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Let U be a Morse function on a compact connected m-dimensional Rie-
mannian manifold, m ě 2, satisfying minU “ 0 and let U “ tx P M :
Upxq “ 0u be the set of global minimizers. Consider the stochastic al-
gorithm Xpβq B pXpβqptqqtě0 taking values in M , whose generator is
U4r¨s ´ β x∇U,∇r¨sy, where β P R is a real parameter. We show that for
β ą m

2 ´ 1, Xpβqptq converges a.s. as tÑ8, toward a point p P U and that
each p P U has a positive probability to be selected. On the other hand, for
β ă m

2 ´ 1 and when the initial law does not charge U , the law of Xpβqptq
converges in total variation (at an exponential rate) toward the probability
measure πβ having density proportional to Upxq´1´β with respect to the
Riemannian measure.

1. Introduction. Global optimization is an important and difficult task in applied math-
ematics, so the development of corresponding algorithms has been the subject of a great
deal of work. Specific assumptions on the function U to be optimized has led to very effi-
cient approaches: e.g. gradient descent or Newton’s method for convex optimization, moment
method for polynomial optimization. There are also a few general algorithms, often using a
certain amount of randomness, such as simulated annealing or interacting particle algorithms.
Here we will consider the special situation where the minimum value of U is known and can
be used by the algorithm. Such an algorithm is said to be fraudulent, since in general this
value is not available and one might think that knowing it is equivalent to knowing a global
minimum. However, there are natural situations where the minimum value is given but the
corresponding minimizers are not.

Here are some simple illustrative examples. Consider a generic polynomial P of odd de-
gree larger than 5 (assume e.g. that the coefficients are sampled according to a non-degenerate
Gaussian law) and define U “ P 2 on R. We know that the minimal value of U is zero, but we
cannot express its roots through radicals. For a more geometric example, consider a tangent
continuous vector field V on a sphere Sm of even dimension m P 2N. From Brouwer’s hairy
ball theorem [6], there exists a point x0 P Sm such that V px0q “ 0. Thus we know that the
minimal value of the mapping U : Sm Q x ÞÑ }V pxq}2 is zero, without being able to point
a global minimizer in general. Consider for instance a vector field V constructed from a
pm`1,m`1q-Brownian sheet, i.e. defined from r0,`8qm`1 to Rm`1 (see e.g. page 269 of
Walsh [22]), by restriction to the sphere centred at p2,2, ...,2q of radius 1, and by projection
on its tangent spaces. Below we will only consider smooth functions U , so V should also be
regularized.
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More important and current applications of fraudulent algorithms can be found in the
field of statistical classification. Appendix A.1 provides some heuristics explaining why the
stochastic algorithm Xpβq introduced below can be seen as a toy model for the diffusion
limit of mini-batch stochastic gradient descent algorithms extensively used in the theory of
Machine Learning, see for instance Li, Tai and E [16], Wu, Wang and Su [25], Mori, Ziyin,
Liu and Ueda [18] and Wojtowytsch [23, 24] as well as references therein.

Another instance of the usefulness of fraudulent procedures is when a global minimizer is
known and that we are looking for all the other ones. For other interests of fraudulent algo-
rithms, we refer to [17], where the term was coined. There the motivation for the stochastic
algorithm Xpβq comes from its approximation of the large-time limit behavior of the time-
inhomogeneous swarm mean-field algorithm introduced in [5], which is itself non-fraudulent
but uses its current distribution to estimate in real time the minimal value.

Let us present more precisely the framework considered here: U is a Morse function de-
fined on a compact manifold M of dimension m ě 2. The underlying stochastic process
Xpβq B pXpβqptqqtě0, takes values in M and comes with a real parameter β which can be
tuned to increase the relative importance of U with respect to the injected randomness. More
specifically, the generator of Xpβq will have the form U4r¨s ´ β x∇U,∇r¨sy, i.e., if we were
in an Euclidean context, the associated Xpβq can be constructed as solution of the s.d.e.

dXpβqptq “ ´β∇UpXpβqptqqdt`
b

2UpXpβqptqqdBt

where B “ pBtqtě0 is a standard Brownian motion on Rm.
Two quantities β_ ě β^ PR (depending explicitly on the eigenvalues of the Hessians of U

at its global minima, see Remark 2.4 below) were introduced in [17] so that β ą β_ implies
the a.s. convergence of Xpβqptq as tÑ8, toward the global minima of U (and each of them
attracts the algorithm with positive probability, when Xpβqp0q is not a global minima), while
for β ă β^ the probability that Xpβqptq converges toward a global minimum of U is zero.

Our goal in the present paper is to sharpen these result and describe completely the long
term behavior of Xpβq for all β ‰ β0, where β0 B

m
2 ´ 1 is a universal (i.e. independent of

U ) critical value, contrary to the results of [17], where β^ and β_ depended on U (except
in dimension 1). It thus follows from the current results that this dependence was artificial in
dimension larger or equal to 2, β0 P rβ^, β_s being the exact critical value for the following
behaviors. We will show that for β ą β0, X

pβqptq a.s. converges toward a global minimizer
of U and that each global minimizer has a positive probability to be selected (except when
Xpβqp0q is itself a global minima). On the other hand, for β ă β0, the process converges
in distribution toward a (unique) invariant distribution whose density (with respect to the
Riemannian measure) is explicit. The present results are thus sharper than those of [17] as
soon as β0 ą β^ and this is equivalent (as it can be seen from (2) in [17]) to the fact there
exists at least one global minimum x P U such that the Hessian of U at x is not proportional
to the identity. In practice this feature is quite generic, as soon as m ą 1. Here our results
will be obtained by an approach completely different from that of [17], which was based on
comparisons with Bessel processes of various dimensions. Instead, below we will rely on the
persistence/non-persistence approach presented in [4] and [2].

The paper is organized as follows. Section 2 sets the notation and presents the main results.
Section 3 considers the situation where M is no longer a compact manifold but the Euclidean
space Rm. It allows to introduce the main ingredients of the proof in a simple setting. Sec-
tion 4 is devoted to the proof of the main results. Certain additional points are discussed in
appendix.
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2. Notation and main result. We assume throughout that M is a compact connected
Riemannian manifold having dimension m ě 2 and U : M Ñ R is a smooth function such
that (this is the fraudulent assumption):

min
M

U “ 0.

The zero set of U,

U B tp PM : Uppq “ 0u,

is then the set of global minimizers. We furthermore assume that every p P U is non-
degenerate, meaning that the Hessian of U at p is non-degenerate. This assumption implies
that U is finite. In particular, N BMzU is a noncompact connected manifold.

Let Lβ be the operator on C2pMq defined as

Lβr¨sB U4r¨s ´ β x∇U,∇r¨sy(1)

where 4, x¨, ¨y and ∇ stand for the Laplacian, scalar product and gradient associated to the
Riemannian structure of M, and β PR.

A diffusion process generated by (1), is a continuous-time Feller Markov process on M,
Xpβq “ pXpβqptqqtě0, with infinitesimal generator Lβ and domain DpLβq Ă C0pMq (see e.g.
Le Gall [15], Section 6.2, for the definitions of Feller processes, domains and generators)
such that for all f P C2pMq :

f PDpLβq and Lβf “ Lβf.

Since the mapping ∇U and
?
U are Lipschitzian, due to the non-degeneracy assumption of

the zeroes of U for the latter, such a diffusion process exists. More details are given in the
appendix. In addition, given the initial distribution of Xpβqp0q, say µ, the law of Xpβq,Ppβqµ ,

is uniquely determined by µ and Lβ. As usual, we write Ppβqx for Ppβqδx . By a mild (but conve-

nient) abuse of notation we may write PxpXpβq P ¨q for Ppβqx p¨q. We also let P pβq “ pP pβqt qtě0

denote the semi-group induced by Xpβq. It is defined, as usual, by

@ tě 0, @ x PM, P
pβq
t fpxqB ExfpXpβqptqq

for every measurable, bounded or nonnegative, map f :M ÑR.
The proof of the next proposition, which relies on classical results, is given in Ap-

pendix A.3.

PROPOSITION 2.1. Here are some basic properties of P pβq:

(i) P pβq leaves N and U invariant: for all tě 0, P
pβq
t 1N “ 1N .

(ii) P pβq is Feller on M and strong-Feller on N :
- For all tě 0 and f P C0pMq, P

pβq
t pfq P C0pMq;

- For all tą 0 and f :N ÑR bounded measurable, P pβqt pfq is continuous on N .

Note that P pβq is not strong Feller on M , as it can be seen by considering the indicator
function of N . In order to state our main result we first associate, to each p P U , a certain
Lyapunov exponent. Given a symmetric positive definite mˆm real matrix A, and β P R,
define the probability measure µA,β on Sm´1, the unit sphere in Rm, via

@ θ P Sm´1, µA,βpdθq “
1

ZpA,1` βq
xθ,Aθy´1´β σpdθq(2)
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where, σ is the uniform probability measure on Sm´1, x ¨ , ¨ y the Euclidean dot product (not
to be confused with the Riemannian metric on M ) and ZpA,1 ` βq is the normalization
constant.

Define the β-average eigenvalue of A as

ΛpA,βq “

ż

Sm´1

xθ,AθyµA,βpdθq “
ZpA,βq

ZpA,1` βq
.(3)

Let λ1pAq ď . . . ď λmpAq be the eigenvalues of A. Observe that ΛpA,βq only depends on
these eigenvalues, because σ is invariant by orthogonal transformations andA is orthogonally
conjugate to a diagonal matrix. Observe also that

λ1pAq ď ΛpA,βq ď λmpAq.(4)

REMARK 2.2. Inequalities (4) are strict, except when λ1pAq “ λmpAq. Furthermore it
can be shown (see the appendix Section A.4) that for all numbers λ´ ă λă λ`, there exists,
form sufficiently large, amˆm definite positive matrixA such that λ1pAq “ λ´,ΛpA,βq “
λ and λmpAq “ λ`.

Given p P U , we let Ap denote the diagonal matrix whose entries 0ă λ1ppq ď . . .ď λmppq
are the eigenvalues of the Hessian of U at p. Set

β0B
m

2
´ 1.

Our main result is the following.

THEOREM 2.3. Let x PN and β PR.

