# Kinetic theory and hydrodynamic equations for systems of self-propelled particles

# Eric Bertin

LIPhy, Univ. Joseph Fourier, Grenoble

Collab.: H. Chaté, G. Grégoire, S. Léonard, S. Ngo, A. Peshkov (Paris),

F. Ginelli (Aberdeen), M. Droz (Geneva), I.S. Aronson (Argonne), S. Ramaswamy (Hvderabad)

Workshop "Collective Motion of Active Swimmers", Nice, September 25-26, 2013





- Self-propelled agents are common in nature (birds flocks, fish schools, bacteria colonies), and in manufactured "objects" (robots, cars...)
- In some instances, a spontaneous collective motion emerges (no leader, no external cause)

- How to describe this transition to motion?
- Can one propose a coarse-grained description with hydrodynamic equations?
- Is it possible to derive hydrodynamic equations from a microscopic model?

# Vicsek model

- Point-like particles with fixed velocity modulus, and noisy alignment interactions with neighboring particles
- Direct simulations in 2D: transition to motion observed when reducing the noise
  - T. Vicsek et. al., PRL 75, 1226 (1995)

#### Large-scale simulations

- Transition toward motion confirmed
- At very large sizes ( $\sim 10^5 10^6$  particles):

onset of spatially inhomogeneous states

G. Grégoire, H. Chaté, PRL 92, 025702 (2004)

# Hydrodynamic equations based on symmetry considerations

- Phenomenological generalized Navier-Stokes equation including all terms allowed by the symmetries
- Less symmetries than in usual fluids, due in particular to the absence of galilean invariance
- Drawback: the coefficients entering the hydrodynamic equation have no microscopic content

#### **Renormalization approaches**

Dynamic renormalization group

 $\Rightarrow$  long-range order is stable in dimension d = 2

J. Toner and Y. Tu, PRL 75, 4326 (1995)

化氯化 化氯

#### Systems considered

- Different microscopic models of DRY active matter (particles on a substrate, with no surrounding fluid)
- Common feature: motion along particle's orientation (either directed motion or random vibration)
- Different interaction symmetries: "ferromagnetic" or nematic

#### Main results

- Derivation of continuous equations for polar and/or nematic order parameters
- Study of their behavior: instabilities, onset of order, non-linear patterns

4 B K 4 B K

- Polar self-propelled particles with "ferromagnetic" velocity alignment
- Polar self-propelled particles with nematic velocity alignment
- Active nematic particles

- Polar self-propelled particles with "ferromagnetic" velocity alignment
- Polar self-propelled particles with nematic velocity alignment
- Active nematic particles

# Self-propelled particles

- Point-like particles, in a 2D plane, with velocity v of fixed magnitude v<sub>0</sub>
- Velocity simply defined by the angle  $\boldsymbol{\theta}$

# **Stochastic dynamics**

- Self-diffusion of isolated particles
- Binary collisions when the distance between two particles becomes less than an interaction radius *d*<sub>0</sub>



# Stochastic dynamics



# (a) Self-diffusion

- New angle  $\theta' = \theta + \eta \left[ 2\pi \right]$
- $\eta$  a Gaussian noise with variance  $\sigma_0^2$ , distribution  $p_0(\eta)$

# (b) Binary collisions

- Define the average angle  $\overline{ heta} = \operatorname{Arg}(e^{i heta_1} + e^{i heta_2})$
- New angles  $\theta_1' = \overline{\theta} + \eta_1$  and  $\theta_2' = \overline{\theta} + \eta_2$
- $\eta$  a Gaussian noise with variance  $\sigma^2$  that may differ from  $\sigma_0^2$ , and distribution  $p(\eta)$

#### Principle of the description

- Evolution equation for the one-particle phase-space distribution f(r, θ, t) = probability to find a particle at time t in r, with a velocity angle θ
- Approximation scheme: factorize the two-particle distribution as a product of one-particle distributions (low density)

#### **Boltzmann equation**

$$\frac{\partial f}{\partial t}(\mathbf{r},\theta,t) + v_0 \, \mathbf{e}(\theta) \cdot \nabla f(\mathbf{r},\theta,t) = I_{\rm dif}[f] + I_{\rm col}[f]$$

Bertin, Droz, Grégoire, Phys. Rev. E 2006 and J. Phys. A 2009 See also Carlen, Chatelin, Degond, Wennberg, Physica D (2013).

