Macroscopic models for collective sperm-cells dynamics and cells inclination

Laurent Navoret

Joint work with Pierre Degond

ANR Motimo Workshop "Collective dynamics of active particles, swimmers, motile cells" IMFT, Toulouse, 23 September 2015

ANR Motimo

- \rightarrow spermatozoa in seminal liquid
 - 5.10^9 cells per cm 3
 - volume ratio 50%
- → collective movement
 - mass motility
 - dark waves
 - fertility measure

[X. Druart]

Spermatozoa : collective movement and cell geometry

- cell geometry
 - head : flat ellipsoids
 - flagella : neglected
- head inclination \Rightarrow dark zone

Collective displacements

system of interacting particles $(x_k(t), v_k(t)), k \in \{1, \dots, N\}$

 \Downarrow

macroscopic model $(\rho(x,t), u(x,t))$

Interactions

- hydrodynamic interactions
- volume-exclusion interactions predominant at large density

 \Rightarrow **local alignment** for self-propelled elongated particles [Peruani, 2006]

 \Rightarrow experiment validation : spontaneous rotation [Creppy et al.]

[Creppy et al., to appear]

Modeling assumptions

- self-propulsion
- local alignment interactions with neighbors (volume-exclusion interactions)
- geometry : flat disks

Context

- system of interacting particles
- self-propelled dynamics with alignment interactions : Vicsek dynamics, phase transition, band formation [Vicsek, Chaté, etc.]
- derivation of macroscopic model with kinetic theory [Degond, Motsch, 2008]

Plan

1 Particle model

2 Derivation of the macroscopic model

3 Macroscopic model

4 Numerical simulations

Plan

1 Particle model

2 Derivation of the macroscopic model

3 Macroscopic model

4 Numerical simulations

5 Conclusion

Particle model

2D flow

Displacements in layers Layers : horizontal planes with inter-distance d

• Motion inside layers

(altitude) $h_k \in \mathbb{R}$ (position) $x_k(t) \in \mathbb{R}^2$ (velocity) $v_k(t) \in \mathbb{S}^1 \rightarrow \varphi_k(t) \in [0, 2\pi]$

• Spatial configuration of disks

 $v_k \in \text{Disk plane}$ (inclination) $\theta_k(t) \in [0, \pi]$

• self-propulsion : unit speed ($v_k = v(\varphi_k) = (\cos \varphi_k, \sin \varphi_k)^T$)

- self-propulsion : unit speed ($v_k = v(\varphi_k) = (\cos \varphi_k, \sin \varphi_k)^T$)
- Alignment in velocity : relaxation to averaged φ_k
 → local alignment with the disks of the same layer
 → local alignment with the disks the neighboring layers

- self-propulsion : unit speed ($v_k = v(\varphi_k) = (\cos \varphi_k, \sin \varphi_k)^T$)
- Alignment in velocity : relaxation to averaged φ_k
 → local alignment with the disks of the same layer
 → local alignment with the disks the neighboring layers

Inclination dynamics

 \rightarrow nematic alignment with disks of the same layer : relax to $\bar{\theta}_k$

ightarrow with disks of the neighboring layers : torque w.r.t to $\langle v_k
angle$: T_k

$$T_{k} = \sum_{\substack{j, h_{j} = h_{k} \pm 1, \\ |X_{j} - X_{k}| \leq R}} T_{kj} \qquad T_{kj} = \operatorname{sign}(h_{j} - h_{j}) \left(v_{k} \times v_{j} \right) \cdot \hat{z}$$

- self-propulsion : unit speed ($v_k = v(\varphi_k) = (\cos \varphi_k, \sin \varphi_k)^T$)
- Alignment in velocity : relaxation to averaged φ_k
 → local alignment with the disks of the same layer
 → local alignment with the disks the neighboring layers
- Inclination dynamics
 - \rightarrow nematic alignment with disks of the same layer : relax to $\overline{\theta}_k$
 - ightarrow with disks of the neighboring layers : torque w.r.t to $\langle v_k
 angle$: T_k
- diffusion in velocity and inclination : $B_t^{arphi,k}$, $B_t^{ heta,k}$ Brownian motion

