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1 Introduction

The goal of the paper is to give a representation of a measurable function w : [0,1] — [0,1] in terms
of random Borelian subsets. The problem is of those that Patrick Cattiaux likes: simplissime to state
and natural, but whose investigation requires some care and which leads to open extensions. It is
motivated by a question in optimal control theory.

More precisely, let £ be the set of Borelian subsets from [0, 1], and P the set of probability measures
n [0,1]. We endow £ with the sigma-field € generated by the mappings

E3A — u(A)e0,1]

for all u € P (of course we would end up with the same &, should we replace P by the set of signed
measures on [0, 1]).

Formally, a subset-valued random variable is a measurable mapping from the underlying prob-
ability space (2, F,P) to (£, €). Such a mapping F is said to be regular when

{(t,w)e[0,1] xQ : te E(w)} € ERE
The subset-valued random variable is said to be equimeasured, if there exists ¢ € [0, 1] such that
VweQ, (Ew)) = ¢ (1)

where ¢ stands for the restriction of the Lebesgue measure on [0, 1]. The constant ¢ is then said to be
the equimeasure of F.

We say that the subset-valued random variable E is a random subset representation of the
measurable mapping v : [0,1] — [0, 1] when

vtelo,1], PlteE] = u(t) 2)

In the sequel, the term representation will stand for random subset representation.

The main objective of this paper is to show the following result.

Theorem 1 Any measurable mapping u : [0,1] — [0, 1] can be represented by a regular equimeasured
subset-valued random variable. The equimeasure of the latter is necessarily given by S[O 1 udl.

The last assertion is an immediate consequence of Fubini’s theorem and is the reason for the
regularity requirement. Indeed, let ¢ be the equimeasure of a regular equimeasured subset-valued
random variable E solving the representation problem for the measurable mapping u. Integrating (2),
we get

f wdl = f E[1gem] (dt)

E { J L) é(dt)]

E[¢(E)]

= C

In view of the above considerations, it is natural to wonder if Theorem 1 is still true if the state
space [0,1] where u is defined is replaced by the hypercube [0,1]? endowed with the restriction of
the multidimensional Lebesgue measure, for integer dimensions d > 2, and more generally on any
probability space.

The plan of the paper is as follows. In the next section we deal successively with the cases where
u is constant, u takes at most one non-zero value and u takes a countable set of values. Based on the



existence of these representations, in Section 3 we first deduce a weak version of Theorem 1 for general
functions u, but where (2) is only satisfied almost everywhere in ¢ € [0, 1], before extending to its above
statement, with (2) true everywhere. To illustrate the fact that the representation is not unique, even
in law, in Section 4 we give alternative constructions. In particular we will look for connected-subset
random variables and bring to the fore a link with the absolute continuity of u. In the last section, we
present an optimal control motivation, consisting in the existence of bang-bang controllers, that the
above representations enable to solve.
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2 The function u takes at most a countable set of values

So here we deal with the case where u = >}, arl4, with given sequences (aj)gen of numbers from
[0,1] and (Ag)ren of disjoints Borelian subsets from &.

Instead of the state space [0,1], from now on, we will only work with [0,1), identified with the
quotient space R/Z. Note that we can deduce Theorem 1 from the same statement but for measurable
mappings u : [0,1) — [0,1]. Indeed, let @ : [0,1] — [0, 1] be a measurable mapping and consider u
its restriction to [0,1). Let E be a regular equimeasured subset-valued random variable representing
won [0,1) (now with respect to the Lebesgue probability on R/Z, that will still be denoted ¢). Let B
be a Bernoulli random variable of parameter #(1), defined on the same underlying probability space
as E (or on an enlargement of it, if it happened to be too small, note we don’t specify any dependence
relation between E and B). Define

5 . [Eufy ifB=1
T 1 E Jif B=0

It is immediate to check that E is a regular equimeasured subset-valued random variable repre-
senting u on [0, 1].

