
On set-valued intertwining duality for diffusion processes

Laurent Miclo

Toulouse School of Economics
Institut de Mathématiques de Toulouse

Based on joint works with
Marc Arnaudon and Koléhè Coulibaly-Pasquier



Plan of the mini-lectures

1. Strong stationary times for one-dimensional diffusions
In particular we have seen that a positive recurrent elliptic diffusion
on R admits a strong stationary time, whatever its initial
distribution, if and only if ´8 and `8 are entrance boundaries.

2. Duality and hypoellipticity for one-dimensional diffusions
It was shown that the convergence to equilibrium of hypo-elliptic
diffusions on the circle can also be understood via intertwining
relations.

3. Stochastic evolutions of domains on manifolds
We introduced stochastic modifications of mean curvature flows on
manifolds and proved their existence at least for small times.

4. Algebraic intertwining relations on manifolds
We see how the previous evolutions serve as set-valued duals for
diffusions on manifolds and present some of their properties.



Plan of the fourth lecture

Algebraic intertwining relations on manifolds
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Observables

To introduce the generator L associated to the domain-valued
process pDtqtPr0,τq considered in the previous lecture, we modify
some already met observables. Let µ be a smooth and positive
function on M , the same symbol is used to denote the measure
dµ B µdλ and we write dµ B µdσ.

‚ Elementary observables:

Ff : D Q D ÞÑ Ff pDq B

ż

D
f dµ

associated to the functions f P C8pMq, the space of smooth
mappings on M .

‚ Composite observables: the functionals of the form
F B fpFf1 , ..., Ffnq, where n P Z`, f1, ..., fn P C8pMq and
f : RÑ R is a C8 mapping, with R an open subset of Rn
containing the image of D by pFf1 , ..., Ffnq.



Generator L
On elementary observables and for any D P D, define

LrFf spDq B
ż

BD
xνBD,∇fy `

ˆ

2
µpBDq

µpDq
` xνBD,∇ lnpµq ` ζy

˙

f dµ

For the extension to composite observables, the carré du champs
is also required:

@ D P D, ΓLrFf , FgspDq B 2

ˆ
ż

BD
f dµ

˙ˆ
ż

BD
g dµ

˙

Then on composite observables F as above:

LrFs B
ÿ

jPJ1,nK

BjfpFf1 , ..., FfnqLrFfj s

`
1

2

ÿ

k,lPJ1,nK

Bk,lfpFf1 , ..., FfnqΓLrFfk , Ffls

(imposed by the continuity of the trajectories of pDtqtě0).



Martingale problem

Define a corresponding process pMF
t qtPr0,τDs via

@ t P r0, τDs, MF
t B FpDtq ´ FpD0q ´

ż t

0
LrFspDsq ds

Theorem 1
The law of the process pDtqtPr0,τDs is a solution to the martingale
problem associated to L: for any F, the process pMF

t qtPr0,τDs is a
martingale (in the filtration generated by the initial condition and
the Brownian motion).



Heuristic proof (1)

Reminder: consider V a vector field on D, corresponding to the
vector field vDνBD on BD where vD is a function from BD to R.
Introduce the deterministic evolution pDtqt described by

dDt “ V pDtq dt

We have

d

dt
Ff pDtq “

ż

BD
µfvDt dσ

ˆ

d

dt

˙2

Ff pDtq “

ż

BD
pxνBDt ,∇pµfqy ` κBDtµfqvDt dσ



Heuristic proof (2)

We deduce that for a stochastic evolution of the form

dDt “
?

2V pDtq dBt `W pDtq dt

we have

dFf pDtq “
?

2

ˆ
ż

BD
µfvDt dσ

˙

dBt

`

ˆ
ż

BD
pxνBDt ,∇pµfqy ` κBDtµfqvDt dσ

˙

dt

`

ˆ
ż

BD
µfwDt dσ

˙

dt

In particular with vD ” 1 for any D P D and

wD B 2
σpBDq

λpDq
` xνBD, ζy ´ κBD



Heuristic proof (3)

we get

dFf pDtq “
?

