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Motivation: a physicist viewpoint

o Self-propelled agents are common in nature (birds flocks,
fish schools, bacteria colonies), and in manufactured
“objects” (robots, cars...)

@ In some instances, a spontaneous collective motion
emerges (no leader, no external cause)
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Motivation: a physicist viewpoint

@ How to describe this transition to motion?

@ Can one propose a coarse-grained description with
hydrodynamic equations?

o Is it possible to derive hydrodynamic equations from a
microscopic model?
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Numerical simulations

Vicsek model

@ Point-like particles with fixed velocity modulus, and noisy
alignment interactions with neighboring particles

@ Direct simulations in 2D:
transition to motion observed when reducing the noise

T. Vicsek et. al., PRL 75, 1226 (1995)

Large-scale simulations

@ Transition toward motion confirmed

@ At very large sizes (~ 10% — 10° particles):
onset of spatially inhomogeneous states

G. Grégoire, H. Chaté, PRL 92, 025702 (2004)
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Analytical approaches

Hydrodynamic equations based on symmetry
considerations

@ Phenomenological generalized Navier-Stokes equation
including all terms allowed by the symmetries

@ Less symmetries than in usual fluids, due in particular to the
absence of galilean invariance

@ Drawback: the coefficients entering the hydrodynamic
equation have no microscopic content

Renormalization approaches
Dynamic renormalization group
= long-range order is stable in dimension d = 2
J. Toner and Y. Tu, PRL 75, 4326 (1995)
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In this talk

Systems considered
@ Different microscopic models of DRY active matter (particles
on a substrate, with no surrounding fluid)

@ Common feature: motion along particle's orientation (either
directed motion or random vibration)

@ Different interaction symmetries: “ferromagnetic” or nematic

Main results

@ Derivation of continuous equations for polar and/or nematic
order parameters

@ Study of their behavior: instabilities, onset of order, non-linear
patterns
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OUTLINE

o Polar self-propelled particles with
“ferromagnetic” velocity alignment

o Polar self-propelled particles with nematic
velocity alignment

o Active nematic particles
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OUTLINE

o Polar self-propelled particles with
“ferromagnetic” velocity alignment

o Polar self-propelled particles with nematic
velocity alignment

o Active nematic particles
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Self-propelled particles with velocity alignment

Self-propelled particles

@ Point-like particles, in a 2D plane, with velocity v of fixed
magnitude vy

@ Velocity simply defined by the angle

Stochastic dynamics

o Self-diffusion of isolated particles

@ Binary collisions when the distance between two particles
becomes less than an interaction radius dy
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Stochastic dynamics
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(a) Self-diffusion
o New angle 8 = 6 + n[27]

@ 7 a Gaussian noise with variance 08, distribution pg(n)

(b) Binary collisions
@ Define the average angle § = Arg(e'® + e/%2)
o New angles 65 =0+ and 05, =0 + 12

@ 7 a Gaussian noise with variance o2 that may differ from o3,
and distribution p(n)
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Self-propelled particles with velocity alignment

Principle of the description
@ Evolution equation for the one-particle phase-space
distribution f(r, 6, t) = probability to find a particle at time t
in r, with a velocity angle

@ Approximation scheme: factorize the two-particle distribution
as a product of one-particle distributions (low density)

Boltzmann equation

of
a(r, 6, t) + W 6(9) : Vf(r, 9; t) = Idif[f] + Icol[f]

Bertin, Droz, Grégoire, Phys. Rev. E 2006 and J. Phys. A 2009
See also Carlen, Chatelin, Degond, Wennberg, Physica D (2013).
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Integral terms in the Boltzmann equation

Self-diffusion term

ldif[f] = —)\f(l’, 9, t)

+ )\/ d9// dn po(n)dar (0" +n — 0) f(r, 0, 1)
Binary collision term [with 6 = Arg(e’® + e/%2)]
alf] = ~F(r.0,) [ d le(6') — e(6) F(r. 0", 1

+/ d91/ d92/ dn p(n) le(02) — e(61)| f(r,01,t) f(r, 02, t)
- - )
X 52ﬂ(§+’l7 — 9)
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Self-propelled particles with velocity alignment

Hydrodynamic fields
@ Density field

o(r £) = /ﬂ d0F(r.0,¢)

—Tr

@ Velocity field u(r, t) and momentum field w(r, t)

w(r, £) = p(r, £) u(r, £) = / " A0 F(r,0, t)e(0)

—T
Continuity equation
Integration of Boltzmann equation over 6

op B
E‘FV'(pu)—O
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Self-propelled particles with velocity alignment

Velocity-field equation (“Navier-Stokes”)
@ Principle: multiply Boltzmann equation by v = vy e(0)
and integrate over 6

@ Not a closed equation in terms of p and u: need for an
approximation scheme

o Fourier series expansion over the angle 6: f(r,0,t) — fi(r, t)