2.1 The function v is constant

We start with the elementary situation where u is constant, namely u = al 4, with A = [0,1) the
whole state space and a = ¢ := SR/Z u df.

Let 7 be the canonical projection of R onto R/Z. Let X be a random variable uniformly distributed
on [0,1) and consider E the regular subset-valued random variable defined by

E = n([X,X +¢)

which has equimeasure ¢, since ¢ < 1.
Note that the law of FE is invariant by shifts in R/Z. It follows that the quantity P[¢ € E] does not
depend on t € R/Z, and the Fubini argument given after Theorem 1 shows that

VteR/Z, Pite E] = c
0

(this is also a consequence of the more general Lemma 4 in Section 4).
This ends the proof that Theorem 1 and its variant on R/Z are satisfied by constant functions.



2.2 The function u takes at most one non-zero value

Let us now consider the case u = al 4 with a € [0,1] and A a Borelian subset of R/Z.
Denote by p the measure admitting the density 14 with respect to the Lebesgue measure ¢ and
consider its repartition function

o [0,1)57 — f[o () ) < 0, (4)

It is well-known that the image of p by ¢ is the Lebesgue measure on [0, £(A)], let us call it v.

Using scaling properties and the above existence of representation of constant functions (further-
more taking into account the observation made before Subsection 2.1), there exists a regular equimea-
sured subset-valued random variable E representing the constant a on [0,4(A)]. The equimeasure of
E is then al(A).

Consider the regular subset-valued random variable E defined by

E = Any YE)
We compute that

UE) = plg ' (E))

v(E)
= al(A)
= f al 4 df
R/Z
namely F has equimeasure ¢[u] as desired.
Furthermore we get for any ¢ € [0, 1),
Plte E] = 14(t)P[te o Y(E)]

Thus Theorem 1 holds for functions taking at most one non-zero value.

2.3 The function u takes at most a countable set of values

We now come to the case where u = Y}, yarla,, with given sequences (ay)gen of numbers from [0, 1]
and (Ag)ken of disjoints Borelian subsets from £.

From the previous subsection, for any k € N, we can find a regular equimeasured subset-valued
random variable Ej, representing a4, on [0,1), with furthermore Ej, < Aj. Denote (Qf, F,P) the
underlying probability space.

Consider the product space

(Q’]:,]P)) = H(Qka]_—kvpk)
keN

and for any w = (wg)ken € €2, define

Bw) = | |Erw)

keN

which is easily seen to be a regular subset-valued random variable.



Since the Eg, for k € N, are disjoint, we compute

uE) = Y UE)

keN

= D apl(Ay)

keN
= {[u]

so that E is equimeasured with equimeasure ¢[u] as wanted.
Furthermore we have for any ¢ € [0, 1),

P[t € E] > Pt By

kEEk

= Z Pk[t € Ek]

kEEk

= Z akﬂAk (t)

k‘EEk
= u(t)

Thus Theorem 1 holds for functions taking at most a countable set of values.

3 The general case

Theorem 1 is proven here in three steps, corresponding to the next subsections. First we write the
function u as the sum of its “discrete” and “continuous” parts, which are related to the associated
decomposition of the image of £ by u. Next we deal with the continuous component, since the discrete
component has been treated in the previous section. But it only gives us the almost-everywhere version
of Theorem 1. The final step consists in passing from almost-everywhere to everywhere.

3.1 Decomposition into discrete and continuous parts
Let R be the set of values r € [0, 1] such that ¢(u = r) > 0. This set is at most countable. Define

D {x€0,1) : u(x) € R}
C = [0,1)\D

The discrete and continuous parts are simply given by

up = u]lD
uc = u]lc
and we have
u = up +uc

From Subsection 2.3, we get the existence of a regular equimeasured subset-valued random variable
Ep representing up on [0,1), with Ep < D and even Ep < {z € [0,1) : u(z) € R\{0}}. The
corresponding equimeasure is {[up]. Denote (2p, Fp,Pp) the underlying probability space.

