ is the pm´ 1q-Hausdorff measure corresponding to λ. and
differentiating once more in time:

ˆ

d

dt

˙2

Ff pDtq “

ż

BDt

pxνBDt ,∇fy ` fκBDtq xνBDt , vy dσ

where for any y P BDt, κBDtpyq is the “mean” curvature at y of
BDt.
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Mean curvature flow (1)

The vector field v can be assumed to (regularly) depend on the
domain itself: the set of nice domains can be seen as an
infinite-dimensional manifold and “above” any such domain D the
tangent space corresponds to vector fields defined on BD.
Classical example: mean curvature flow pDtqt starting from D0:

@ y P BDt, 9y “ ´κBDtpyqνBDtpyq

This evolution may not be defined for all times due to the
emergence of singularities.
Even if no singularity appears, the evolution collapses in finite time
to a point. E.g. in Rm starting from BD0 the circle centred at 0 of
radius r0 ą 0, at time t, BDt is the circle centred at 0 of radius rt
satisfying 9r “ ´pm´ 1q{r, and the evolution implodes at time
r20{p2m´ 2q, since we get

r2t ´ r
2
0 “ ´2pm´ 1qt



Mean curvature flow (2)

·↳ ↳
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Figure: Example of a mean curvature flow



Stochastic domain evolution (1)

Let D be the set of compact domains whose boundary is smooth.
We are interested in stochastic processes pDtqtPr0,τDs taking values
in D, where τD is the explosion time, i.e. the time where the
process is exiting from D.
We consider evolution of the form

@ t P r0, τDq, @ Yt P BDt,

dYt “

ˆ

?
2dBt `

ˆ

2
σpBDtq

λpDtq
` xνBDt , ζy pYtq ´ κBDtpYtq

˙

dt

˙

νBDtpYtq

where
‚ pBtqtě0 is a standard Brownian motion,
‚ ζ is a vector field on M .
The isoperimetric term 2σpBDtq{λpDtq counterbalances the mean
curvature: when Dt is ball of radius r, the former is 2m{r and the
latter pm´ 1q{r. The process pDtqtPr0,τDs has rather a tendency to
expand.



Stochastic domain evolution (2)

The previous evolution can be seen as an infinite dimensional
stochastic differential equation on D:

dDt “
?

2V pDtq dBt `W pDtq dt

where V and W are the vector fields on D. For any D P D, V pDq
and W pDq correspond respectively to the vector fields on BD given
by

BD Q y ÞÑ νBDpyq

BD Q y ÞÑ

ˆ

2
σpBDq

λpDq
` xνBD, ζy pyq ´ κBDpyq

˙

νBDpyq

the latter being equivalent to

BD Q y ÞÑ ζpyq `

ˆ

2
σpBDq

λpDq
´ κBDpyq

˙

νBDpyq

up to diffeomorphisms of BD.



Stochastic domain evolution (3)

It appears that the previous stochastic differential equation is
equivalent to its Stratonovitch formulation.
Note that the flow associated to V is easy to describe for small
times. Namely given D0 P D, consider the evolution

dDt “ V pDtq dt

We have for all t ą 0 small enough,

Dt “ tx PM : ρpx,D0q ď tu

where ρ is the Riemannian distance, and for t ă 0 small enough

Dt “ tx P D0 : ρpx,MzD0q ď ´tu

It suggests to resort to Doss-Sussmann method to get local
existence of a solution.
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Doss-Sussmann method (1)

Let us explain this method in the context of Euclidean diffusions. In
Rn consider the Stratonovitch s.d.e.

dZptq “ V pZptqq ˝ dBptq `W pZptqq dt

where V and W are two bounded and smooth vector fields in Rn.
Then Zptq can be computed without resorting to stochastic
integrals.
For all z P Rn and all time t P R, solve the ordinary differential
equations

"

F p0, zq “ z
BtF pt, zq “ V pF pt, zqq



Doss-Sussmann method (2)
Consider a second o.d.e. in Rn, only for t ě 0,

"

Gp0q “ Zp0q
BtGptq “ pDF pBptq, Gptqqq´1W pF pBptq, Gptqqq

where DF pt, zq is the Jacobian matrix of F pt, zq as a function of
the spatial variable z P Rn. We will denote BF pt, zq for the
differentiation with respect to the temporal variable t P R. Then we
have

@ t ě 0, Zptq “ F pBptq, Gptqq

Indeed, using Stratonovitch calculus, we have

dZptq “ BF pBptq, Gptqq ˝ dBptq `DF pBptq, Gptqq dGptq

“ V pF pBptq, Gptqq ˝ dBptq

`DF pBptq, GptqqpDF pBptq, Gptqqq´1W pF pBptq, Gptqqq dt

“ V pF pBptq, Gptqq ˝ dBptq `W pF pBptq, Gptqqq dt



Parabolic differential equations

Coming back to domain valued processes, we are led to investigate
modified mean curvature flows, such as

@ y P BDt, 9y “

ˆ

2
σpBDtq

λpDtq
` xνBDt , ζy pyq ´ κBDtpyq

˙

νBDtpyq

In a tubular neighborhood of the embedded manifold BD0, for small
t ě 0, BDt can be parametrized by

BD0 Q y ÞÑ expypftpyqνBD0pyqq

where expy is the exponential mapping from the tangent space
TyM to M and ft is a smooth function defined on BD0.
The mapping pt, yq ÞÑ ftpyq satisfies a quasi-linear parabolic
equations on BD0, for which we can apply classical p.d.e. results
about existence, uniqueness and regularity.
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Homogeneous situations (1)

The Doss-Sussmann method only provides a solution for times
smaller than a positive and random time. There are instances
where a solution can be constructed for all times.
This is the situation of M with constant curvature, ζ “ 0 and D0 a
ball Bp0, R0q, for any fixed 0 PM . We are particularly interested in
the case where R0 “ 0, i.e. when the domain-valued process starts
from the singleton t0u. Then there is a solution taking the form of
balls Bp0, Rtq for all t ě 0, where pRtqtě0 is R`-valued process.
We are essentially back to the one-dimensional situation.



