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Global optimization

Problem of the global minimization of a function U : M Ñ R.

Here: M is a connected and compact Riemannian manifold of
dimension m ě 1, U is smooth.

Denote

U B

"

x P M : Upxq “ min
M

U

*

We are happy if we find points close to U .

The simplest generic approach: simulated annealing. More
sophisticated methods are based on interacting particles. When U
has particular features, there are more specific algorithms: gradient
descent or Newton’s method for convex optimisation, moment
method for polynomial optimisation...



Simulated annealing

Consider the (time-inhomogeneous) stochastic algorithm

dZ ptq “ ´γt∇UpZ ptqq dt `
?

2 dBptq

where Bptq is a M-valued Brownian motion.

Appropriate inverse temperature schemes γ : R` Ñ R` lead to
convergence in probability toward the global minima: for any
neighborhood N of U ,

lim
tÑ`8

PrZ ptq P N s “ 1

Almost sure convergence does not hold in general.



Fraudulent algorithms

The above algorithms do not require the knowledge of the minimal
value of U.

Fraudulent algorithms: require minM U.

‚ Cheating? Folklore: to know the minimal value of a function is
equivalent to know a global minimum.

‚ Interests:
´ Useful to find other global minima, once one is known.
´ Appear as diffusive limits of mini-batch stochastic gradient
descent algorithms in overparametrized machine learning, see
Wojtowytsch [7].
´ Approximation of the large-time limit behavior of the mean-field
swarm algorithms.
´ Suggest the design of non-fraudulent interacting particles
systems, evaluating on-line the minimal value.



A fraudulent algorithms

Assume that U is a Morse function (in particular U is finite) and
that minM U “ 0.

Consider the (time-homogeneous) stochastic algorithm
X B pX ptqqtě0 whose evolution is driven by

dX ptq “ ´β∇UpX ptqq dt `
a

2UpX ptqq dBptq (1)

where a priori β P R. When X is starting from x P M, we will write
Xx .

X is well-defined, fraudulent and U is absorbing.

The associated generator is

Lβ B U△ ¨ ´β x∇U,∇¨y
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The main result

Denote β0 B
m
2 ´ 1.

Theorem 1

Assume that β ą β0. Whatever the initial condition X p0q, the limit
X p8q B limtÑ`8 X ptq exists a.s. and belongs to U . Furthermore,
when m ě 2, if X starts from a point x R U , we have for any y P U ,

PrXxp8q “ y s ą 0

When m “ 1, denote y1 and y2 the boundary points of the
connected component of MzU containing x (when U is a singleton,
we get y1 “ y2). Then we have

PrXxp8q “ y1s ą 0, PrXxp8q “ y2s ą 0,
@ y P Uzty1, y2u, PrXxp8q “ y s “ 0



A converse result

The value β0 is critical for the above behavior:

Theorem 2

Assume that β ă β0 and m ě 2. Whatever the initial distribution
of X p0q not charging U , for large t ě 0, X ptq converges in law
toward the invariant distribution πβ satisfying πβpUq “ 0. In
particular we get

P
„

lim
tÑ`8

X ptq exists and belongs to U
ȷ

“ 0

For β ă β0 and m “ 1, one gets similar results on the connected
components of MzU .



More on the attractive minimizer case

For y P U , let λminpyq be the minimal eigenvalue of the Hessian of
U at y , and

λmin B minpλminpyq : y P Uq

Denote δ the Riemannian distance.

Theorem 3
For β ą β0, we have a.s.,

lim sup
tÑ`8

lnpδpX ptq,X p8qqq

t
ď ´λminpβ ´ β0q



More on the non-attractive minimizer case (1)

The invariant probability probability πβ is given by

πβpdxq # Upxq´1´βℓpdxq

where ℓ is the Riemannian probability on M.
The temporal ergodic theorem holds:

Theorem 4
For β ă β0, the diffusion X is positive recurrent on MzU and for
any f P L1pπβq, we have a.s.

lim
tÑ`8

1
t

ż t

0
f pX psqq ds “ πβrf s

(as soon as the initial law is not charging U).