(i) If β ą β0, then

ÿ

pPU
Px

«

lim sup
tÑ`8

lnpdpXpβqptq, pqq

t
ď´ΛpAp, βqpβ ´ β0q

ff

“ 1,

where each term in the above sum is positive.
(ii) If β ă β0, then Xpβq has, on N, a unique invariant probability distribution given by

πβpdxqB
1

Cβ
Upxq´1´βpxq`pdxq,

where Cβ is a normalization constant and `pdxq stands for the Riemannian measure. Fur-
thermore:

(a) Xpβq is positive recurrent on N, meaning that for all f P L1pπβq, Px a.s.,

lim
tÑ`8

1

t

ż t

0
fpXpβqpsqqds“ πβpfq

(b) There exist positive constants a, b,χ (depending on β) with χă β0 ´ β, such that for
all f :N ÑR, measurable,

|ExrfpXpβqptqqs ´ πβpfq| ď
ae´bt

dpx,Uqχ
}f}χ,

where

}f}χ :“ sup
yPN

|fpyq|dpy,Uqχ.
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(iii) If β “ β0, then, for every neighborhood O of U , Px a.s.,

lim
tÑ`8

1

t

ż t

0
1tXpβqpsqPOuds“ 1

REMARK 2.4. Theorem 2.3 is an improvement over the results of [17], which showed
the a.s. convergence of Xpβq toward elements of U (each being approached with a positive
probability) only for β ą β_ ě β0 with

β_ Bmax
pPU

ř

lPJmK λlppq

2λ1ppq
´ 1,(5)

and the a.s. non-convergence of Xpβq toward elements of U for β ă β^ ď β0, with

β^ Bmin
pPU

ř

lPJmK λlppq

2λmppq
´ 1.(6)

REMARK 2.5. Here we restrict our attention to dimensions m ě 2, so that N is con-
nected. The case m“ 1 which corresponds to the circle is already treated in [17].

REMARK 2.6. While it is true that for β ą β0, whatever the initial point x0 outside U ,
the law of Xpβqptq will charge all the points of U asymptotically for large t, we also have that
when we let x0 converge toward a particular x P U , the asymptotical weight put by Xpβqptq
on x converges toward 1. As a consequence, if we want to use Xpβq to find all the elements
of U with a non-neglectable chance, say already knowing a particular x P U , we should not
initialize Xpβq close to x. Or, as it was proposed by one of the referees, we should modify U
in a neighborhood of x so that x is no longer a global minimum of the new function. Ideally,
when have knowledge of an initial point x0, such that all elements of U are approached with
a more or less even probability, then we should repeat the algorithm a corresponding number
of times to find all the elements of U .

REMARK 2.7. By Theorem 2.3, the diffusion Xpβq on N is transient for β ą β0 and
positive recurrent if and only if β ă β0, due to the fact that

ş

N U
´1´β d` “ `8 for β ě

β0. By standard results (see e.g. Kliemann [12], Theorem 3.2 applied with C “ N ), it is
then either null recurrent or transient for β “ β0. It would be interesting to investigate this
situation.

3. Euclidean computations. This section considers a situation where the state space
M is no longer a compact manifold but the Euclidean space Rm, with m ě 2. We state a
theorem (Theorem 3.1 below) analogous to Theorem 2.3 (i) . This result is interesting in
itself, and its proof allows us to explain, in a simple framework, how to characterize the
attractiveness/repulsivity of a global minimum. The main idea is to expand a critical point to
a sphere, using polar decompositions, following [4].

Let U : RmÑ R` be a smooth function with minU “ 0. We assume that for each p P
U B U´1p0q, HessUppq is positive definite. In particular, points in U are isolated and U is
therefore countable.

For any fixed β PR, as in (1), we are interested in the operator Lβ defined on C2pRmq, via

@ x PRm, Lβrf spxqB Upxq4fpxq ´ β x∇U,∇fy pxq(7)

where 4, x¨, ¨y and ∇, respectively denote, the Euclidean Laplacian, scalar product and gra-
dient. Throughout all this section }x} “

a

xx,xy denotes the Euclidean norm of x.
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Associated to (7) is the stochastic differential equation

dXpβqptq “ ´β∇UpXpβqptqqdt`
b

2UpXpβqptqqdBt(8)

where B “ pBtqtě0 is a standard Brownian motion on Rm.
By local Lipschitz continuity of ∇U and

?
U, there exists, for each x PRm, a unique so-

lution Xpβq : r0, τ8q ÑRm starting from x, (i.e. Xpβqp0q “ x). Here, 0ă τ8 ď8, denotes
the explosion time of Xpβq and is characterized by

τ8 ą tô}Xpβqptq} ă8.

The set RmzU is invariant, in the sense that for all tě 0, x PRmzU ,

PxpXpβqptq PRmzU |τ8 ą tq “ 1.

The proof of this last point is the same as the proof of Proposition 2.1 (i) given in the
appendix.

THEOREM 3.1. (i) Suppose β ą β0. Then, for all x PRmzU and p P U ,

Px

«

lim sup
tÑ`8

lnp}Xpβqptq ´ p}q

t
ď´ΛpAp, βqpβ ´ β0q

ff

ą 0(9)

where Ap,ΛpAp, βq are defined as in Section 2.
(ii) Suppose β ą β0, and in addition, that there exist positive constants α, r (possibly de-
pending on β) such that

2β0Upxq ´ βx∇Upxq, xy ď ´α}x}2(10)

whenever }x} ě r. Then, U is finite and for all x PRmzU ,

ÿ

pPU
Px

«

lim sup
tÑ`8

lnp}Xpβqptq ´ p}q

t
ď´ΛpAp, βqpβ ´ β0q; τ

8 “8

ff

“ 1.(11)

(iii) Suppose β ă β0. Then, for all p P U and x PRmztpu

Px
”

lim
tÑ8

Xpβqptq “ p
ı

“ 0.

REMARK 3.2. The condition (10) is given for its simplicity. However, the conclusion
(11) holds true under the weaker assumption, implied by (10) (see Lemma 3.3 below), that
Xpβq almost surely never explodes (i.e τ8 “8) and eventually enters a ball Bp0, rq contain-
ing U for some r ą 0.

The remainder of this section is devoted to the proof of Theorem 3.1. We first recall some
classical facts about diffusion operators, see e.g. Bakry, Gentil and Ledoux [1]. The carré du
champ ΓL associated to a Markov generator L defined on an algebra ApLq is the bilinear
functional defined on ApLq ˆApLq via

@ f, g PApLq, ΓLrf, gsB Lrfgs ´ fLrgs ´ gLrf s

(we will denote ΓLrf sB ΓLrf, f s).
The generator L is said to be of diffusion, if ApLq is stable by composition with smooth

functions and if we have

Lrϕpfqs “ ϕ1pfqLrf s `
ϕ2pfq

2
ΓLrf s(12)
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for any f PApLq and any function ϕ smooth on the image of f .
In this situation we also have, with the same notations,

ΓLrϕpfqs “ pϕ
1pfqq2ΓLrf s(13)

The Markov generator given in (7) is of diffusion with ApLβq “ C2pRmq. The corresponding
carré du champ is given by

@ f P C2pRmq, ΓLβ rf s “ 2U}∇f}2.(14)

Our first goal is to show that, under condition (10), Xpβq never explodes and always enter the
ball Bp0, rq. For all sě 0, we let

τs “ infttě 0 : }Xpβqptq} ď su and τ s “ infttě 0 : }Xpβqptq} ě su.

Note that these stopping times depend on β, but to shorten notation we omit this dependance
in their definition.

LEMMA 3.3. Under the condition (10),

Pxpτ8 “8; τr ă8q “ 1

for all x PRm and r is as in (10).

PROOF. Let V : Rm Ñ R be a smooth function coinciding with lnp}x}2q for }x} ě r.
Using the formulae (12) and (14) it comes that, for all }x} ě r,

LβpV qpxq “
2

}x}2
p2β0Upxq ´ β x∇Upxq, xyq ď ´2α.

In particular, for all x P Rm,LβpV qpxq ď C where C “ suptxPRm :}x}ďru |LβpV qpxq|. Thus,
by Ito’s formulae, for all k ě 1,

lnpk2qPxpτk ď tq ď ExpV pXpβqpt^ τkqq

“ V pxq `Ex

«

ż t^τk

0
LβrV spX

pβqpsqqds

ff

ď V pxq ` tC.

This shows that Pxpτk ď tqÑ 0, as kÑ8. Hence Pxpτ8 ă8q “ 0.
Now, by Ito formulae again, the process pMtqtě0 defined as

Mt :“ V pXpβqpt^ τrqq ´ lnpr2q ´

ż t^τr

0
LβV pX

pβqpsqqdsě 2αpt^ τrq

is a nonnegative Px local martingale. A nonnegative local martingale may not be a martin-
gale but is always a supermartingale (Le Gall [15], Proposition 4.7). Thus 2αExpt^ τrq ď
ExpMtq ď V pxq ´ lnpr2q. Hence Expτrq ă8.

Our next goal is to investigate the behavior of Xpβq around a critical point p P U . Without
loss of generality, we assume that p“ t0u.We letA“HessUp0q. Fix ε P p0,1q small enough
so that U XBp0, εq “ t0u. Write any x PBp0, εqzt0u under its polar decomposition x“ ρθ
with ρ P p0, εq and θ P Sm´1. This decomposition induces the mapping

Q : C2pBp0, εqq Q f ÞÑQrf s P C2pp0, εq ˆ Sm´1q

with

@ pρ, θq P p0, εq ˆ Sm´1, Qrf spρ, θqB fpρθq(15)
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Endow Sm´1 with its usual Riemannian structure, inherited from Rm, and denote x ¨ , ¨ yθ ,
∇θ, divθ and 4θ the corresponding scalar product, gradient, divergence, and Laplace-
Beltrami operator. Note that x ¨ , ¨ yθ is just the restriction of x ¨ , ¨ y to the tangent space of
Sm´1 at θ.

Classical computations in polar coordinates show that for any f, g P C2pBp0, εqq, we have
on p0, εq ˆ Sm´1,

Qrx∇f,∇gys “ BρQrf sBρQrgs `
1

ρ2
x∇θQrf s,∇θQrgsyθ ,

Qr4f s “ B2
ρQrf s `

m´ 1

ρ
BρQrf s `

1

ρ2
4θQrf s.

It leads us to introduce the operator Lβ on C2pp0, εq ˆ Sm´1q defined by

Lβ r¨s B U

ˆ

B2
ρ r¨s `

m´ 1

ρ
Bρ r¨s `

1

ρ2
4θ r¨s

˙

´ β

ˆ

pBρUqBρ r¨s `
1

ρ2
x∇θU,∇θ r¨s yθ

˙

(16)

where UBQrU s. Indeed, on C2pBp0, εqq, we have the intertwining relation

Lβ ˝Q“Q ˝Lβ.

