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@ Global optimization



Global optimization

Problem of the global minimization of a function U : M — R.

Here: M is a connected and compact Riemannian manifold of
dimension m > 1, U is smooth.

Denote

U = {xe/\/l : U(x):mhiﬂnU}

We are happy if we find points close to U.

The simplest generic approach: simulated annealing. More
sophisticated methods are based on interacting particles. When U
has particular features, there are more specific algorithms: gradient
descent or Newton's method for convex optimisation, moment
method for polynomial optimisation...



Simulated annealing

Consider the (time-inhomogeneous) stochastic algorithm
dZ(t) = —vVU(Z(t))dt +V2dB(t)

where B(t) is a M-valued Brownian motion.

Appropriate inverse temperature schemes v : R, — R, lead to
convergence in probability toward the global minima: for any
neighborhood N of U,

Jim P[Z()eN] = 1

Almost sure convergence does not hold in general.



Fraudulent algorithms

The above algorithms do not require the knowledge of the minimal
value of U.

Fraudulent algorithms: require miny; U.

e Cheating? Folklore: to know the minimal value of a function is
equivalent to know a global minimum.

o Interests:

— Useful to find other global minima, once one is known.

— Appear as diffusive limits of mini-batch stochastic gradient
descent algorithms in overparametrized machine learning, see
Wojtowytsch [7].

— Approximation of the large-time limit behavior of the mean-field
swarm algorithms.

— Suggest the design of non-fraudulent interacting particles
systems, evaluating on-line the minimal value.



A fraudulent algorithms

Assume that U is a Morse function (in particular U is finite) and
that miny, U = 0.

Consider the (time-homogeneous) stochastic algorithm
X = (X(t))t=0 whose evolution is driven by

dX(t) = —BVU(X(1))dt+~/2U(X(t)) dB(t (1)

where a priori 5 € R. When X is starting from x € M, we will write
Xx.

X is well-defined, fraudulent and U/ is absorbing.

The associated generator is

Ly = UA-—B(VU,V-)



© Results



The main result
Denote o == 3 — 1.

Assume that 3 > [o. Whatever the initial condition X(0), the limit
X(00) = lim¢ o0 X(t) exists a.s. and belongs to U. Furthermore,
when m = 2, if X starts from a point x ¢ U, we have for any y € U,

P[XX(OO):y] > 0

When m = 1, denote y; and y» the boundary points of the
connected component of M\U containing x (when U is a singleton,
we get y1 = y»). Then we have

P[XX(OO) :yl] > 07 P[XX(OO) :)/2] > 07
VyeU\iy,y2}b, P[Xc(0)=y]=0




A converse result

The value (g is critical for the above behavior:

Assume that 8 < By and m = 2. Whatever the initial distribution
of X(0) not charging U, for large t = 0, X(t) converges in law
toward the invariant distribution mg satisfying m3(U) = 0. In
particular we get

P [ lim X(t) exists and belongs to Z/l} =0
t—+00

For 5 < By and m = 1, one gets similar results on the connected
components of M\U.



More on the attractive minimizer case

For y e U, let Amin(y) be the minimal eigenvalue of the Hessian of
U aty, and

Amin = min(Anin(y) @ y €U)

Denote § the Riemannian distance.

For 3 > g, we have a.s.,

lim sup ln(é(X(t)7X(OO))) < _Amin(ﬁ - 50)

t—+00 t




More on the non-attractive minimizer case (1)

The invariant probability probability 7g is given by
ma(dx) # U(x)P0(d)

where £ is the Riemannian probability on M.
The temporal ergodic theorem holds:

Theorem 4

For 8 < fo, the diffusion X is positive recurrent on M\U and for
any f € LY(m3), we have a.s.

lim 1fff(X(s))ds = mg[f]

t—+ow t 0

(as soon as the initial law is not charging U ).

