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Sperm migration

» In natural fertilisation, an initial population of several hundred
million sperm is reduced to tens or hundreds near the egg, and
at most one fertilising cell.
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Sperm

migration

In natural fertilisation, an initial population of several hundred
million sperm is reduced to tens or hundreds near the egg, and
at most one fertilising cell.

Sperm actively migrate several thousand body lengths by
beating their flagella.

This migration is through viscous and/or viscoelastic fluid,
including mucus and the cumulus mass surrounding the egg.
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The human sperm

» Human sperm swim at up to about 100 um/s; the tail beat
frequency is anywhere from 2-30 Hz depending on
temperature, liquid properties and biochemistry.
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The human sperm

» Human sperm swim at up to about 100 um/s; the tail beat
frequency is anywhere from 2-30 Hz depending on
temperature, liquid properties and biochemistry.

> A typical ‘physiological’ migratory cell will beat at 10-15 Hz
and swim at 50 um/s in cervical mucus substitute.
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Figure 3. Imaging and analysis of a sperm cell in high viscosity
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Different strokes

Low viscosity sperm

High viscosity sperm
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The importance of sperm energy metabolism

Perhaps due to Purcell's famous 1976 lecture... is energy a limiting
factor in microscale propulsion?
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Perhaps due to Purcell's famous 1976 lecture... is energy a limiting
factor in microscale propulsion? There is significant evidence of its
importance in mammalian fertilisation, and considerable interest in
the sperm biology community.

» There is a statistically significant correlation between
infertility and mitochondrial volume in human sperm [Mundy
et al. Hum. Reprod. 10:116-9, 1995].

» Mitochondria occupy about 2 x 107 m3 and can normally
produce about 10° W/m~3 chemical power via ATP:ADP
ratio, i.e. about 2 x 10712 W.

» A fibre 5 x 107> m in length undergoing oscillations of
5 x 107® m at frequency 10 Hz in fluid of viscosity 0.2 Pa.s
will cause viscous power dissipation of the order of 10712 W.

» Energy transport is also important (enzymatic shuttles, local
glycolysis, see reviews by C. Ford [Hum. Reprod. Update
12:269, 2006], also B. Storey, K. Miki, recent data in mouse
by Takei et al. [J. Exp. Biol. 217:1876, 2014]).
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Dynamics of incompressible fluid

Momentum and mass balance yield,

ou” * EAPHE T B w2 *
p(@t*+(u -V)u)-V o,

where o* is the stress tensor, which can be divided into an
isotropic part and a deviatoric part, ojx = —pdjx + Ti.
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Dynamics of incompressible fluid

Momentum and mass balance yield,

ou” * EAPHE T B w2 *
p(@t*+(u -V)u)-V o,

where o™ is the stress tensor, which can be divided into an
isotropic part and a deviatoric part, ojx = —pdjx + Ti.
A Newtonian fluid is defined by the constitutive law,

Tik = M(ajuk + 8kuj).
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Very low Reynolds number flow

Newtonian incompressible flow is then described by the
Navier-Stokes equations,

8'.‘* * * *
p(at*—i-(u -V)u)
V*u* =0.

_V*p* + MV*ZU*’
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Very low Reynolds number flow

Newtonian incompressible flow is then described by the
Navier-Stokes equations,

8'.‘* * * *
p<8t*+(u -V)u)
V*u* =0.

_V*p* + MV*ZU*’

Nondimensionalising with respect to typical velocity scale U and
length scale L yields the dimensionless equations,

Re (gttl + (u- V)u> = —Vp+ uV?u, (1)

V-u=0, (2)

where Re = pUL/u is the Reynolds number. Typical scales are
U =50 um/s and L =50 pum, so Re <« 1.
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Stokes flow

» Very low Reynolds number physically means that inertia is
negligible relative to viscosity.

0=-Vp+puV?u, V.-u=0,

» This balance yields the ‘Scallop Theorem’ of E.M. Purcell
(but known much earlier): a time-irreversible motion is
essential for a cell to propel itself.

-

“Flapping’sno progress!

\_‘Bendingwaves’ progressive motility
.

- _ F

N
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Irreversible beat pattern

» How is irreversibility achieved?
Oblique movements cause a
thrust in one direction through
slender body drag anisotropy:
fo = Coup, fr = Cruy,

(Co/Ce = 2).
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Irreversible beat pattern

< cylinder

» How is irreversibility achieved?
Oblique movements cause a
thrust in one direction through venin]
slender body drag anisotropy:
fo = Coup, fr = Cruy,

(Ch/Ct = 2).

» Sperm swim by propagating 5
waves; these waves cause
oblique movements of the
slender flagellum, the
anisotropic drag law results in
thrust (balanced by the drag on
the head).
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Boundary conditions

Biological flow problems typically involve moving, curved
boundaries, e.g. the cell body, flagellum, cilia...
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Boundary conditions

Biological flow problems typically involve moving, curved
boundaries, e.g. the cell body, flagellum, cilia...

