An introduction to random forests

Eric Debreuve / Team Morpheme

Institutions: University Nice Sophia Antipolis / CNRS / Inria

Labs: I3S / Inria CRI SA-M / iBV

Outline

- Machine learning
 - Decision tree
 - Random forest
 - Bagging
 - · Random decision trees
 - Kernel-Induced Random Forest (KIRF)
 - Byproducts
 - Out-of-bag error
 - Variable importance

Machine learning

 Learning/training: build a classification or regression rule from a set of samples

Prediction: assign a class or value to new samples

(Un)Supervised learning

- Supervised
 - Learning set = { (sample [acquisition], class [expert]) }

- Unsupervised
 - Learning set = unlabeled samples

- Semi-supervised
 - Learning set = some labeled samples + many unlabeled samples

Ensemble learning

- Combining weak classifiers (of the same type)...
- ... in order to produce a strong classifier
 - Condition: diversity among the weak classifiers
- Example: Boosting
 - Train each new weak classifier focusing on samples misclassified by previous ones
 - Popular implementation: AdaBoost
 - Weak classifiers: only need to be better than random guess

Outline

Machine learning

- Decision tree
 - Random forest
 - Bagging
 - · Random decision trees
 - Kernel-Induced Random Forest (KIRF)
 - Byproducts
 - Out-of-bag error
 - Variable importance

Decision tree

- Root node
 - · Entry point to a collection of data
- Inner nodes (among which the root node)
 - · A question is asked about data
 - One child node per possible answer
- Leaf nodes
 - Correspond to the decision to take (or conclusion to make) if reached
- Example: CART Classification and Regression Tree
 - · Labeled sample
 - Vector of variable/feature values + class label
 - Binary decision tree
 - Top-down, greedy building...
 - ... by recursively partitioning the feature space into hyper-rectangles
 - Similarity with weighted kNN
- Normally, pruning
 - To avoid over-fitting of learning data
 - To achieve a trade-off between prediction accuracy and complexity

Decision tree > CART > Building

- All labeled samples initially assigned to root node
- N ← root node
- With node N do
 - Find the feature F + threshold value T...
 - ... that split the samples assigned to N into 2 subsets Sleft and Sright...
 - ... so as to maximize the label purity within these subsets
 - Assign (F,T) to N
 - If Sleft and Sright too small to be splitted
 - Attach child leaf nodes Lieft and Lright to N
 - Tag the leaves with the most present label in Sleft and Sright, resp.
 - else
 - Attach child nodes Nieft and Nright to N
 - Assign Sleft and Sright to them, resp.
 - Repeat procedure for $N = N_{left}$ and $N = N_{right}$

Decision tree > CART > Building > Purity

- (Im)Purity
 - Quality measure applied to each subset Sleft and Sright
 - Combination of the measures (e.g., weighted average)
- Examples Gini index = $\sum_{l=1}^{L} f_l (1 f_l)$ Entropy = $-\sum_{l=1}^{L} f_l \log_2 f_l$

 - Misclassification error = $1 \max_{I \in [1..L]} f_I$

Decision tree > CART > Properties

	CART	kNN	SVM
• Intrinsically multiclass			
Handles Apple and Orange features			
 Robustness to outliers 			
• Works w/ "small" learning set			
 Scalability (large learning set) 			
Prediction accuracy			
Parameter tuning			

Outline

- Machine learning
- Decision tree
- > Random forest
 - Bagging
 - · Random decision trees
 - Kernel-Induced Random Forest (KIRF)
 - Byproducts
 - Out-of-bag error
 - Variable importance

Random forest

- Definition
 - Collection of unpruned CARTs
 - · Rule to combine individual tree decisions
- Purpose
 - Improve prediction accuracy
- Principle
 - Encouraging diversity among the tree
- Solution: randomness
 - Bagging
 - Random decision trees (rCART)

Random forest > Bagging

- Bagging: Bootstrap aggregation
- Technique of ensemble learning...
 - ... to avoid over-fitting
 - Important since trees are unpruned
 - ... to improve stability and accuracy
- Two steps
 - Bootstrap sample set
 - Aggregation

Random forest > Bagging > Bootstrap

- L: original learning set composed of p samples
- Generate K learning sets Lk...
 - ... composed of q samples, $q \le p,...$
 - ... obtained by uniform sampling with replacement from L
 - In consequences, Lk may contain repeated samples
- Random forest: q = p
 - Asymptotic proportion of unique samples in $L_k = 100 (1 1/e) \sim 63\%$
 - → The remaining samples can be used for testing

Random forest > Bagging > Aggregation

- Learning
 - For each Lk, one classifier Ck (rCART) is learned
- Prediction
 - S: a new sample
 - Aggregation = majority vote among the K predictions/votes Ck(S)