Homogeneous situations (2)

For t ě 0 such that Bp0, Rtq is a proper ball of M , the mean
curvature κBBp0,Rtqpyq is independent of y P BBp0, Rtq by
symmetry, call it κBBp0,Rtq. We get the autonomous
one-dimensional evolution

dRt “
?

2dBt `

ˆ

2
σpBBp0, Rtqq

λpBBp0, Rtqq
´ κBBp0,Rtq

˙

dt

“
?

2dBt `

˜

2
d

dr
lnpλpBp0, rqqq

ˇ

ˇ

ˇ

ˇ

r“Rt

´ κBBp0,Rtq

¸

dt

To compute κBBp0,Rtq, recall that for any smooth function
f : M Ñ R and any r ą 0,

d

dr

ż

BBp0,rq
f dσ “

ż

BBp0,rq
x∇f, νy dσ `

ż

BBp0,rq
fκBBp0,rq dσ



Homogeneous situations (3)

Considering f ” 1, by symmetry we get

@ r ą 0, κBBp0,rq “
d

dr
lnpσpBBp0, rqqq

so that

dRt “
?

2dBt ` U
1pRtq dt

with

Uprq B ln

ˆ

λpBp0, rqq2

σpBBp0, rqq

˙

(as long as Bp0, rq is a proper ball of M).
We investigate separately the three cases of constant null, positive
and negative curvatures.



Euclidean spaces

Consider the Euclidean space Rn, with n P Nzt1u. The volume
λpBp0, rqq is proportional to rn, so

@ r ą 0,
d

dr
lnpλpBp0, rqq “

n

r

Using the geometric definition of the mean curvature, we get that

@ r ą 0, κBBp0,rq “
n´ 1

r

so that

dRt “
?

2dBt `
n` 1

Rt
dt

It appears that pRt{2qtě0 is a Bessel process of dimension n` 2. In
particular we can start with R0 “ 0, since 0 is an entrance
boundary.



Spherical spaces (1)

We consider the sphere Sn Ă Rn`1, with n P N. Without loss of
generality, we can assume that 0 is the point p1, 0, 0, .., 0q from
Rn`1. For any r P r0, πs, Bp0, rq is the closed cap centered at 0 of
radius r. In particular, we have Bp0, 0q “ t0u and Bp0, πq “ Sn.
The projection of λ on the first coordinate of Rn`1 is the measure
Z´1n p1´ x2qn{2´11r´1,1spxq dx, where the renormalising factor is
given by the Wallis integral

Zn “

ż 1

´1
p1´ x2qn{2´1 dx

“

ż π

0
sinn´1puq du

“
?
π

Γ
`

n`1
2

˘

Γ
`

n
2 ` 1

˘



Spherical spaces (2)

We deduce that for any r P p0, πq,

λpBp0, rqq “ Z´1n

ż r

0
sinn´1puq du

σpBBp0, rqq “ Z´1n sinn´1prq

so that

dRt “
?

2dBt `

˜

2 sinn´1pRtq
şRt

0 sinn´1pzq dz
´ pn´ 1q cotpRtq

¸

dt

As r Ñ 0`, we have again

2 sinn´1prq
şrt
0 sinn´1pzq dz

´ pn´ 1q cotprq „
n` 1

r

and this enables us to see that 0 is an entrance boundary for
pRtqtPr0,τq and we can let this process start from 0.



Hyperbolic spaces

Consider the Poincaré’s ball model of the hyperbolic space Hn of
dimension n P Nzt1u. The situation is formally similar to the
previous one, replacing the trigonometric functions by their
hyperbolic analogues. Up to a factor, we have

λpBp0, rqq “

ż r

0
sinhn´1puq du (1)

σpBBp0, rqq “ sinhn´1prq (2)

We deduce

dRt “
?

2dBt `

˜

2 sinhn´1pRtq
şRt

0 sinhn´1pzq dz
´ pn´ 1q cothpRtq

¸

dt

Again we can let it start from 0



References

Koléhè Coulibaly-Pasquier and Laurent Miclo. On the evolution
by duality of domains on manifolds. Mém. Soc. Math. Fr.,
Nouv. Sér., 171:1–110, 2021.

Halim Doss. Liens entre équations différentielles stochastiques
et ordinaires. Ann. Inst. H. Poincaré Sect. B (N.S.),
13(2):99–125, 1977.

Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine.
Riemannian geometry. Universitext. Springer-Verlag, Berlin,
third edition, 2004.

Carlo Mantegazza. Lecture notes on mean curvature flow,
volume 290 of Progress in Mathematics. Birkhäuser/Springer
Basel AG, Basel, 2011.

Héctor J. Sussmann. On the gap between deterministic and
stochastic ordinary differential equations. Ann. Probability,
6(1):19–41, 1978.


	Reminders of Riemannian geometry
	Evolutions of domains
	Doss-Sussmann method
	Homogeneous situations
	Euclidean spaces
	Spherical spaces
	Hyperbolic spaces