If we had a regular equimeasured subset-valued random variable E¢o representing uc on C, we
could deduce a regular equimeasured subset-valued random variable E representing u on [0,1) as in
Subsection 2.3: denote (¢, Fo, Pe) the underlying probability space of E¢, we take

(Qaf7]P)) = (QDaFDa}PD)®(QC’F07]PC)
E = ED|_|EC



Since Ep and E¢ are disjoint, there is no difficulty in checking that the subset-valued random
variable E has equimeasure ¢[up + uc] = ¢[u] and that it represents u.
The goal of the two next subsections is to construct F¢.

Remark 2 As in Subsection 2.2, we could try to reduce this quest of E¢ to functions u without
discrete part. Consider pyc the measure admitting 1o as density with respect to ¢, as well as the
corresponding repartition function ¢ : [0,1) — [0,£(C)]. Let )¢ be the pseudo-inverse of pc:

Vyelo,(C)],  dely) = mf{zrel0,1): vol(z) =y}

(with the convention that ¢ (¢(C)) = 1 if the r.h.s. is empty for y = ¢(C)).

The function ¢c ot is the identity mapping, at least on [0, £(C')). But in general ¥¢ o does not
coincide everywhere with the identity mapping on C. Thus even if we knew how to find a equimeasured
subset-valued random variable EC representing u o t¢p on [0,4(C)), the equimeasured subset-valued
random variable given by

E = Cny,(Ec)
may not represent uc, since for ¢ € [0, 1),

Plte E] = 1c(t)Plpc(t) € Ec]
= u(¥copc(t))

This is the technical reason why in the next two subsections we will work directly on [0, 1), without
using a transfer through the repartition function. o

3.2 The almost-everywhere version

Assume that uc is not a.s. 0, since in this case the almost-everywhere version of Theorem 1 follows at
once.

Our purpose here is to construct a sequence (a,)nen of positive numbers satisfying > yan = 1
and a sequence of Borelian subsets (A4, )nen included into C' such that a.s.

v = S,

neN
with
VneN, up = aplya,

The construction is based on an iteration. So let us start with aq and A;.
Define

co = JUC dl

and note that cc € (0,4(C)).
We consider for a; the unique element of (0, 1) such that

and



Note that v1 = u — uy, with u; = a114,, is a measurable function taking its values in [0, 1] and
satisfying that for any r € [0, 1],

{fxeC :vi(z)=7r}) = 0
Assume that aq,...,a, and Ay, ..., A, have been constructed, so that
Up = UG — UL — U2 — o — Up
is a measurable function taking its values in [0, 1] and satisfying that for any r € [0, 1],
({xeC vp(x)=71}) = 0
In particular, there exists a unique element a,41 of (0,1) such that
U(vp = ans1) = cc (3)

and we take

Apy1 = {2 eC :v(z) = ans1}
Unt1 = app1la,,,
Note that the measurable function vy,4+1 = v — u; —ug — -+ — up4+1 takes its values in [0, 1] and

satisfies that for any r € [0, 1],
{xeC : vpgo(x)=1r}) = 0

so that the iteration condition is valid.

By construction, the sequence of functions (v,)nez,, with vg = uc, is non-increasing and non-
negative. In view of (3), which is valid for all n € Z, we deduce that the sequence (an)nen is
non-increasing. In addition, we can define the function v given on C' by

VaxeA, v(z) = lingo v (2)

The important observation about this function is:

Lemma 3 The function v vanishes a.s. on C.

Proof

We use an argument by contradiction. So assume that there exists e > 0 such that
lv=e) > 0

We can then find a subset B of {v > €} such that furthermore ¢(B) € (0, cc), e.g. we can find such
a set of the form {v > €,u > a} for an appropriate choice of the value a € (0, 1).