LEMMA 3.4. The operator Lβ extends to a diffusion operator, still denoted Lβ, on
C2pr0, εq ˆ Sm´1q, whose associated diffusion process Xpβq leave t0u ˆ Sm´1 invariant. On
t0u ˆ Sm´1, identified with Sm´1, Xpβq admits for generator the operator Gβ acting on
C2pSm´1q via

@ f P C2pSm´1q, GβrfsB
1

2
Ψ1`β
A divθpΨ

´β
A ∇θfq(17)

where @ θ P Sm´1,ΨApθq “ xθ,Aθy . Furthermore, Gβ has a unique invariant probability
measure on Sm´1, given by µA,β (see Equation (2)).

PROOF. Our assumptions on U imply that, uniformly over θ P Sm´1,

lim
ρÑ0`

Upρ, θq
ρ2

“
1

2
xθ,Aθy ,(18)

lim
ρÑ0`

BρUpρ, θq
ρ

“ xθ,Aθy ,(19)

lim
ρÑ0`

∇θUpρ, θq
ρ2

“Aθ´ xθ,Aθyθ.(20)

Indeed, by the usual expansion of U around 0, we have

Upxq “ Up0q ` x∇Up0q, xy ` 1

2
xx,HessUp0qxy ` opxx,xyq

“
1

2
xx,Axy ` opxx,xyq

which translates into

Upρ, θq “
ρ2

2
xθ,Aθy ` opρ2q
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leading to the first announced limit (18). Similarly,

∇Upxq “∇Up0q `HessUp0qx` op
a

xx,xyq

“Ax` op
a

xx,xyq.

At x“ ρθ with ρą 0, BρUpρ, θqθ is the radial part of ∇Upxq and ∇θUpρ, θq{ρ is the tangen-
tial part. It follows that

BρUpρ, θq “ x∇Upxq, θy ,
∇θUpρ, θq

ρ
“∇Upxq ´ BρUpρ, θqθ,

and we get

BρUpρ, θq
ρ

“ xθ,Aθy ` op1q,

∇θUpρ, θq
ρ2

“Aθ´ xθ,Aθyθ` op1q,

leading to the wanted second and third results (19) and (20).
It follows that for any F P C2pr0, εq ˆ Sm´1q, we have, uniformly over θ P Sm´1,

lim
ρÑ0`

LβrF spρ, θq “
1

2
xθ,Aθy4θF p0, θq ´ β xAθ´ xθ,Aθyθ,∇θF p0, θqyθ(21)

Denoting LβrF sp0, θq the r.h.s. enables us to see Lβ as a diffusion operator on r0, εq ˆ Sm´1,
whose associated diffusion process Xpβq leaves t0uˆ Sm´1 invariant, and such that on t0uˆ
Sm´1, identified with Sm´1, its generator coincides with the operator defined by

Gβpfq :“ xθ,Aθy

ˆ

1

2
4θfpθq ´ β xbpθq,∇θfyθ

˙

where

@ θ P Sm´1, bpθqB
Aθ´ xθ,Aθyθ

xθ,Aθy
“

1

2
∇θ lnpxθ,Aθyq.

It is easily checked that Gβ can be rewritten under the divergence form given by (17). This
divergence form implies that the probability measure µA,β defined in (2) is invariant. By
ellipticity of Gβ there is no other invariant probability measure.

LEMMA 3.5. Suppose β ą β0 and 0 ă λ ă ΛpA,βq. For all 0 ă η ď 1, there exists
0ă ε1 such that for all }x} ď ε1,

Px

«

lim sup
tÑ`8

lnp}Xpβqptq}q

t
ď´λpβ ´ β0q;

ff

ě 1´ η.(22)

If now, β ă β0, then for all x PRmzt0u,

Px
„

lim
tÑ`8

}Xpβqptq} “ 0



“ 0.
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PROOF. The proof follows from the stochastic persistence approach used in [4], [2]. For
reader’s convenience it is presented in details in the appendix (Section A.2). Let V be the
function defined on p0, εq ˆ Sm´1 via

Vpρ, θqB´ lnpρq.(23)

We claim that:

(a) LβrVs can be extended into a continuous function Hβ on r0, εq ˆ Sm´1;
(b) ΓLβ rVs is bounded on p0, εq ˆ Sm´1; and
(c) µA,βrHβp0, ¨qs “ ΛpA,βqpβ ´ β0q (the l.h.s. is a shorthand for the integration of the

mapping Sm´1 Q u ÞÑ Hβp0, uq with respect to µA,β , defined in (2)) .

Using the form of Lβ (equation (16)) and the equalities (18), (19), (a) holds true with

Hβp0, θq “ pβ ´ β0q xθ,Aθy(24)

and (c) directly follows from the definition of ΛpA,βq. For (b) , the definition of Lβ and ΓLβ ,
lead to

@ f P C2pp0, εq ˆ Sm´1q, ΓLβ rf s “ 2U

ˆ

pBρfq
2 `

1

ρ2
|∇θf |

2

˙

.

Thus,

ΓLβ rVs “ 2
Upρ, θq
ρ2

which is bounded in view of (18). This concludes the proof of the claim.
If β ą β0, µA,βrHβp0, ¨qs ą 0 and the first assertion of the lemma follows from Theorem

A.13 (based on Theorem 5.4 in [4]). If β ă β0, µA,βrHβp0, ¨qs ă 0, the second assertion
follows Proposition A.9 piq in Appendix A.2 applied on the manifold r0, εq ˆ Sm´1 with
extinction set t0u ˆ Sm´1.

We can now conclude the proof of Theorem 3.1. We start with assertion (ii) . Fix β ą β0.
For n PN sufficiently large (so that ΛpAp, βq ą

1
n ) and p P U , let Enppq be the event defined

as

Enppq “

#

lim sup
tÑ`8

lnp}Xpβqptq ´ p}q

t
ď´pΛpAp, βq ´

1

n
qpβ ´ β0q

+

,

and let

En “
ď

pPU
Enppq.

The set U is finite, since (10) cannot be satisfied by a point x P U and by consequence U is
included into the compact ball centered at 0 and of radius r. Thus there exists, by Lemma
3.5, ε1 ą 0 such that

PxpEnppqq ě
1

2

for all x PBpp, ε1q and all p P U . Let

Uε1 B
ď

pPU
Bpp, ε1q
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and τUε1 B inftt ě 0 : Xpβqptq P Uε1u. By ellipticity of Lβ on RmzU , Uε1 is open and ac-
cessible from all x PRm, in the sense that PxpXpβqptxq P Uε1q ą 0 for some tx ě 0. Thus, by
Feller continuity and compactness of Bp0, rq, there exists δ ą 0 such that

PxpτUε1 ă8q ě δ

for all x P Bp0, rq. Combined with Lemma 3.3, this proves that PxpτUε1 ă 8q ě δ for all
x PRm. Thus,

PxpEnq ě δ{2

for all x PRm. The strong Markov property, implies that PxpEnq “ 1. Hence

Pxp
č

n

Enq “ 1.

This concludes the proof of (ii) .
We now pass to the proof of (i) . Fix β ą β0 and assume without loss of generality that

p “ t0u. Since Pxpτε1 ă8q ą 0 for all x P Rmzt0u, the proof of (9) follows from Lemma
3.5 .

Finally (iii) is an immediate consequence of the second part of Lemma 3.5 (recall that 0
was an arbitrary point of U , up to a translation).

4. Proof of Theorem 2.3.

4.1. Proof of Theorem 2.3 (i) . The proof is similar to that of Theorem 3.1. We begin by
proving a Riemannian version of Lemma 3.5. The proof of Theorem 2.3 (i) will then follow
by an argument similar to that given at the end of Section 3.

Let y P U and let BM py, εq be the Riemannian ball with center y and radius ε, where εą 0
is sufficiently small so that

• the only critical point for U in BM py, εq is y,
• the exponential mapping expy : TyM ÑM is a diffeomorphism between the tangent ball
Bp0, εq of TyM and BM py, εq.

Recall that the exponential mapping expy : TyM ÑM associates to any tangent vector
v P TyM the point x PM which is the position at time 1 of the (constant speed) geodesic
starting at time 0 from y with speed v.

Consider pe1, e2, ..., emq an orthonormal basis of TyM consisting of eigenvectors associ-
ated to the eigenvalues pλ1, λ2, ..., λmq of the Hessian of U at the critical point y. A priori this
Hessian is a bilinear form on TyM , but the Euclidean structure of TyM enables us to see it
as a symmetric endomorphism on TyM , and pλ1, λ2, ..., λmq and pe1, e2, ..., emq correspond
to its spectral decomposition.

Let pv1, v2, ..., vmq be the coordinate system associated to pe1, e2, ..., emq on Bp0, εq. Such
a coordinate system based on the exponential mapping is said to be a normal coordinate
system. From now on and until the end of this section, we identify a map f :BM py, εq ÑR
with f ˝ expy : Bp0, εq Ñ R, and write fpvq for f ˝ expypvq. Under this identification, the
matrix corresponding to the Hessian at y admits the classical form

pB2
k,lUp0qqk,lPJmK

where Bk is a shorthand for B
Bvk

. The introduction of the lecture notes of Pennec [19] is a
convenient reference for these assertions (a more thorough exposition can be found in the
book of Gallot, Hulin and Lafontaine [9]).
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A first interest of the normal coordinate system pv1, v2, ..., vmq on Bp0, εq is that we
can consider the corresponding polar decomposition as in the previous section: each v “
pv1, v2, ..., vmq P Bp0, εqzt0u can be uniquely written under the form ρθ with ρ P p0, εq and
θ P Sm´1, where the basis pe1, e2, ..., emq enables us to identify TyM with Rm.

Before going further, let us recall some other traditional notations and facts from Rieman-
nian geometry. For any v PBp0, εq, denote gpvqB pgk,lpvqqk,lPJmK the matrix of the pull-back
of the Riemannian metric: for any vectors b and b̃ from Texpypvq

M , identified with their co-
ordinates pbkqkPJmK and pb̃kqkPJmK in the basis pBkqkPJmK, we have

A

b, b̃
E

v
“

ÿ

k,lPJmK

gk,lpvqbk b̃l

The determinant of gpvq and the inverse matrix g´1pvq are respectively denoted |g|pvq and
pgk,lpvqqk,lPJmK. For any smooth function f, the expressions of its gradient and Laplacian are
given by

∇fpvq “

¨

˝

ÿ

lPJmK

gk,lpvqBlfpvq

˛

‚

kPJmK

4fpvq “ 1
a

|g|pvq

ÿ

k,lPJmK

Bk

´

a

|g|gk,lBlf
¯

pvq

“
ÿ

k,lPJmK

gk,lpvq

¨

˝B2
k,lfpvq ´

ÿ

jPJmK

Γjk,lpvqBjfpvq

˛

‚

where Γjk,lpvq are the Christoffel symbols at v, see for instance the listing [21] (again we
abuse notation in the r.h.s by identifying f with its formulation in the coordinate system
v “ pv1, v2, ..., vmq). There should be no confusion between the traditional uses of the letter
Γ both for the carré du champ (taking a generator in index) and for the Christoffel symbols
(with two indices and one exponent).

