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Active suspensions

Bacteria : E. Coli [Berg, 1983] (∼ 2 µm x 0.5 µm)

Green algae : Chlamydomonas (radius ∼ 10 µm)

life at low Reynolds number (Re � 1) : viscous forces dominate !



Self-propulsion in Stokes flow

Pushers : bacteria E. coli, B.
Subtilis

I helical flagella localized on
the surface, responsible of
propulsion

Pullers : Chlamydomonas

I two cilia performing
non-reversible breast stroke

−→ capable of swimming many cell-lengths per second

−→ long-range perturbation of the flow (decreases as O( 1
r ) in 2D,

O( 1
r2 ) in 3D)



Chemotaxis

−→ on a long time scale each swimmer performs a random walk with a
bias towards favorable direction



Collective dynamics

Coherent structures [Cisneros et al. ’07], [Aranson et al. ’07], . . .

I self-organized coherent structures with the spatial scale exceeding
the size of an individual swimmer

I collective velocity greater than the individual velocity
I weakly turbulent appearance of the flow: recirculations, vortices...

−→ enhanced transport and mixing of particles, can be essential for
nutriments resupplying

Impact of active particles on the viscosity of the suspension
I experiments [Sokolov & Aranson ’07], [Rafaï et al.’10]
I analytical and numerical studies [Pedley ’07], [Berlyand et al.’08],

[Shelley et al.’09]
Motility can strongly modify the effective viscosity of a suspension

Chemotaxis [Tuval et al.’05]
I bioconvection ¸
I hydrodynamic instabilities ¸
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A simple model (1)

Swimmers are modelled as point particles ii=1...N in a fluid domain Ω,

u and p velocity and pressure in the fluid

x i and θi position and orientation of swimmer i

I Equilibrium of forces and torque on each body :

F drag + F prop + F buoy = 0

G = 0

I Stokes flow :

−µ∆u + ∇p =
∑

i=1...N

− F drag ,i δxi − F prop,i δyi

=
∑

i=1...N

F buoyδxi + F prop(δxi − δyi )



A simple model (2)

I Fluid : {
−µ∆u + ∇p = f f in Ω

∇ · u = 0 in Ω

with f f =
∑

i=1...N

F buoyχi (only first order contributions,

regularization of dirac )

I Particle dynamics :

Faxen’s law for spherical rigid bodies (radius a)

(ẋ i − u(x i ) ) = 1
6πµa

(
−πµa3 ∆u(xi ) + F buoy + F p

)
θ̇i = 1

2 (∇ x u )(x i )

I Dealing with congestion :

Finite size of particles is taken into account in order to compute
non-elastic collisions.
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A model for chemotaxis

Tumbling : Poisson process

Trun = duration of a Run ∼ exp(λ)

λ = Tumbling frequency : variable !

θ = new orientation ∼ U(0, 2π)

I first model :

λ(c) = 1 − ε Signe
(

Dc
Dt

)
, ε < 1

I a finer model ( “memory” of the swimmer) :
[Locsei, 2007] :

λ(c) = 1 − ε Signe
(∫ t

t−∆t
c(s) g(t − s) ds

)
where g(s) = 1 si s ≤ ∆t/4 et g(s) = −1/3 si s > ∆t/4



A model for chemotaxis

Interaction with oxygen (oxygentaxis)

1. Convection-diffusion equation for oxygen :

∂tc + u ·∇c − Dc ∆c = − κ f (c) χB dans Ω .

c : oxygen concentration in the fluid,
κ : consuming rate
f (c) : modulation of the rate (→ 0 when c → 0, → 1 when
c → +∞).

2. Modulation of the propulsion force intensity :

fp −→ 0 when c −→ 0



Simulating bioconvective phenomena

mise en évidence d’instabilités hydrodynamiques dues au gradient de
densité



Simulating bioconvective phenomena

in a droplet (after the experiment by Goldstein e.a., 2005 ) :

boycott effect + hydrodynamic instabilities
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Full microscopic model

I Each swimmer = rigid ellipsoidal particle B + associated region in
the fluid P (representing cilia or flagellar bundle) (not rigid !)

