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Let U be a Morse function on a compact connected m-dimensional Rie-
mannian manifold, m > 2, satisfying minU =0 and let Y = {xr € M :
U(z) = 0} be the set of global minimizers. Consider the stochastic al-

gorithm xB) = (X(’g) (t))t>0 taking values in M, whose generator is
UA[-] — B{VU,V|[-]), where B € R is a real parameter. We show that for

B> -1, x6) (t) converges a.s. as t — o0, toward a point p € U and that
each p € U has a positive probability to be selected. On the other hand, for

B < '3 — 1 and when the initial law does not charge U/, the law of X () (t)
converges in total variation (at an exponential rate) toward the probability
measure 7 having density proportional to U (:Jc)fl*ﬁ with respect to the
Riemannian measure.

1. Introduction. Global optimization is an important and difficult task in applied math-
ematics, so the development of corresponding algorithms has been the subject of a great
deal of work. Specific assumptions on the function U to be optimized has led to very effi-
cient approaches: e.g. gradient descent or Newton’s method for convex optimization, moment
method for polynomial optimization. There are also a few general algorithms, often using a
certain amount of randomness, such as simulated annealing or interacting particle algorithms.
Here we will consider the special situation where the minimum value of U is known and can
be used by the algorithm. Such an algorithm is said to be fraudulent, since in general this
value is not available and one might think that knowing it is equivalent to knowing a global
minimum. However, there are natural situations where the minimum value is given but the
corresponding minimizers are not.

Here are some simple illustrative examples. Consider a generic polynomial P of odd de-
gree larger than 5 (assume e.g. that the coefficients are sampled according to a non-degenerate
Gaussian law) and define U = P2 on R. We know that the minimal value of U is zero, but we
cannot express its roots through radicals. For a more geometric example, consider a tangent
continuous vector field V' on a sphere S of even dimension m € 2N. From Brouwer’s hairy
ball theorem [6], there exists a point zg € S™ such that V(xg) = 0. Thus we know that the
minimal value of the mapping U : S™ 5z — |V (z)|? is zero, without being able to point
a global minimizer in general. Consider for instance a vector field V' constructed from a
(m+ 1,m + 1)-Brownian sheet, i.e. defined from [0, +00)™ ! to R™T! (see e.g. page 269 of
Walsh [22]), by restriction to the sphere centred at (2,2, ...,2) of radius 1, and by projection
on its tangent spaces. Below we will only consider smooth functions U, so V' should also be
regularized.
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More important and current applications of fraudulent algorithms can be found in the
field of statistical classification. Appendix A.1 provides some heuristics explaining why the
stochastic algorithm X (%) introduced below can be seen as a toy model for the diffusion
limit of mini-batch stochastic gradient descent algorithms extensively used in the theory of
Machine Learning, see for instance Li, Tai and E [16], Wu, Wang and Su [25], Mori, Ziyin,
Liu and Ueda [18] and Wojtowytsch [23, 24] as well as references therein.

Another instance of the usefulness of fraudulent procedures is when a global minimizer is
known and that we are looking for all the other ones. For other interests of fraudulent algo-
rithms, we refer to [17], where the term was coined. There the motivation for the stochastic
algorithm X ®) comes from its approximation of the large-time limit behavior of the time-
inhomogeneous swarm mean-field algorithm introduced in [5], which is itself non-fraudulent
but uses its current distribution to estimate in real time the minimal value.

Let us present more precisely the framework considered here: U is a Morse function de-
fined on a compact manifold M of dimension m > 2. The underlying stochastic process
X = (XB)(t));50, takes values in M and comes with a real parameter 5 which can be
tuned to increase the relative importance of U with respect to the injected randomness. More
specifically, the generator of X (%) will have the form UA[-] — 3(VU, V[-]), i.e., if we were
in an Euclidean context, the associated X () can be constructed as solution of the s.d.e.

dXP) () = —VU (X P (t))dt + /20 (X B)(t))dB;

where B = (B¢);>0 is a standard Brownian motion on R™.

Two quantities 3., = 5. € R (depending explicitly on the eigenvalues of the Hessians of U
at its global minima, see Remark 2.4 below) were introduced in [17] so that 5 > (5., implies
the a.s. convergence of X (%)(t) as t — oo, toward the global minima of U (and each of them
attracts the algorithm with positive probability, when X () (0) is not a global minima), while
for 5 < 3, the probability that X (%) (t) converges toward a global minimum of U is zero.

Our goal in the present paper is to sharpen these result and describe completely the long
term behavior of X (®) for all 8 # /3y, where 3 = % — 1 is a universal (i.e. independent of
U) critical value, contrary to the results of [17], where 5, and (3, depended on U (except
in dimension 1). It thus follows from the current results that this dependence was artificial in
dimension larger or equal to 2, 5y € [B., 8\ ] being the exact critical value for the following
behaviors. We will show that for 3 > Sy, X (t) a.s. converges toward a global minimizer
of U and that each global minimizer has a positive probability to be selected (except when
x® (0) is itself a global minima). On the other hand, for 5 < f3y, the process converges
in distribution toward a (unique) invariant distribution whose density (with respect to the
Riemannian measure) is explicit. The present results are thus sharper than those of [17] as
soon as By > [, and this is equivalent (as it can be seen from (2) in [17]) to the fact there
exists at least one global minimum x € ¢/ such that the Hessian of U at x is not proportional
to the identity. In practice this feature is quite generic, as soon as m > 1. Here our results
will be obtained by an approach completely different from that of [17], which was based on
comparisons with Bessel processes of various dimensions. Instead, below we will rely on the
persistence/non-persistence approach presented in [4] and [2].

The paper is organized as follows. Section 2 sets the notation and presents the main results.
Section 3 considers the situation where M is no longer a compact manifold but the Euclidean
space R™. It allows to introduce the main ingredients of the proof in a simple setting. Sec-
tion 4 is devoted to the proof of the main results. Certain additional points are discussed in
appendix.
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2. Notation and main result. We assume throughout that M is a compact connected
Riemannian manifold having dimension m > 2 and U : M — R is a smooth function such
that (this is the fraudulent assumption):

minU = 0.
M
The zero set of U,
U={peM :U(p)=0},

is then the set of global minimizers. We furthermore assume that every p € U is non-
degenerate, meaning that the Hessian of U at p is non-degenerate. This assumption implies
that { is finite. In particular, N := M\U is a noncompact connected manifold.

Let Lg be the operator on C?(M) defined as

(D Lg[] =UA[] = B<VU VLD

where A, {-,-) and V stand for the Laplacian, scalar product and gradient associated to the
Riemannian structure of M, and S € R.

A diffusion process generated by (1), is a continuous-time Feller Markov process on M,
XB) = (XB)(t))=0, with infinitesimal generator £z and domain D(L3) = C°(M) (see e.g.
Le Gall [15], Section 6.2, for the definitions of Feller processes, domains and generators)
such that for all f e C2(M):

f € D(ﬁg) and [,ﬁf = Lﬁf.

Since the mapping VU and vU are Lipschitzian, due to the non-degeneracy assumption of
the zeroes of U for the latter, such a diffusion process exists. More details are given in the

appendix. In addition, given the initial distribution of X (%) (0), say p, the law of X (5),195? ),

is uniquely determined by y and Lg. As usual, we write ng ) for ng ). By a mild (but conve-

nient) abuse of notation we may write P, (X (%) € .) for p{Y (-). We also let P(#) = (Pt(ﬁ ))t>0

denote the semi-group induced by X (%) It is defined, as usual, by
Vi>0,VYzeM, PP f@) =Ef(XP )

for every measurable, bounded or nonnegative, map f: M — R.
The proof of the next proposition, which relies on classical results, is given in Ap-
pendix A.3.

PROPOSITION 2.1.  Here are some basic properties of PP :

1) P®) leaves N and U invariant: forallt =0, Pt(ﬁ)lN =1y.
(i) P is Feller on M and strong-Feller on N:
- Forallt>0and f eCO(M), PP () eCO(M);
-Forallt>0and f: N — R bounded measurable, Pt(ﬂ ) (f) is continuous on N.

Note that P(%) is not strong Feller on M, as it can be seen by considering the indicator
function of V. In order to state our main result we first associate, to each p € U, a certain
Lyapunov exponent. Given a symmetric positive definite m x m real matrix A, and g € R,
define the probability measure 14 g on S™~1, the unit sphere in R™, via

2) VoeS™ Tl uap(df) = (0, A0y &(dh)

Z(A, 1+ D)
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where, o is the uniform probability measure on S™ 1, (-, -) the Euclidean dot product (not
to be confused with the Riemannian metric on M) and Z(A,1 + ) is the normalization
constant.

Define the (-average eigenvalue of A as

3) A(A,B) = JS (8, 48) pap(dh) = m-

Let A\1(A) <...< A\p(A) be the eigenvalues of A. Observe that A(A, 5) only depends on
these eigenvalues, because o is invariant by orthogonal transformations and A is orthogonally
conjugate to a diagonal matrix. Observe also that

(4) A (A) < A(A, B) < A(A).