A second interest of the normal coordinate system is that at 0, we recover the usual notions:
gp0q is the identity matrix and the Christoffel symbols all vanish at 0.

The above expressions lead to the following formulation of the generator Lβ defined in
(1):

Lβ r¨s “ U
ÿ

k,lPJmK

gk,l

¨

˝B2
k,l r¨s ´

ÿ

jPJmK

Γjk,lBj r¨s

˛

‚´ β
ÿ

k,lPJmK

gk,lBkUBl r¨s(25)

Again we are slightly abusing notations by calling it Lβ too, especially as we see it as only
defined on C2pBp0, εqq.

The associated carré du champ is given as

ΓLβ r¨s “ 2U
ÿ

k,lPJmK

gk,lBk r¨s Bl r¨s(26)

(this is a consequence of the algebraic relation ΓBkBl r¨s “ 2Bk r¨s Bl r¨s , even if BkBl is not a
Markov generator, i.e. when k ‰ l).

Consider the mapping Q associated in (15) to the polar decomposition. Since Q is invert-
ible from C2pBp0, εqq to C2pp0, εq ˆ Sm´1q, there is a unique diffusion generator Lβ acting
on C2pp0, εq ˆ Sm´1q such that

Lβ ˝Q“Q ˝Lβ
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To compute Lβ , let us write that for any v PBp0, εqzt0u,

ρ“

d

ÿ

kPJmK

v2
k

@ l P JmK, θl “
vl
ρ

It follows that for any k P JmK,

Bkρ“
vk
ρ
“ θk

@ l P JmK, Bkθl “
δk,l
ρ
´
vl
ρ2
Bkρ “

1

ρ
pδk,l ´ θkθlq

where δk,l is the Kronecker symbol.
It follows that

Bk “ θkBρ `
1

ρ

ÿ

lPJmK

pδk,l ´ θkθlqBθl(27)

and by composition, for any k, l P JmK, we can also write B2
k,l in terms of Bρ, B2

ρ , Bθi and
B2
θi,θj

, for i, j P JmK. Replacing these expressions in (25), we get the formula for Lβ in terms
of differentiations of order 1 and 2, with respect to ρ and the θl, l P JmK.

In order to apply the general method of [4] as in Section 3, we need to check the three
facts respectively listed in the following lemmas.

LEMMA 4.1. For any F P C2pr0, εq ˆ Sm´1q, we have, uniformly over θ P Sm´1,

lim
ρÑ0`

LβrF p¨, ¨qspρ, θq “GβrF p0, ¨qspθq

where Gβ is given in (17).

PROOF. For any v PBp0, εq, define

@ k, l P JmK, g̃k,lpvqB δk,l

@ j, k, l P JmK, Γ̃jk,lpvqB 0

and in analogy with (25),

L̃β r¨s “ U
ÿ

k,lPJmK

g̃k,l

¨

˝B2
k,l r¨s ´

ÿ

jPJmK

Γ̃jk,lBj r¨s

˛

‚´ β
ÿ

k,lPJmK

g̃k,lBkUBl r¨s

This operator coincides with the restriction of (7) to Bp0, εq. It follows from (21) that
uniformly over θ P Sm´1,

lim
ρÑ0`

L̃βrF spρ, θq “GβrF p0, ¨qspθq

where the operator L̃β is such that L̃β ˝Q“Q ˝ L̃β .
Thus to get the wanted result, it is sufficient to show that

lim
ρÑ0`

pLβ ´ L̃βqrF spρ, θq “ 0(28)
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This convergence is a consequence of the writing

pLβ ´ L̃βqrF s “ U
ÿ

k,lPJmK

pgk,l ´ g̃k,lq

¨

˝B2
k,lF ´

ÿ

jPJmK

Γjk,lBjF

˛

‚

´U
ÿ

k,l,jPJmK

g̃k,lpΓjk,l ´ Γ̃jk,lqBjF ´ β
ÿ

k,lPJmK

pgk,l ´ g̃k,lqBkUBlF

(where the restriction of F on p0, εq ˆ Sm´1 was identified with Q´1rF s on Bp0, εqzt0u,
with Q given in (15)), and of the following facts, valid uniformly in θ P Sm´1 as ρ goes to
0`:

• According to (27), for any k, l P JmK, BkF is of order 1{ρ and B2
k,lF is of order 1{ρ2.

• Due to the regularity of g and of the Christoffel symbols, for any k, l P JmK, gk,l ´ g̃k,l

and Γjk,l ´ Γ̃jk,l are of order ρ.
• By the assumption that y is a global minimum, U is of order ρ2 and BkU is of order ρ,

for any k P JmK.

We have seen in the previous section that Gβ is reversible with respect to the probability
measure µA,β defined in (2), where here ABAy is the diagonal matrix whose entries are the
eigenvalues of the Hessian of U at y P U . To continue the method of [4], we also need the
two following ingredients.

LEMMA 4.2. Consider the function V defined on p0, εq ˆ Sm´1 via

Vpρ, θq B ´ lnpρq.

The function ΓLβ rVs is bounded on p0, εq ˆ Sm´1 and the function LβrVs can be extended
into a continuous function Hβ on r0, εq ˆ Sm´1 satisfying (24) and thus µA,βrHβp0, ¨qs “
ΛpA,βqpβ ´ β0q.

PROOF. We have ΓLβ rVs “QrΓLβ rV ss with V pvq “ ´1
2 lnp

ř

kPJmK v
2
kq, so it is sufficient

to see that ΓLβ rV s is bounded on BM py, εqztyu. Expanding Upvq near 0 in the normal coor-
dinate system v “ pv1, v2, ..., vdq, we get for v small

Upvq „
1

2

ÿ

lPJmK

λlv
2
l

Hence, using (26),

ΓLβ rV spvq „

ř

lPJmK λlv
2
l

p
ř

lPJmK v
2
l q

2

ÿ

k,lPJmK

gk,lp0qvkvl “

ř

lPJmK λlv
2
l

ř

lPJmK v
2
l

.

(see also [17]).
This proves the wanted boundedness.
For the wanted convergence, in view of the computations of the previous section, it is

sufficient to see that (28) holds with F replaced by V. Note that when applied to a function
only depending on ρ, as V, (27) reduce to Bk “ θkBρ. It follows that BkV is of order 1{ρ and
B2
k,lV is of order 1{ρ2. This observation enables us to use the same arguments as in the end of

the proof of Lemma 4.1 to conclude that (28) holds with F replaced by V.
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A Riemannian version of Lemma 3.5 follows directly from the preceding lemma, the proof
being exactly the same as the proof of Lemma 3.5. The proof of Theorem 2.3 (i) then follows
(almost) verbatim along the lines of the arguments given in the preceding section just after
the proof of Lemma 3.5.

4.2. Proof of Theorem 2.3 (ii) . Let V : N Ñ R, x ÞÑ lnpUpxq´βq. Observe that for all
f PC2pNq,

divpeV∇fq “ eV px∇V,∇fy `∆fq “ U´β´1Lβf.

Let C2
c pNq be the set of f PC2pNq having compact support. Then, for all f PC2

c pNq,
ż

N
Lβf d`β “ 0,

where `β is the measure on N defined as

`βpdxqB Upxq
´p1`βq`pdxq.

Let p P U . By Morse’s lemma, there is a smooth chart at p such that, in this chart system,
U writes x ÞÑ }x}2 “

řm
i“1 x

2
i . Since the map x ÞÑ }x}´2pβ`1q is locally integrable (i.e. in a

neighborhood of 0Rm ) if and only if 2pβ ` 1q ăm, it comes that
ş

N Upxq
´p1`βq`pdxq ă 8

if and only if 2pβ ` 1q ăm, that is β ă β0.
Assuming β ă β0, the probability measure

πβpdxqB
1

Cβ
`βpdxq

(where Cβ is a normalization constant) satisfies
ż

N
Lβf dπβ “ 0(29)

for all f P C2
c pNq. Observe that there is no evidence that the set C2

c pNq is a core for Lβ,
so that we cannot immediately deduce from (29) that πβ is an invariant probability measure
of Xpβq. However, by Theorem 9.17 page 248 in Ethier and Kurtz [8] (originally due to
Echeverria [7]) the following properties (a) to (d) ensure that πβ is invariant:

(a) The space N is a separable locally compact metric space (for which the space ĈpNq of
continuous function "vanishing at infinity" coincide with tf PC0pMq : f |U “ 0u);

(b) The set C2
c pNq is an algebra dense in ĈpNq;

(c) The operator Lβ :C2
c pNqÑ ĈpNq, satisfies the positive maximum principle;

(d) The martingale problem for pLβ,C2
c pNqq is well-posed: for all x P N, Pβx (the law

of Xpβq starting from Xpβqp0q “ x) is the unique probability on Dpr0,8q,Nq such that
fpXptqq ´

şt
0LβfpXpsqqds is a Pβx-martingale and PβxrXp0q “ xs “ 1, where pXptqqtě0

is the canonical process on Dpr0,8q,Nq.

Properties (a) , (b) and (c) are easy to verify. Property (d) follows from, on one hand,
that for any ε ą 0 sufficiently small, the stopped martingale problem on Nε B tx PM :
Upxq ě εu is well-posed by uniform ellipticity of Lpβq on Nε, and on the other hand, that
these localized martingale problems can next be extended to the whole state space N . For
instance, corresponding precise statements are found in Ethier and Kurtz [8], see Theorem
5.4 page 199, providing the existence of a solution of the stopped martingale problem on the
Nε, but also of the martingale problem on N , Theorem 4.1 page 182 for the uniqueness of
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stopped martingale problems on the Nε, and Theorem 6.2 page 217, for the deduction of the
uniqueness of the solution of the martingale problem on N by localization.
‚ (ii) (a) : follows from the fact that a strong Feller process on a connected space having an

invariant probability measure with full support, is positive recurrent (see e.g. [3], Corollary
7.10 for a statement on discrete time Markov chains and Proposition 4.58 (ii) for the appli-
cation in continuous time). In particular, it is uniquely ergodic (i.e. its invariant probability
measure is unique). Here the strong Feller property of Xpβq on N follows from Proposition
2.1.
‚ (ii) (b) : The following lemma is a consequence of Lemma 4.2 and the stochastic per-

sistence approach exposed in [2], [4].