- self-propulsion : unit speed ($v_k = v(\varphi_k) = (\cos \varphi_k, \sin \varphi_k)^T$)
- Alignment in velocity : relaxation to averaged φ_k
 → local alignment with the disks of the same layer
 → local alignment with the disks the neighboring layers

Inclination dynamics

ightarrow nematic alignment with disks of the same layer : relax to $\bar{\theta}_k$

ightarrow with disks of the neighboring layers : torque w.r.t to $\langle v_k
angle$: T_k

• diffusion in velocity and inclination : $B_t^{\varphi,k}$, $B_t^{\theta,k}$ Brownian motion

$$\Rightarrow$$
 several parameters : ν , μ , K , D , δ

Plan

1 Particle model

2 Derivation of the macroscopic model

3 Macroscopic model

4 Numerical simulations

5 Conclusion

Mean-field kinetic equation

- $f(x, \varphi, \theta, h, t)$ distribution function in phase space $x \in \mathbb{R}^2, \varphi \in [0, 2\pi], \theta \in [0, \pi], h \in \mathbb{N}$
- Mean-field model

$$\begin{split} \partial_t f + \nabla_x \cdot (v(\varphi)f) &= -\partial_\varphi \Big(-\nu \sin(\varphi - \bar{\varphi}_f)f \Big) + D \, \partial_\varphi^2 f \\ &\quad -\partial_\theta \Big((-K \sin(2(\theta - \bar{\theta}_f)) + \mu \, T_f)f \Big) + \delta \, \partial_\theta^2 f \end{split}$$
 with $v(\varphi) &= (\cos \varphi, \sin \varphi)^T. \end{split}$

Mean inclination angle $\bar{\theta}_f$:

$$e^{2i\bar{\theta}_f} = \frac{J_{R,f}^{\theta}}{|J_{R,f}^{\theta}|} \quad J_{R,f}^{\theta}(x,h,t) = \int_{\substack{\theta \in [0,\pi], \varphi \in [0,2\pi], \\ y \in \mathbb{R}^2, |y-x| \leqslant R}} e^{2i\theta} f(y,\varphi,\theta,h,t) \, dy \, d\varphi \, d\theta$$

Rescaling

• Large time and space scale (hydrodynamic rescaling)

 $\tilde{x} = \varepsilon x, \quad \tilde{t} = \varepsilon t, \quad \varepsilon \ll 1$

interaction frequency inside layers

 \gg interaction frequency between neighboring layers

$$\rightarrow \mu = \varepsilon \mu', \text{ with } \mu' = O(1) \rightarrow \beta = \varepsilon \beta', \text{ with } \beta' = O(1)$$

Rescaling

• Large time and space scale (hydrodynamic rescaling)

 $\tilde{x} = \varepsilon x, \quad \tilde{t} = \varepsilon t, \quad \varepsilon \ll 1$

interaction frequency inside layers

 \gg interaction frequency between neighboring layers

$$\rightarrow \mu = \varepsilon \mu', \text{ with } \mu' = O(1) \rightarrow \beta = \varepsilon \beta', \text{ with } \beta' = O(1)$$

• Operator Q(f) :

 $Q(f^{\varepsilon}) = K \, \partial_{\theta} \big(\sin(2(\theta - \bar{\theta}_{f^{\varepsilon}})) f^{\varepsilon} \big) + \delta \partial_{\theta}^2 f^{\varepsilon} + \nu \, \partial_{\varphi} \big(\sin(\varphi - \bar{\varphi}_{f^{\varepsilon}}) f^{\varepsilon} \big) + D \partial_{\varphi}^2 f^{\varepsilon}$

Equilibria

- Q(f) non-linear tensorial Fokker-Planck operator
- Convergence to local equilibra for velocity/inclination distribution

 $\mathcal{E} = \{f, Q(f) = 0\} = \left\{\rho M_{\bar{\varphi}, \bar{\theta}} \quad | \quad \rho \in \mathbb{R}^+, \bar{\varphi} \in [0, 2\pi], \, \bar{\theta} \in [0, \pi]\right\}$

with $M_{\bar{\varphi},\bar{\theta}}$ product of von-Mises function

$$M_{\bar{\varphi},\bar{\theta}}(\varphi,\theta) = \frac{1}{Z} \exp\left(\frac{\nu}{D}\cos(\varphi-\bar{\varphi})\right) \exp\left(\frac{K}{\delta}\cos(2(\theta-\bar{\theta}))\right)$$

with Z : renormalization constant.