REMARK 2.2. Inequalities (4) are strict, except when A\;(A) = A,;,(A). Furthermore it
can be shown (see the appendix Section A.4) that for all numbers A_ < A < A, there exists,
for m sufficiently large, a m x m definite positive matrix A such that A\;(A) = A_,A(A4, () =
Aand A\, (A) = A;.

Given p e U, we let A, denote the diagonal matrix whose entries 0 < A (p) < ... < Ay (p)
are the eigenvalues of the Hessian of U at p. Set

m

Our main result is the following.
THEOREM 2.3. Letx e N and BeR.
(@) If B> Po, then
In(d(X @) (¢t
3 e fimsup ML) oy a, gy5 - )| = 1,
t—+00

peU

where each term in the above sum is positive.
(i) If B < fBo, then X® has, on N, a unique invariant probability distribution given by

ra(da) = gﬁw—l—wd@,

where Cg is a normalization constant and ((dx) stands for the Riemannian measure. Fur-
thermore:
(a) XB) is positive recurrent on N, meaning that for all f € L* (mg), Py a.s.,

1 t
m - 8) —
Jim 7 [ X)) =t
(b) There exist positive constants a,b, x (depending on B) with x < Bo — B, such that for
all f: N — R, measurable,

ae bt

[Ea[f (X ()] = ms(f)] < W\\f\\x,

where

I £l :=sup | f(y)|d(y,U)*.
yeN
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(iii) If B = Bo, then, for every neighborhood O of U, P, a.s.,

.1t

REMARK 2.4. Theorem 2.3 is an improvement over the results of [17], which showed
the a.s. convergence of X (%) toward elements of I (each being approached with a positive
probability) only for 8 > 3, = By with

qu{mﬂ Ai(p)
5 v =max ——— — 1,
®) By = )
and the a.s. non-convergence of X (%) toward elements of U for 3 < 8, < S, with
2efm) N (P)
A=min————— — 1
© b I;élzfr{l 2Am(p)

REMARK 2.5. Here we restrict our attention to dimensions m > 2, so that /N is con-
nected. The case m = 1 which corresponds to the circle is already treated in [17].

REMARK 2.6. While it is true that for 8 > 3y, whatever the initial point x( outside I/,
the law of X (%) (t) will charge all the points of I/ asymptotically for large ¢, we also have that
when we let 2y converge toward a particular x € U/, the asymptotical weight put by X (B) (t)
on z converges toward 1. As a consequence, if we want to use X (%) to find all the elements
of U with a non-neglectable chance, say already knowing a particular = € U/, we should not
initialize X #) close to «. Or, as it was proposed by one of the referees, we should modify U
in a neighborhood of x so that x is no longer a global minimum of the new function. Ideally,
when have knowledge of an initial point x, such that all elements of I/ are approached with
a more or less even probability, then we should repeat the algorithm a corresponding number
of times to find all the elements of /.

REMARK 2.7. By Theorem 2.3, the diffusion X(®) on N is transient for 3 > S, and
positive recurrent if and only if 5 < S, due to the fact that §, U 1Bt = +o0 for B =
Bo. By standard results (see e.g. Kliemann [12], Theorem 3.2 applied with C = N), it is
then either null recurrent or transient for 3 = 5y. It would be interesting to investigate this
situation.

3. Euclidean computations. This section considers a situation where the state space
M is no longer a compact manifold but the Euclidean space R, with m > 2. We state a
theorem (Theorem 3.1 below) analogous to Theorem 2.3 (i) . This result is interesting in
itself, and its proof allows us to explain, in a simple framework, how to characterize the
attractiveness/repulsivity of a global minimum. The main idea is to expand a critical point to
a sphere, using polar decompositions, following [4].

Let U : R™ — R, be a smooth function with min U = 0. We assume that for each p €
U =U"1(0), HessU(p) is positive definite. In particular, points in I/ are isolated and U is
therefore countable.

For any fixed 8 € R, as in (1), we are interested in the operator L g defined on C%(R™), via

) VeeR™,  Lg[fl(z) = Ux)Af(x) = BVU VL) (x)

where A, (-,-) and V, respectively denote, the Euclidean Laplacian, scalar product and gra-
dient. Throughout all this section ||z|| = 4/{x, x) denotes the Euclidean norm of x.



Associated to (7) is the stochastic differential equation

(8) dX P () = —pvU(X B (8))dt + 1/2U (X B)(t))d B

where B = (B;);>0 is a standard Brownian motion on R™.

By local Lipschitz continuity of VU and /U, there exists, for each 2 € R™, a unique so-
lution X #) : [0,7%) — R™ starting from z, (i.e. X(%)(0) = z). Here, 0 < 7® < o0, denotes
the explosion time of X (¥) and is characterized by

™ >te | XP ()] < 0.
The set R™\U/ is invariant, in the sense that for all ¢ > 0,2 € R™\U,
P (XP () e R™U |77 > t) = 1.

The proof of this last point is the same as the proof of Proposition 2.1 (i) given in the
appendix.

THEOREM 3.1. (i) Suppose 3> (. Then, for all xt e R™\U and pe U,

B(t) —
©) mbmmJWX () —pl)

t—+00 t

< —A(Ap,m(ﬁ—ﬁo)] >0

where Ap, A(Ap, B) are defined as in Section 2.
(ii) Suppose B > By, and in addition, that there exist positive constants o, v (possibly de-
pending on 3) such that

(10) 260U () = BVU (), 2) < —ala]?
whenever x| = r. Then, U is finite and for all x € R™\U,

B)(¢) —
m)zmhmwMW@>m
peU t—+00 t

< —A(A4p, B)(B—=Po)iT” = OO] =1

(iii) Suppose 8 < By. Then, for all pe U and x € R™\{p}

P, [lim XB (1) = p] ~ 0.
t—00
REMARK 3.2. The condition (10) is given for its simplicity. However, the conclusion
(11) holds true under the weaker assumption, implied by (10) (see Lemma 3.3 below), that
X () almost surely never explodes (i.e 7% = o0) and eventually enters a ball B(0,r) contain-
ing U for some r > 0.

The remainder of this section is devoted to the proof of Theorem 3.1. We first recall some
classical facts about diffusion operators, see e.g. Bakry, Gentil and Ledoux [1]. The carré du
champ I';, associated to a Markov generator L defined on an algebra A(L) is the bilinear
functional defined on A(L) x A(L) via

VfgeAlL), Trlf,gl=L[fg]— fLIg] —gL[f]

(we will denote T'.[f] :==TL[f, f]-
The generator L is said to be of diffusion, if A(L) is stable by composition with smooth
functions and if we have

(12) L] = ¢l + 29

2

LL[f]
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for any f € A(L) and any function ¢ smooth on the image of f.
In this situation we also have, with the same notations,

(13) Trle(H)] = (' (£))TLlf]

The Markov generator given in (7) is of diffusion with A(Lg) = C*(R™). The corresponding
carré du champ is given by

(14) VfeCHR™), Ty [f]=2U|Vf|*

Our first goal is to show that, under condition (10), X %) never explodes and always enter the
ball B(0,r). For all s > 0, we let
To=inf{t=0: | XP ()] <s}and r° =inf{t >0 : [ XP) ()| > s}.

Note that these stopping times depend on 3, but to shorten notation we omit this dependance
in their definition.

LEMMA 3.3. Under the condition (10),
P, (r* =w0;7, <) =1

forall x e R™ and r is as in (10).

PROOF. Let V : R™ — R be a smooth function coinciding with In(||z|?) for |z| = 7.
Using the formulae (12) and (14) it comes that, for all ||z| > r,

Lo(V)(x) = ,j,z (2667 (2) — BVU().2)) < —2a.

In particular, for all z € R™, Lg(V)(x) < C where C' = supzepm :|o|<r} [ L5(V)(2)]. Thus,
by Ito’s formulae, for all k > 1,

In(k?)P, (7% <t) < B (V(XP (¢ A %))
= V(z) +E, [JMT’“ Lﬁ[v](X(ﬁ)(S))ds

<V(x)+tC.

This shows that P, (7% < t) — 0, as k — 0. Hence P, (7% < 0) = 0.
Now, by Ito formulae again, the process (M;);>¢ defined as

tATy
My :=V(XBO(t A7) —In(r?) — f LV(X P (s))ds = 2a(t A 77)
0
is a nonnegative [P, local martingale. A nonnegative local martingale may not be a martin-
gale but is always a supermartingale (Le Gall [15], Proposition 4.7). Thus 2aE,(t A 7)) <
E,(M;) < V(x) —In(r?). Hence E,(7,) < 0. O

Our next goal is to investigate the behavior of X (%) around a critical point p € /. Without
loss of generality, we assume that p = {0}. We let A = Hess U (0). Fix € € (0, 1) small enough
so that U N B(0,¢) = {0}. Write any = € B(0,¢€)\{0} under its polar decomposition = = pf
with p e (0,¢) and 6 € S~ 1. This decomposition induces the mapping

Q: C*(B(0,¢)) 3 f = Q[f1€C*((0,¢) x S™7H)

with
(15) V(p,0)e(0,e) xS™ 1, QLf1(p,0) = f(ph)



Endow S™~! with its usual Riemannian structure, inherited from R™, and denote ey o>
Vo, divg and Ay the corresponding scalar product, gradient, divergence, and Laplace-
Beltrami operator. Note that (-, - ), is just the restriction of (-, -) to the tangent space of
Sm=1at 6.