LEMMA 4.3. Assume β ă β0. Then, there exist a continuous mapW :N ÑR`, 0ď ρă
1, χą 0, κě 0 and T ą 0 such that

(i) W pxq “ dpx,Uq´χ on a neighborhood of U ,
(ii) P

pβq
T W ď ρW ` κ.

PROOF. For y P U , and εą 0 sufficiently small, let Vy :Mztyu Ñ R` be a smooth map
such that

QrVy ˝ expyspρ, θq “ Vpρ, θq :“´ lnpρq

whenever ρ ă ε, where, using the notation of Section 4.1, V : p0, εq ˆ Sm´1 Ñ R is as in
Lemma 4.2 and Q is the mapping induced by the polar decomposition as in (15). Because
ΓLβ rVs is bounded on p0, εqˆSm´1 and µA,βrHβp0, ¨qs “ ΛpA,βqpβ´β0q ă 0, it is possible,
for ε sufficiently small, to find numbers χ,T ą 0, κ and 0ď ρă 1 such that

P
pβq
T peχVyq ď ρeχVy ` κ

onMztyu. This follows from Proposition A.9 piq in Appendix A.2 (based on [2], Proposition
8.2). The mapping W : N Ñ R`, defined as W pxq “

ř

yPU e
χVy satisfies the conditions of

the lemma.

By ellipticity of Lpβq on N , every point p P N is an accessible Doeblin point for P pβqT .
Combined with the preceding lemma this proves assertion (ii) (b) of Theorem 2.3 (see e.g.
Theorem 8.15 in [3]).

4.3. Proof of Theorem 2.3 piiiq. It follows from compactness of M and Feller continuity
of Xpβq that, with Px probability one, every limit point (for the weak topology) of the family

"

1

t

ż t

0
δXpβqs

ds

*

tě0

is an invariant probability of Xpβq (see e.g. [3], Theorem 4.20 combined with Propositions
4.57 and 4.58). It then suffices to show that for β “ β0, every invariant probability of Xpβ0q

is supported by U , or equivalently, that every ergodic probability measure of Xpβ0q is a Dirac
measure δp for some p P U .We proceed by contradiction. Suppose that there exists an ergodic
probability measure ofXpβ0q, µwith µpNq ą 0. Then µpNq “ 1 (by invariance ofN ) and, by
ellipticity of Xpβ0q on N, µ is absolutely continuous with respect to `pdxq, hence also with
respect to `β0

pdxq. That is µpdxq “ fpxq`β0
pdxq with f ě 0 measurable and `β0

rf s “ 1. We
claim that f is almost surely constant. This is in contradiction with the fact that `β0

pNq “
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8. It remains to prove the claim. First assume that }f}8 “ supxPN |fpxq| ă 8. Then, f P
L2p`β0

q because `β0
rf2s “ µrf s ď }f}8. Thus,

`β0
rpP β0

t f ´ fq2s “ `β0
rpP β0

t fq2 ` gs

where gB f2 ´ 2fP β0

t f P L1p`β0
q and `β0

rgs “ ´µrf s. Thus,

`β0
rpP β0

t f ´ fq2s “ `β0
rpP β0

t fq2s ´ µpfq “ `β0
rpP β0

t fq2 ´ f2s ď 0

where the last inequality follows from Jensen’s inequality. This shows that `β0
-almost surely,

P β0

t f “ f , and also µ-almost surely. By ergodicity f is µ-almost surely constant. Suppose
now that }f}8 “8. Set fn “mintf,nu and µnpdxq “ fnpxq`β0

pdxq. For every Borel set
AĂN,

µnP
β0

t pAq “ µnP
β0

t pAX tf ď nuq ` pµnP
β0

t qpAX tf ą nuq

ď pµP β0

t qpAX tf ď nuq ` np`β0
P β0

t qpAX tf ą nuq

“ µpAX tf ď nuq ` n`β0
pAX tf ą nuq “ µnpAq.

This shows that µn is excessive, hence invariant because every finite excessive measure is
invariant (see e.g. [3], Lemma 4.25). By what precedes, fn is µ-almost surely constant. Thus
f is µ-almost surely constant. This concludes the proof of the claim.

APPENDIX

A.1. On the over-parametrized model in Machine Learning and mini-batch stochas-
tic gradient approximations. Here we present the heuristic reason why the fraudulent al-
gorithm investigated in this paper can be seen as an idealized model of an asymptotic behavior
encountered in the theory of Machine Learning. This exposition is based on the two papers
of Wojtowytsch [23] and [24].

Assume we are given a finite family pxn, ynqnPJNK of feature-class couples from the prod-
uct of Euclidean spaces RkˆRl, with k, l PN. We are looking for a function fpθ, ¨q from Rk
to Rl, parametrized by some θ PΘ, so that

UpθqB
ÿ

nPJNK

}yn ´ fpθ,xnq}
2(30)

is minimal (where }¨} is the Euclidean norm on Rl). The over-parametrized setting corre-
sponds to families pfpθ, ¨qqθPΘ sufficiently large so we are sure there exists at least one θ PΘ
such that Upθq “ 0. Thus we know a priori that minΘU “ 0 and the goal is then to find a
minimizing θ PΘ.

To find such a global minimum of U , a first try is to consider the classical gradient descent
algorithm, namely the dynamic system pθptqqtě0 whose evolution in Θ is given by

@ tě 0,
dθ

dt
ptq “ ´∇Upθptqq(31)

where we suppose that Θ is endowed with a Riemannian structure and that U is at least
C1. We start from an arbitrary θp0q P Θ (this will also be the case for all the subsequent
evolutions).

Assuming furthermore that Θ is the Euclidean space Rm, withm PN (or the torus pR{Zqm
to be in a compact framework), for the purpose of implementing the above evolution on a
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computer, it is preferable to replace it by an approximating time-discretization pθppqqpPZ`
such as

@ p P Z`, θpp` 1q “ θppq ´ η∇Upθppqq(32)

where the positive η ą 0 is the time-step size (in the Machine Learning context, η is also
called the learning rate and is often also depending on the time p P Z`): the discrete time p
in (32) rather corresponds to the continuous time ηp in (31).

From (30), we compute that the gradient ∇UpθqB pBθiUpθqqiPJmK is given by

@ θ PΘ, @ i P JmK, BθiUpθq “ ´2
ÿ

nPJNK

xyn ´ fpθ,xnq,Bθifpθ, ynqy

where x¨, ¨y is the scalar product in Rl. Thus in (32), at each instant p P Z`, a sum of N terms
must be computed. To avoid having to make so many calculations, as in practice N is very
large, one usually resorts to mini-batches. First the time domain is restricted to J0,

?
N ` 1K

(to simplify notations, assume from now on that N is a square) on which the iteration (32) is
modified via

@ p P J0,
?
NK, θpp` 1q “ θppq ´ η∇Uppθppqq(33)

where

@ p P J0,
?
NK, @ θ PΘ, UppθqB

ÿ

nPJp
?
N`1,pp`1q

?
NK

}yn ´ fpθ,xnq}
2

Let us now assume that pxn, ynq, for n P JNK, are independent samples from a law µ on
Rk ˆRl. Define for any n P J

?
NK, the random variable ZpnqB pZipnqqiPJmK taking values

in Rm via

@ i P JmK, ZipnqB´2 xyn ´ fpθppq, xnq,Bθifpθppq, xnqy

where p P J0,
?
N ´ 1K is such that n P Jp

?
N ` 1, pp` 1q

?
NK.

Fix p P J0,
?
N ´ 1K. For n P Jp

?
N ` 1, pp ` 1q

?
NK, the Zpnq are independent and

identically distributed according to the image of µ by the mapping

Rk ˆRl Q px, yq ÞÑ ´2pxy´ fpθppq, xq,Bθifpθppq, xqyqiPJmK PRm

We compute that for any i P JmK,

ErBθiUppθppqqs “
ÿ

nPJp
?
N`1,pp`1q

?
NK

ErZipnqs

“ ´2
?
N

ż

xy´ fpθppq, xq,Bθifpθppq, xqy µpdx,dyq

“ BθiŪpθppqq

where the mapping Ū is defined by

@ θ PΘ, ŪpθqB

ż

}y´ fpθ,xq}2 µpdx,dyq(34)

Writing

RpθppqqB∇Uppθppqq ´∇Ūpθppqq
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we compute that the covariance matrix ApθppqqB pAi,jpθppqqqi,jPJmK of Rpθppqq is given,
for any i, j P JmK, by

Ai,jpθppqq “
ÿ

nPJp
?
N`1,pp`1q

?
NK

ErpZipnq ´ErZipnqsqpZjpnq ´ErZjpnqsqs

“
?
Nai,jpθppqq

where

ai,jpθppqqB

ˆ
ż

Fθppq,iFθppq,j dµ´

ˆ
ż

Fθppq,i, dµ

˙ˆ
ż

Fθppq,j dµ

˙˙

(35)

with, for any ι P JmK, the mapping Fθppq,ι defined on Rk ˆRl by

@ px, yq PRk ˆRl, Fθppq,ιpx, yqB´2 xy´ fpθppq, xq,Bθιfpθppq, xqy(36)

where we implicitly assumed that the mappings Fθppq,ι admits a moment of order two under
µ.

The latter hypothesis allows us to apply the central limit theorem to get for N large the
weak convergence ofN´1{4Rpθppqq toward a Gaussian distribution of mean 0 and covariance
matrix apθppqqB pai,jpθppqqqi,jPJmK.

Thus we can, quite heuristically and for large N , rewrite (33) as

@ p P J0,
?
NK, θpp` 1q “ θppq ´ ηp∇Ūpθppqq `Rpθppqqq

» θppq ´ η∇Ūpθppqq ` ηN1{4σpθppqqGppq

where pGppqqpPJ0,
?
NK are independent standard Gaussian random variables in Rm, and

where σpθppqq is a (symmetric) matrix-square root of apθppqq. This encourages us to take
η “ 1{

?
N , since we get

@ p P J0,
?
NK, θpp` 1q » θppq ´ η∇Ūpθppqq `?ησpθppqqGppq

and, under appropriate regularity conditions, we recognize an Euler-Maruyama approxima-
tion (see for instance Section 9.1 of the book of Kloeden and Platen[13]) of the s.d.e.