• macroscopic dynamics of $ho,ar{arphi},\ ar{ heta}$

Moment method

• Dynamics of ρ : mass conservation

$$\partial_t \rho + \nabla_x \cdot (c_1 \rho \, v(\bar{\varphi})) = 0$$

- Dynamics of $\bar{\varphi}$, $\bar{\theta}$?
 - → No conservation of momentum \Rightarrow lack of collisional invariants dimension of $\mathcal{E} = 3$ > dimension of collisional invariants = 1
 - → [Degond,Motsch,2008] Generalized collisional invariants

Plan

1 Particle model

2 Derivation of the macroscopic model

3 Macroscopic model

4 Numerical simulations

5 Conclusion

Theorem (Macroscopic system)

$$\begin{array}{ll} \begin{array}{l} \begin{array}{l} \begin{array}{l} \left[density \\ \rho(x,h,t) \right] \end{array} & \partial_t \rho + c_1 \, \nabla_x \cdot \left(\rho \, v(\bar{\varphi}) \right) = 0 \end{array} \\ \begin{array}{l} \begin{array}{l} \left[mean \ velocity \\ angle \ \bar{\varphi}(x,h,t) \right] \end{array} & \rho \left(\partial_t \bar{\varphi} + c_2 \left(v(\bar{\varphi}) \cdot \nabla_x \right) \bar{\varphi} \right) + \frac{1}{\kappa_1} \, v(\bar{\varphi})^\perp \cdot \nabla_x \rho = \frac{\nu \beta'}{c_3} \, v(\bar{\varphi})^\perp \cdot \mathcal{S} \end{array} \\ \begin{array}{l} \begin{array}{l} \left[mean \ inclination \\ angle \ \bar{\theta}(x,h,t) \right] \end{array} & \rho \left(\partial_t \bar{\theta} + c_1 \left(v(\bar{\varphi}) \cdot \nabla_x \right) \bar{\theta} \right) = \frac{\mu'}{c_4} \, \left(c_1 \rho v(\bar{\varphi}) \right)^\perp \cdot \mathcal{T} \end{array} \end{array}$$

- Left-hand side : Self-Organized Hydrodynamics (SOH) model $(\rho, \bar{\varphi})$ + transport $(\bar{\theta})$
- Right-hand side : interaction between layers

$$S = \sum_{\substack{k, \, k-h=\pm 1}} \langle gM_2M_2 \rangle(\bar{\theta}, \bar{\theta}_k) \, c_1 \rho_k v(\bar{\varphi}_k)$$
$$\mathcal{T} = \sum_{\substack{k, \, k-h=\pm 1}} \operatorname{sign}(k-h) \langle gM_2M_2\partial_\theta I_2 \rangle(\bar{\theta}, \bar{\theta}_k) \, c_1 \rho_k v(\bar{\varphi}_k)$$

Theorem (Macroscopic system)

$$\begin{array}{ll} [\operatorname{density} & \partial_t \rho + c_1 \, \nabla_x \cdot (\rho \, v(\bar{\varphi})) = 0 \\ [\operatorname{mean velocity} & \operatorname{angle} \bar{\varphi}(x, h, t)] & \rho \left(\partial_t \bar{\varphi} + c_2 \, (v(\bar{\varphi}) \cdot \nabla_x) \bar{\varphi} \right) + \frac{1}{\kappa_1} \, v(\bar{\varphi})^\perp \cdot \nabla_x \rho = \frac{\nu \beta'}{c_3} \, v(\bar{\varphi})^\perp \cdot \mathcal{S} \\ [\operatorname{mean inclination} & \operatorname{angle} \bar{\theta}(x, h, t)] & \rho \left(\partial_t \bar{\theta} + c_1 \, (v(\bar{\varphi}) \cdot \nabla_x) \bar{\theta} \right) = \frac{\mu'}{c_4} \, (c_1 \rho v(\bar{\varphi}))^\perp \cdot \mathcal{T} \end{array}$$