#### Self-diffusion term

$$\begin{split} \mathcal{I}_{\mathrm{dif}}[f] &= -\lambda f(\mathbf{r},\theta,t) \\ &+ \lambda \int_{-\pi}^{\pi} d\theta' \int_{-\infty}^{\infty} d\eta \, p_0(\eta) \delta_{2\pi}(\theta' + \eta - \theta) \, f(\mathbf{r},\theta',t) \end{split}$$

**Binary collision term** [with  $\overline{\theta} = \operatorname{Arg}(e^{i\theta_1} + e^{i\theta_2})$ ]

$$\begin{split} I_{\rm col}[f] &= -f(\mathbf{r},\theta,t) \int_{-\pi}^{\pi} d\theta' \, |\mathbf{e}(\theta') - \mathbf{e}(\theta)| f(\mathbf{r},\theta',t) \\ &+ \int_{-\pi}^{\pi} d\theta_1 \int_{-\pi}^{\pi} d\theta_2 \int_{-\infty}^{\infty} d\eta \, p(\eta) \, |\mathbf{e}(\theta_2) - \mathbf{e}(\theta_1)| \, f(\mathbf{r},\theta_1,t) \, f(\mathbf{r},\theta_2,t) \\ &\times \delta_{2\pi}(\overline{\theta} + \eta - \theta) \end{split}$$

# Hydrodynamic fields

• Density field

$$\rho(\mathbf{r},t) = \int_{-\pi}^{\pi} d\theta f(\mathbf{r},\theta,t)$$

• Velocity field  $\mathbf{u}(\mathbf{r},t)$  and momentum field  $\mathbf{w}(\mathbf{r},t)$ 

$$\mathbf{w}(\mathbf{r},t) = \rho(\mathbf{r},t) \, \mathbf{u}(\mathbf{r},t) = \int_{-\pi}^{\pi} d\theta \, f(\mathbf{r},\theta,t) \, \mathbf{e}(\theta)$$

# **Continuity equation**

Integration of Boltzmann equation over  $\boldsymbol{\theta}$ 

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0}$$

# Self-propelled particles with velocity alignment

#### Velocity-field equation ("Navier-Stokes")

- Principle: multiply Boltzmann equation by **v** = v<sub>0</sub> **e**(θ) and integrate over θ
- Not a closed equation in terms of  $\rho$  and  ${\bf u}:$  need for an approximation scheme
- Fourier series expansion over the angle  $\theta$ :  $f(\mathbf{r}, \theta, t) \rightarrow \hat{f}_k(\mathbf{r}, t)$
- Truncation and closure scheme, valid for small  $|\mathbf{w}| = \rho |\mathbf{u}|$  (scaling ansatz close to instability threshold)

$$\frac{\partial \mathbf{w}}{\partial t} + \gamma(\mathbf{w} \cdot \nabla)\mathbf{w} = -\frac{1}{2}\nabla(\rho - \kappa \mathbf{w}^2) + \left(\mu(\rho) - \xi \mathbf{w}^2\right)\mathbf{w} + \nu \nabla^2 \mathbf{w} - \kappa(\nabla \cdot \mathbf{w})\mathbf{w}$$