Random forest > Random decision tree

- All labeled samples initially assigned to root node
- N ← root node
- With node N do
 - Find the feature F among a random subset of features + threshold value T...
 - ... that split the samples assigned to N into 2 subsets Sleft and Sright...
 - ... so as to maximize the label purity within these subsets
 - Assign (F,T) to N
 - If Sleft and Sright too small to be splitted
 - Attach child leaf nodes Lieft and Lright to N
 - Tag the leaves with the most present label in Sleft and Sright, resp.
 - else
 - Attach child nodes Nieft and Nright to N
 - Assign Sleft and Sright to them, resp.
 - Repeat procedure for N = N_{left} and N = N_{right}
- Random subset of features
 - Random drawing repeated at each node
 - For D-dimensional samples, typical subset size = round(sqrt(D)) (also round(log2(x)))
 - → Increases diversity among the rCARTs + reduces computational load
- Typical purity: Gini index

Random forest > Properties

	RF	CART	kNN	SVM
• Intrinsically multiclass				
Handles Apple and Orange features				
 Robustness to outliers 				
• Works w/ "small" learning set				
 Scalability (large learning set) 				
Prediction accuracy				
Parameter tuning				

Random forest > Illustration

500 rCARTs

Random forest > Limitations

- Oblique/curved frontiers
 - Staircase effect
 - Many pieces of hyperplanes

- Fundamentally discrete
 - Functional data? (Example: curves)

Outline

- Machine learning
- Decision tree
- Random forest
 - Bagging
 - · Random decision trees
- ▶ Kernel-Induced Random Forest (KIRF)
 - Byproducts
 - Out-of-bag error
 - Variable importance

Kernel-Induced Random Forest (KIRF)

- Random forest
 - Sample S is a vector
 - Features of S = components of S
- Kernel-induced features
 - Learning set $L = \{ S_i, i \in [1..N] \}$
 - Kernel K(x,y)
 - Features of sample $S = \{ K_i(S) = K(S_i, S), i \in [1..N] \}$
 - Samples S and Si can be vectors or functional data

Kernel > Kernel trick

Kernel trick

- Maps samples into an inner product space...
- ... usually of higher dimension (possibly infinite)...
- ... in which classification (or regression) is easier
 - Typically linear

Kernel K(x,y)

- Symmetric
- Positive semi-definite (Mercer's condition):

$$\iint f(x) K(x, y) f(y) dxdy \ge 0$$

- $K(x, y) = \langle \varphi(x), \varphi(y) \rangle$
 - Note: mapping needs not to be known (might not even have an explicit representation; e.g., Gaussian kernel)

Kernel > Examples

- Polynomial (homogeneous): $K(x, y) = (x \cdot y)^d$
- Polynomial (inhomogeneous): $K(x, y) = (x \cdot y + 1)^d$
- Hyperbolic tangent: $K(x, y) = \tanh(\alpha x \cdot y + \beta)$
- Gaussian: $K(x, y) = \exp(-\gamma |x y|^2)$
 - Function of the distance between samples
 - Straightforward application to functional data of a metric space
 - E.g., curves

KIRF > Illustration

- Gaussian kernel
 - Some similarity with vantage-point tree

Reminder: RF w/ 100 rCARTs

KIRF w/ 100 rCARTs

KIRF > Limitations

- Which kernel?
 - Which kernel parameters?
- No "orange and apple" handling anymore
 - $(x \cdot y \text{ or } (x y)^2)$
- Computational load (kernel evaluations)
 - Especially during learning
- Needs to store samples
 - (Instead of feature indices in Random forest)

Outline

- Machine learning
- Decision tree
- Random forest
 - Bagging
 - · Random decision trees
- Kernel-Induced Random Forest (KIRF)
- ▶ Byproducts
 - Out-of-bag error
 - Variable importance

Byproduct > Reminder

- To grow one rCART
 - Bootstrap sample set from learning set L
 - Remaining samples
 - Called out-of-bag samples
 - Can be used for testing
- Two points of view
 - For one rCART, out-of-bag samples = L \ Bootstrap samples
 - Used for variable importance
 - For one sample S of L, set of rCARTs for which S was out-of-bag
 - Used for out-of-bag error

Byproduct > Out-of-bag error

- For each sample S of the learning set
 - Look for all the rCARTs for which S was out-of-bag
 - Build the corresponding sub-forest
 - Predict the class of S with it
 - Error = is prediction correct?
- Out-of-bag error = average over all samples of S
 - Note: predictions not made using the whole forest...
 - ... but with some aggregation
- Provides an estimation of the generalization error
 - Can be used to decide when to stop adding trees to the forest

Byproduct > Variable importance

- For each rCART
 - Compute out-of-bag error OOBoriginal
 - Fraction of misclassified out-of-bag samples
 - Consider the ith feature/variable of the samples
 - Randomly permute its values among the out-of-bag samples
 - Re-compute out-of-bag error OOBpermutation
 - · rCART-level importance(i) = OOBpermutation OOBoriginal
- Variable importance(i) = average over all rCARTs
 - Note: rCART-based errors (no aggregation)
 - Avoid attenuation of individual errors

An introduction to random forests

Thank you for your attention