Classical computations in polar coordinates show that for any f, g € C2(B(0,¢)), we have

n (0,¢) x S™L,

QU V9] = 0,QL110,QLg] + :2<V9Q[f], VoQlal)y.

m—1

QIO = 2QL + =10,QLf + ;Ae@[ﬂ.

It leads us to introduce the operator Lg on C?((0,€) x S™~1) defined by
1 1
1811 =U (01 + 720,10+ 580 ) =5 (@31 + 25 <TaU Va1, )

where U := Q[U]. Indeed, on C?(B(0,¢)), we have the intertwining relation
Lﬁ o Q = Q o Lg.

m—1

LEMMA 3.4. The operator Lg extends to a diffusion operator, still denoted Lg, on
C2([0,€) x S™1), whose associated diffusion process X leave {0} x S~ invariant. On
{0} x S™71, identified with S™ 1, XB) admits for generator the operator Gg acting on
C?(S™1) via

(17) ViecC*(sm ), Gglf] = %wyﬁdiv(;(\yfwf)

where ¥ 0 € S™1, W 4(0) = (0, A0) . Furthermore, G has a unique invariant probability
measure on S™ L, given by ia.g (see Equation (2)).

PROOF. Our assumptions on U imply that, uniformly over § € S™ 1,

CUp) 1
(18) p1—1>r61+ ,02 - 2 <97 A9> )
(19) lim M = <9’A(9>7
p—04
(20) tim YO0 a5 g gy,
p—04 1Y

Indeed, by the usual expansion of U around 0, we have

U(x) =U(0)+<VU(0),z) + %(ac, HessU(0)z) + o({x,z))

- %@,A@ +o((,x))

which translates into

2
U(p,9) = - (6,46) + o(p?)
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leading to the first announced limit (18). Similarly,
VU (xz) =VU(0) + HessU(0)z + o(+/{z, x))
= Az + o(\/{(z,z)).

At x = pf with p > 0, d,U(p, 0)0 is the radial part of VU (x) and V4U(p,6)/p is the tangen-
tial part. It follows that

6,U(p,0) = (VU (a),0),

Wuff”o) = VU () — 9,U(p, 0)0,
and we get

DARE) o, 40) + o)

VoU(p,0)

leading to the wanted second and third results (19) and (20).
It follows that for any F € C?([0,¢€) x S™~1), we have, uniformly over § € S™~ 1,

Denoting Lz[F](0,6) the r.h.s. enables us to see Lg as a diffusion operator on [0, €) x S™ 1,
whose associated diffusion process X(%) leaves {0} x S~ invariant, and such that on {0} x
S™=1, identified with S™~!, its generator coincides with the operator defined by

Gal) = 0,40) (350(6) — 5000V,
where

_ A9 —(0,A050 1
m—1 . ’ —
VoeS™l (o) = .45 5 VoIn((0, A0)).

It is easily checked that G 3 can be rewritten under the divergence form given by (17). This
divergence form implies that the probability measure 114 g defined in (2) is invariant. By
ellipticity of G'g there is no other invariant probability measure.

O]

LEMMA 3.5. Suppose > o and 0 < X\ < A(A,). For all 0 < n < 1, there exists
0 < €1 such that for all |z| < e,

8)
(22) P, llim sup (X ®1)
t—400 t

<—>\(5—50);] =1-n.
If now, B < fo, then for all x € R™\{0},

P, { lim | X ()] = o] = 0.
t—+00
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PROOF. The proof follows from the stochastic persistence approach used in [4], [2]. For
reader’s convenience it is presented in details in the appendix (Section A.2). Let V be the
function defined on (0,¢€) x S™! via
(23) V(p.0) = —1In(p).

We claim that:

(a) Lg[V] can be extended into a continuous function Hg on [0, €) x Sm-1.

(b) I't,[V] is bounded on (0,€) x S™!; and

(c) papg[Hg(0,-)] = A(A,B)(B — Bo) (the Lh.s. is a shorthand for the integration of the
mapping S™ 1 3 u — Hg(0,u) with respect to 114 5, defined in (2)) .

Using the form of Lg (equation (16)) and the equalities (18), (19), (a) holds true with

(24) Hﬁ(ov 9) = (/8 - ﬁO) <‘9’ A9>

and (c) directly follows from the definition of A(A, §). For (b) , the definition of Lg and I',
lead to

_ 1
TEC(0.9 %8N, Tl =20 (0 + IV,

Thus,
U(p,0)

02
which is bounded in view of (18). This concludes the proof of the claim.

If 8> Bo,1a,8Hs(0,:)] > 0 and the first assertion of the lemma follows from Theorem
A.13 (based on Theorem 5.4 in [4]). If 8 < Bo,pa,8[Hs(0,-)] <0, the second assertion

follows Proposition A.9 (i) in Appendix A.2 applied on the manifold [0,¢) x S™~! with
extinction set {0} x S™~1,

T, [V] =2

O]

We can now conclude the proof of Theorem 3.1. We start with assertion (ii) . Fix 8 > (.
For n € N sufficiently large (so that A(A,, 5) > %) and p e U, let £,(p) be the event defined
as

t—+00 t

(1B (1)
&m={Mmm1W¥(“]m<mw@mfbwfm%,

and let
En=|JEnlp).
peU

The set U is finite, since (10) cannot be satisfied by a point z € U and by consequence U is
included into the compact ball centered at O and of radius r. Thus there exists, by Lemma
3.5, €1 > 0 such that

P.(En(p)) =

DN |

forall x € B(p,e1) and all pe U. Let
uel = U B(p,61)

peU
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and 74, =inf{t >0 : XB)(t) e U,,}. By ellipticity of Lz on R™U, U,, is open and ac-
cessible from all = € R™, in the sense that P, (X ¥ (t,) eU,) > 0 for some t, > 0. Thus, by
Feller continuity and compactness of B(0,), there exists § > 0 such that

P$(TZ,[51 <ow)=4§

for all x € B(0,r). Combined with Lemma 3.3, this proves that P, (7,,, < 00) > ¢ for all
z € R™. Thus,

P.(E,) =0/2
for all = € R™. The strong Markov property, implies that P,.(£,,) = 1. Hence

Po([)&n) =1.

This concludes the proof of (ii) .

We now pass to the proof of (i) . Fix § > [y and assume without loss of generality that
p = {0}. Since P, (7., < o0) > 0 for all =z € R"™\{0}, the proof of (9) follows from Lemma
35.

Finally (iii) is an immediate consequence of the second part of Lemma 3.5 (recall that O
was an arbitrary point of I/, up to a translation).

4. Proof of Theorem 2.3.

4.1. Proof of Theorem 2.3 (i) . The proof is similar to that of Theorem 3.1. We begin by
proving a Riemannian version of Lemma 3.5. The proof of Theorem 2.3 (i) will then follow
by an argument similar to that given at the end of Section 3.

Let y € U and let Bys(y, €) be the Riemannian ball with center y and radius ¢, where € > 0
is sufficiently small so that

* the only critical point for U in By (y,€) is y,
* the exponential mapping exp,, : T, M — M is a diffeomorphism between the tangent ball
B(0,¢€) of T, M and By (y,€).

Recall that the exponential mapping exp,, : T, M — M associates to any tangent vector
v € Ty M the point x € M which is the position at time 1 of the (constant speed) geodesic
starting at time O from y with speed v.

Consider (e, e2, ..., e, ) an orthonormal basis of T, M consisting of eigenvectors associ-
ated to the eigenvalues (A1, Ao, ..., A, ) of the Hessian of U at the critical point y. A priori this
Hessian is a bilinear form on T} M, but the Euclidean structure of 7}, M enables us to see it
as a symmetric endomorphism on Ty M, and (A, A2, ..., A\p,) and (eq, €2, ..., e,,) correspond
to its spectral decomposition.

Let (v1,v2, ..., U ) be the coordinate system associated to (eq, ea, ..., €,,) on B(0, €). Such
a coordinate system based on the exponential mapping is said to be a normal coordinate
system. From now on and until the end of this section, we identify a map f : Bys(y,¢) — R
with foexp, : B(0,¢) — R, and write f(v) for f oexp,(v). Under this identification, the
matrix corresponding to the Hessian at y admits the classical form

(0.2U(0))k1em]

where 0}, is a shorthand for % The introduction of the lecture notes of Pennec [19] is a
convenient reference for these assertions (a more thorough exposition can be found in the
book of Gallot, Hulin and Lafontaine [9]).
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A first interest of the normal coordinate system (vi,v2,...,v,) on B(0,€) is that we
can consider the corresponding polar decomposition as in the previous section: each v =
(v1,v2,...,0m) € B(0,€)\{0} can be uniquely written under the form pf with p € (0,¢) and
0 € S™~1, where the basis (e1, g, ..., e, ) enables us to identify T, M with R™.