@ t P r0,1s, dθ̄ptq “ ´∇Ūpθ̄ptqq ` σpθ̄ptqqdW ptq(37)

where pW ptqqtPr0,1s is a standard Brownian motion on Rm.
Here we end up with a s.d.e. on the time interval r0,1s, but to rather get r0, T s, for T ą 0,

just consider mini-batches of length
?
N{T and take η “ T {

?
N .

Assume that the family pfpθ, ¨qqθPΘ is still sufficiently large so there exists some θ P Θ
so that Ūpθq “ 0, as it was the case when the probability distribution µ was the empirical
measure

1

N

ÿ

nPJNK

δpxn,ynq

(compare (30) with (34)).
Note that when θ0 P Θ is such that Ūpθ0q “ 0, then apθ0q “ σpθ0q “ 0. Indeed, we then

have y “ fpθ0, xq, µ-a.s. in px, yq PRk ˆRl. It follows from (36) that Fθ0,ι “ 0 µ-a.s. for all
ι P JmK, and we deduce from (35) that apθ0q “ 0.

We can be a little more precise. For any θ PΘ, denote αpθq the largest eigenvalue of the
non-negative definite matrix apθq. Define

K B sup
!

}Bθifpθ,xq} : θ PΘ, i P JmK, x PRk
)
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PROPOSITION A.4. Assuming that K ă`8, we have

@ θ PΘ, αpθq ď 4KŪpθq

PROOF. Fix θ PΘ and vB pviqiPJmK PRm. We compute

ÿ

i,jPJmK

viai,jpθqvj “
ÿ

i,jPJmK

ˆ
ż

Fθ,iFθ,j dµ´

ˆ
ż

Fθ,i, dµ

˙ˆ
ż

Fθ,j dµ

˙˙

vivj

“

ż

¨

˝

ÿ

iPJmK

viFθ,i

˛

‚

2

dµ´

¨

˝

ÿ

iPJmK

ż

viFθ,i dµ

˛

‚

2

ď

ż

¨

˝2

C

y´ fpθ,xq,
ÿ

iPJmK

viBθifpθ,xq

G

˛

‚

2

dµ

ď 4

ż

}y´ fpθ,xq}2
ÿ

iPJmK

v2
i }Bθifpθ,xq}

2 dµ

ď 4K

ˆ
ż

}y´ fpθ,xq}2 dµ

˙

ÿ

iPJmK

v2
i

“ 4KŪpθq
ÿ

iPJmK

v2
i

The wanted result follows.

We deduce, in the sense of mˆm matrices that

@ θ PΘ, σpθq ď 2
?
K
b

ŪpθqId

where Id is the mˆm identity matrix.
If the above inequality was an equality, we would recover the fraudulent algorithm studied

in this paper, up to a linear time change and with β “ 1{
?

2K .
Nevertheless, there is an important difference with our setting. As mentioned in Woj-

towytsch [23], in the over-parametrized framework the set of global minima is usually a
manifold (with high dimension and co-dimension) and do not consist of isolated points as
under our Morse assumption. Furthermore the matrices σpθq are degenerate even for θ P Θ
which is not a global minima of Ū . Indeed, this paper should be seen as a first step toward
the investigation of more general fraudulent algorithms, in particular hypo-elliptic ones. Dis-
crimination between a.s. convergence toward the global minima and their avoidance will then
be more involved. In view of the above implications, these extensions deserve to be investi-
gated in future works and our results will serve as a reference of what can be obtained in the
simplest, while non-trivial, situations

A.2. Stochastic persistence for diffusion processes. This section briefly presents
stochastic persistence theory in the spirit of the papers [2], [4], in the specific case (suffi-
cient for our purposes) of a diffusion process whose extinction set is compact. Although the
results presented here can be deduced from those presented in these papers, diffusion proper-
ties and compactness of the extinction set simplify certain proofs. Therefore, for the reader’s
convenience, we have chosen to give a self-contained presentation.
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Generalities. Let M be a metric space which can decomposed into M “M0 \M`,
where

• The subset M0 ‰H is compact and is contained in the closure of M`. It will play the role
of the extinction set.

• The subset M` ‰H is a n-dimensional smooth manifold, that will necessarily be non-
compact, since M0 is non-empty. It is called the persistence set.

On a filtered probability space pΩ, pFtqtě0,Pq, we are given a family of Markov processes
pXxqxPM , with Xx “ pXx

t qtě0, defined such that for all x PM , Xx
0 “ x, and tÑ Xx

t is
continuous (i.e. Xx is a diffusion). Furthermore, denote Px the law of Xx, and pPtqtě0 the
semigroup defined by

Ptfpxq “ ExpfpXtqq,

for all f measurable and bounded. We assume that the semigroup pPtqtě0 is weak Feller,
meaning that PtpCbpMqq ĂCbpMq for all tě 0.

We make the hypothesis that the extinction set M0 is invariant. That is, for all tě 0,

Pt1M0
“ 1M0

Invariance of M0 has the consequence (see e.g [2], Lemma 9.2) that for all x PM

x PM`ôtXx
t , tě 0u ĂM`.

On M` the evolution of Xx is governed by a generator L which is a second order differential
operator taking the form, in a local coordinate system,

L“
1

2

n
ÿ

i,j“1

aijpxqBiBj `
n
ÿ

i“1

bipxqBi(38)

where the aijpxq and bipxq are smooth in x, and

aijpxq “
r
ÿ

k“1

σikpxqσ
j
kpxq,

with σpxq “ pσikpxqqk“1,...,r,i“1,...,n is locally Lipschitz. The generator L is understood in the
sense of martingale problems: For all f PC2pMq, x PM` and tě 0, define

Mf
t pxqB fpXx

t q ´ fpxq ´

ż t

0
LfpXx

s qds(39)

The process pMf
t pxqqtě0 is a pP, pFtqtě0q-local martingale.

To control the behavior of the process at infinity, we assume throughout the existence of a
proper continuous map W :M ÑR`, which is C2 on M` and satisfies the condition

LW ď´aW ` b

with a, b ą 0. Note that when M is compact, this assumption is always verified, say with
W “ 1.

REMARK A.5. In the above framework, M0 may not be regular, nevertheless the evolu-
tion of our Markov processes on M0 can be approximated by the diffusions on M`, due to
the weak Feller assumption. A more regular setting is to assume that M is a n-dimensional
smooth manifold with boundary M0 and that the expression (38) of the generator L is also
valid on M0 (then the vectors pbiqi and pσikqi, for k “ 1, ..., r, as well as their Lie brackets,
have to be tangential to M0 on M0).
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Another similar setting is to assume that M is a is a n-dimensional smooth manifold on
which L can be written as

L“ F0 `

m
ÿ

i“1

F 2
i

where F0, Fi are smooth vector fields, and that M0 is a compact set invariant under the flows
induced by the Fi, i“ 0, . . . ,m.

In these cases the processes pMf
t pxqqtě0 can be defined for all x PM and t ě 0 and are

asked to be pP, pFtqtě0q-local martingales. The assumptions on apxq, bpxq, now assumed to
be valid on M , and the existence of W , ensure that Xx exists as the unique and globally
defined solution to a stochastic differential equation. Furthermore, by continuity with respect
to the initial condition, pPtqtě0 is then necessarily weak Feller. In the application in the main
text, we will be in this regular situation. Nevertheless, we present here a generalized setting,
as the arguments are in fact the same.

For f,C2 in a neighborhood of x PM`, we let

Γpfqpxq “ pLf2qpxq ´ 2fpxqpLfqpxq ě 0

denote the carré du champ of f at x.

Extinction set and H exponents. We will review sufficient conditions ensuring that the
process goes extinct, namely that PxpXt ÝÑ

tÑ`8
M0q “ 1 for some (or all) x PM , where

Xt ÝÑ
tÑ`8

M0 means that the distance of Xt to M0 converges to zero for large t ě 0; or

persists, meaning that PxpXt P ¨q converges, as tÑ`8, to some distribution on M` for all
x PM`. This will be done under the following key hypothesis.

ASSUMPTION A.6. There exist a C2 map V : M` Ñ R` and a continuous map H :
M ÑR such that:

(i) limxÑM0
V pxq “8;

(ii) For all x PM`,LV pxq “Hpxq;
(iii) For some, hence for all, δ ą 0

sup
txPM` :dpx,M0qďδu

ΓpV qpxq ă8

where d stands for the distance on M .

The key point here is that although V is not defined on M0,LV extends continuously to
M0.

REMARK A.7. Let pV,Hq be as in Hypothesis A.6 and let Ṽ be a C2 function on M`

which coincides with V on a neighborhood of M0. Then pṼ , H̃q also satisfies Hypothesis
A.6 with H̃ “H1M0

`LṼ 1M`
.

In view of this remark, we can (and will) always assume without loss of generality that V
(hence H) is zero outside a compact neighborhood of M0. As a consequence, we can replace
(iii) of Hypothesis A.6 by

sup
txPM`u

ΓpV qpxq ă8

Here a first interest of Hypothesis A.6:
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LEMMA A.8. Under Hypothesis A.6, the invariance of M0 (i.e Pt1M0
“ 1M0

for all
tě 0) is equivalent to the apparently weaker condition that M0 is stable:

Pt1M0
ě 1M0

for all tě 0.

PROOF. Let

T B infttě 0 : Xx
t RM`u(40)

Fix x PM` and T ě 0. For εą 0, define

Tε B infttě 0 : V pXtq ě 1{εu

Tε B T ^ Tε
Using the martingale problem, we can write

V pXx
Tεq “ V pxq `

ż Tε

0
LV pXx

s qds`M
f
Tε

ď V pxq ` }LV }8 Tε `BxMf y
Tε

where pBtqtě0 is the Brownian motion provided by Dambis-Dubins-Schwarz’s theorem (see
e.g. Theorem 5.13 of Le Gall [15]). We have

A

Mf
E

Tε
“

ż Tε

0
ΓrV spXx

s qds

ď }ΓrV s}8 Tε

ď }ΓrV s}8 T

Thus we have

V pXx
Tεq ď V pxq ` }LV }8 T ` max

sPr0,}ΓrV s}
8
T s
Bs

Letting ε go to zero, we deduce

V pXx
T^T q ď V pxq ` }LV }8 T ` max

sPr0,}ΓrV s}
8
T s
Bs

Since the r.h.s. is finite, we get that T ă T . As this is true for all T ě 0, it follows that
T “`8 (a.s.).

Before introducing the H exponents, we recall a few definitions and facts on invariant
measures. Let

(41) G“

ż 8

0
e´tPt dt.