The fluid velocity at a material surface point X must satisfy the
no-slip, no-penetration condition u(X) = 9;X.

For the purpose of this talk, we will consider ‘local’ models only:
assume that the flow around the cell approaches zero at long
distances.

In many situations, boundaries are very important, e.g. epithelial
surfaces, microscope slide... these surfaces can be dealt with via
boundary integral methods and/or the method of images (e.g. the
‘blakelet’).
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Mathematical approaches to flagellar propulsion

Linearity of the Stokes flow equations motivates methods based on
superposition of fundamental solutions.

14 /46



Mathematical approaches to flagellar propulsion
Linearity of the Stokes flow equations motivates methods based on
superposition of fundamental solutions. The Stokes flow equations

with spatially concentrated force are,

—~Vp+ V2u+erd(x) =0,

(3)
V-u=0. (4)

14 /46



Mathematical approaches to flagellar propulsion

Linearity of the Stokes flow equations motivates methods based on
superposition of fundamental solutions. The Stokes flow equations
with spatially concentrated force are,

—~Vp+ V2u+erd(x) =0, (3)

V-u=0. (4)

The velocity part of the solution defines the ‘stokeslet’/Oseen
tensor Sj := u;.

ui(x) = Siﬂ (‘Sfr + ngk) =: Si(x), (5)

where r = |x|.

14 /46



Mathematical approaches to flagellar propulsion
Linearity of the Stokes flow equations motivates methods based on
superposition of fundamental solutions. The Stokes flow equations
with spatially concentrated force are,

—~Vp+ V2u+erd(x) =0, (3)
V-u=0. (4)

The velocity part of the solution defines the ‘stokeslet’/Oseen
tensor Sj := u;.

ui(x) = Siﬂ (51' + ngk) =: Si(x), (5)

r

where r = |x|.
The pressure part yields,
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Higher-order singularities

Spatial derivatives of stokeslets are also solutions of the Stokes
flow equations:
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Higher-order singularities

Spatial derivatives of stokeslets are also solutions of the Stokes
flow equations:
Third-rank tensor (stokes doublet):

L [(djxe  Ojexk  Xj0pk Xj XicXg
_agsjk_&r( P I T +3 r° '

This can be decomposed into an antisymmetric part (rotlet) and a
symmetric part (stresslet).
Stresslets can be added to yield a source:

1 /x;
W, := ok (—0eSjk) = o (Té) ;

differentiating further yields a source dipole (as in potential
theory):
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Stokes' Law

Stokeslets, rotlets, stresslets, source dipoles etc. can be used to
construct solutions to flow problems. For example, the flow due to
a sphere of radius a moving in with velocity (0,0, U) is given by,

1 [0 xixx a2 1 Ok Xi X
e ) ST i S B (Lt S
uj = bmalows (87T ( r + r3 > 6 4w r3 +3 r° ’

which satisfies uj = d;3U on r = a, and yields Stokes’ law that the
(dimensional) drag on a sphere has magnitude 6rpual. The
moment on a rotating sphere can be derived similarly via the rotlet.
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Linear superposition of stokeslets

A concentrated point force located at y with strength F, produces
a velocity field (the ‘stokeslet’/Oseen tensor),

uj(x) = Sjk(x = y)Fi,

with the summation convention.
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A concentrated point force located at y with strength F, produces
a velocity field (the ‘stokeslet’/Oseen tensor),

uj(x) = Sjk(x = y)Fi,

with the summation convention.
Flow due to a slender body with centreline X(s) can be expressed
approximately as,

L
uj(x) = / Sik(x, X(s")) ik (s")ds',
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where the force per unit length f(s’) is determined so that

uj(X(s) + an(s)) ~ 0:X(s) where n(s) is a vector normal to the
centreline and a is slender body radius (small).
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Linear superposition of stokeslets

A concentrated point force located at y with strength F, produces
a velocity field (the ‘stokeslet’/Oseen tensor),

uj(x) = Sjk(x — y)Fx,

with the summation convention.
Flow due to a slender body with centreline X(s) can be expressed
approximately as,

L
uj(x):/0 Sjk(x,X(s’))fk(s’)ds/,

where the force per unit length f(s’) is determined so that
uj(X(s) + an(s)) ~ 0:X(s) where n(s) is a vector normal to the
centreline and a is slender body radius (small).