Before going further, let us recall some other traditional notations and facts from Rieman-
nian geometry. For any v € B(0, €), denote g(v) := (gx,1(v)) le[[m] the matrix of the pull-back
of the Riemannian metric: for any vectors b and b from Texp (v) M, identified with their co-

ordinates (b )ke[m] and (Bk) ke[m] in the basis (k) e[m], We have
<b b> D1 gka(v)bibi
k,le[m]

The determinant of g(v) and the inverse matrix g~ ' (v) are respectively denoted |g|(v) and
(" (v)) k,le[m] - For any smooth function f, the expressions of its gradient and Laplacian are
given by

Viw) = > ¢ waf(

le[m] ke[m]

0 Fi)
\/Wklez[[:m}] k:< lglg zf)()

= Z gk’l(’U) aklf Z Fkl

k:,leﬂm]] je [[m]]

Af(v) =

where Pi,l(v) are the Christoffel symbols at v, see for instance the listing [21] (again we
abuse notation in the r.h.s by identifying f with its formulation in the coordinate system
v = (v1,v2, ..., U )). There should be no confusion between the traditional uses of the letter
I" both for the carré du champ (taking a generator in index) and for the Christoffel symbols
(with two indices and one exponent).

A second interest of the normal coordinate system is that at 0, we recover the usual notions:
9(0) is the identity matrix and the Christoffel symbols all vanish at 0.

The above expressions lead to the following formulation of the generator Lg defined in

(1):

@5)  Lg[1=U >, g2, [1— > 1001 |-8 > dMaval]
k,le[m] je[m] k,le[m]
Again we are slightly abusing notations by calling it Lg too, especially as we see it as only
defined on C%(B(0,¢)).
The associated carré du champ is given as

(26) T, [1=20 ) g"okl]al]

k,le[m]

(this is a consequence of the algebraic relation I's, 5, [-] = 20k [-] 01 [-], even if 0x0; is not a
Markov generator, i.e. when k # [).

Consider the mapping () associated in (15) to the polar decomposition. Since () is invert-
ible from C?(B(0,¢)) to C*((0,€) x S™~1), there is a unique diffusion generator Lg acting
on C?((0,€) x S™1) such that

Lgo@Q@=QoLg
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To compute Lg, let us write that for any v € B(0, €)\{0},

p= |, v

ke[m]
Vie[m], 6=

It follows that for any k € [m],

U
Opp=— = b
P

1) v 1
M *é okp = — 0k — Oith)
pp p

Vie [[m]], 6k91 =

where 0y, ; is the Kronecker symbol.
It follows that

1
27 O = Hk(?p + — Z (5143’1 — ngl)agl
le[m]

and by composition, for any k,l € [m], we can also write 8,%7[ in terms of 0,,, 6%, 0Op, and
6&79]_ , for 4, j € [m]. Replacing these expressions in (25), we get the formula for L in terms
of differentiations of order 1 and 2, with respect to p and the 6;, [ € [m].

In order to apply the general method of [4] as in Section 3, we need to check the three
facts respectively listed in the following lemmas.

LEMMA 4.1.  Forany F € C*([0,€) x S™~1), we have, uniformly over § € S™~1,
where G is given in (17).

PROOF. For any v € B(0,€), define
Vkle[m],  §"(v) =6k
Vi kilelm], T,(v):=0
and in analogy with (25),

Lgl1=U > g (g, [1- > TL001 )-8 > dauUal]

k,le[m] jelm] k,le[m]

This operator coincides with the restriction of (7) to B(0,¢). It follows from (21) that
uniformly over § € S,

lim L5[F)(p.6) = G[F(0.)](6)

where the operator Lg is such that Lg 0 Q = Q o L.
Thus to get the wanted result, it is sufficient to show that

(28) (Lg — Lg)[F](p,0) =0

lim
p—04
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This convergence is a consequence of the writing

(Ls —La)[F1=U Y. (" =gy [ a3,/ — > 1) ,0;F

k,le[m] je[m]
—U > ML, -TL ) F -8 Y (¢ —gMhauar
k,l,je[m] k,le[m]

(where the restriction of F on (0,¢) x S™~! was identified with Q~1[F] on B(0,¢)\{0},
with @ given in (15)), and of the following facts, valid uniformly in # € S™~! as p goes to
04:
* According to (27), for any k,l € [m], 0iF is of order 1/p and 6%JF is of order 1/p%.
* Due to the regularity of g and of the Christoffel symbols, for any k,1 € [m], ¢** — §*
and Fi:,l — f%l are of order p.
* By the assumption that y is a global minimum, U is of order p? and 0, U is of order p,
for any k € [m].

O]

We have seen in the previous section that Gg is reversible with respect to the probability
measure /14 g defined in (2), where here A := A, is the diagonal matrix whose entries are the
eigenvalues of the Hessian of U at y € /. To continue the method of [4], we also need the
two following ingredients.

LEMMA 4.2. Consider the function V defined on (0,¢) x S™ 1 via

V(p,0) = —1In(p).

The function T',[V] is bounded on (0,€) x S™~! and the function Lg[V] can be extended
into a continuous function Hg on [0,€) x S™~1 satisfying (24) and thus pa g[Hg(0,-)] =
A(A, B)(B = bBo)-

PROOF. We have T',[V] = Q[T [V]] with V (v) = —1 (e v?), so it is sufficient
to see that 'z, [V] is bounded on B (y, €)\{y}. Expanding U (v) near 0 in the normal coor-
dinate system v = (v1,v9, ..., v4), we get for v small

1 2
U('U) ~ 5 le%;b]] )\lvl

Hence, using (26),

Nv? Av?
Zle[[m]] ] Z gk’l(O)vkvz _ Zleﬂm]] A

I, [V](v) ~ :
’ aepm1 V1) 1, i) Diefm] V7

(see also [17]).

This proves the wanted boundedness.

For the wanted convergence, in view of the computations of the previous section, it is
sufficient to see that (28) holds with F' replaced by V. Note that when applied to a function
only depending on p, as V, (27) reduce to 0j, = 6;,0,. It follows that 0V is of order 1/p and
G%JV is of order 1/p?. This observation enables us to use the same arguments as in the end of
the proof of Lemma 4.1 to conclude that (28) holds with F' replaced by V. O
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A Riemannian version of Lemma 3.5 follows directly from the preceding lemma, the proof
being exactly the same as the proof of Lemma 3.5. The proof of Theorem 2.3 (i) then follows
(almost) verbatim along the lines of the arguments given in the preceding section just after
the proof of Lemma 3.5.

4.2. Proof of Theorem 2.3 (ii). Let V: N — R,z + In(U(x)~"). Observe that for all
feC*(N),
div(eV'Vf) =" (VV, V) + Af) =U P Lgf.
Let C2(N) be the set of f € C?(N) having compact support. Then, for all f € C?(N),

J Lgfdlg =0,
N
where /¢ 3 is the measure on N defined as
(g(dz) =U(x)~P(dx).

Let p e U. By Morse’s lemma, there is a smooth chart at p such that, in this chart system,
U writes  — |z|? = X", 2. Since the map z + [ ~2(5+1) is locally integrable (i.e. in a
neighborhood of Og~) if and only if 2(3 + 1) < m, it comes that §; U(x)~ 8¢ (dz) < o0
if and only if 2(5 + 1) < m, thatis 5 < (.

Assuming 3 < [y, the probability measure

rs(der) = Clﬂzﬁ(dx)

(where C is a normalization constant) satisfies

(29) f Lgfdng =0
N

for all f € C2(N). Observe that there is no evidence that the set C2(N) is a core for Lpg,
so that we cannot immediately deduce from (29) that 7 is an invariant probability measure
of X However, by Theorem 9.17 page 248 in Ethier and Kurtz [8] (originally due to
Echeverria [7]) the following properties (a) to (d) ensure that 74 is invariant:

(a) The space N is a separable locally compact metric space (for which the space C (N) of
continuous function "vanishing at infinity" coincide with {f € CO(M) : flyy = 0});

(b) The set C2(N) is an algebra dense in C'(N);

(c) The operator Lg : C2(N) — C(N), satisfies the positive maximum principle;

(d) The martingale problem for (Lg,C?(N)) is well-posed: for all € N, PY (the law
of X starting from X (%)(0) = ) is the unique probability on D([0,0), N) such that
f(X(t) - Sé Lgf(X(s))dsisa P2 -martingale and P [X(0) = x] =1, where (X())i=0
is the canonical process on D([0,00), N).