A probability µ on M is called invariant for pPtqtě0 if µPt “ µ for all t ě 0. Equivalently
(see [3], Proposition 4.57) µG“ µ. A bounded measurable map g is called pG,µq invariant
if Gg “ g µ-almost surely. Invariant probability µ is called ergodic if every pG,µq invariant
map is µ-almost surely constant.

We let PergpM0q denote the set of ergodic probability measures supported by M0.
We now can define the H-exponents as:

Λ´pHq “ ´ suptµH : µ P PergpM0qu

and

Λ`pHq “ ´ inftµH : µ P PergpM0qu
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PROPOSITION A.9. (i) Assume that Λ´pHq ą 0. Then, for every 0 ă Λ´ ă Λ´pHq,
there exists T ą 0, θ ą 0, and U a neighborhood of M0 such that

PT pe
θV qpxq ď eθV pxqe´TΛ´

for all x P UzM0 and supxPM`zM0
PT pe

´θV qpxq ă8. Furthermore, for all x P UzM0, pX
x
t qtě0

eventually leaves U.
(ii) Assume that Λ`pHq ă 0. Then, for every 0ą Λ` ą Λ`pHq, there exists T ą 0, θ ą 0,
and U a neighborhood of M0 such that

PT pe
´θV qpxq ď e´θV pxqeTΛ`

for all x P UzM0.

This proposition is the key tool from which we will deduce persistence (Theorem A.12)
and extinction (Theorem A.13) results. We now prove Proposition A.9.

LEMMA A.10. (i) Let Λ´ be as in Proposition A.9 piq. Then, there exists T ą 0 and a
neighborhood U of M0 such that for all x P U,

1

T

ż T

0
PsHpxqdsă´Λ´ ă 0.

(ii ) Similarly, let Λ` be as in Proposition A.9 piq. Then, there exists T ą 0 and a neighbor-
hood U of M0 such that for all x P U,

1

T

ż T

0
PsHpxqdsą´Λ` ą 0.

PROOF. By continuity of x ÞÑ PtHpxq, it suffices to prove that for some T ą 0,
şT

0
PsHpxqds

T ă ´Λ´ for all x PM0. Suppose the contrary. Then, for some sequence pxnqn
included in M0, we have for all n, µnH ě ´Λ´ where µn “

şn

0
δxnPsds

n . By compactness
of M0, pµnqn is tight (for the weak* topology) and every limit point µ of pµnq verifies
µH ě ´Λ´ ą ´Λ´pHq. Now it is easily seen that µ is an invariant probability on M0.
Hence, by the ergodic decomposition theorem, it satisfies µH ď´Λ´pHq. A contradiction.
This concludes the proof of the first statement. The second is similar

We now pass to the proof of Proposition A.9.

PROOF. piq. Using the notation of Lemma A.10, set

Y x
T “

ż T

0
HpXx

s qds´

ż T

0
PsHpxqds,

and, up to reducing U ,

H̄ “ sup
xPU

ż T

0
PsHpxqdsă´Λ´T.

Taking Lemma A.8 into account, we deduce that for all θ ą 0 and x P UzM0,

exppθV pXx
T qq “ exppθV pxqq exppθ

ż T

0
PsHpxqdsq exppθY x

T q exppθMV
T pxqq

ă exppθV pxqq exppθTH̄q exppθY x
T q exppθMV

T pxqq.
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Thus, by taking the expectation and using Cauchy Schwarz inequality

EpeθV pXx
T qq ď exppθV pxqq exppθTH̄q

b

Epexpp2θY x
T qq

b

Epexpp2θMV
T pxqqq.

Let }H}8 “ supxPM |Hpxq|, }ΓpV q}8 “ supxPM`
ΓpV qpxq and

CpT q “maxp4T 2}H}28,2T }ΓpV q}8q.

Since EpY x
T q “ 0 and |Y x

T | ď 2T }H}8 a classical estimate (on the log-Laplace function
θÑ EplnpeθY xT qq leads to

Epexpp2θY x
T qq ď expp4θ2T 2}H}28q ď exppθ2CpT qq.

Now,

Epexpp2θMV
T pxqqq “ EpZT pθ,xq expp2θ2xMV pxqyT qq,

where

xMV pxqyT “

ż T

0
ΓpV qpXx

s qdsď
CpT q

2
,

and

ZT pθ,xq “ expp2θMV
T pxq ´ 2θ2xMV pxqyT q.

By Novikov Theorem the local martingale pZtpθ,xqqtě0 is a true martingale. In particular
EpZT pθ,xqq “ 1. Thus

Epexpp2θMV
T pxqqq ď exppθ2CpT qq.

Finally, we get that

PT pe
θV qpxq ď exppθV pxqq exppθpTH̄ ` θCpT qqq.

For θ small enough TH̄ ` θCpT q ď ´TΛ´. This concludes the proof of assertion
piq for x P U. The same type of estimate (with }H}8 in place of H̄ also shows that
PT pe

θV qpxq is bounded outside of U. The fact that pXx
t q eventually leaves U whenever

x P UzM0 relies on the following standard argument. Let τ “mintně 0 :Xx
nT R Uu. Then

´

exp pθpV pXx
pn^τqT q ` pn^ τqTΛ´q

¯

ně0
is a supermartingale. Since V ě 0 it comes that

Expexp ppn^ τqTΛ´q ď expθV pxq, hence, by monotone convergence, Expexp τpTΛ´qq ď
expθV pxq proving that Pxpτ ă8q “ 1.

The proof of piiq is similar to the proof of piq.

The next two results are persistence and extinction consequences of this latter proposition.
Point p P M` is called accessible from x P M` if for every neighborhood U of p

Gpx,Uq ą 0. Equivalently p P supppGpx, ¨qq where supp denote the topological support of a
measure. We say that p is accessible from M` if it is accessible from all x PM`. That is

p P
č

xPM`

supppGpx, ¨qq.

We say that p is a Doeblin point if there exists a non trivial measure ν, t0 ą 0 and a
neighborhood O of p such that

Pt0px, ¨q ě νp¨q

for all x PO. The following proposition follows from classical results
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PROPOSITION A.11. Assume that M` is connected and that L is elliptic on M`, mean-
ing that apxq is definite positive for all x PM`. Then every point p PM` is Doeblin and
accessible from M`.

THEOREM A.12. Suppose Λ´pHq ą 0 and that there exists a Doeblin point p PM`

accessible from M`. Then there exists a unique invariant probability Π such that ΠpM`q “

1. Furthermore, there exist positive constants C,α and θ, such that for every f : M`Ñ R
measurable and x PM`

|Ptfpxq ´Πpfq| ďCe´αtp1`maxpeθV pxq,W pxqqq}f}θ,

where

}f}θ “ sup
xPM`

|fpxq|

1`maxpeθV pxq,W pxqq

PROOF. The assumption that LW ď´aW `b (onM`) implies that PT pW q ď e´aTW `
b
a on M` (see for instance [3], Lemma 7.26). Consider W̃ B exppθV q`W on M`. Then, it
comes that

PT W̃ ď e´a
1T W̃ ` β

on M` with a1 “minpa,Λ´q and β ě 0. The rest of the proof now follows from Theorem
8.15 in [3].

We say that M0 is accessible from x PM` if supppGpx, ¨qq XM0 ‰H, and accessible
from M` if it is accessible from every x PM`. The following result is basically (up to a few
details) the same as Theorem 5.4 in [4].

THEOREM A.13. Let Λ` be as Proposition A.9 piiq. Let A be the event that
lim inftÑ8

V pXtq
t ě´Λ`.

(i) For every 0ă η ď 1, there exists a neighborhood Ũ of M0 such that

PxpAq ě 1´ η

for all x P Ũ .
(ii) If M0 is accessible from M`, then

PxpAq “ 1

for all x PM`.

PROOF. piq For ε ą 0, let Uε “ tx PM` : e´θV pxq ă εu YM0. Choose ε small enough
so that Uε Ă U and let τ “mintn ě 0 : Xx

nT R Uεu, where U and T are as in Proposition
A.9 piiq. In view of Proposition A.9 piiq, for all x P Uε, the sequence pe´θV pX

x
pn^τqT qqně0 is

a pP, pFnT qně0q supermartingale. Hence,

Epe´θV pX
x
pn^τqT q1τă8q ď Epe´θV pX

x
pn^τqT qq ď e´θV pxq.

Letting nÑ8 and using dominated convergence shows that

εPxpτ ă8q ď Epe´θV pXx
τT q1τă8q ď e

´θV pxq.

Thus

Pxpτ “8q ě 1´ η
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for all 0ă η ď 1 and x P Ũ :“ Uεη. We will now show that tτ “8uĂA.
Let

∆n`1 :“ V pXx
pn`1qT q ´ V pX

x
nT q ´

ż T

0
PsHpX

x
nT qds

“

ż T

0
HpXx

nT`sqds` pM
V
pn`1qT pxq ´M

V
nT pxqq ´

ż T

0
PsHpX

x
nT qds.

The assumption that ΓpV q is bounded makes the local martingale pMV
t pxqq a true L2 mar-

tingale (see e.g. Le Gall [15], Theorem 4.13) with quadratic variation

xMV pxqyt “

ż t

0
ΓpV qpXx

s qdsď }ΓpV q}8t.

Therefore,

Ep∆n`1|FnT q “ 0,Ep∆2
n`1|FnT q ďCpT q

with CpT q “ 2pT }ΓpV q}8` 4T 2}H}28q, and consequently, by the strong law of large num-
bers for discrete time L2 martingales (see e.g. [3], Theorem A8)

lim
nÑ8

řn
k“1 ∆k

n
“ 0

almost surely. Therefore,

lim inf
nÑ8

V pXx
nT q

nT
ě´Λ`

almost surely on the event τ “8.
Now, for all nT ď tă pn` 1qT,

Ep|V pXx
t q ´ V pX

x
nT q|

2q ď 2

˜

pT }H}8q
2 `Ep sup

nTďtďpn`1qT
pMV

t pxq ´M
V
nT pxqq

2q

¸

ď 2pT }H}8q
2 ` 4}ΓpV q}8T q,

where the last inequality follows from Doob’s inequality for continuous martingales. It then
follows that

lim
nÑ8

sup
nTďtďpn`1qT

ˇ

ˇ

ˇ

ˇ

V pXx
t q ´ V pX

x
nT q

nT

ˇ

ˇ

ˇ

ˇ

“ 0

almost surely. Thus

lim inf
tÑ8

V pXx
t q

t
ě´Λ`

almost surely on the event τ “8.
piiq Let 1ą η ą 0 and Ũ be as in piq. LetRą 0 be large enough so that for all x PM, pXx

t q

eventually enters WR :“ ty PM : W pyq ď Ru. The existence of such an R follows from
the assumption on W (see e.g Lemma 3.3). By Feller continuity, the map xÑ Gpx, Ũq is
lower semi continuous. Hence by compactness of WR and accessibility of M0, there exists
δ ą 0 such that Gpx, Ũq ě δ for all x PWR. It then follows that for all x PM, PpDt ě 0 :

Xx
t P

rUq ě δ. Combined with piq, and the strong Markov property, this shows that PxpAq ě
p1´ ηqδ. Now, for all x PM`, Px almost surely,

1A “ lim
tÑ8

PxpA|Ftq “ lim
tÑ8

PXtpAq ě p1´ ηqδ.

