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Motivation: a physicist viewpoint

Self-propelled agents are common in nature (birds flocks,
fish schools, bacteria colonies), and in manufactured
“objects” (robots, cars...)

In some instances, a spontaneous collective motion
emerges (no leader, no external cause)
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Motivation: a physicist viewpoint

How to describe this transition to motion?

Can one propose a coarse-grained description with
hydrodynamic equations?

Is it possible to derive hydrodynamic equations from a
microscopic model?
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Numerical simulations

Vicsek model

Point-like particles with fixed velocity modulus, and noisy
alignment interactions with neighboring particles

Direct simulations in 2D:
transition to motion observed when reducing the noise

T. Vicsek et. al., PRL 75, 1226 (1995)

Large-scale simulations

Transition toward motion confirmed

At very large sizes (∼ 105 − 106 particles):
onset of spatially inhomogeneous states

G. Grégoire, H. Chaté, PRL 92, 025702 (2004)
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Analytical approaches

Hydrodynamic equations based on symmetry
considerations

Phenomenological generalized Navier-Stokes equation
including all terms allowed by the symmetries

Less symmetries than in usual fluids, due in particular to the
absence of galilean invariance

Drawback: the coefficients entering the hydrodynamic
equation have no microscopic content

Renormalization approaches

Dynamic renormalization group

⇒ long-range order is stable in dimension d = 2

J. Toner and Y. Tu, PRL 75, 4326 (1995)

Eric Bertin Hydrodynamics equations for self-propelled particles



In this talk

Systems considered

Different microscopic models of DRY active matter (particles
on a substrate, with no surrounding fluid)

Common feature: motion along particle’s orientation (either
directed motion or random vibration)

Different interaction symmetries: “ferromagnetic” or nematic

Main results

Derivation of continuous equations for polar and/or nematic
order parameters

Study of their behavior: instabilities, onset of order, non-linear
patterns
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OUTLINE

Polar self-propelled particles with
“ferromagnetic” velocity alignment

Polar self-propelled particles with nematic
velocity alignment

Active nematic particles
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OUTLINE

Polar self-propelled particles with
“ferromagnetic” velocity alignment

Polar self-propelled particles with nematic
velocity alignment

Active nematic particles
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Self-propelled particles with velocity alignment

Self-propelled particles

Point-like particles, in a 2D plane, with velocity v of fixed
magnitude v0

Velocity simply defined by the angle θ

Stochastic dynamics

Self-diffusion of isolated particles

Binary collisions when the distance between two particles
becomes less than an interaction radius d0
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Stochastic dynamics
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(a) Self-diffusion

New angle θ′ = θ + η [2π]

η a Gaussian noise with variance σ2
0, distribution p0(η)

(b) Binary collisions

Define the average angle θ = Arg(e iθ1 + e iθ2)

New angles θ′1 = θ + η1 and θ′2 = θ + η2

η a Gaussian noise with variance σ2 that may differ from σ2
0,

and distribution p(η)
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Self-propelled particles with velocity alignment

Principle of the description

Evolution equation for the one-particle phase-space
distribution f (r, θ, t) = probability to find a particle at time t
in r, with a velocity angle θ

Approximation scheme: factorize the two-particle distribution
as a product of one-particle distributions (low density)

Boltzmann equation

∂f

∂t
(r, θ, t) + v0 e(θ) · ∇f (r, θ, t) = Idif [f ] + Icol[f ]

Bertin, Droz, Grégoire, Phys. Rev. E 2006 and J. Phys. A 2009

See also Carlen, Chatelin, Degond, Wennberg, Physica D (2013).
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Integral terms in the Boltzmann equation

Self-diffusion term

Idif [f ] = −λf (r, θ, t)

+ λ

∫ π

−π
dθ′

∫

∞

−∞

dη p0(η)δ2π(θ
′ + η − θ) f (r, θ′, t)

Binary collision term [with θ = Arg(e iθ1 + e iθ2) ]

Icol[f ] = −f (r, θ, t)

∫ π

−π
dθ′ |e(θ′)− e(θ)|f (r, θ′, t)

+

∫ π

−π
dθ1

∫ π

−π
dθ2

∫

∞

−∞

dη p(η) |e(θ2)− e(θ1)| f (r, θ1, t) f (r, θ2, t)

× δ2π(θ + η − θ)
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Self-propelled particles with velocity alignment

Hydrodynamic fields

Density field

ρ(r, t) =

∫ π

−π
dθ f (r, θ, t)

Velocity field u(r, t) and momentum field w(r, t)

w(r, t) = ρ(r, t)u(r, t) =

∫ π

−π
dθ f (r, θ, t) e(θ)

Continuity equation

Integration of Boltzmann equation over θ

∂ρ

∂t
+∇ · (ρu) = 0
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Self-propelled particles with velocity alignment

Velocity-field equation (“Navier-Stokes”)

Principle: multiply Boltzmann equation by v = v0 e(θ)
and integrate over θ

Not a closed equation in terms of ρ and u: need for an
approximation scheme

Fourier series expansion over the angle θ: f (r, θ, t) → f̂k(r, t)

Truncation and closure scheme, valid for small |w| = ρ|u|
(scaling ansatz close to instability threshold)

∂w

∂t
+γ(w·∇)w = −

1

2
∇(ρ−κw2)+

(

µ(ρ)−ξw2
)

w+ν∇2w−κ(∇·w)w

E. Bertin, M. Droz, G. Grégoire, PRE 74, 022101 (2006) & J. Phys. A 42, 445001

(2009)