Properties (a) , (b) and (c) are easy to verify. Property (d) follows from, on one hand,
that for any ¢ > 0 sufficiently small, the stopped martingale problem on N, = {x € M :
U(z) > €} is well-posed by uniform ellipticity of L(®) on N, and on the other hand, that
these localized martingale problems can next be extended to the whole state space N. For
instance, corresponding precise statements are found in Ethier and Kurtz [8], see Theorem
5.4 page 199, providing the existence of a solution of the stopped martingale problem on the
N¢, but also of the martingale problem on N, Theorem 4.1 page 182 for the uniqueness of
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stopped martingale problems on the N, and Theorem 6.2 page 217, for the deduction of the
uniqueness of the solution of the martingale problem on N by localization.

o (ii) (a) : follows from the fact that a strong Feller process on a connected space having an
invariant probability measure with full support, is positive recurrent (see e.g. [3], Corollary
7.10 for a statement on discrete time Markov chains and Proposition 4.58 (ii) for the appli-
cation in continuous time). In particular, it is uniquely ergodic (i.e. its invariant probability
measure is unique). Here the strong Feller property of X (%) on N follows from Proposition
2.1.

e (ii) (b) : The following lemma is a consequence of Lemma 4.2 and the stochastic per-
sistence approach exposed in [2], [4].

LEMMA 4.3.  Assume 3 < f3y. Then, there exist a continuous map W : N - Rt 0< p <
1, x>0,k >=0and T > 0 such that

(i) W(x)=d(x,U)™ X on a neighborhood of U,
Giy POW <pW + k.

PROOF. For y €U, and € > 0 sufficiently small, let V}, : M\{y} — R* be a smooth map
such that

Q[Vy o exp,](p,0) = V(p,0) := —In(p)

whenever p < €, where, using the notation of Section 4.1, V: (0,¢) x S™~! — R is as in
Lemma 4.2 and @ is the mapping induced by the polar decomposition as in (15). Because
', [V]is bounded on (0,€) x S™ ! and p4 5[Hp(0, )] = A(A, B)(8— Bo) <0, itis possible,
for e sufficiently small, to find numbers x,7" > 0, and 0 < p < 1 such that

PZ(FB)(eXVy) < peXVy + K

on M\{y}. This follows from Proposition A.9 (i) in Appendix A.2 (based on [2], Proposition
8.2). The mapping W : N — R™, defined as W (x) = 3, o, eXVs satisfies the conditions of
the lemma. t

By ellipticity of L® on N, every point p € N is an accessible Doeblin point for P%’B ),
Combined with the preceding lemma this proves assertion (ii) (b) of Theorem 2.3 (see e.g.
Theorem 8.15 in [3]).

4.3. Proof of Theorem 2.3 (iii). It follows from compactness of M and Feller continuity
of X5 that, with IP,, probability one, every limit point (for the weak topology) of the family

1 t
{J 6X§B)d8}
t Jo t=0

is an invariant probability of X (8) (see e.g. [3], Theorem 4.20 combined with Propositions
4.57 and 4.58). It then suffices to show that for 5 = 3y, every invariant probability of X (%)
is supported by I/, or equivalently, that every ergodic probability measure of X (%) is a Dirac
measure 9, for some p € Y. We proceed by contradiction. Suppose that there exists an ergodic
probability measure of X (%), with 14(N) > 0. Then p(N) = 1 (by invariance of N) and, by
ellipticity of X (%) on N,  is absolutely continuous with respect to ¢(dx), hence also with
respect to {g, (dx). That is p(dx) = f(x)lg,(dx) with f > 0 measurable and /5[ f] = 1. We
claim that f is almost surely constant. This is in contradiction with the fact that {g (V) =
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oo. It remains to prove the claim. First assume that | f||o, = sup,en |f(2)| < o0. Then, f €
12(t5,) because (s, [12] = plf] < | f]o. Thus,

s, (P f = £ = s, [(P /)* + g]
where g = f2— 2f P f e L'(¢g,) and £3,[g] = —pu[f]. Thus,
U [P f — )21 = s, (P £)2] — u(f) = La,[(P £)? — 2] <0

where the last inequality follows from Jensen’s inequality. This shows that /g -almost surely,

Pf °f = f, and also p-almost surely. By ergodicity f is p-almost surely constant. Suppose
now that || f|. = 0o. Set f,, = min{f,n} and p,(dz) = f,(x)¢,(dx). For every Borel set
AcCN,

1 PP (A) = 1 PP (A n {F <)) + (1 PPY(A A {f > n))
< (UPPY (A {f <n}) +n(ls, PP (AN {f >n})
= wAn{f<n})+nlsg,(An{f>n})=pn(A).

This shows that y,, is excessive, hence invariant because every finite excessive measure is
invariant (see e.g. [3], Lemma 4.25). By what precedes, f,, is u-almost surely constant. Thus
f is p-almost surely constant. This concludes the proof of the claim.

APPENDIX

A.1. On the over-parametrized model in Machine Learning and mini-batch stochas-
tic gradient approximations. Here we present the heuristic reason why the fraudulent al-
gorithm investigated in this paper can be seen as an idealized model of an asymptotic behavior
encountered in the theory of Machine Learning. This exposition is based on the two papers
of Wojtowytsch [23] and [24].

Assume we are given a finite family (z,,, yn)ne[[ ] of feature-class couples from the prod-

uct of Euclidean spaces R* x R!, with k, [ € N. We are looking for a function f(6, -) from R*
to R!, parametrized by some 6 € ©, so that

(30) U©)=Y llyn— f(0,20)]?

ne[N]

is minimal (where |-|| is the Euclidean norm on R’). The over-parametrized setting corre-
sponds to families (f(0, -))sco sufficiently large so we are sure there exists at least one 6 € ©
such that U(#) = 0. Thus we know a priori that ming U = 0 and the goal is then to find a
minimizing § € ©.
To find such a global minimum of U, a first try is to consider the classical gradient descent
algorithm, namely the dynamic system (6(t));>o whose evolution in © is given by
de

31) Viz0, (1) =-VU()

where we suppose that © is endowed with a Riemannian structure and that U is at least
C'. We start from an arbitrary 6(0) € © (this will also be the case for all the subsequent
evolutions).

Assuming furthermore that © is the Euclidean space R", with m € N (or the torus (R/Z)™
to be in a compact framework), for the purpose of implementing the above evolution on a
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computer, it is preferable to replace it by an approximating time-discretization (6(p))pez,
such as

(32) VpeZi,  O(p+1)=0(p)—nVU(0(p))

where the positive > 0 is the time-step size (in the Machine Learning context, 7 is also
called the learning rate and is often also depending on the time p € Z.): the discrete time p
in (32) rather corresponds to the continuous time 7p in (31).

From (30), we compute that the gradient VU () := (0g,U (6));c[m] is given by

Voeo,Vie[m],  0U®)=-2 > (yn— f(0,xn),00,f(0,yn))
ne[N]

where (-, -) is the scalar product in R!. Thus in (32), at each instant p € Z , a sum of N terms
must be computed. To avoid having to make so many calculations, as in practice N is very
large, one usually resorts to mini-batches. First the time domain is restricted to [0, /N + 1]
(to simplify notations, assume from now on that NV is a square) on which the iteration (32) is
modified via

(33) Vpe[0,VN],  0(p+1)=0(p)—nVU,(0(p))
where
Vpel0,VN],¥0eO, Uy 9) = > lyn — f(0,20)]
ne[pvVN+1,(p+1)vN]

Let us now assume that (x,,yy), for n € [N], are independent samples from a law p on
R* x R!. Define for any n € [v/N], the random variable Z(n) := (Zi(n))iepm] taking values
in R™ via

where p e [0,4/N — 1] is such that n € [pv/N + 1, (p + 1)v/'N].
Fix p € [0,+/N — 1]. For n € [pVN + 1,(p + 1)/N], the Z(n) are independent and
identically distributed according to the image of x by the mapping

R* xR 3 (2,9) = —2(Cy — f(8(p), ), %, f (0(p), 2)))icfm) € R™

We compute that for any i € [m],

E[dp, Up(0(p))] = > E[Zi(n)]
ne[pvV'N+1,(p+1)v/N]

=<2V [y = F60),2),20.10(p).)) uldo. dy)
— 20.0(0(p))
where the mapping U is defined by
(34) voce,  UO)= [ly- 100 ulde.dy)
Writing
RO(p)) = VU (0(p)) — VO (0(p))
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we compute that the covariance matrix A(6(p)) = (A;;(0(p)))s jegm) of R(O(p)) is given,
for any 4, j € [m], by

A; ;(0(p)) = > E[(Zi(n) — E[Zi(n)])(Z;(n) — E[Z;(n)])]
ne[pvV'N+1,(p+1)v/N]

= \/Nai,j(g(p))

where

(35) a; ;(0(p)) = <fF9(p),iF0(p),j dp — <fFe(p),ndu> (JFG(p),j du))

with, for any ¢ € [m], the mapping Fy,) , defined on Rk x R by

P
(36) v ($7y> € Rk X Rla FH(p),L(x7y) = _2<y - f(@(p),a:),&gbf(ﬂ(p),x»

where we implicitly assumed that the mappings Fj,) , admits a moment of order two under

L.
The latter hypothesis allows us to apply the central limit theorem to get for N large the

weak convergence of N ~'/*R(6(p)) toward a Gaussian distribution of mean 0 and covariance
matrix a(0(p)) := (ai,; (0(p)))i jefm]-
Thus we can, quite heuristically and for large N, rewrite (33) as
Vpe[0,VN],  6(p+1)=6(p) —n(VU(0(p)) + R(O(p)))

~0(p) = VU (0(p)) + 0N "o (0(p)) G (p)
where (G(p))pe[[o vN] are independent standard Gaussian random variables in R™, and

where o(6(p)) is a (symmetric) matrix-square root of a(6(p)). This encourages us to take
n= 1/\/N, since we get

vpe[0,VN],  O(p+1)~0(p) —VU(O(p)) + v1o(8(p)G(p)

and, under appropriate regularity conditions, we recognize an Euler-Maruyama approxima-
tion (see for instance Section 9.1 of the book of Kloeden and Platen[13]) of the s.d.e.