@ Truncation and closure scheme, valid for small |w| = p|u|
(scaling ansatz close to instability threshold)

ow 1

E—i—’y(w'V)w = —EV(p—ch2)+(u(p)—ﬁwz)w+vv2w—m(v-w)w
E. Bertin, M. Droz, G. Grégoire, PRE 74, 022101 (2006) & J. Phys. A 42, 445001
(2009)
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Transport coefficients

3 (3]
v = 8% <1€5} +2e72" "2/2>

K= 8% (145 +2e7% 4 e‘“2/2>

W= %p (e_°2/2 §> —A(l—e "3/2)

Main result: explicit expression of the transport coefficients as
a function of microscopic parameters
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Stability of the zero-velocity solution

@ Evolution equation for the homogeneous solution
w(r,t) = w(t)

ow 5
E_( —EwS)w

@ Stability of w = 0 related to the sign of p (1 > 0: unstable)

p= %p (e“’2/2 - 2) - (1 — e—08/2>

@ w = 0 unstable for p > p;

TA(1 — e798/2)

= e T
4(e=?/2 - 3)

@ For p > p;, homogeneous motion |wg| = /i/&, in an
arbitrary direction
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Phase diagram in the noise-density plane

Phase diagram cannot be predicted from phenomenological
equations (noise is a microscopic parameter)
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Phase diagram: comparison with the Vicsek model

Qualitative agreement between numerical phase diagram of Vicsek
model and analytic phase diagram of binary collision model
= genericity of the hydrodynamic description
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Stability of homogeneous motion

Finite wavelength perturbation
@ Small perturbation around the homogeneous motion
p(r,t) = po + op(r, t), w(r,t) =wo+ ow(r,t)
@ Finite wavevector q

Sp(r, t) = dpo €T Sw(r, t) = dwg et TiaT

Dispersion relation for s(q)

2 4
R(s) = gyl =

@ R(s) > 0 for small enough |gq| = instability of homogeneous
motion against long-wavelength perturbations
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Self-propelled particles with velocity alignment

Stability diagram

A = no collective motion
B = inhomogeneous flow

C = homogeneous flow

E. Bertin, M. Droz, G. Grégoire, J. Phys. A 42, 445001 (2009)
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Self-propelled particles with velocity alignment

Trains of solitary waves in the hydrodynamic equation
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A. Peshkov, S. Léonard, E. Bertin, H. Chaté, G. Grégoire, to be published
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Self-propelled particles with velocity alignment

Varying the noise: hysteresis effect
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Solitary waves exist even in some regions where the homogeneous
state is stable (with or without flow)
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OUTLINE

o Polar self-propelled particles with
“ferromagnetic” velocity alignment

o Polar self-propelled particles with nematic
velocity alignment (rods)

o Active nematic particles

Eric Bertin Hydrodynamics equations for self-propelled particles



Self-propelled rods
Nematic alignment rules
(Ginelli, Peruani, Bar, Chaté, PRL 2010) %7% %ﬁg

Hydrodynamic equations

fx(r, t) angular Fourier coefficients

fi = polar order parameter; f» = nematic order parameter
1 . . .
Ofi = (Vo + T R)+ BV~ (- BIBP) + ik
81.‘f2 = §Vf1+ZVV f2 Efl sz 2V (f]_fz)

+(1lp) = €162) o+ wh? + 7IA12f

- . % .
V:6X+13y, AV :('3X—18y
A. Peshkov, I.S. Aronson, E. Bertin, H. Chaté, F. Ginelli, PRL 109, 268701 (2012)
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Self-propelled rods

Stability diagram
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A. Peshkov et.al., PRL (2012)
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Self-propelled rods

Band solutions: profile and chaotic regime for f,
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A. Peshkov et.al., PRL (2012)
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Self-propelled rods

Existence domain of bands
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A. Peshkov et.al., PRL (2012)
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OUTLINE

o Polar self-propelled particles with
“ferromagnetic” velocity alignment

o Polar self-propelled particles with nematic
velocity alignment (rods)

e Active nematic particles
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Active nematics

Dynamics of individual particles

@ No directed motion (no self-propulsion)
@ Random vibration along particle’s direction

@ Nematic alignment rules

Hydrodynamic equations (f, = nematic order parameter)

Otp

%Ap + %Re (V*2f2>

1 1
ofy = (ulp) = €161 )t [V + S AR

V =0« +i0,, V* =0y —1i0,

E. Bertin, H. Chaté, F. Ginelli, S. Mishra, A. Peshkov, S. Ramaswamy, New J. Phys.
(2013)
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tive nematics: stability diagram
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Conclusion

On the methodology

@ Generic method to derive continuous equations for dry active
matter in the low density regime

@ Known transport coefficients as a function of microscopic
parameters

@ Simple phase diagram with only two parameters: density and
amplitude of microscopic noise
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Conclusion

Genericity of the results

@ Onset of order (either polar or nematic depending on
interaction symmetries) when crossing a transition line in the
noise-density plane

@ Generic instability of the homogeneous ordered state close to
the transition line

@ Formation of ordered bands, that can either be stable or enter
a chaotic regime

It would be of high interest to observe such ordered structures
experimentally

A potential candidate: experiment on microtubules
(see Sumino et.al., Nature 2012)
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