E. Bertin, M. Droz, G. Grégoire, PRE **74**, 022101 (2006) & J. Phys. A **42**, 445001 (2009)

# Transport coefficients

$$\begin{split} \nu &= \frac{1}{4} \left[ \lambda \left( 1 - e^{-2\sigma_0^2} \right) + \frac{4}{\pi} \rho \left( \frac{14}{15} + \frac{2}{3} e^{-2\sigma^2} \right) \right]^{-1} \\ \gamma &= \frac{8\nu}{\pi} \left( \frac{16}{15} + 2e^{-2\sigma^2} - e^{-\sigma^2/2} \right) \\ \kappa &= \frac{8\nu}{\pi} \left( \frac{4}{15} + 2e^{-2\sigma^2} + e^{-\sigma^2/2} \right) \\ \mu &= \frac{4}{\pi} \rho \left( e^{-\sigma^2/2} - \frac{2}{3} \right) - \lambda \left( 1 - e^{-\sigma_0^2/2} \right) \\ \xi &= \frac{64\nu}{\pi^2} \left( e^{-\sigma^2/2} - \frac{2}{5} \right) \left( \frac{1}{3} + e^{-2\sigma^2} \right) \end{split}$$

Main result: explicit expression of the transport coefficients as a function of microscopic parameters

# Stability of the zero-velocity solution

 Evolution equation for the homogeneous solution  $\mathbf{w}(\mathbf{r},t) = \mathbf{w}(t)$  $\partial$ 

$$rac{\partial \mathbf{w}}{\partial t} = (\mu - \xi \mathbf{w}^2) \mathbf{w}$$

• Stability of  $\mathbf{w} = 0$  related to the sign of  $\mu$  ( $\mu > 0$ : unstable)

$$\mu = \frac{4}{\pi} \rho \left( e^{-\sigma^2/2} - \frac{2}{3} \right) - \lambda \left( 1 - e^{-\sigma_0^2/2} \right)$$

•  $\mathbf{w} = 0$  unstable for  $\rho > \rho_t$ 

$$\rho_t = \frac{\pi\lambda(1 - e^{-\sigma_0^2/2})}{4(e^{-\sigma^2/2} - \frac{2}{3})}$$

• For  $\rho > \rho_t$ , homogeneous motion  $|\mathbf{w}_0| = \sqrt{\mu/\xi}$ , in an arbitrary direction

# Phase diagram in the noise-density plane



Phase diagram cannot be predicted from phenomenological equations (noise is a microscopic parameter)

# Phase diagram: comparison with the Vicsek model



Qualitative agreement between numerical phase diagram of Vicsek model and analytic phase diagram of binary collision model  $\Rightarrow$  genericity of the hydrodynamic description

# Finite wavelength perturbation

• Small perturbation around the homogeneous motion

$$\rho(\mathbf{r},t) = \rho_0 + \delta \rho(\mathbf{r},t), \quad \mathbf{w}(\mathbf{r},t) = \mathbf{w}_0 + \delta \mathbf{w}(\mathbf{r},t)$$

• Finite wavevector  ${\boldsymbol{q}}$ 

$$\delta \rho(\mathbf{r},t) = \delta \rho_0 \, e^{st+i\mathbf{q}\cdot\mathbf{r}}, \quad \delta \mathbf{w}(\mathbf{r},t) = \delta \mathbf{w}_0 \, e^{st+i\mathbf{q}\cdot\mathbf{r}}$$

# **Dispersion relation for** s(q)

• For small  $|\mathbf{q}|$ , one finds

$$\Re(s) = \frac{\mu_0^2}{8\,\xi^3 w_0^4} \, |\mathbf{q}|^2 - \frac{5\,\mu_0^4}{128\,\xi^7 w_0^{10}} \, |\mathbf{q}|^4 + \mathcal{O}(|\mathbf{q}|^6)$$

 ℜ(s) > 0 for small enough |q| ⇒ instability of homogeneous motion against long-wavelength perturbations

# **Stability diagram**



- $\boldsymbol{\mathsf{A}} = \mathsf{no} \ \mathsf{collective} \ \mathsf{motion}$
- $\mathbf{B} = \text{inhomogeneous flow}$
- $\mathbf{C} =$ homogeneous flow