(37) vte[o,1], do(t) = —VU(0(t)) +o(0(t)) dW (t)

where (W (t));e[0,1] is a standard Brownian motion on R™.

Here we end up with a s.d.e. on the time interval [0, 1], but to rather get [0, 7], for 7' > 0,
just consider mini-batches of length v/N /T and take n = T'/+/N.

Assume that the family (f(6,-))geco is still sufficiently large so there exists some 6 € ©
so that U(6) = 0, as it was the case when the probability distribution z was the empirical

measure
1
¥ 2 S
ne[N]

(compare (30) with (34)).

Note that when 6 € © is such that U () = 0, then a(fy) = () = 0. Indeed, we then
have y = f (0o, ), p-a.s. in (z,y) € R* x RL 1t follows from (36) that Fp, , = 0 p-a.s. for all
¢ € [m]), and we deduce from (35) that a(6y) = 0.

We can be a little more precise. For any 6 € ©, denote «() the largest eigenvalue of the
non-negative definite matrix a(6). Define

K= sup{H@gif(Q,x)H . 0e0,ie]m], xeRk}
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PROPOSITION A.4. Assuming that K < 400, we have
VOeO, a(0)<4KU(9)

PROOF. Fix 0 € © and v := (v;) e[ € R™. We compute

> wviaig(0)vj = ) (ng,iFg,jdu— < f Fgﬂ-,du) ( f Fy; du>>ij

i,j€[m] 1,5€[m]
2 2
= f Z vikp; | dp— Z jviFO,z’ dp
ie[m] ie[m]
2
<J 2<y—f(¢9,x), Z Uiaeq,f(97$)> d:u
ie[m]

<4 f ly— £ S w2100, £(8,2)]? dp

i€[m]

4K ( [1v-r0.00 du) 3 02

iem]

The wanted result follows. O

We deduce, in the sense of m x m matrices that

V0eO, o) <2VK4/U(H)Id

where Id is the m x m identity matrix.

If the above inequality was an equality, we would recover the fraudulent algorithm studied
in this paper, up to a linear time change and with 8 = 1/4/2K.

Nevertheless, there is an important difference with our setting. As mentioned in Woj-
towytsch [23], in the over-parametrized framework the set of global minima is usually a
manifold (with high dimension and co-dimension) and do not consist of isolated points as
under our Morse assumption. Furthermore the matrices o(6) are degenerate even for 6 € ©
which is not a global minima of U. Indeed, this paper should be seen as a first step toward
the investigation of more general fraudulent algorithms, in particular hypo-elliptic ones. Dis-
crimination between a.s. convergence toward the global minima and their avoidance will then
be more involved. In view of the above implications, these extensions deserve to be investi-
gated in future works and our results will serve as a reference of what can be obtained in the
simplest, while non-trivial, situations

A.2. Stochastic persistence for diffusion processes. This section briefly presents
stochastic persistence theory in the spirit of the papers [2], [4], in the specific case (suffi-
cient for our purposes) of a diffusion process whose extinction set is compact. Although the
results presented here can be deduced from those presented in these papers, diffusion proper-
ties and compactness of the extinction set simplify certain proofs. Therefore, for the reader’s
convenience, we have chosen to give a self-contained presentation.
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Generalities. Let M be a metric space which can decomposed into M = My u M,
where

» The subset My # (J is compact and is contained in the closure of M . It will play the role
of the extinction set.

* The subset M, # ¢ is a n-dimensional smooth manifold, that will necessarily be non-
compact, since My is non-empty. It is called the persistence set.

On a filtered probability space (2, (F;)¢=0,P), we are given a family of Markov processes
(X*) e, with X* = (X[);>0, defined such that for all z € M, X§ =, and t — X[ is
continuous (i.e. X7 is a diffusion). Furthermore, denote P, the law of X*, and (P} )¢ the
semigroup defined by

Py f(x) = Eo(f (X0)),

for all f measurable and bounded. We assume that the semigroup (P;);>¢ is weak Feller,
meaning that P;(Cy(M)) < Cy(M) for all t = 0.
We make the hypothesis that the extinction set My is invariant. That is, for all ¢t > 0,

Pi1y, =1y,
Invariance of My has the consequence (see e.g [2], Lemma 9.2) that for all x € M
reM; < {X/, t=>0}c M.

On M the evolution of X* is governed by a generator L which is a second order differential
operator taking the form, in a local coordinate system,

1 n n
(38) L= Z aij(x)0;0; + Zl bi(2)0;

3,0=1
where the a;;(x) and b;(z) are smooth in z, and

r

aij(x) = Z a};(m)ai(w),

k=1

-----

sense of martingale problems: For all f € C2(M), z € M, and t > 0, define
t

(39) M (@)= F(XE) ~ o)~ | LD
0
The process (Mtf(m))t;o is a (P, (F)¢=0)-local martingale.
To control the behavior of the process at infinity, we assume throughout the existence of a
proper continuous map W : M — RT, which is C? on M, and satisfies the condition

LW < —aW +b

with a,b > 0. Note that when M is compact, this assumption is always verified, say with
W =1

REMARK A.5. In the above framework, M may not be regular, nevertheless the evolu-
tion of our Markov processes on M can be approximated by the diffusions on M, due to
the weak Feller assumption. A more regular setting is to assume that M is a n-dimensional
smooth manifold with boundary My and that the expression (38) of the generator L is also
valid on M) (then the vectors (b;); and (O'}lc)z for k =1,...,r, as well as their Lie brackets,
have to be tangential to My on Mj).
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Another similar setting is to assume that M is a is a n-dimensional smooth manifold on
which L can be written as

m
L=Fy+ ) F}
i=1
where Fp, F; are smooth vector fields, and that M is a compact set invariant under the flows
induced by the F;,i =0,...,m.

In these cases the processes (Mtf ())¢=0 can be defined for all x € M and ¢ > 0 and are
asked to be (I, (F;)¢>0)-local martingales. The assumptions on a(z), b(x), now assumed to
be valid on M, and the existence of W, ensure that X* exists as the unique and globally
defined solution to a stochastic differential equation. Furthermore, by continuity with respect
to the initial condition, (F;):>0 is then necessarily weak Feller. In the application in the main
text, we will be in this regular situation. Nevertheless, we present here a generalized setting,
as the arguments are in fact the same.

For f,C? in a neighborhood of = € M, we let
L(f)(z) = (Lf)(x) =2 (2)(Lf)(x) =0

denote the carré du champ of f at x.

Extinction set and H exponents. We will review sufficient conditions ensuring that the
process goes extinct, namely that P, (X, t—+> My) = 1 for some (or all) 2z € M, where
—+00

X P My means that the distance of X; to My converges to zero for large ¢ > 0; or
—+00

persists, meaning that P, (X € -) converges, as ¢t — 400, to some distribution on M for all
x € M, . This will be done under the following key hypothesis.

ASSUMPTION A.6. There exist a C2 map V : M, — R* and a continuous map H :
M — R such that:

(i) limg_,ps, V(x) = o0;
(ii) Forallz e M., LV (z) = H(x);
(iii) For some, hence for all, § > 0

sup I'(V)(x) <o
{xeM, :d(x,M,)<5}

where d stands for the distance on M.

The key point here is that although V' is not defined on My, LV extends continuously to
My.

REMARK A.7. Let (V, H) be as in Hypothesis A.6 and let V be a C? function on M,
which coincides with V' on a neighborhood of Mj. Then (‘7, H ) also satisfies Hypothesis
A6 with H = H1y, + LV1yy, .

In view of this remark, we can (and will) always assume without loss of generality that V'
(hence H) is zero outside a compact neighborhood of Mj. As a consequence, we can replace
(iii) of Hypothesis A.6 by

sup I'(V)(z) <0
{reM.}

Here a first interest of Hypothesis A.6:
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LEMMA A.8. Under Hypothesis A.6, the invariance of My (i.e P;1yr, = 1, for all
t > 0) is equivalent to the apparently weaker condition that My is stable:
Pi1y, = 1,

forallt>=0.

