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Introduction : from individual to collective dynamics



Active suspensions

Bacteria : E. Coli [Berg, 1983] (~ 2 um x 0.5 um)

Green algae : Chlamydomonas (radius ~ 10 pm)
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life at low Reynolds number (Re < 1) : viscous forces dominate !



Self-propulsion in Stokes flow

Pushers : bacteria E. coli, B.

Subtilis Pullers : Chlamydomonas
> helical flagella localized on » two cilia performing
the surface, responsible of non-reversible breast stroke
propulsion
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— CCWrotation  Helical
Mevemert bundle

— capable of swimming many cell-lengths per second

— long-range perturbation of the flow (decreases as O(1) in 2D,
O() in 3D)



Chemotaxis

Current Biology

— on a long time scale each swimmer performs a random walk with a
bias towards favorable direction



Collective dynamics

Coherent structures [Cisneros et al. '07], [Aranson et al. '07], ...

» self-organized coherent structures with the spatial scale exceeding
the size of an individual swimmer

» collective velocity greater than the individual velocity

» weakly turbulent appearance of the flow: recirculations, vortices...

— enhanced transport and mixing of particles, can be essential for
nutriments resupplying

Impact of active particles on the viscosity of the suspension

> experiments [Sokolov & Aranson '07], [Rafai et al.’10]

» analytical and numerical studies [Pedley '07], [Berlyand et al.'08],
[Shelley et al.'09]

Motility can strongly modify the effective viscosity of a suspension
Chemotaxis [Tuval et al.'05]
> bioconvection Pl

» hydrodynamic instabilities Pl



A simple microscopic model : pointlike particles



A simple model (1)

Swimmers are modelled as point particles i;—1.. n in a fluid domain Q,
u and p velocity and pressure in the fluid

x; and 6; position and orientation of swimmer |
» Equilibrium of forces and torque on each body :
Farag + Fprop+ Fouoy = 0
G =0
» Stokes flow :

—pAu + Vp = Z — Farag,i 0x; — Fprop,i 0y,
i=1...N

Z F buoy(sx,- + F prOp(5X; - 5}’;)
i=1...N



A simple model (2)

> Fluid :
—plAu + Vp = fr in Q
V-u = 0 in Q
with ff = Z Fouoyxi  (only first order contributions,

i=1..N
regularization of dirac )

» Particle dynamics :

Faxen's law for spherical rigid bodies (radius a)

(X;—U(X,’)) = 6713ua (_77/1,33 AU(X,') + Fbuoy + FP)
6, = 2 (Vxu)(x;)

» Dealing with congestion :

Finite size of particles is taken into account in order to compute
non-elastic collisions.



A model for chemotaxis



A model for chemotaxis

Tumbling : Poisson process

Trun = duration of a Run ~ exp())

A = Tumbling frequency : variable !

6 = new orientation ~ U(0, 27)

> first model :

. Dc
AMe) =1 - eS|gne(Dt>, e<l1

» a finer model ( “memory” of the swimmer) :
[Locsei, 2007] :

Mc) = 1 — € Signe (/tt c(s)g(t—s)ds)

—At

where g(s) =1 si s<At/4 et g(s)=-1/3 si s> At/4



A model for chemotaxis

Interaction with oxygen (oxygentaxis)

1. Convection-diffusion equation for oxygen :

otc + u-Vec — D.Ac = — k f(c) xg dans Q.

¢ : oxygen concentration in the fluid,

K @ consuming rate

f(c) : modulation of the rate (— 0 when ¢ — 0, — 1 when
¢ — +00).

2. Modulation of the propulsion force intensity :

f, — O0whenc —0



Simulating bioconvective phenomena

mise en évidence d'instabilités hydrodynamiques dues au gradient de
densité
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Simulating bioconvective phenomena

in a droplet (after the experiment by Goldstein e.a., 2005 ) :

boycott effect + hydrodynamic instabilities
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An accurate microscopic model : rigid particles



Full microscopic model

» Each swimmer = rigid ellipsoidal particle B + associated region in
the fluid P (representing cilia or flagellar bundle) (not rigid !)