I Selfpropulsion : force of magnitude fP and direction τ acting on the
fluid in region P and on the cell in B (in opposite direction !)

Isolated swimmer (force-free) : F p = −fp τ = −F b

Volumic forces : F p =

∫
P

f p dx , F b =

∫
B

f b dx



Fluid-structure interaction problem

Notations:

Ω ⊂ R2: bounded and regular domain,

(Bi )i=1...N : rigid inclusions in Ω, denoting the bodies of the swimmers,

B =
⋃

i=1...N

Bi rigid domain,

(Ox)

P

Bi

! i

xi

"

i

x i coordinates of the center
of mass of Bi ,

θi angle defining the position
of the flagellum of Bi ,

V = (V i = ẋ i ) ∈ R2N ,

ω = (ωi = θ̇i ) ∈ RN .



Fluid-structure interaction problem

I Notations:

(u, p) velocity and pressure fields defined in Ω \ B̄
(V , ω) translational and rotational velocities of swimmers

I Stokes fluid:
−µ∆u + ∇p = f f :=

∑N
i=1 f pi χPi in Ω \ B̄,

∇ · u = 0 in Ω \ B̄,
u = 0 on ∂Ω,
u = V i + ωi (x − x i )

⊥ on ∂Bi , ∀i .

I Forces equilibrium (Newton’s second law of motion):
∫

Bi

f bi −
∫
∂Bi

σ · n = 0, ∀i ,∫
Bi

(x − x i )
⊥ · f bi −

∫
∂Bi

(x − x i )
⊥ · (σ · n) = 0, ∀i .



Mathematical formulation | Variational formulation

The problem comes to minimize the functional

J(ũ) = µ

∫
Ω

|D(ũ)|2 −
∫

Ω

f · ũ

on the subspace :

K0 ∩ K∇ =
{
u ∈ H1

0 (Ω) / ∇ · u = 0, D(u) = 0 a.e. on B
}

with

f =
N∑

i=1

(f biχBi + f piχPi ) .

→ strong coupling of the problems on fluid and particles, without direct

estimation of σ · n.



Numerical method

Fictitious domain approach, in order to work with fixed cartesian meshes

I In 2D : Penalty method ([Peyla ’04], [Lefebvre ’05], . . . ) leads to
unconstrained spaces:

Let ε > 0 be small (inverse of the “viscosity” of the solid phase)

Minimization problem is approached by a modified minimization problem :{
u ∈ K∇ ∩ Kθ
J(u) = minũ∈K∇∩Kθ

J(ũ)
≈
{

uε ∈ K∇
Jε(uε) = minũ∈K∇ Jε(ũ)

where
Jε(ũ) = J(ũ) +

1
ε

∫
B
|D(ũ)|2

Proposition.

uε −→ u when ε −→ 0 and ∃C > 0 such that | uε − u |≤ Cε



Numerical method

Fictitious domain approach, in order to work with fixed cartesian meshes

I In 2D : Penalty method

I In 3D : this penalty method is not efficient : bad conditioning of
matrix so that only direct methods can be used + non-optimal
convergence rate.

Ongoing work (B. Fabrèges and B. Maury) :
fast 3D solver for fluid - rigid particles interaction based on an
optimal order fictitious domain method.



Particle dynamics and contact

Updating positions and orientations by evaluating V i and ωi and
solving :

xn+1
i = xn

i + ∆t V i , θn+1
i = θn

i + ∆t ωi .

Contacts :
In principle no contact in finite time.
In practice (time discretization, inexact estimate of lubrication forces) :
contact or overlapping between bodies may occur.

Contact algorithm : robust handling relying on purely non-elastic
collisions.