A




More on the non-attractive minimizer case (2)

The spatial ergodic theorem holds and can be quantified as:

For B < P, there exist positive constants a, b, x (depending on 3)

with x < Bo — 3, such that for any measurable f : M\U — R, we
have for x e M\U,

—bt
V0, [E[f(X(1)] - malfll < %wx

with

Il = sup{|fC)I U)X = x e M\U}

.




On the critical case

For B = 3y, we did not succeed in showing one of the two possible
alternatives: X is null-recurrent or transient on M\{/. But at least
we have:

Proposition 6

For any neighborhood O of U, we have a.s
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Preliminary remarks

A first proof of Theorems 1 and 2 under more restrictive conditions
on [ was obtained in [6] by comparing the stochastic process
(U?(X(t)))t=o0, for appropriate exponents a > 0, with Bessel
processes of negative and positive dimensions.

A finer analysis of the attractiveness or repulsiveness of the global
minimizers is obtained by resorting to the homogenization
techniques of [3] for the study of extinction and persistence.

The starting point: investigation near a global minima y € U/ and
blow up of the point y into a sphere that is supporting a fast
diffusion.



Euclidean computations

Let us first study the situation where M = R™ and y = 0.

Let € > 0 be small enough so the only critical point for U in the
ball B(0,¢€) is 0. For any x € B(0, ¢)\{0} consider the polar
decomposition x = pf with p € (0,¢) and # € S"1, the sphere of
dimension m — 1. This decomposition induces the mapping

P : C?(B(0,e))af — P[f]leC?(0,¢) x S™ 1)
with
Y (p,0) € (0,¢) x S, P[f](p,0) = f(ph)

Using traditional polar change of variables, we get the intertwining
relation

LBOP = POLB



Polar formulations

with

-1 1
Ls- = U2 47 a‘+A->
B <p PG 2 ¢

5 (<apU>ap - +p12<veu,ve->g)

where U := P[U].
Our assumptions on U imply, uniformly over # € S™1,

. U(p,0) 1

| = Z{0,A
p—l>r8+ p2 2<H7 0>

- 0,U(p,0)

| — (0,Ad
pg& ) (0, Ab)
 VeU(p,0)
lim — A0 — (0, A0)0
Jim (0, Ab)

with A == HessU(0).



A diffusion on the sphere

It follows that for any F € C?([0,¢) x S™1),

Jim LslFl(p,0) = GslF(0,)](6)

where Gg is the diffusion generator on S™~1 given by

G/g . = <9,A0> (;Ag . —B<b(9),VG >9>

with

AD — (0, AY 0

m—1 —
VOesTL  b0) = o



The invariant measure of G

We have
1
VeSSt b(0) = 5VoIn(<6,A0))
so the invariant measure associated to Gg is given by

VOeS™ 1 ug(de) # (0,A0)1F o(dh)

where ¢ is the uniform probability measure on S™~1.

This is the first ingredient needed in the (more general) approach of
[3]: on the boundary {0} x S™~1 of [0,€) x S, the generator Lg
coincides with a generator Gg for which we are able to compute the
invariant measure 3.



Criteria for attractiveness/repulsiveness of 0

The second ingredient is a function V on (0,¢) x S™~! such that
lim,—o, V(p,0) = +o0 uniformly in § € S™1, [ ,[V] is bounded
on (0,€) x S™! and Lg[V] can be extended into a continuous
function Hg on [0, €) x S™=1. Recall that the carré du champ is
given by

M,V] o= La[V2] —2Vig[V]

Then we get the criteria for m > 2 and any x ¢ U,

us[Hs(0,)] >0 = IP’[ lim X(t) = o} >0

t—+00

pslHs(0,)] <0 = P [tmooxx(t) - o} =0



A good function V

A function satisfying the previous assumptions is V := —In(p).
Using the polar expression of Lg, we end up with

u U
Ls[V] = (2—m)—= + 2=
slV] ( )p2 p
leading to
VOeS™  Hy0,0) = (6—%+1><9,A9>

It follows that the sign of 13[Hg(0,-)] is that of 3 — o, explaining
the pivotal role of 3y for the attractiveness/repulsiveness of 0.