More on the non-attractive minimizer case (2)

The spatial ergodic theorem holds and can be quantified as:

Theorem 5
For β ă β0, there exist positive constants a, b, χ (depending on β)
with χ ă β0 ´ β, such that for any measurable f : MzU Ñ R, we
have for x P MzU ,

@ t ě 0, |Erf pXxptqqs ´ πβrf s| ď
ae´bt

Upxqχ
}f }χ

with

}f }χ B supt|f pxq|Upxqχ : x P MzUu



On the critical case

For β “ β0, we did not succeed in showing one of the two possible
alternatives: X is null-recurrent or transient on MzU . But at least
we have:

Proposition 6
For any neighborhood O of U , we have a.s

lim
tÑ`8

1
t

ż t

0
1X psqPO ds “ 1
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Preliminary remarks

A first proof of Theorems 1 and 2 under more restrictive conditions
on β was obtained in [6] by comparing the stochastic process
pUapX ptqqqtě0, for appropriate exponents a ą 0, with Bessel
processes of negative and positive dimensions.

A finer analysis of the attractiveness or repulsiveness of the global
minimizers is obtained by resorting to the homogenization
techniques of [3] for the study of extinction and persistence.

The starting point: investigation near a global minima y P U and
blow up of the point y into a sphere that is supporting a fast
diffusion.



Euclidean computations

Let us first study the situation where M “ Rm and y “ 0.
Let ϵ ą 0 be small enough so the only critical point for U in the
ball Bp0, ϵq is 0. For any x P Bp0, ϵqzt0u consider the polar
decomposition x “ ρθ with ρ P p0, ϵq and θ P Sm´1, the sphere of
dimension m ´ 1. This decomposition induces the mapping

P : C2pBp0, ϵqq Q f ÞÑ Prf s P C2pp0, ϵq ˆ Sm´1q

with

@ pρ, θq P p0, ϵq ˆ Sm´1, Prf spρ, θq B f pρθq

Using traditional polar change of variables, we get the intertwining
relation

Lβ ˝ P “ P ˝ Lβ



Polar formulations

with

Lβ ¨ B U
ˆ

B2
ρ ¨ `

m ´ 1
ρ

Bρ ¨ `
1
ρ2△θ ¨

˙

´β

ˆ

pBρUqBρ ¨ `
1
ρ2 x∇θU,∇θ ¨ yθ

˙

where U B PrUs.
Our assumptions on U imply, uniformly over θ P Sm´1,

lim
ρÑ0`

Upρ, θq

ρ2 “
1
2

xθ,Aθy

lim
ρÑ0`

BρUpρ, θq

ρ
“ xθ,Aθy

lim
ρÑ0`

∇θUpρ, θq

ρ2 “ Aθ ´ xθ,Aθy θ

with A B HessUp0q.



A diffusion on the sphere

It follows that for any F P C2pr0, ϵq ˆ Sm´1q,

lim
ρÑ0`

LβrF spρ, θq “ GβrF p0, ¨qspθq

where Gβ is the diffusion generator on Sm´1 given by

Gβ ¨ B xθ,Aθy

ˆ

1
2
△θ ¨ ´β xbpθq,∇θ ¨ yθ

˙

with

@ θ P Sm´1, bpθq B
Aθ ´ xθ,Aθy θ

xθ,Aθy



The invariant measure of Gβ

We have

@ θ P Sm´1, bpθq “
1
2
∇θ lnpxθ,Aθyq

so the invariant measure associated to Gβ is given by

@ θ P Sm´1, µβpdθq # xθ,Aθy
´1´β σpdθq

where σ is the uniform probability measure on Sm´1.
This is the first ingredient needed in the (more general) approach of
[3]: on the boundary t0u ˆ Sm´1 of r0, ϵq ˆ Sm´1, the generator Lβ
coincides with a generator Gβ for which we are able to compute the
invariant measure µβ .



Criteria for attractiveness/repulsiveness of 0

The second ingredient is a function V on p0, ϵq ˆ Sm´1 such that
limρÑ0`

V pρ, θq “ `8 uniformly in θ P Sm´1, ΓLβ
rVs is bounded

on p0, ϵq ˆ Sm´1 and LβrVs can be extended into a continuous
function Hβ on r0, ϵq ˆ Sm´1. Recall that the carré du champ is
given by

ΓLβ
rVs B LβrV2s ´ 2VLβrVs

Then we get the criteria for m ě 2 and any x R U ,

µβrHβp0, ¨qs ą 0 ñ P
„

lim
tÑ`8

Xxptq “ 0
ȷ

ą 0

µβrHβp0, ¨qs ă 0 ñ P
„

lim
tÑ`8

Xxptq “ 0
ȷ

“ 0



A good function V

A function satisfying the previous assumptions is V B ´ lnpρq.
Using the polar expression of Lβ , we end up with

LβrVs “ p2 ´ mq
U
ρ2 ` β

BρU
ρ

leading to

@ θ P Sm´1, Hβp0, θq “

´

β ´
m

2
` 1

¯

xθ,Aθy

It follows that the sign of µβrHβp0, ¨qs is that of β ´ β0, explaining
the pivotal role of β0 for the attractiveness/repulsiveness of 0.