» Selfpropulsion : force of magnitude fp and direction 7 acting on the
fluid in region P and on the cell in B (in opposite direction !)
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Isolated swimmer (force-free) : F, = —f,7 = —F,

Volumic forces : F, = /fp dx, Fp, = /fb dx
P B



Fluid-structure interaction problem

Notations:
Q C R?: bounded and regular domain,

(Bj)i=1...n: rigid inclusions in €, denoting the bodies of the swimmers,

B= | B;rigid domain,
i=1...N

x; coordinates of the center
of mass of B;,

0; angle defining the position
of the flagellum of B;,

vV = (V;ZX;) ERQN,

w = (w,-:é,-) €RN.




Fluid-structure interaction problem

» Notations:

(u,p)  velocity and pressure fields defined in Q \ B
(V,w) translational and rotational velocities of swimmers

» Stokes fluid:

—plAu + Vp = ff5:Zi,i1fp;XP,- inQ\?,

V-u = 0 in Q\ B,
u =0 on 09,
u = V,+uw(x—x))t ondB; Vi

» Forces equilibrium (Newton's second law of motion):

/fbl.f/ o-n = 0, VI,
B; 0B;

/B(X—Xi)*fb,-—/ (x—x)t-(e-n) = 0, Vi

oB;

i



Mathematical formulation | Variational formulation

The problem comes to minimize the functional
- uf @R [

KoNKy ={u€H}(Q)/ V- -u=0, D(u) =0 ae. on B}

on the subspace :

with
N
= Z (fbiXBi + fPiXPi) :
i=1

— strong coupling of the problems on fluid and particles, without direct

estimation of o - n.



Numerical method

Fictitious domain approach, in order to work with fixed cartesian meshes

» In 2D : Penalty method ([Peyla '04], [Lefebvre '05], ...) leads to
unconstrained spaces:

Let £ > 0 be small (inverse of the "viscosity” of the solid phase)

Minimization problem is approached by a modified minimization problem :

uc Ky NKg N u. € Ky
J(u) = mingekonk, J(i1) Je(u) = mingeke Jo(@)

where )
@) = J@) + - [ P
€JB
Proposition.

u.—> uwhene — 0 and 3C > 0 such that |u. — u|< Ce



Numerical method

Fictitious domain approach, in order to work with fixed cartesian meshes

» In 2D : Penalty method

» In 3D : this penalty method is not efficient : bad conditioning of
matrix so that only direct methods can be used + non-optimal
convergence rate.

Ongoing work (B. Fabréges and B. Maury) :
fast 3D solver for fluid - rigid particles interaction based on an
optimal order fictitious domain method.



Particle dynamics and contact

Updating positions and orientations by evaluating V; and w; and
solving :
XM =xT+AtV;, 07 =07+ Atw,.

Contacts :

In principle no contact in finite time.

In practice (time discretization, inexact estimate of lubrication forces) :
contact or overlapping between bodies may occur.

Contact algorithm : robust handling relying on purely non-elastic
collisions.

= projection of the velocities on a space of “admissible velocities’
(based on a granular flow approach [Maury '06])



Algorithm | Contact handling

Figure: The contact algorithm applied to a set of circles



Figure: The contact algorithm applied to a set of ellipses



Hydrodynamics: individual dynamics

Figure: Pusher in a fluid at rest



Hydrodynamics: individual dynamics
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Figure: Puller in a fluid at rest



Hydrodynamics: individual dynamics
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Figure: » Two pusher side by side
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Figure: ®Two puller side by side



Hydrodynamics: collective dynamics

PUSHER

VELOCITY FIELD AND BACTERIAL DISTRIBUTICN - 50/100
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Figure: Dense suspension (solid fraction : 30%)



Hydrodynamics: collective dynamics

PULLER

VELOCITY FIELD AND BACTERIAL DISTRIBUTICN - 58/100

Figure: Dense suspension (solid fraction : 30%)



Hydrodynamics: collective dynamics

Correlation length of collective motion
can exceed the size of individual cells by
more than an order of magnitude.