Since for any n € Zy, we have v, > v, we get from (3) that a,4+1 = € and that B < A,4;. The
bound

uc(z) = wi(z)+ug(z) + - + uy(2)
then implies that for x € B, 1 > uc(x) = en and we get a contradiction by letting n go to infinity. B
It follows that a.s.,

e = 3 tm

neN



and by integration
fuc] = ). flun)
neN
Since l[uc] = c¢ and that for any n € N, we have £[u,] = a,l(A,,) = ancc, we deduce

Eanzl

neN

Consider then the subset-valued random variable EC taking the value A, with probability a,. It
is equimeasured with equimeasure co. Furthermore for any ¢t € C', we have

Plte Ec] = ) anla,(t)

neN

= 2 anly, (H)>an
neN

= D (Wna(t) = va(E) 1y, (t)>a,
neN

= Z Unfl(t) - Un(t)
neN

= vo(t) —v(?)

~ ()

where in the fourth equality we used that if v,(t) < ay, then v,(t) = v,4+1(t) and where the last
equality holds a.s. in t € C.

It follows that the subset-valued random variable E’c is a.s. representing the function uc on C.
The arguments given in Subsection 3.1 then show that Theorem 1 holds a.s., in the sense that (2) is
only satisfied a.s.

3.3 Going from almost-everywhere to everywhere

This the last step of the proof of Theorem 1.
With the notations of the previous subsection, consider the negligible set

N = {zeC :v(z)>0}
and the regular subset-valued random variable EC defined by
Ec = Eon (CW)
We check immediately that E(; has the same equimeasure as EC, that it is included into C\W and
that it exactly represents the mapping uclo\ -

We are going to construct a regular subset-valued random variable EC, included into N and thus
with equimeasure 0, and which is a representation of ucla on C. It will then follow that

EC = EC |_| EC
is a regular equimeasured subset-valued random variable representing uc = ucleow + ucly on C.

It is the random variable needed in Subsection 3.1 to end the proof of Theorem 1.

To construct E¢, consider

Vo keZy,  Ank

k
4 n€Z+, Wy = Z 27]11411,1@
k‘EZ+

{zeN k27" <uc(z) < (k+1)27"}



so that we have on C,

vty = Jim w,

Since wg = 0 and wy 11 — w, = 0 for any n € Z, we can rewrite this equality as

ucly = Z Wn+1 — Wp
TLEZ+
1
- Z on+1 ]lB"
T'LGZ+
with
Vne Z+, Bn = |_| An,k\AnJrl,Qk
k€Z+

It remains to choose the negligible set B,, with probability 277!, for any n € Z , to get the wanted
regular subset-valued random variable E¢.

4 Some particular cases

In general the representation given by Theorem 1 is not unique in law, and our goal in this section is
to illustrate this feature by presenting alternative approaches. Note that the procedure described in
the three previous constructions leads to subset-valued equimeasured random variables with typically
unbounded numbers of connected components. Below we look for subset-valued equimeasured random
variables with very few connected components and see a relation with absolute continuity assumptions
on u.

Let’s take the problem in reverse: we’re going to construct a certain family of set-valued random
variables and deduce the corresponding functions wu.

Fix ¢ € (0,1), that will end up playing the role of the equimeasure. Let X be a random variable
with values in [0, 1), its distribution is denoted by p. Recall that 7 is the canonical projection of R
onto R/Z, identified with [0,1). As in Section 2, we're interested in

E = 7n([X,X +¢))

This subset-valued random variable F is regular and equimeasured with equimeasure c.
Let us compute the fonction u : [0,1) — [0, 1] represented by E:

Lemma 4 For any fized t € [0,1), we have
PiteEF] = F{t)—F({t—c)+1—-F(1 —c+1)

where F' : R — [0, 1] is the distribution function of .