- Left-hand side : Self-Organized Hydrodynamics (SOH) model $(\rho, \bar{\varphi})$ + transport $(\bar{\theta})$
- Right-hand side : interaction between layers

$$S = \sum_{\substack{k, k-h=\pm 1 \\ k, k-h=\pm 1}} \langle gM_2 M_2 \rangle (\bar{\theta}, \bar{\theta}_k) c_1 \rho_k v(\bar{\varphi}_k)$$
$$\mathcal{T} = \sum_{\substack{k, k-h=\pm 1 \\ k, k-h=\pm 1}} \operatorname{sign}(k-h) \langle gM_2 M_2 \partial_{\theta} I_2 \rangle (\bar{\theta}, \bar{\theta}_k) c_1 \rho_k v(\bar{\varphi}_k)$$

• c_1 , c_2 , c_3 , c_4 : weighted averages of von-Mises equilibria

Theorem (Macroscopic system)

$$\begin{array}{ll} [\operatorname{density} & \partial_t \rho + c_1 \, \nabla_x \cdot (\rho \, v(\bar{\varphi})) = 0 \\ [\operatorname{mean velocity} & \operatorname{angle} \bar{\varphi}(x, h, t)] & \rho \left(\partial_t \bar{\varphi} + c_2 \, (v(\bar{\varphi}) \cdot \nabla_x) \bar{\varphi} \right) + \frac{1}{\kappa_1} \, v(\bar{\varphi})^\perp \cdot \nabla_x \rho = \frac{\nu \beta'}{c_3} \, v(\bar{\varphi})^\perp \cdot \mathcal{S} \\ [\operatorname{mean inclination} & \operatorname{angle} \bar{\theta}(x, h, t)] & \rho \left(\partial_t \bar{\theta} + c_1 \, (v(\bar{\varphi}) \cdot \nabla_x) \bar{\theta} \right) = \frac{\mu'}{c_4} \, (c_1 \rho v(\bar{\varphi}))^\perp \cdot \mathcal{T} \end{array}$$

- Left-hand side : Self-Organized Hydrodynamics (SOH) model $(\rho, \bar{\varphi})$ + transport $(\bar{\theta})$
- Right-hand side : interaction between layers

$$S = \sum_{k, k-h=\pm 1} \langle gM_2M_2 \rangle(\bar{\theta}, \bar{\theta}_k) c_1 \rho_k v(\bar{\varphi}_k)$$
$$\mathcal{T} = \sum_{k, k-h=\pm 1} \operatorname{sign}(k-h) \langle gM_2M_2\partial_\theta I_2 \rangle(\bar{\theta}, \bar{\theta}_k) c_1 \rho_k v(\bar{\varphi}_k)$$

• g overlap function \Rightarrow strong coupling between velocity and inclination

Plan

1 Particle model

2 Derivation of the macroscopic model

3 Macroscopic model

4 Numerical simulations

5 Conclusion

Numerical method

$$\begin{aligned} \partial_t \rho + c_1 \, \nabla_x \cdot (\rho v(\bar{\varphi})) &= 0 \\ \rho \Big(\partial_t \bar{\varphi} + c_2 \, (v(\bar{\varphi}) \cdot \nabla_x) \bar{\varphi} \Big) + \frac{1}{\kappa_1} \, v(\bar{\varphi})^\perp \cdot \nabla_x \rho &= \frac{\nu \beta'}{c_3} \, v(\bar{\varphi})^\perp \cdot \mathcal{S} \\ \rho \Big(\partial_t \bar{\theta} + c_1 \, (v(\bar{\varphi}) \cdot \nabla_x) \bar{\theta} \Big) &= \frac{\mu'}{c_4} \, (c_1 \rho v(\bar{\varphi}))^\perp \cdot \mathcal{T} \end{aligned}$$

Difficulties :

- no momentum conservation \Rightarrow non-conservative hyperbolic system
- [Motsch, Navoret] Relaxation scheme : at each time step
 - 1 solve the left-hand side with a finite volume scheme
 - 2 add the source term
 - 3 renormalized the velocity vector field