= projection of the velocities on a space of “admissible velocities”
(based on a granular flow approach [Maury ’06])



Algorithm | Contact handling

Figure: The contact algorithm applied to a set of circles



Algorithm | Contact handling

Figure: The contact algorithm applied to a set of ellipses



Hydrodynamics: individual dynamics

Figure: Pusher in a fluid at rest



Hydrodynamics: individual dynamics

Figure: Puller in a fluid at rest



Hydrodynamics: individual dynamics

Figure: ¸ Two pusher side by side



Hydrodynamics: individual dynamics

Figure: ¸Two puller side by side



Hydrodynamics: collective dynamics

PUSHER

Figure: Dense suspension (solid fraction : 30%)



Hydrodynamics: collective dynamics

PULLER

Figure: Dense suspension (solid fraction : 30%)



Hydrodynamics: collective dynamics

Correlation length of collective motion
can exceed the size of individual cells by
more than an order of magnitude.

I weak turbulence
I persistence of coherent structures
I ¸

Velocity correlation

I(r , t) :=

〈
u(x , t) · u(x + re iθ, t)

〉
x,θ − 〈u(x , t)〉2x

〈u(x , t)2〉x − 〈u(x , t)〉2x

J (x , t) :=
〈u(x , s) · u(x , s + t)〉s

〈u(x , s)2〉s



Hydrodynamics: collective dynamics
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Figure: Space correlation functions for suspensions of pushers (left) and pullers
(right)

I constant size of coherent structures already reached for φ = 8%

I typical size ∼ 5 times particle size



Hydrodynamics: collective dynamics
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Figure: Time correlation functions for suspensions of pushers (left) and pullers
(right)



Numerical results (2/4) | Hydrodynamics: collective dynamics
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I average velocity increases with the solid fraction
above a critical concentration it decreases, due to congestion.



Rheology

Effective viscosity:
I resistance of a fluid which is being deformed by a shear stress
I macroscopic observable quantity measured by a rheometer:



Effective viscosity

I Forces exerted by the fluid on the walls:

F|y=+a =

∫
y=+a

ex · σ · (−ey ), F|y=−a =

∫
y=−a

ex · σ · (+ey )

I In case of a Newtonian fluid, the exact solution is

u(x , y) = −S
y
a
ex , p(x , y) = 0,

we have
F0 := F|y=+a − F|y=−a = 2µ

S
a

L.

I Therefore, the effective viscosity can be defined as

µeff =
a

2LS
F0, with F0 :=

∫
{y=+a}∪{y=−a}

ex · σ · (−ey )



Effective viscosity : PUSHERS

Figure: Active suspension (l.) vs passive suspension (r.)



Effective viscosity : PULLERS

Figure: Active suspension (l.) vs passive suspension (r.)



Effective viscosity : PULLERS

Figure: Active suspension (l.) vs passive suspension (r.)



Effective viscosity : PULLERS

Figure: Active suspension (l.) vs passive suspension (r.)



Effective viscosity

Figure: Effective viscosity η/η0 with respect to the solid fraction
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Representing cilia and flagella

Phd work by Loic Lacouture (Paris Sud)

I Numerical analysis of the FE solution of elliptic problems with
singular source term :

I Solution of Stokes equations with dirac mass source term (2d and 3d)
→ singular solution → does not enter in the classical framework of
finite element solutions for elliptic problems.

I Numerical analysis shows that the convergence rate is not optimal.
I Development of a numerical method allowing to recover the optimal

convergence rate by extracting the singularity.

I Application to the micro-swimmer model :
I Cilia and flagella can be seen as one-dimensional (infinitely thin)

structures in a 3d flow in the asymptotic : thickness ε→ 0 while the
resultant force F hydro they apply on the fluid remains constant.



Representing cilia and flagella

Prescribed description of the position of the cilium → hydrodynamic
force f deduced using slender body theory

Here : mathematical formulation of the tracheal cilium beat cycle given
by Fulford and Blake (1986)

We solve : {
−µ∆u + ∇p = f δS

∇ · u = 0

with f density of force distributed over the cilium.



Towards 3D simulations

3D simulations (B. Fabreges, PhD supervised by B. Maury) ¸



Thank you for your attention
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