Proof
Note that



We deduce that for ¢ € [0, 1) fixed,

{teE} = {X<t<X+o)nlju{t<(X+c—1)4}
= {(X<l- X<t<X+o)rllu{X<l—-ct<(X+c—1)4}
{X>1—c, X<t<(X+)arl}u{X>1—-ct<(X+c—1)4}
= (X <1l-e X<t<X+cju{X>l-c X<t<l}u{X>1l—-ct<X+c—1}
ft—c<X<(Q-c)rtju{l—c<X<t}u{t+1l—c< X}
= {t—c<X<tju{t+1l—c< X}

<
<

It follows that

PlteE] = Plt—c<X <t]+P[t+1—c<X]
— F{t)—F({t—c)+1—F(1+t—c¢)

by definition of the distribution function. ]

Note that ¢ — ¢ and t — ¢ + 1 cannot both belong to [0,1). Given that F(r) = 0 for r < 0 and
F(r) =1 for r = 1, we deduce that for all ¢ € [0,1),

Fit)-F(t—c+1)+1 |ift<c
F(t)— F(t—c¢) Jift>ec

Plte E] = {

Let uc p be the function defined on [0, 1) by the r.h.s.

Let F be the set of functions on [0, 1) that are non-negative, non-decreasing, cadlag (i.e. right-hand
continuous with left-hand limits) and that verify F'(1—) = 1. This is the set of distribution functions
for random variables with values in [0,1). We may wonder what is the set U, consisting of u. r when
F goes through the set F. It would also interesting to describe U = | | ce(0,1) U,, namely the set of
functions which can be represented by connected-subset-valued equimeasured random variables (in
R/Z).

As a first step in this direction, here we only investigate the set U ;. To state our result, we denote
by Var(f,I) the total variation of a function f over the interval I. If Var(f,I) < +oo, for any r inside
I, the left-hand limit f(r—) exists and we note [ f](r) := f(r) — f(r—) the (possible) jump of f at r.

We also need G, which is the set of functions u : [0,1) — [0, 1] that are cadlag and satisfy

Vte[0,1/2), u(t) +u(t+1/2) = 1 (4)
Var(u, [1/2,1)) < 1-[0[f](1/2)| (5)
Proposition 5 We have
Uyp = G
Proof
Consider u € Uy s, which is therefore of the form
Fit)-Ft+1/2)+1 ift<1/2
vie1). u@ = | L OTHEELR) / (6)
F(t)— F(t—1/2) Jift>1/2

for a certain F' € F. This function w is clearly cadlag, since F is.
For t € [0,1/2), we have —1 < F'(t) — F(t +1/2) <0, so that u(t) € [0,1]. For ¢t € [1/2,1), we have
0< F(t)— F(t—1/2) <1, so we also have u(t) € [0, 1]. Moreover, for all t € [0,1/2),

w(t) +u(t+1/2) = Ft)—F(t+1/2)+1+F(t+1/2)-F(t) =1

10



Finally, note that the total variation of the restriction of F' to [1/2,1) is F/(1—)—F(1/2) = 1-F(1/2)
and that the total variation of the non-decreasing function [1/2,1) 3¢ — F(t—1/2) is F(1/2—) — F(0).
It follows that the total variation of u on [1/2,1) is less than 1 — §[F|(1/2) — F(0).

We deduce from (6) that

w(l/2-) = F(1/2-)—F(1-)+1 = F(1/2-)
u(1/2) = F(1/2) - F(0)

hence §[u](1/2) = 0[F](1/2) — F(0) and on the one hand

Var(u, [1/2,1)) < 1-6[F]|(1/2) — F(0)
= 1-0[u](1/2) — 2F(0)
< 1-0[u](1/2)

and on the other hand

Var(u,[1/2,1)) < 1-—6[F](1/2) — F(0)
1 —0[u](1/2) — 20[F](1/2)
< 1+ 6[u](1/2)

Putting these two inequalities together, we obtain
Var(u, [1/2,1)) < 1—1[6[u](1/2)]

thus showing that u € G.