A.s. convergence for 3 > (3

The previous computations can be extended to the Riemannian
setting, in the neighborhood of each y € U/.

End of the qualitative argument for 8 > Sy: each time X enters a
sufficiently small ball B(y,¢,), it has a positive probability to
converge to y. We deduce the desired convergence, since Lg is
elliptic on M\ Uyes B(y, €,) and thus X always ends up exiting it.
The quantitative estimate comes from a more careful local analysis
in the line of [1] and [3].

The results for 8 < By rely on Lyapounov arguments in the spirit of
Meyn and Tweedie [5], [1] and [3].



More general sets U

The Morse assumption on U can be relaxed, in particular the
non-degeneracy of the Hessians was only used on U.

Typically when U consists of finite number of connected and
disjoint submanifolds, say U, Ua, ..., Un, with non-degenerate
Hessians of U in the orthogonal directions.
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A non-linear p.d.e.

Consider the non-linear evolution equation

d

Gt = div(pe[v: VU + V' (pr)]) (2)

where

@ p; is a probability density with respect to the Riemannian
probability £ on M,

@ (vt)t=0 is an inverse temperature scheme, assumed to be
smooth and to increase to +o0 in large times,

e v : Ry — R, is a strictly convex function satisfying ¢(1) =0
and is C2 on (0, + ).



Gradient descent

At any given time t > 0, this evolution corresponds to an
instantaneous gradient descent on the Wasserstein space P(M)
with respect to the functional

p %J Udp+f o(p) dt
M M

where

@ p stands both for a probability measure from P(M) and its
density with respect to /,

o the term {,, U dp should be seen as an up-lift from M to
P(M) of the mapping U,

@ the last term is a penalized cost.

As soon as ¢/(0) = —oo, there exists a unique associated stationary
density /i, .



Non-linear diffusion

A non-linear diffusion Y := (Y(t))¢>0 is associated to (2), whose
evolution is described by

dY(t) = —VU(Y(t)) ++/2a(p:(Y())) dB(t (3)

where
@ p; is the density of the law of Y(t),
@ the function a : (0,4+0) — R is given by
("
Vr>0, a(r) = ol s (s)ds
0

e (B(t))t=0 is a M-valued Brownian motion.



Particular situations (1)

For any b € R, define the convex function ¢p : Ry — R via

P —1-b(r—1)

Vr> Oa QOb(r)

b(b—1)
with the conventions that for any re R,
wo(r) = —In(r)+r—1
p1(r) = rin(r)—r+1

We will also be interested in hybrid versions: for any by, by € R,

wp, (r) ,if re(0,1],

V r= O, gobl’bz(r) = { )
b, (r) if re(1,+00).



Particular situations (2)

e With ¢ = ¢1, (2) corresponds to the evolution of the
time-marginal distributions of a simulated annealing algorithm.
Then 11 is the Gibbs density associated to the potential U
and the inverse temperature ~.

o With o = pp, b>1, M=R" and U =0, (2) corresponds to
the porous media evolution equation. If we rather take U to
be quadratic, then p is a Barrenblatt distribution, which has
a compact support.

e With ¢ = ¢p, be [0,1) (respectively b < 0), M = R™ and
U =0, (2) corresponds to the fast (respectively, ultra-fast)
diffusion evolution equation.



A convergence result

In [4], we proved the concentration around U of p; for large time
t >0, for o = ¢po with b e (0,1/2) and appropriate polynomial
scheme ~, on the circle. The basic ingredient is a new functional
inequality.

The link with the previous fraudulent algorithm, is that
heuristically, Y is expected to behave at large times like the
diffusion X described by (1) with 8 = b/(1 — b).

Indeed, if p; is replaced by 1, in (3), we recover the evolution (1)
up to a time-change, due to

1-b

.1
VETOO§O‘(:U”Y(X>) = TU(X)

It suggests that we should take

2
b > 1——
m
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