E. Bertin, M. Droz, G. Grégoire, J. Phys. A 42, 445001 (2009)

# Self-propelled particles with velocity alignment

Trains of solitary waves in the hydrodynamic equation



A. Peshkov, S. Léonard, E. Bertin, H. Chaté, G. Grégoire, to be published

# Self-propelled particles with velocity alignment

Varying the noise: hysteresis effect



Solitary waves exist even in some regions where the homogeneous state is stable (with or without flow)

- Polar self-propelled particles with "ferromagnetic" velocity alignment
- Polar self-propelled particles with nematic velocity alignment (rods)
- Active nematic particles

# Self-propelled rods

#### Nematic alignment rules

(Ginelli, Peruani, Bär, Chaté, PRL 2010)



#### Hydrodynamic equations

 $f_k(\mathbf{r}, t)$  angular Fourier coefficients  $f_1 =$  polar order parameter;  $f_2 =$  nematic order parameter

$$\partial_t f_1 = -\frac{1}{2} (\nabla \rho + \nabla^* f_2) + \frac{\gamma}{2} f_2^* \nabla f_2 - (\alpha - \beta |f_2|^2) f_1 + \zeta f_1^* f_2 \partial_t f_2 = -\frac{1}{2} \nabla f_1 + \frac{\nu}{4} \nabla \nabla^* f_2 - \frac{\kappa}{2} f_1^* \nabla f_2 - \frac{\chi}{2} \nabla^* (f_1 f_2) + (\mu(\rho) - \xi |f_2|^2) f_2 + \omega f_1^2 + \tau |f_1|^2 f_2$$

$$\nabla \equiv \partial_x + \mathrm{i}\partial_y, \qquad \nabla^* \equiv \partial_x - \mathrm{i}\partial_y$$

A. Peshkov, I.S. Aronson, E. Bertin, H. Chaté, F. Ginelli, PRL 109, 268701 (2012)

# **Stability diagram**



A. Peshkov et.al., PRL (2012)

**Band solutions:** profile and chaotic regime for  $f_2$ 





A. Peshkov et.al., PRL (2012)

#### **Existence domain of bands**



A. Peshkov et.al., PRL (2012)

- Polar self-propelled particles with "ferromagnetic" velocity alignment
- Polar self-propelled particles with nematic velocity alignment (rods)
- Active nematic particles

# Dynamics of individual particles

- No directed motion (no self-propulsion)
- Random vibration along particle's direction
- Nematic alignment rules

**Hydrodynamic equations** (*f*<sub>2</sub> = nematic order parameter)

$$\partial_t \rho = \frac{1}{2} \Delta \rho + \frac{1}{2} \operatorname{Re} \left( \nabla^{*2} f_2 \right)$$
  
$$\partial_t f_2 = \left( \mu(\rho) - \xi \left| f_2 \right|^2 \right) f_2 + \frac{1}{4} \nabla^2 \rho + \frac{1}{2} \Delta f_2$$

$$\nabla \equiv \partial_x + \mathrm{i}\partial_y, \qquad \nabla^* \equiv \partial_x - \mathrm{i}\partial_y$$

E. Bertin, H. Chaté, F. Ginelli, S. Mishra, A. Peshkov, S. Ramaswamy, New J. Phys. (2013)

# Active nematics: stability diagram



Eric Bertin Hydrodynamics equations for self-propelled particles

# Conclusion

#### On the methodology

- Generic method to derive continuous equations for **dry** active matter in the low density regime
- Known transport coefficients as a function of microscopic parameters
- Simple phase diagram with only two parameters: density and amplitude of microscopic noise

# **Genericity of the results**

- Onset of order (either polar or nematic depending on interaction symmetries) when crossing a transition line in the noise-density plane
- Generic instability of the homogeneous ordered state close to the transition line
- Formation of ordered bands, that can either be stable or enter a chaotic regime

It would be of high interest to observe such ordered structures experimentally

A potential candidate: experiment on microtubules (see Sumino et.al., Nature 2012)