Conversely, consider a function u € G.
Since the total variation of w on [1/2,1) is finite, Jordan’s decomposition allows us to write

Vite[l/2,1), u(t) —u(l/2) = G(t)— H(t)
where G and H are defined on [1/2,1), cadlag, non-decreasing, satisfying G(1/2) = 0 = H(1/2) and
Var(u, [1/2,1)) = Var(G,[1/2,1)) + Var(H,[1/2,1))

Note that

Var(G,[1/2,1)) = G(1-)—G(1/2) = G(1-)
Var(H, [1/2,1)) = H(1-)— H(1/2) = H(1-)

so that
G(1-)+ H(1-) = Var(u,[1/2,1)) (7)
Since we also have

w(l-) —u(l/2) = G(1-)— H(1-)

we deduce
2G(1-) = Var(u,[1/2,1)) +u(1—) —u(1/2)
= Var(u,[1/2,1)) + 1 —u(1/2—) —u(1/2) (8)
where
u(l—) +u(l/2—) = 1

11



It follows that

1 GU-) —u(lj2) = 1-— Var(u, [1/2,1)) + 12— u(1/2—) —u(1/2) u(1/2)
1 — Var(u,[1/2,1)) — d[u](1/2)

2

= 0
Replacing (8) in (7), we obtain

H(1-) = Var(u,[1/2,1)) - Sll/2 D) #1 = ul/2) — u(l/2)

2
_ Var(u,[1/2,1)) = 1+ u(1/2—) + u(1/2)
2
_ Var(u, [1/2, 1))2— 1 —0[u](1/2) +u(12)
< u(1/2)
Consider the function F' given on [0,1) by
viel0,1), F() = { HE+1/2)+1-G=)—ul/2) < 1/2
G(t)+1-G(1-) ift>1/2

In particular, for t € [1/2,1),

G
G

u(
(

F(t)—F(t—1/2) H+1—-G(1-)—(H@t)+1-G(1-) —u(1/2))
t)— H(t) +u(1/2)

t) —u(1/2) + u(1/2)

t)

(
(

|
e

and for ¢ € [0,1/2),

Ft)—F(t+1/2)+1 = 1+H(t+1/2)+1—G(1-) —u(1/2) — (Gt +1/2) + 1 - G(1-))

= 1—(G{t+1/2)— H(t+1/2)) —u(1/2)
= 1—u(t+1/2) +u(1/2) —u(1/2)
= u(t)

Thus (6) is satisfied.
It remains to show that F' € F.

e By definition, F is clearly cadlag because G and H are (and because the two cases considered
in (11) are for ¢t < 1/2 and ¢t > 1/2, it would have been more problematic if it had been ¢t < 1/2 and

t>1/2).

e To see that F' is non-decreasing, since G and H are non-decreasing, we need only check that

F(1/2—) < F(1/2), which comes, via (10), from

F(1/2) = 1-G(1-)
F(1/2-) = H(1-)+1-G(1-)—u(1/2)

e To check that F'(0) > 0, we calculate

FO) = H(1/2)+1—G(1-) —u(1/2)
— 1-G(1-) —u(1/2)
= 0

12



from (9).
e To check that F(1—) = 1, we calculate

F(1-) = G1-)+1-G(1-) =1

Remark 6 Note that
Var(u, [1/2,1)) + [6[f1(1/2)] = 6l_i)m Var(u, [1/2 — €,1))

0+

so that the term on the left can be written as Var(u,[1/2—,1)). The condition (4) can then be
simplified into

Var(u,[1/2—,1)) < 1

Let’s give a consequence of Proposition 5 :

Corollary 7 The function u : [0,1) 3 t — t can be represented by a subset-valued equimeasured
random variable whose numbers of connected component are at most three.