Comparison between particle and macroscopic simulations

Space homogeneous simulation : 3 layers, velocity angle $\bar{\varphi}$

macro / micro (averaged over 20 runs)

macro / micro (10 runs)

- relaxation to a unique velocity angle
- good agreement micro/macro

 ${\sf Parameters}: 25000 \text{ particles per layer}$

- relaxation in two steps
- stochastic fluctuations (finite number of particles)
 → second relaxation earlier for micro simulations
- after second relaxation : constant inclination

Parameters : 25000 particles per layer, d = 0.02 = R

- relaxation in two steps
- stochastic fluctuations (finite number of particles)
 → second relaxation earlier for micro simulations
- after second relaxation : constant inclination

Parameters : 25000 particles per layer, d = 0.0205 > R = 0.02

2D Taylor-Green test-case

 \rightarrow velocity : normalized and translated Taylor Green vortex

$$\begin{aligned} v(\bar{\varphi}) &= \frac{(u_1, u_2)}{\|(u_1, u_2)\|} \\ u_1(x, y) &= \frac{1}{3} \sin\left(\frac{\pi}{5}x\right) \cos\left(\frac{\pi}{5}y\right) + \frac{1}{3} \sin\left(\frac{3\pi}{10}x\right) \cos\left(\frac{3\pi}{10}y\right) + \frac{1}{3} \sin\left(\frac{\pi}{2}x\right) \cos\left(\frac{\pi}{2}y\right) \\ u_2(x, y) &= -\frac{1}{3} \cos\left(\frac{\pi}{5}x\right) \sin\left(\frac{\pi}{5}y\right) - \frac{1}{3} \cos\left(\frac{3\pi}{10}x\right) \sin\left(\frac{3\pi}{10}y\right) - \frac{1}{3} \cos\left(\frac{\pi}{2}x\right) \sin\left(\frac{\pi}{2}y\right) \end{aligned}$$

 \rightarrow inclination : space homogeneous

2D Taylor-Green test-case : 3 layers, density

- Layer 2 : intermediate layer
- good agreement
- except in low density region
- macro : more diffuse

Parameters : 10^5 particles per layer

2D Taylor-Green test-case : cosine of the inclination angle

- uniform at $t = 0 \Rightarrow$ non uniform
- large differences between micro/macro
- aligned inclinations do not necessarily match regions of uniform densities

Parameters : 10^5 particles per layer

Plan

1 Particle model

2 Derivation of the macroscopic model

3 Macroscopic model

4 Numerical simulations

Conclusion

- Tensorial alignment problem (velocity, inclination)
- Macroscopic model : hyperbolic system with source terms
- Some deviations for the inclination dynamics but general good agreement between particle/macroscopic simulations

To do :

- characterize the macroscopic motion
- model refinement (density constraint, etc.)
- annular ring geometry

Advertisement

Master 2 of Cell Physics (Université de Strasbourg)

 $\frac{D}{Dk}\rho_{\alpha} = \frac{1}{\gamma_{c}}h_{\alpha} + \lambda_{1}\rho_{\alpha}\Delta\mu - \nu_{1}v_{\alpha\beta}\rho_{\beta} - \dot{\nu}_{1}v_{\beta\beta}\rho_{\alpha}, r = \Lambda\Delta\mu + \zeta\rho_{\alpha}\rho_{\beta}v_{\alpha\beta} + \dot{\zeta}v_{\alpha\alpha} + \lambda_{1}\rho_{\alpha}h_{\alpha},$

 $2\eta v_{\alpha\beta} = \left(1 + r \frac{D}{Dt}\right) \left\{ \sigma_{\alpha\beta} + \left(\Delta \mu q_{\alpha\beta} + n \delta_{\alpha\beta} - \frac{\nu_1}{2} \left(\mu_i \delta_{\mu} + \rho_j \delta_{\mu} - \frac{2}{3} h_i \mu_i \delta_{\alpha\beta} \right) \right\}$

STRASBOURG UNIVERSITY · FRANCE

Direction : D. Riveline (IGBMC)