Thus PxpAq “ 1.
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A.3. The diffusion process generated by Lβ and Proposition 2.1. Here we briefly
explain how the diffusion Xpβq can be constructed and give a proof of Proposition 2.1.

By Nash’s embedding theorem, we can assume without loss of generality that M is a
Riemannian submanifold of Rn (equipped with its Euclidean scalar product x , y) for some
n sufficiently large. For reasons that will become clear shortly, we write ∇M ,4M ,divM the
gradient, Laplacian, and divergence on M, and ∇,div, the gradient and divergence on Rn. If
F is a smooth vector field on M and F̃ a smooth globally integrable vector field on Rn such
that F̃ |M “ F, then F̃ and F , induce operators on C1pRnq and C1pMq respectively defined
by:

F̃ pf̃qpxq “ x∇f̃pxq, F̃ pxqy “ dpf̃ ˝Ψtpxqq

dt
|t“0

for all f̃ PC1pRnq, and x PRn;

F pfqpxq “ x∇Mfpxq, F pxqy “
dpf ˝Ψtpxqq

dt
|t“0

for all f PC1pMq, and x PM. In both formulae, pΨi
tqtPR denotes the flow on Rn induced by

F̃ .
A direct consequence of the right hand side equalities is that

F̃ pf̃q|M “ F pfq(42)

for every f PC1pMq and f̃ PC1pRnq such that f “ f̃ |M .
Let pe1, . . . , enq be the canonical basis of Rn. For i“ 1, . . . , n and x PM, letEipxq P TxM

be the orthogonal projection of ei onto TxM. Let Ẽi be a smooth vector field on Rn, having
compact support, such that Ẽi|M “ Ei. It is not hard to show that such a vector field exists.
One can, for example, proceed as follows. Let M Ă Rn be a normal tubular neighborhood
of M. Every point y PM writes uniquely y “ x` v with x PM and v P TxMK. The map
r : M Q x ` v ÞÑ x PM, is a smooth retraction. It suffices to set Ẽipxq “ ηpxqEiprpxqq if
x PM and Ẽipxq “ 0 otherwise, where 0ď η ď 1 is a smooth function with compact support
in M such that η|M “ 1.

The following, key property, is proved in Stroock [20], Section 4.2.1. For the reader’s
convenience we provide an alternative short proof.

LEMMA A.14. For every f PC2pMq and f̃ P C2pRnq, such that f “ f̃ |M , one has

N
ÿ

i“1

Ẽi
2
pf̃q|M “4M pfq

PROOF. Let F be a C1 vector field on M, and F̃ a C1 vector field on Rn such that F̃ |M “
F. For all x P Rn divF̃ pxq equals the trace of the Jacobian matrix DF̃ pxq, while for all
x PM, divMF pxq equals the trace of the dˆ d matrix pxDF̃ pxqui, ujyqi,j where u1, . . . , ud
is an (arbitrary) orthonormal basis of TxM. This has the interesting consequence that

divM pF q “ divpF ˝ rq|M

where r : MÑM is the retraction defined above. Let f P C2pMq. Then,

∇Mf “
n
ÿ

i“1

x∇Mf, eiyei “
n
ÿ

i“1

x∇Mf,Eiyei “
n
ÿ

i“1

Eipfqei.
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Thus,

4Mf :“ divM p∇Mfq “ divp∇M pfq ˝ rq|M “
n
ÿ

i“1

divrpEipfq ˝ rqeis|M

“

n
ÿ

i“1

x∇pEipfq ˝ rq|M , eiy “
n
ÿ

i“1

x∇MEipfq, eiy “
n
ÿ

i“1

E2
i pfq.

Here we have used the fact that ∇pf ˝ rq|M “∇Mf for all f P C1pMq.

Now, let Ũ : RnÑR` be a smooth function such that Ũ |M “ U,
a

Ũ is Lipschitz and ∇Ũ
has compact support. For instance Ũpxq “ ηpxqUprpxqq`1´ηpxq for x PM and Ũpxq “ 1

otherwise, where η, r are as above. Here, the Lipschitz continuity of
a

Ũ follows from the
fact that r is smooth and that, by assumption, the zeroes of U are non-degenerate.

Consider the stochastic differential equation on Rn defined by

dXptq “ p´β ´
1

2
q∇ŨpXptqqdt

`

n
ÿ

i“1

ˆ

1

2
x∇ŨpXptqq, ẼipXptqyẼipXptqq ` ŨpXptqqDẼipXptqq ¨ ẼipXptqq

˙

dt

`

b

2ŨpXptqq
n
ÿ

i“1

ẼipXptqqdB
iptq(43)

where B “ pB1ptq, . . . ,Bnptqqtě0 is a n-dimensional Brownian motion with Bp0q “ 0.
Since the coefficients of (43) are globally Lipschitz and bounded, the following properties

(a) , (b) and (c) are classical (see e.g. Le Gall [15], Theorems 8.3 and 8.7 for (a) and (b)
and Kunita [14], Theorem 4.5.1 for (c) ) :

(a) For all x P Rn, there is a unique strong solution R` Q t ÞÑ Xpβ,xqptq to (43) such that
Xpβ,xqp0q “ x,

(b) The process X̃pβq :“ pXpβ,xqqxPRn is a Feller Markov process on Rn whose generator L̃β
contains C2

c pRnq, the set of compactly supported C2 functions, in its domain and such that
for all f̃ P C2

c pRnq,

L̃βpf̃q “ ´βx∇Ũ ,∇f̃y ´
1

2
x∇Ũ ,∇f̃y ` 1

2

n
ÿ

i“1

ẼirŨ sẼirf̃ s ` Ũ
n
ÿ

i“1

Ẽ2
i pf̃q

“ ´β∇Ũpf̃q ´ 1

2
∇Ũpf̃q ` 1

2

n
ÿ

i“1

ẼirŨ sẼirf̃ s ` Ũ
n
ÿ

i“1

Ẽ2
i pf̃q(44)

(c) The map x ÞÑXpβ,xqptq is an homeomorphism. In particular,

@tě 0, Xpβ,xqptq PRnzU ôDtě 0, Xpβ,xqptq PRnzU .

Set Sipxq “
b

2ŨpxqẼipxq. On RnzU , (43) can be rewritten, using Stratonovich formalism,
as

dXptq “

˜

p´β ´
1

2
q∇ŨpXptqq ` 1

2

n
ÿ

i“1

DSipXptqqSipXptqq

¸

dt`
n
ÿ

i“1

SipXptqqdB
iptq

“ p´β ´
1

2
q∇ŨpXptqq `

n
ÿ

i“1

SipXptqq ˝ dB
iptq.(45)
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The vector fields ∇Ũ and Si’s being tangent to N, this latter expression shows that N (hence
M ) is invariant for Xpβq. That is:

@tě 0, Xpβ,xqptq PNp resp. Mqô Dtě 0, Xpβ,xqptq PNp resp. Mq.

It then follows that Xpβq :“ pXpβ,xqqxPM is a Feller Markov process on M, leaving N invari-
ant, whose generator Lβ contains C2pMq in its domain and such that Lβf “ L̃β f̃ |M “ Lβf
for all f P C2pMq and f̃ P C2pRnq such that f̃ |M “ f. The last equalities follows from
Lemma A.14 and (44), since on M we have

x∇Ũ ,∇f̃y “
n
ÿ

i“1

ẼirŨ sẼirf̃ s

The strong Feller property on N follows from the ellipticity of Lβ on N (see e.g. Ichihara
and Kunita [10, 11], Lemma 5.1).

A.4. On Remark 2.2. Given 0 ă λ´ ă λ`, and m ě 2, let Dpλ´, λ`,mq be the
set of diagonal matrices with entries λ´ “ λ1 ď λ2 ď . . . ď λm´1 ď λm “ λ`. The set
tΛpA,βq : A P Dpλ´, λ`,mqu is a compact interval rλ´pm,βq, λ`pm,βqs (as the image
by a continuous map of the compact connected set Dpλ´, λ`,mq) contained in rλ´, λ`s.

LetA PDpλ´, λ`,mq be the matrix with entries λ1 “ . . . λm´1 “ λ´ and λm “ λ`. Then

Zpβ,Aq “

ż

rλ`θ
2
m ` λ´p1´ θ

2
mqs

´βσpdθq “ E

»

–

˜

λ`X
2
m ` λ´p

řm´1
i“1 X2

i q
řm
i“1X

2
i

¸´β
fi

fl ,

where X1, . . . ,Xm are i.i.d. N p0,1q random variables. By the strong law of large num-
bers and dominated convergence, this quantity converges, as mÑ 8, toward λ´β´ . Thus
limmÑ8 λ´pm,βq “ λ´. Similarly, limmÑ8 λ`pm,βq “ λ`.

A.5. On spherical integrals. In (23) we could have considered another function V. In-
deed, our first choice was

ṼB´ lnpUq

since it seemed somewhat more “intrinsic” with respect to U . It can be shown similarly that
the points [a] and [b] following (23) equally hold, with V replaced by Ṽ and Hβ by H̃β given
on t0u ˆ Sm´1 by

@ θ P Sm´1, H̃βp0, θqB´trpAq ` 2p1` βq

@

θ,A2θ
D

xθ,Aθy

where we recall that ABHessUp0q.
he sign of the quantity µA,βrH̃βp0, ¨qs can then be used to discriminate between the attrac-

tiveness and repulsivity of 0. In particular µA,βrHβp0, ¨qs and µA,βrH̃βp0, ¨qs must have the
same sign. We tried to prove directly (without success!) that

2p1` βqµA,βrφAs ą trpAq ô β ą
m

2
´ 1(46)

2p1` βqµA,βrφAs ă trpAq ô β ă
m

2
´ 1(47)

with

@ θ P Sm´1, φApθqB

@

θ,A2θ
D

xθ,Aθy

A by-product of our computations is thus to show the validity of (46) and (47), which look
as natural bounds on the corresponding spherical integrals for any given definite positive
matrix A.
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