A.s. convergence for β ą β0

The previous computations can be extended to the Riemannian
setting, in the neighborhood of each y P U .
End of the qualitative argument for β ą β0: each time X enters a
sufficiently small ball Bpy , ϵy q, it has a positive probability to
converge to y . We deduce the desired convergence, since Lβ is
elliptic on Mz YyPU Bpy , ϵy q and thus X always ends up exiting it.
The quantitative estimate comes from a more careful local analysis
in the line of [1] and [3].

The results for β ă β0 rely on Lyapounov arguments in the spirit of
Meyn and Tweedie [5], [1] and [3].



More general sets U

The Morse assumption on U can be relaxed, in particular the
non-degeneracy of the Hessians was only used on U .

Typically when U consists of finite number of connected and
disjoint submanifolds, say U1, U2, ..., UN , with non-degenerate
Hessians of U in the orthogonal directions.
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A non-linear p.d.e.

Consider the non-linear evolution equation

d

dt
ρt “ divpρtrγt∇U ` ∇φ1pρtqsq (2)

where
ρt is a probability density with respect to the Riemannian
probability ℓ on M,
pγtqtě0 is an inverse temperature scheme, assumed to be
smooth and to increase to `8 in large times,
φ : R` Ñ R` is a strictly convex function satisfying φp1q “ 0
and is C2 on p0,`8q.



Gradient descent

At any given time t ě 0, this evolution corresponds to an
instantaneous gradient descent on the Wasserstein space PpMq

with respect to the functional

ρ ÞÑ γt

ż

M
U dρ `

ż

M
φpρq dℓ

where
ρ stands both for a probability measure from PpMq and its
density with respect to ℓ,
the term

ş

M U dρ should be seen as an up-lift from M to
PpMq of the mapping U,
the last term is a penalized cost.

As soon as φ1p0q “ ´8, there exists a unique associated stationary
density µγt .



Non-linear diffusion

A non-linear diffusion Y B pY ptqqtě0 is associated to (2), whose
evolution is described by

dY ptq “ ´γt∇UpY ptqq `
a

2αpρtpY ptqqq dBptq (3)

where
ρt is the density of the law of Y ptq,
the function α : p0,`8q Ñ R` is given by

@ r ą 0, αprq B
1
r

ż r

0
sφ2psq ds

pBptqqtě0 is a M-valued Brownian motion.



Particular situations (1)

For any b P R, define the convex function φb : R` Ñ R` via

@ r ě 0, φbprq B
rb ´ 1 ´ bpr ´ 1q

bpb ´ 1q

with the conventions that for any r P R`,

φ0prq B ´ lnprq ` r ´ 1
φ1prq B r lnprq ´ r ` 1

We will also be interested in hybrid versions: for any b1, b2 P R,

@ r ě 0, φb1,b2prq B

#

φb1prq , if r P p0, 1s,

φb2prq , if r P p1,`8q.



Particular situations (2)

With φ “ φ1, (2) corresponds to the evolution of the
time-marginal distributions of a simulated annealing algorithm.
Then µγ is the Gibbs density associated to the potential U
and the inverse temperature γ.
With φ “ φb, b ą 1, M “ Rm and U “ 0, (2) corresponds to
the porous media evolution equation. If we rather take U to
be quadratic, then µγ is a Barrenblatt distribution, which has
a compact support.
With φ “ φb, b P r0, 1q (respectively b ă 0), M “ Rm and
U “ 0, (2) corresponds to the fast (respectively, ultra-fast)
diffusion evolution equation.



A convergence result

In [4], we proved the concentration around U of ρt for large time
t ě 0, for φ “ φb,2 with b P p0, 1{2q and appropriate polynomial
scheme γ, on the circle. The basic ingredient is a new functional
inequality.

The link with the previous fraudulent algorithm, is that
heuristically, Y is expected to behave at large times like the
diffusion X described by (1) with β “ b{p1 ´ bq.
Indeed, if ρt is replaced by µγt in (3), we recover the evolution (1)
up to a time-change, due to

lim
γÑ`8

1
γ
αpµγpxqq “

1 ´ b

b
Upxq

It suggests that we should take

b ą 1 ´
2
m
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