2

ˆ
ż

BDt

f dµ

˙

dBt ` 2
σpBDtq

λpDq

ˆ
ż

BDt

f dµ

˙

dt

`

ˆ
ż

BDt

1

µ
xνBDt ,∇pµfqy ` xνBDt , ζy f dµ

˙

dt

Since the bounded variation term must coincide with LrFf spDtq dt,
we get the action of L on elementary observables. Concerning the
carré du champs, use that

d xFf pD¨q, FgpD¨qyt “ ΓrFf , FgspDtq dt

where the l.h.s. stands for the bracket of semi-martingales.
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Elliptic diffusion

Consider an elliptic diffusion pXptqqtě0 on a differential manifold
M . Let L be its generator, in a coordinate chart, it can be written

ÿ

i,jPJmK

ai,jpxqBi,j `
ÿ

iPJmK

rbipxqBi

where pai,jpxqqi,jPJmK are symmetric positive definite matrices.
Endowing M with the Riemannian structure whose matrices of
scalar products are the inverse of the pai,jpxqqi,jPJmK, we get

L ¨ “ 4 ¨ ` xb,∇¨y

where b is a vector field on M . Assume that L leaves invariant the
measure µdλ, with a smooth density µ ą 0. Denote U B lnpµq.
The µ-weighted Helmholtz decomposition says that b “ ∇U ` β
with divpµβq “ 0.



Stoke’s theorem

Stokes theorem asserts that for any vector field ξ and D P D, we
have

ż

D
divpξq dλ “

ż

BD
xνBD, ξy dσ

We deduce:

Theorem 2

Take ζ “ β ´∇U , we get for any f P C8pMq and any D P D,

LrFf spDq B
ż

D
Lrf s dµ` 2

µpBDq

µpDq

ż

BD
f dµ



Proof of Theorem 2 (1)

It amounts to see that with the chosen vector field ζ, for any
f P C8pMq and any D P D,

ż

D
Lrf s dµ “

ż

BD
xνBDt ,∇fy ` xνBD,∇ lnpµq ` ζy f dµ

Write

Lrf s “ 4f ` x∇U ` β,∇fy

“
1

µ
divpµ∇fq ` xβ,∇fy

“
1

µ
divpµ∇fq ` 1

µ
xµβ,∇fy

“
1

µ
divpµ∇fq ` 1

µ
divpµfβq

“
1

µ
divpµpfβ `∇fqq



Proof of Theorem 2 (2)

We deduce
ż

D
Lrf s dµ “

ż

D
divpµpfβ `∇fqq dλ

“

ż

BD
xνBD, µpfβ `∇fqy dσ

“

ż

BD
xνBD, fβ `∇fy dµ

“

ż

BD
xνBDt ,∇fy ` xνBD,∇ lnpµq ` ζy f dµ

as wanted.



Intertwining

Consider the usual link Λ from D to M given by

@ f P C8pMq, Λrf spxq “
1

µpDq

ż

D
f dµ

“
Ff pDq

F1pDq

Theorem 3

For any f P C8pV q, we have

@ D P D, LrΛrf sspDq “ ΛrLrf sspDq



Proof of Theorem 3 (1)

Consider R B tpx, yq P R2 : y ą 0u and the mapping

f : R Q px, yq ÞÑ
x

y

For any f P C8pV q, we have Λrf s “ fpFf , F1q, so that Λrf s P D.
It follows that

LrΛrf ss “
1

F1
LrFf s ´

Ff
F 2
1

LrF1s ´
1

F 2
1

ΓLrFf , F1s `
Ff
F 3
1

ΓLrF1, F1s

which can be rewritten under the form

F1LrΛrf ss “ LrFf s ´
1

F1
ΓLrFf , F1s

`Ff

ˆ

1

F 2
1

ΓLrF1, F1s ´
1

F1
LrF1s

˙



Proof of Theorem 3 (2)

We compute, for any D P D,

LrF1spDq “

ż

D
Lr1s dµ` 2

µpBDq

µpDq

ż

BD
1 dµ

“ 2
µpBDq2

µpDq

Furthermore, remark that

ΓLrF1, F1spDq “ 2

ˆ
ż

BD
1 dµ

˙2

“ 2µpBDq2



Proof of Theorem 3 (3)

so taking into account that F1pDq “ µpDq, we get

1

F 2
1

ΓLrF1, F1s ´
1

F1
LrF1s “ 0

Thus, we have

F1LrΛrf sspDq “ LrFf spDq ´
1

F1
ΓLrFf , F1spDq

“

ż

D
Lrf s dµ` 2

µpBDq

µpDq

ż

f dµ´
2µpBDq

µpDq

ż

BD
f dµ

“

ż

D
Lrf s dµ

and we conclude to the announced intertwining relation

LrΛrf ss “
FLrf s

F1
“ ΛrLrf ss
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Pitman’s property