Proof

Consider first the function @ given by

vV rel0,1), u(r) = {g_r yifre[1/2,1)

For all r € [0,1/2), we have

)+ at + 1/2) T+3—(r+1>

so that (4) is satisfied.

It also appears that Var(w,[1/2—,1)) = 1, so (5) is also verified. It follows that there exists
a connected-subset-valued equimeasured random variable E representing the function @. It can be
checked that it corresponds to ¢ = 1/2 and X uniform on [0,1/2).

Consider the mapping @ : [0,1) — [0, 1) defined by

Lif r € [0,1/2]

VT‘G[O,l), [’B(TO = { —r if’f‘e(l/2 1)

Nl 3

(it differs from @ only in 1/2). R
Consider the subset-valued random variable E defined by

Since ¢ leaves £ invariant, E has equimeasure 1/2. Furthermore, noting that ¢ is an involution,
we compute that for all ¢ € [0,1),

Plte E] = P[3(t) € E]

= UP(t)
ottt
a {1 Jift =1/2

13



This is not quite the identity function we want. To get it, let’s also consider the mapping ¢ :
[0,1) — [0,1) defined by

r ,if ref0,1/2)
vV rel0,1), o(r) = 0 Jifr=1/2
S—r ifre(1/2,1)
and the subset-valued random variable E defined by
E = §'(E)

As above, E has equimeasure 1/2 and we compute that for all ¢ € [0, 1),

Plte E] = P[@(t) e E]

= a(3(t)
it
N {0 Jift=1/2

Consider two realizations of E and E, then choose E as one of them with probability (1/2,1/2).
It is a representation of the identity function u, since we have u = (o @ + @ o ¢)/2.

Since E has at most two connected components and E at most three, we get that E has also at
most three connected components. |

5 Application to control theory

Consider the following control problem. General introductions to optimal control theory are provided
by the books of Fleming and Rishel [1] and Liberzon [2].
Given the measurable function f : [0,1] x [0,1] — [0,1], we are interested in the evolution

(2(t))sefo,1] directed by
{ z(0) = 0
Viel0,1], @) = flxz(t),u(t))

where u : [0,1] — [0,1] is a measurable control. The cost of u is

1
f o(t, ult)) dt
0

where ¢ : [0,1] x [0,1] — R4 is a measurable and bounded function.

A traditional problem (P;) is to find a control u, with minimal cost compatible with the objective
z(1) = ¢, where ¢ € [0,1] is given. Depending on f and ¢, it may be that no control meets the
requirement x(1) = ¢ or that a minimal solution is not unique.

A stochastic version of this problem allows u to be random, while imposing further restrictions on
its form. The interpretation is that the control is exercised by a population of agents, each of them
only being able to act in a restricted modality. For instance, let us only allow bang-bang controls,
namely measurable functions u taking values in {0,1}. Such a control is the indicator function of a
measurable subset of [0,1]. Thus we can identify the set of controls with &, still endowed with its
sigma-field €. We are led to look for regular subset-valued random variables E such that the random
evolution (z(t))se[o,1] directed by

{ z(0) = 0
Viel[0,1],  a(t) = f(z(t),1E())



ends up with the deterministic condition z(1) = ¢, and whose cost defined by

1
C(B) = L (4, E[1 p(1)]) dt

is minimal. This problem amounts to find the optimal weight each control should be given.

Consider the particular case where:

e The function f is given by
V x,uel0,1], flz,u) = u

e Problem (P;) admits a unique solution us. A toy example is when u, is a priori given (satisfying
Sé ux(t) dt = ¢) and

V t,u € [0,1], o(t,u) = (u— u*(zf))2

From the first point, we deduce that the condition z(1) = ¢ coincides with (1). From the second
point, we see that a regular subset-valued random variables E will be optimal if it satisfies (2) with u
replaced by w..

It was our initial motivation to investigate the existence problem mentioned in the introduction.
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