PROOF. Let
(40) T=inf{t>0: X ¢ M.}
Fix xe M, and T = 0. For € > 0, define
Te=inf{t=>0:V(Xy)=>1/e}
T.=T AT,

Using the martingale problem, we can write

T
V(X$)=V(z)+ f LV(XZ)ds + M},
0

< V({E) + HLVHOOTE + B<Mf>T€

where (By)¢>0 is the Brownian motion provided by Dambis-Dubins-Schwarz’s theorem (see
e.g. Theorem 5.13 of Le Gall [15]). We have

T.
<Mf >TE - L T[V](X®)ds
< [T[V]]g T
<|TV]leT
Thus we have

VIXEY<V(z)+ LV T + max B;
(XT1,) (@) + LV o s€[0,[T[V],T]

Letting € go to zero, we deduce

V(XFa7) <V(z)+ LV, T + max B
XE\p) V@ + VI T+ | max

Since the r.h.s. is finite, we get that 7' < 7. As this is true for all 7" > 0, it follows that
T =+ (a.s.). O

Before introducing the H exponents, we recall a few definitions and facts on invariant
measures. Let

0
41) G = f e tP, dt.
0

A probability p on M is called invariant for (P;);>¢ if uP; = u for all ¢t > 0. Equivalently
(see [3], Proposition 4.57) uG = p. A bounded measurable map ¢ is called (G, p) invariant
if Gg = g p-almost surely. Invariant probability x is called ergodic if every (G, u1) invariant
map is p-almost surely constant.

We let Pe,4(Mo) denote the set of ergodic probability measures supported by M.

We now can define the H-exponents as:

A7 (H) = —sup{uH : p€ Perg(Mp)}
and
AY(H) = —inf{uH : pe Pog(My)}
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PROPOSITION A9. (i) Assume that A= (H) > 0. Then, for every 0 < A~ < A~ (H),
there exists T > 0,0 > 0, and U a neighborhood of My such that

PT(eHV)(x) < eGV(z)efTA*

forall z € U\My and sup e pr+\a, Pr(e=%V)(x) < 0. Furthermore, for all x € U\ My, (X¥):=0
eventually leaves U.

(i) Assume that A*(H) < 0. Then, for every 0 > A* > A+ (H), there exists T > 0,60 > 0,

and U a neighborhood of My such that

PT(e—GV)(:L,) < e—GV(ac)eTAJr

for all x € U\ M.

This proposition is the key tool from which we will deduce persistence (Theorem A.12)
and extinction (Theorem A.13) results. We now prove Proposition A.9.

LEMMA A.10. (i) Let A~ be as in Proposition A.9 (i). Then, there exists T > 0 and a
neighborhood U of My such that for all x € U,

1 T
= f P,H(x)ds <—A" <0.
T Jo

(ii ) Similarly, let A™ be as in Proposition A.9 (i). Then, there exists T > 0 and a neighbor-
hood U of My such that for all x € U,

1 T
— J PsH(z)ds > —A" > 0.
T 0

PROOF. By continuity of x — P,H(x), it suffices to prove that for some 7" > 0,

M < —A~ for all z € M. Suppose the contrary. Then, for some sequence (z,,)y

included in My, we have for all n, u, H > —A~ where pu, — JodenPuds . By compactness

of Mo, (un)n is tight (for the weak* topology) and every limit pomt w of (uy) verifies
uH > —A~ > —A—(H). Now it is easily seen that y is an invariant probability on M.
Hence, by the ergodic decomposition theorem, it satisfies uH < —A~(H). A contradiction.
This concludes the proof of the first statement. The second is similar O

We now pass to the proof of Proposition A.9.

PROOF. (7). Using the notation of Lemma A.10, set

T T
Yi = H(Xf)ds—f P,H(x)ds,
0 0

and, up to reducing U,
~ T
H = supf P,H(x)ds <—A"T.
zeU JO
Taking Lemma A.8 into account, we deduce that for all # > 0 and x € U\ My,

T
exp(0V(X7T)) = exp(6V (x)) exp(ﬁJ0 P,H(x)ds) exp(0YF) exp(0MY. (z))

< exp(8V (z)) exp(ATH) exp(0YF) exp(OMY. (x)).
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Thus, by taking the expectation and using Cauchy Schwarz inequality

E(e? (X1)) < exp(V () exp(eTH)\/E(exp(zeygf))\/E(exp(zeMy (2))).
Let |H oo = sup,eps [H (@), [T'(V) oo = suppeps, I'(V)(2) and
C(T) = max(4T%|H |2, 2T [T (V) o0).

Since E(Y#) = 0 and |Y| < 2T|H|» a classical estimate (on the log-Laplace function
0 — E(In(ef?7)) leads to

E(exp(20YF)) < exp(40>°T?| H|%) < exp(6>C(T)).

Now,
E(exp(20MY (z))) = B(Z7 (0, z) exp(260*( MV (z))7)),
where
ar@pr = [ rwoas< ©0,
0 2
and

Z7(0, ) = exp(20MY. (z) — 202 MY (x)>r).

By Novikov Theorem the local martingale (Z;(6,x));>0 is a true martingale. In particular
E(Zr(0,x)) = 1. Thus

E(exp(20MY. (z))) < exp(F*C(T)).
Finally, we get that
Pr(e?V)(z) <exp(8V (x)) exp(8(TH + 0C(T))).

For 6 small enough TH + 6C(T) < —TA~. This concludes the proof of assertion
(i) for x € U. The same type of estimate (with |H | in place of H also shows that
Pr(efV)(z) is bounded outside of U. The fact that (X) eventually leaves U whenever
x € U\ M, relies on the following standard argument. Let 7 = min{n >0 : X ¢ U}. Then

(exp BV (X, 7

E.(exp((n A 7)TA™) <expbV(x), hence, by monotone convergence, E,(exp7(TA7)) <
exp OV (x) proving that P, (7 < o0) = 1.
The proof of (%) is similar to the proof of (7). O

)+ (n A T)TA_)) . is a supermartingale. Since V' > 0 it comes that
n=

The next two results are persistence and extinction consequences of this latter proposition.

Point p € M, is called accessible from x € M, if for every neighborhood U of p
G(z,U) > 0. Equivalently p € supp(G(z, -)) where supp denote the topological support of a
measure. We say that p is accessible from M if it is accessible from all x € M. That is

pe ﬂ SUPP(G(xv'))'
zeM

We say that p is a Doeblin point if there exists a non trivial measure v,ty > 0 and a
neighborhood O of p such that

By () = v(:)

for all = € O. The following proposition follows from classical results
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PROPOSITION A.11. Assume that M is connected and that L is elliptic on M, mean-
ing that a(x) is definite positive for all x € M. Then every point p € M is Doeblin and
accessible from M .

THEOREM A.12. Suppose A~ (H) > 0 and that there exists a Doeblin point p € M
accessible from M .. Then there exists a unique invariant probability 11 such that TI(M.) =
1. Furthermore, there exist positive constants C, « and 0, such that for every f : M, — R
measurable and x € M,

|P,f(z) = IL(f)| < Ce™ (1 + max(e?V @ W (x)))|f]o,

where

I£lo = sup /(@)

ver, 1+ max(efV(@) W (x))

PROOF. The assumption that LW < —aW +b (on M) implies that Pr(W) < e W +
g on M (see for instance [3], Lemma 7.26). Consider W := exp(0V') + W on M, . Then, it
comes that

Prw <e W+

on M, with a’ = min(a,A™) and 3 > 0. The rest of the proof now follows from Theorem
8.151n [3]. 0

We say that M) is accessible from = € M if supp(G(z,-)) n My # ¢, and accessible
from M if it is accessible from every = € M . The following result is basically (up to a few
details) the same as Theorem 5.4 in [4].

THEOREM A.13. Let AT be as Proposition A.9 (ii). Let A be the event that

liminfs .o V(f(t) > —AT.

(i) Forevery 0 <n < 1, there exists a neighborhood U of My such that

Py(A)=1-17
forall zeU.
(1) If My is accessible from M, then
P,(A)=1
forall xe M.

PROOF. (i) For € > 0, let U, = {x € M, : e V() < ¢} U My. Choose ¢ small enough
so that U c U and let 7 = min{n >0 : X% ¢ U}, where U and T are as in Proposition

A.9 (it). In view of Proposition A.9 (i), for all = € U,, the sequence (e*W(XiTﬁM)T))n?O is
a (P, (Fur)n>0) supermartingale. Hence,

E(G—GV(X?;W>T)1T<OO> < E(e—W(X?;m)T)) <e V(@)
Letting n — oo and using dominated convergence shows that
P (T < 0) <E(e™ VX1 __ ) <e V@),
Thus

Py(r=w0)=1—1n
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forall 0 <np<landzelU:= Uey. We will now show that {7 = w0}  A.
Let
T

Bt = VIXG, ) = V(X - | P (XEp)as

T T
- fo H(X2r)ds + (MY, 1yp(2) - MYp()) - fo PuH (X2, ds.

