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Plan of the mini-lectures

1. Strong stationary times for one-dimensional diffusions

In particular we have seen that a positive recurrent elliptic diffusion
on R admits a strong stationary time, whatever its initial
distribution, if and only if —oo and +o0 are entrance boundaries.

2. Duality and hypoellipticity for one-dimensional diffusions
It was shown that the convergence to equilibrium of hypo-elliptic
diffusions on the circle can also be understood via intertwining
relations.

3. Stochastic evolutions of domains on manifolds
We introduced stochastic modifications of mean curvature flows on
manifolds and proved their existence at least for small times.

4. Algebraic intertwining relations on manifolds
We see how the previous evolutions serve as set-valued duals for
diffusions on manifolds and present some of their properties.



Plan of the fourth lecture

Algebraic intertwining relations on manifolds

@ Generators

© Intertwinings
© Pitman’s property

@ Planar large-time profile



@ Generators



Observables

To introduce the generator £ associated to the domain-valued
process (D¢)eo,r) considered in the previous lecture, we modify
some already met observables. Let ;1 be a smooth and positive
function on M, the same symbol is used to denote the measure
dp = pdX and we write dy == pdo.

¢ Elementary observables:
Ff :DsD — Ff(D) Z:J fdu
D

associated to the functions f € C*(M), the space of smooth
mappings on M.

e Composite observables: the functionals of the form

S = f(Fp, ..., Fy,), where n € Zy, fi,..., fnp € C*(M) and
f: R — RisaC® mapping, with R an open subset of R”
containing the image of D by (Fy,, ..., Fy,).



On elementary observables and for any D € D, define

CFAD) = [ Gon, 1)+ (2%53 + (vop, Vin() + <>) fdu

For the extension to composite observables, the carré du champs
is also required:

VDeD, T;[FsF,)(D) := 2<J6Dfdg> <Lngg>

Then on composite observables § as above:

LIF] = ). 0f(Fp, ... Fy,)L[FY,)]
jeli,n]
1
+§ Z ak,lf(Fflvaan)Fﬁ[ka’Ffl]
k,le[1,n]

(imposed by the continuity of the trajectories of (D;)i>0).



Martingale problem

Define a corresponding process (Mf)te[oym] via

Vic[orpl. M = §(D)-3(D)— f:zmws)ds

The law of the process (Dy)sc(o,7,,] IS @ solution to the martingale

problem associated to L: for any §, the process (M} )te[0,mp] S @
martingale (in the filtration generated by the initial condition and

the Brownian motion).




Heuristic proof

Reminder: consider V' a vector field on D, corresponding to the
vector field vprap on ¢D where vp is a function from 0D to R.
Introduce the deterministic evolution (D;); described by

We have

d

aFf(Dt) = f vaDt do
oD

2
(i) Fy(Dy) = f ((vap,, V(uf)) + kop,pf)vp, do

0



Heuristic proof

We deduce that for a stochastic evolution of the form
dD; = ~2V(D;)dB; + W(Dy)dt

we have

dFf(Dy) = V2 <LD wfup, dg> B,
i (LD(<VaDt’ V(uf)) + kop.pf)vp, da) dt

+ <LD nfwp, da) dt

In particular with vp =1 for any D € D and

(D)
A(D)

wp = 2 + {vop,() — koD



Heuristic proof

we get

dFy(D;) = V2 <LDt fdg) dB; + 2U§f§;) ( " fdg) dt

" (LD i@“’“v(“f )+ wepis ) f du) “

Since the bounded variation term must coincide with L[F|(Dy) dt,
we get the action of £ on elementary observables. Concerning the
carré du champs, use that

d<Ff(D')7F9(D')>t = F[Ff)Fg](Dt) dt

where the |.h.s. stands for the bracket of semi-martingales.



© Intertwinings



Elliptic diffusion

Consider an elliptic diffusion (X (¢));=0 on a differential manifold
M. Let L be its generator, in a coordinate chart, it can be written

Z (Im’(.f)@@j*l- Z gl(l‘)az

i?je Hmﬂ 1€ [[m]]

where (a;j(2)); je[m] are symmetric positive definite matrices.
Endowing M with the Riemannian structure whose matrices of
scalar products are the inverse of the (a; j()); je[m], We get

L. = A-+{,V)

where b is a vector field on M. Assume that L leaves invariant the
measure pdA, with a smooth density 1 > 0. Denote U = In(u).
The p-weighted Helmholtz decomposition says that b = VU +
with div(pg) = 0.



Stoke's theorem

Stokes theorem asserts that for any vector field £ and D € D, we
have

| av©ar = [ wop.©do

We deduce:

Take ( = B — VU, we get for any f € C*(M) and any D € D,
D)

CLEND) = [ Lif)du+ D) [,

w(D) Jop




Proof of Theorem 2

It amounts to see that with the chosen vector field ¢, for any
feC®(M) and any D e D,

f Lifldy = f o V) + wop, VIn() + O £ du
D oD
Write

Lf] = Af+{(VU+B,Vf)
- idiv(qu)+<5,Vf>

- ;div(qu)+;<Mﬁavf>
- ;div(qu)Jr;diV(ufﬁ)

- idiv(u(fﬂ 1Y)



Proof of Theorem 2

We deduce

fD L{f) dp

jD div(u(f5 + Vf)) dA
- f opsp(fB + V f)) do
oD
- f (eps fB + V> du
oD
- L op V) + vap, VInly) + € f d

as wanted.