Let pDtqtPr0,τDq be a D-valued Markov process as in the previous
section. Consider

ς B 2

ż τD

0
pµpBDsqq

2 ds P p0,`8s

and the time change pθtqtPr0,ςs defined by

@ t P r0, ςs, 2

ż θt

0
pµpBDsqq

2 ds “ t

Theorem 4

The process pµpDθt^ς qqtě0 is a (possibly stopped) Bessel process of
dimension 3.



Proof of Theorem 3 (1)

Let a test function f P C8pR`q be given and consider the process
pStqtPr0,τDq defined by

@ t P r0, τDq, St B fpµpDtqq

“ fpF1pDtqq

From the martingale problem formulation, there exists a local
martingale pMtqtPr0,τDq such that for all t P r0, τDq,

St “ S0 `

ż t

0
Lrf ˝ F1spDsq ds`Mt

By definition of L, we have

Lrf ˝ F1spDq “ f1pF1qLrF1s `
1

2
f2pF1qΓLrF1, F1s



Proof of Theorem 3 (2)

We have already computed that for any D P D,

LrF1spDq “ 2
µpBDq2

µpDq

ΓLrF1, F1spDq “ 2µpBDq2

so that

Lrf ˝ F1spDq “ µpBDq2
ˆ

f2pF1q ` 2
f1pF1q

F1

˙

pDq

“ 2µpBDq2KrfspF1pDqq

where

@ x P p0,`8q, K B 1
2B

2
x `

1
xBx



Proof of Theorem 3 (3)

This is the generator of the Bessel process of dimension 3 on R`.
Thus we obtain, for all t P r0, τDq,

St “ S0 ` 2

ż t

0
µpBDsq

2KrfspµpDsqq ds`Mt

It leads us to introduce the time change described above and

@ t P r0, ςq, Rt B µpDθptqq

to get that pRtqtPr0,ςq is a stopped continuous solution to the
martingale problem associated to the generator K. It follows that
pRtqtPr0,ςq is a stopped Bessel process of dimension 3.
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On the plane

Consider the Laplacian L “ 4 on the Euclidean plane R2 and let L
be the associated diffusion generator on D.

Theorem 5

Let pDtqtě0 be a solution to the martingale problem associated to
L defined for all times. Then we have a.s. in the Hausdorff metric,

lim
tÑ`8

Dt
a

λpDtq
“ Bp0, 1{

?
πq

where Bp0, 1{
?
πq is the Euclidean ball centered at 0 of radius

1{
?
π.



Ingredients of the proof (1)

Curiously the proof of this natural result is quite complicated,
requiring an enrichment of the observables (including integrals on
the boundary), Bonnesen’s inequality: for any D P D,

π2pRpDq ´ rpDqq2 ď σpBDq2 ´ 4πλpDq

where RpDq and rpDq are respectively the radius of the incircle
and the circumcircle of D, as well as a new isoperimetric stability
result: as soon as σpBDq2 ´ 4πλpDq ď λpDq{π, we have

}bpBDq ´ bpDq} ď cλpDq1{4pσpBDq2 ´ 4πλpDqq1{4

where c ą 0 is a universal constant and bp¨q stands for the
barycenter.
These inequalities are only valid in dimension 2.



Ingredients of the proof (2)

Denote rDt B Dt{
a

λpDtq. The starting point is to study the
evolution of

σpB rDtq
2 ´ 4πλp rDtq “

σpCtq
2 ´ 4πλpDtq

λpDtq

It happens that the numerator is non-increasing and that the
denominator goes to `8 for large times.
Thus via Bonnesen’s inequality, it remains to see that the
barycenter of rDt goes to 0. The following critical phenomenon is
important in this respect:

ż `8

0

1

λpDtq
a
ds ă `8 ô a ą 1



Question

How could the previous result on the large-time profil of the
D-valued process not be true in Euclidean spaces of any dimension?
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