» weak turbulence

» persistence of coherent structures
> bl

Velocity correlation

(u(x,t)-u(x+re, t)) , — (u(x, t))2

I(r, =
(1) (u(x, £2),, — (u(x, )2

Txt) = (u(x,s) - u(x,s+1t)),

- {u(x;5)?),




Hydrodynamics: collective dynamics

© sold fraction :0.07 % O sold fraction :0.07 %
1 O solid fraction : 44.50 %| 1 O solid fraction : 44.50 %

AUTOCORRELATION
AUTOCORRELATION
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Figure: Space correlation functions for suspensions of pushers (left) and pullers
(right)

» constant size of coherent structures already reached for ¢ = 8%

> typical size ~ 5 times particle size



Hydrodynamics: collective dynamics

© sold fraction :0.07 % 0 sold fraction :0.07 %
1 O sold fraction : 44.50 % | 10 O solid fraction : 44.50 %
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Figure: Time correlation functions for suspensions of pushers (left) and pullers
(right)



Numerical results (2/4) | Hydrodynamics: collective dynamics

MEAN FLUID VELOCITY (umis)

o 0.05 01 015 02 0.25 0 035 04 045 0 0.05 o1 015 02 0.25 03 035 04 045
SOLID FRACTION (%) SOLID FRACTION (%)

» average velocity increases with the solid fraction
above a critical concentration it decreases, due to congestion.



Rheology

Effective viscosity:
» resistance of a fluid which is being deformed by a shear stress
» macroscopic observable quantity measured by a rheometer:
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Effective viscosity

» Forces exerted by the fluid on the walls:

F|y:+a = / e, 0" (*ey)v F|y:_a = / e, 0" (+ey)
y=+a y=-a

» In case of a Newtonian fluid, the exact solution is
_ Y _
u(Xa.y)__S;eX7 P(X7Y)—Oa

we have

S
Fo = /‘_|y:+a — F|y:,a = 2,uEL.

» Therefore, the effective viscosity can be defined as

a
feff = ——=Fg, with FO::/ e -o-(—ey)
¢ 2LS {y=+a}u{y=—a} X v



PUSHERS

Ive viscosity

Effecti
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Figure: Active suspension (I.) vs passive suspension (r.)



PULLERS

Ive viscosity

Effecti
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Figure: Active suspension (I.) vs passive suspension (r.)



Effective viscosity : PULLERS
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Figure: Active suspension (I.) vs passive suspension (r.)



Effective viscosity : PULLERS
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Figure: Active suspension (I.) vs passive suspension (r.)



Effective viscosity
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Figure: Effective viscosity 7/no with respect to the solid fraction



Ongoing work and perspectives



Representing cilia and flagella

Phd work by Loic Lacouture (Paris Sud)

» Numerical analysis of the FE solution of elliptic problems with
singular source term :

» Solution of Stokes equations with dirac mass source term (2d and 3d)
— singular solution — does not enter in the classical framework of
finite element solutions for elliptic problems.

» Numerical analysis shows that the convergence rate is not optimal.

» Development of a numerical method allowing to recover the optimal
convergence rate by extracting the singularity.

» Application to the micro-swimmer model :

» Cilia and flagella can be seen as one-dimensional (infinitely thin)
structures in a 3d flow in the asymptotic : thickness ¢ — 0 while the
resultant force Fpyqro they apply on the fluid remains constant.



Representing cilia and flagella
Prescribed description of the position of the cilium — hydrodynamic
force f deduced using slender body theory

Here : mathematical formulation of the tracheal cilium beat cycle given
by Fulford and Blake (1986)

We solve :

—pAu + Vp fés
V-u = 0

with f density of force distributed over the cilium.

NN NN NN N e e e e
NN NN N NN e e e e

~ N N N NN NN ~——— -




3D simulations (B. Fabreges, PhD supervised by B. Maury) »l



Thank you for your attention
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