The assumption that I'(V') is bounded makes the local martingale (A} (x)) a true L? mar-
tingale (see e.g. Le Gall [15], Theorem 4.13) with quadratic variation

(MY () = fo T(V)(X2)ds < (V) oot

Therefore,
E(An+1|fTLT) = O7E(A?L+1|fnT) < C(T)

with C(T) = 2(T|T(V)||o + 4T?| H|2%), and consequently, by the strong law of large num-
bers for discrete time L2 martingales (see e.g. [3], Theorem AS)

n
A
lim k=185
n—00 n
almost surely. Therefore,
V(XZ
lim inf V(Xor) >—A*
n—>00 n

almost surely on the event 7 = 0.
Now, forall n'T <t < (n+ 1)T,

E(|V(X?) - V(X)) <2 ((TIHIIoo)2 +E( T<ts<u(p+1)T(MtV(w) - MXT(:U))Q)>

< 2T Hlo)? + 4|0 (V)| T),

where the last inequality follows from Doob’s inequality for continuous martingales. It then
follows that

Xz) — Xz
N0 nT<t<(n+1)T nT
almost surely. Thus
XZ'
lim inf V(XY) > At
t—00

almost surely on the event 7 = .

(79) Let1 >n > 0and U be as in (z). Let R > 0 be large enough so that for all z € M, (X})
eventually enters Wg := {y € M : W(y) < R}. The existence of such an R follows from
the assumption on W (see e.g Lemma 3.3). By Feller continuity, the map z — G(z,U) is
lower semi continuous. Hence by compactness of Wx and accessibility of M, there exists
d > 0 such that G(z,U) = ¢ for all x € Wg. It then follows that for all z€ M, P(3t >0 :
X7 e U) = 6. Combined with (i), and the strong Markov property, this shows that P,,(.A) =
(1 —n)d. Now, for all x € M, P, almost surely,

La= lim Py (A]F) = lim Py, (A) = (1 —n)o.
Thus P, (A) = 1. O
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A.3. The diffusion process generated by Lg and Proposition 2.1. Here we briefly
explain how the diffusion X (®) can be constructed and give a proof of Proposition 2.1.

By Nash’s embedding theorem, we can assume without loss of generality that M is a
Riemannian submanifold of R™ (equipped with its Euclidean scalar product {, )) for some
n sufficiently large. For reasons that will become clear shortly, we write Vs, Ajps, divas the
gradient, Laplacian, and divergence on M, and V,div, the gradient and divergence on R". If
F'is a smooth vector field on M and F a smooth globally integrable vector field on R” such
that F|y; = F, then F and F, induce operators on C'*(R") and C! (M) respectively defined
by:

F(F)(w) = (V). Py = W20,

for all f e C*(R"™), and z € R";

F(P)(@) = (Vaef ), By = W20

forall f € C*(M), and z € M. In both formulae, (¥} )scr denotes the flow on R™ induced by

F.
A direct consequence of the right hand side equalities is that

(42) F(f)lm =F(f)

for every f € C''(M) and f € C'(R") such that f = f|.

Let (e, ..., ey) be the canonical basis of R”. Fori = 1,...,nand z € M, let E;(z) € T, M
be the orthogonal projection of e; onto T, M. Let E; be a smooth vector field on R”, having
compact support, such that F;|y; = E;. It is not hard to show that such a vector field exists.
One can, for example, proceed as follows. Let M < R" be a normal tubular neighborhood
of M. Every point y € M writes uniquely y = = + v with x € M and v € T, M L. The map
r: M 3x+ v~z e M, isasmooth retraction. It suffices to set F;(x) = n(z)E;(r(z)) if
x € M and FE;(z) = 0 otherwise, where 0 < 7 < 1 is a smooth function with compact support
in M such that n|y; = 1.

The following, key property, is proved in Stroock [20], Section 4.2.1. For the reader’s
convenience we provide an alternative short proof.

LEMMA A.14. Forevery f € C%(M) and f € C2(R"), such that f = f|ar, one has
N,
DES (Dl = 2u(f)
i=1

PROOF. Let F be a C! vector field on M, and F' a C* vector field on R” such that F|5; =
F. For all z € R" divF(z) equals the trace of the Jacobian matrix DF(z), while for all
x € M, divyrF(x) equals the trace of the d x d matrix ((DF(x)u;,u;)); j where uq,. .., uq
is an (arbitrary) orthonormal basis of T, M. This has the interesting consequence that

divar(F) =div(F or)|y
where 7 : M — M is the retraction defined above. Let f € C2(M). Then,

Vaf =Y (Vutees = Y (Vaf, Eei =Y Ei(f)es.
i=1 =1 =1
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Thus,
Aprfi=divar(Varf) = div(Var(f) o r)|ar = Zd.v )or)ei]|
=YV Jor)|m, ey = ZWME ey =Y E(f).
=1 =1 =1
Here we have used the fact that V(f or)|y = Vs f forall f e C1(M). O

Now, let U : R* - R, bea smooth function such that Uly =1, \/ﬁ is Lipschitz and vU
has compact support. For instance U (z) = n(z)U(r(x)) + 1 —n(x) forx €e M and U(x) =

otherwise, where 7, r are as above. Here, the Lipschitz continuity of \/5 follows from the
fact that 7 is smooth and that, by assumption, the zeroes of U are non-degenerate.
Consider the stochastic differential equation on R™ defined by

dX (1) = (=B — VU (X (t))dt

-3 (G000 BB ) + DX O)DEK0) - B (X0) )
@3 o+ \/2(]7 zn: ))dBi (1)
where B = (BX(1), ..., B’j(t))t>0 is a n-dimensional Brownian motion with B(0) = 0.

Since the coefficients of (43) are globally Lipschitz and bounded, the following properties
(a) , (b) and (c) are classical (see e.g. Le Gall [15], Theorems 8.3 and 8.7 for (a) and (b)
and Kunita [14], Theorem 4.5.1 for (¢) ) :

(a) For all x € R", there is a unique strong solution R, 3¢ +— X (8,2) (t) to (43) such that
XB2)(0) =z,

(b) The process X B .= = (X X (6, z))xeRn is a Feller Markov process on R™ whose generator 55
containg C2(R™), the set of compactly supported C? functions, in its domain and such that
forall f e C2(]R”)

£s(f) = ~BVO, V) — (VO + ; DBV + 0 3 )
(44) = —BVU(f) - fVU Z Z 22 (f)

(c) The map z — X %) (¢) is an homeomorphism. In particular,

vt >0, XB2) (1) e RMU < Tt = 0, X @) (1) e RM\U.

Set Si(x) =14/2 E ). On R™\U, (43) can be rewritten, using Stratonovich formalism,

X (t) = ((—6—1)V(7(X(t))+1znlDSi(X( )S; )dt+25 DB (1)
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The vector fields VU and S;’s being tangent to [V, this latter expression shows that NV (hence
M) is invariant for X (#). That is:

vt =0, XB2)(¢) e N(resp. M) < 3t =0, XB2)(t) e N(resp. M).
It then follows that X (%) := (X (82))__,/ is a Feller Markov process on M, leaving N invari-
ant, whose generator Lz contains C?(M) in its domain and such that Lgf = Lsf|m = Laf

for all f € C?(M) and f € C?(R") such that f|p; = f. The last equalities follows from
Lemma A.14 and (44), since on M we have

V0.V =Y EI)ELF

The strong Feller property on N follows from the ellipticity of Lg on N (see e.g. Ichihara
and Kunita [10, 11], Lemma 5.1).

A4. On Remark 2.2. Given 0 < A_ < Ay, and m > 2, let D(A_,\;,m) be the
set of diagonal matrices with entries A\_ = A\ < Ao < ... < A1 < Ay = A4 The set
{A(A,B) : Ae D(A_, A1, m)} is a compact interval [A_(m, 5), Ay (m,3)] (as the image
by a continuous map of the compact connected set D(A_, A, m)) contained in [A_, A ].

Let Ae D(A_, A\, m) be the matrix with entries A\; = ... \;,—1 = A_ and A, = \;. Then

m— —B
A X2 A0 X
diny X7

where X1,...,X,, are i.i.d. A/(0,1) random variables. By the strong law of large num-

bers and dominated convergence, this quantity converges, as m — o0, toward A~?. Thus
limy, o0 A~ (m, ) = A_. Similarly, limy, 0 Ay (m, ) = Ay

Z(3,A) :f[Mefn+A_(1—93n)]—%(d9):1@ (

A.5. On spherical integrals. In (23) we could have considered another function V. In-

deed, our first choice was
V:i=—In(U)

since it seemed somewhat more “intrinsic” with respect to U. It can be shown similarly that
the points [a] and [b] following (23) equally hold, with V replaced by V and Hg by Hg given
on {0} x S™~! by
_ 0 A20>
voesS™! Hp(0,0) = —tr(A) +2(1 6, 4°)
=S A(0,0) = —x(4) + 201+ ) e

where we recall that A := Hess U(0).

he sign of the quantity 4 5[Hs(0, )] can then be used to discriminate between the attrac-
tiveness and repulsivity of 0. In particular 14 s[Hz(0,-)] and 14 5[Hg(0, )] must have the
same sign. We tried to prove directly (without success!) that

(46) 21+ B)uasloal > tr(4) = B> T — 1
47) 2(1+B)HA75[¢A]<tr(A)<:>B<%—1
with

_ 6, 4%0)

voesm! 0) =
3 ¢A( ) < 9, A9>
A by-product of our computations is thus to show the validity of (46) and (47), which look
as natural bounds on the corresponding spherical integrals for any given definite positive
matrix A.
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