Intertwining

Consider the usual link A from D to M given by

Vet (M), Alfl@) - M(lD)fodu

Fy(D)
Fy(D)

For any f € C*(V'), we have

vDeD,  E[AfII(D) = A[L[f]I(D)




Proof of Theorem 3

Consider R := {(x,y) € R? : y > 0} and the mapping
x

f:Ra(xy — "

For any f e C*(V), we have A[f] = f(Fy, F1), so that A[f] € D.
It follows that
Fy

ST = S - FhOIR - pTelFy P + FTel P ]

which can be rewritten under the form

L EA[f]] = S[Ff]—*FL[Fvall]



Proof of Theorem 3

We compute, for any D € D,

_ w(oD)
e[F](D) = JD L[ du+ 25 78 LD 1du
_ ,u(@D)?
u(D)

Furthermore, remark that

Te[Fy, F1](D) = 2<LD]ldg>2

I
N
=
—~
[
)
()



Proof of Theorem 3

so taking into account that Fy (D) = (D), we get
LR R - el = o
F]12 g1, 1 I 1 =
Thus, we have

FieALfID) = S[F(D) - 7 TslFy, Fi(D)

1(0D) ~ 2p(0D)
jguﬂdu+2(p)fme LDﬁw

I u(D)
- | Lina
D
and we conclude to the announced intertwining relation
Fy,
Al = =4 = ALLLf)

Fy



© Pitman’s property



Pitman's property

Let (D¢)¢efo,r,) be a D-valued Markov process as in the previous
section. Consider

¢ = 2JTD(Q(6DS))2ds € (0, +0]
0

and the time change (0;)c[0] defined by

0t
Vtel0,¢], QJ (w(0Dy))*ds = t
0

Theorem 4

The process (1(De,, . ))i=0 is a (possibly stopped) Bessel process of
dimension 3.




Proof of Theorem 3

Let a test function f € C*(R..) be given and consider the process
(St)te[O,TD) defined by

Vtel0,mp), S = f(u(Dy))
= f(F1(Dy))

From the martingale problem formulation, there exists a local

martingale (M¢)e(o,7p,) such that for all t € [0, 7p),

t
Sy = So +f Llfo F1](Ds)ds + M,

0

By definition of £, we have

gffo FI(D) = F(FOLIF]+ o (FOTelFy, Fi]



Proof of Theorem 3

We have already computed that for any D € D,

w(@D)?
Q[FH](D) = 2 (D)
Te[Fi, FA](D) = 2u(oD)?

so that

elfo F)(D) = w(@D) <f”<Fﬂ> " 2f/(F”> (D)
= 2u(0D)?

=
=
E

where



Proof of Theorem 3

This is the generator of the Bessel process of dimension 3 on R
Thus we obtain, for all t € [0, 7p),
t
S = S+ 2 | w(@D.PKI(D) ds + M
0

It leads us to introduce the time change described above and
Vtel[0,5), Ri = p(Dyy)

to get that (R;)e[o) is a stopped continuous solution to the
martingale problem associated to the generator K. It follows that
(Rt)te[o,) is a stopped Bessel process of dimension 3.



@ Planar large-time profile



On the plane

Consider the Laplacian L = A on the Euclidean plane R? and let £
be the associated diffusion generator on D.

Theorem 5

Let (D¢)i=0 be a solution to the martingale problem associated to
£ defined for all times. Then we have a.s. in the Hausdorff metric,
. Dy
lim
t—400 )‘(Dt)

= B(0,1/v7)

where B(0,1/+/7) is the Euclidean ball centered at 0 of radius
1//m.




Ingredients of the proof

Curiously the proof of this natural result is quite complicated,
requiring an enrichment of the observables (including integrals on
the boundary), Bonnesen's inequality: for any D € D,

m2(R(D) —r(D))? < o(0D)? —4w\(D)

where R(D) and r(D) are respectively the radius of the incircle
and the circumcircle of D, as well as a new isoperimetric stability
result: as soon as o(0D)? — 47 \(D) < A\(D)/n, we have

[6(6D) —b(D)| < eA(D)Y}(o(D)? — 4mA(D))"/*

where ¢ > 0 is a universal constant and b(-) stands for the
barycenter.
These inequalities are only valid in dimension 2.



Ingredients of the proof

Denote D, := Dy/+/A(Dy). The starting point is to study the

evolution of

O'(Ct)z - 47T>\(Dt)
A(Dy)

o(0Dy)? — ATA(Dy) =

It happens that the numerator is non-increasing and that the
denominator goes to +oo for large times.

Thus via Bonnesen's inequality, it remains to see that the
barycenter of D, goes to 0. The following critical phenomenon is
important in this respect:

+o0
ds <+ < a>1
Jo A(Dy)e



How could the previous result on the large-time profil of the
D-valued process not be true in Euclidean spaces of any dimension?



References

[4 Y. D. Burago and V. A. Zalgaller. Geometric inequalities,
volume 285 of Fundamental Principles of Mathematical
Sciences. Springer-Verlag, Berlin, 1988. in Soviet Mathematics.

[§ K. Coulibaly-Pasquier and L. Miclo. On the evolution by duality
of domains on manifolds. Mém. Soc. Math. Fr., Nouv. Sér.,
171:1-110, 2021.

[4 S. N. Ethier and T. G. Kurtz. Markov processes. Probability
and Mathematical Statistics. John Wiley & Sons Inc., New
York, 1986.

[4 L. Miclo. Isoperimetric stability of boundary barycenters in the
plane. Annales Mathématiques Blaise Pascal, 26(1):67-80,
2019.

[ J. W. Pitman. One-dimensional Brownian motion and the
three-dimensional Bessel process. Advances in Appl.
Probability, 7(3):511-526, 1975.



	Generators
	Intertwinings
	Pitman's property
	Planar large-time profile