Eric Bertin Hydrodynamics equations for self-propelled particles



Transport coefficients
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Main result: explicit expression of the transport coefficients as
a function of microscopic parameters
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Stability of the zero-velocity solution

Evolution equation for the homogeneous solution
w(r, t) = w(t)

∂w

∂t
= (µ− ξw2)w

Stability of w = 0 related to the sign of µ (µ > 0: unstable)

µ =
4

π
ρ

(

e−σ2/2 −
2

3

)

− λ
(

1− e−σ2
0/2

)

w = 0 unstable for ρ > ρt

ρt =
πλ(1− e−σ2

0/2)

4(e−σ2/2 − 2
3)

For ρ > ρt , homogeneous motion |w0| =
√

µ/ξ, in an
arbitrary direction
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Phase diagram in the noise-density plane
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Phase diagram cannot be predicted from phenomenological
equations (noise is a microscopic parameter)
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Phase diagram: comparison with the Vicsek model
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Qualitative agreement between numerical phase diagram of Vicsek
model and analytic phase diagram of binary collision model
⇒ genericity of the hydrodynamic description
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Stability of homogeneous motion

Finite wavelength perturbation

Small perturbation around the homogeneous motion

ρ(r, t) = ρ0 + δρ(r, t), w(r, t) = w0 + δw(r, t)

Finite wavevector q

δρ(r, t) = δρ0 e
st+iq·r, δw(r, t) = δw0 e

st+iq·r

Dispersion relation for s(q)

For small |q|, one finds

ℜ(s) =
µ2
0

8 ξ3w4
0

|q|2 −
5µ4

0

128 ξ7w10
0

|q|4 +O(|q|6)

ℜ(s) > 0 for small enough |q| ⇒ instability of homogeneous
motion against long-wavelength perturbations
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Self-propelled particles with velocity alignment

Stability diagram

A = no collective motion

B = inhomogeneous flow

C = homogeneous flow

E. Bertin, M. Droz, G. Grégoire, J. Phys. A 42, 445001 (2009)
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Self-propelled particles with velocity alignment

Trains of solitary waves in the hydrodynamic equation
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A. Peshkov, S. Léonard, E. Bertin, H. Chaté, G. Grégoire, to be published
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Self-propelled particles with velocity alignment

Varying the noise: hysteresis effect

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
σ

0

0.1

0.2

<
w

>
   

(s
pa

ce
 a

ve
ra

ge
)

homogeneous state
soliton, increasing noise
soliton, decreasing noise

Zero-flow

stable
Homogen.

flow

unstable

stable

Homogeneous

flow

Solitary waves exist even in some regions where the homogeneous
state is stable (with or without flow)
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OUTLINE

Polar self-propelled particles with
“ferromagnetic” velocity alignment

Polar self-propelled particles with nematic
velocity alignment (rods)

Active nematic particles
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Self-propelled rods

Nematic alignment rules
(Ginelli, Peruani, Bär, Chaté, PRL 2010)

Hydrodynamic equations

fk(r, t) angular Fourier coefficients

f1 = polar order parameter; f2 = nematic order parameter

∂t f1 = −
1

2
(▽ρ+ ▽

∗f2) +
γ

2
f ∗2 ▽f2 − (α− β|f2|

2)f1 + ζf ∗1 f2

∂t f2 = −
1

2
▽f1 +

ν

4
▽▽

∗f2 −
κ

2
f ∗1 ▽f2 −

χ

2
▽
∗(f1f2)

+
(

µ(ρ)− ξ|f2|
2
)

f2 + ωf 21 + τ |f1|
2f2

∇ ≡ ∂x + i∂y , ∇∗ ≡ ∂x − i∂y

A. Peshkov, I.S. Aronson, E. Bertin, H. Chaté, F. Ginelli, PRL 109, 268701 (2012)
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Self-propelled rods

Stability diagram
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A. Peshkov et.al., PRL (2012)
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Self-propelled rods

Band solutions: profile and chaotic regime for f2
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A. Peshkov et.al., PRL (2012)

Eric Bertin Hydrodynamics equations for self-propelled particles



Self-propelled rods

Existence domain of bands
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A. Peshkov et.al., PRL (2012)
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OUTLINE

Polar self-propelled particles with
“ferromagnetic” velocity alignment

Polar self-propelled particles with nematic
velocity alignment (rods)

Active nematic particles
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Active nematics

Dynamics of individual particles

No directed motion (no self-propulsion)

Random vibration along particle’s direction

Nematic alignment rules

Hydrodynamic equations (f2 = nematic order parameter)

∂tρ =
1

2
∆ρ+

1

2
Re

(

∇∗2f2

)

∂t f2 =
(

µ(ρ)− ξ |f2|
2
)

f2 +
1

4
∇2ρ+

1

2
∆f2

∇ ≡ ∂x + i∂y , ∇∗ ≡ ∂x − i∂y

E. Bertin, H. Chaté, F. Ginelli, S. Mishra, A. Peshkov, S. Ramaswamy, New J. Phys.

(2013)
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Active nematics: stability diagram
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Conclusion

On the methodology

Generic method to derive continuous equations for dry active
matter in the low density regime

Known transport coefficients as a function of microscopic
parameters

Simple phase diagram with only two parameters: density and
amplitude of microscopic noise
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Conclusion

Genericity of the results

Onset of order (either polar or nematic depending on
interaction symmetries) when crossing a transition line in the
noise-density plane

Generic instability of the homogeneous ordered state close to
the transition line

Formation of ordered bands, that can either be stable or enter
a chaotic regime

It would be of high interest to observe such ordered structures
experimentally

A potential candidate: experiment on microtubules
(see Sumino et.al., Nature 2012)
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