There are quite a few variants of slender body theory and
associated error analyses developed in the 1970s (Lighthill,
Batchelor, Cox, Johnson...). The above is accurate to O(y/a) in

theory and often works better in practice.
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More modern methods

More modern approaches include the use of boundary integral
methods (surface integrals of stokeslets), regularised stokeslets,
hybrid regularised stokeslet-boundary element methods,
force-coupling methods, finite elements...
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More modern methods

More modern approaches include the use of boundary integral
methods (surface integrals of stokeslets), regularised stokeslets,
hybrid regularised stokeslet-boundary element methods,
force-coupling methods, finite elements...

This talk will however work with a local approximation to slender
body theory, and its generalisation to include viscoelastic effects.
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Resistive force theory

Recall the relation f, = Chup, fy = Crur with C,/Ci ~ 2. This can
be derived by neglecting the ‘non-local’ part of the integral,

) = [ Sulx X

ls—s'|<q

+ S; «(s')ds’,
=9

for a parameter g = O(v/a).

46



Local coordinates: tangential component

Moving into a local coordinate system such that the section of
flagellum for s — g < s’ < s+ q is centred at the origin and lies
along the x; axis, we can consider what force per unit length would
be needed to produce velocity u; in the xi-direction and uj, in the
x; (or x3) direction at x; =0, X3 + x5 = a°:
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Local coordinates: tangential component

Moving into a local coordinate system such that the section of
flagellum for s — g < s’ < s+ q is centred at the origin and lies
along the x; axis, we can consider what force per unit length would
be needed to produce velocity u; in the xi-direction and uj, in the
x; (or x3) direction at x; =0, X3 + x5 = a°:

L /q ORI ) G P
U~ — .
e ) \Vs2t a2 (s2+a2)32) "

Evaluating the integral and taking the leading order terms yields,

ut%i <4In (2(]) 2>.
8 a
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Local coordinates: normal component

Repeating this process for velocity u, in the x» direction:
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Local coordinates: normal component

Repeating this process for velocity u, in the x» direction:

1 /q ( 1 x3 )
Up % — + fads.
8m ) g \Vs2+a2 (s2+a%)32
Notice we now have a term which varies azimuthally, x. This can
be cancelled by adding a dipole distribution, or alternatively we can
just take its azimuthal average, < x3 >=< a’cos? ) >= a2/2.

Then,
Up ~ i <2In <2q) +1> .
8 a
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Resitive force theory

The (Gray & Hancock 1955) resistive force coefficients are then,

4 8
Cim= iy Cp=—

2In (%) -1 2in (%) +1
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Resitive force theory

The (Gray & Hancock 1955) resistive force coefficients are then,

A o8
2In (%) -1 2in (%) +1

The slender body integral equation can then be approximated as,

Ct -

ui(X(s)) ~ Gt f+n;Coln - f
:ej-C 1'f,

where C™1 = G/ 'tt + C; tnn
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Weak viscoelastic effects: Linearised Maxwell fluid

Mucus is viscoelastic, indeed so is the analogue fluid
(methylcellulose) we use in the lab: typical relaxation time 0.006 s
(compared with 10-20 Hz beat frequency).
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Weak viscoelastic effects: Linearised Maxwell fluid

Mucus is viscoelastic, indeed so is the analogue fluid
(methylcellulose) we use in the lab: typical relaxation time 0.006 s

(compared with 10-20 Hz beat frequency).
To estimate the effect of this, we considered a linearised version of

the (dimensionless) Maxwell fluid model,
(1 + Aat) Tk = (8juk + 8kUj),

or
Tik = E(ajuk + 6kuj).
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Fundamental solution of Linearised Maxwell fluid (Smith,
Gaffney & Blake)

The Maxwell-Stokes flow equations with forcing singular in time
and space are,

—Vp+ LV?u+ exd(x,t) = 0.
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Fundamental solution of Linearised Maxwell fluid (Smith
Gaffney & Blake)

The Maxwell-Stokes flow equations with forcing singular in time
and space are,

—Vp+ LV?u + e d(x, t) = 0.

We can then construct a solution l~3k, S’k from the Newtonian
Stokeslet,

Pk(X, t) = Pk(x)é(t), Sjk(x, t) = jk(X) (1 + )\at) 5(1‘)
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Viscoelastic slender body theory

We will construct a solution through an integral both along
arclength and in time (assuming zero flow for t < 0):

t+
u(x, t) / /Sjkx N, t — (s, t')ds' dt’,

= /f+/ (1+ X0:)d(t — t,)Sjk(X—X(S/))fk(s” t’)ds'dt’,
0—- Jo

where 0— and t-+ denotes limits taken from below at zero and
from above at t.
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Viscoelastic slender body theory

Let T3 <0 and T, > t, with H(t) being a test function. Then,

/T2(1 FAG)S(E — EYH(E)dE = H(E) + AH(£).
T
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Viscoelastic slender body theory

Let T3 <0 and T, > t, with H(t) being a test function. Then,

/T2(1 FAG)S(E — EYH(E)dE = H(E) + AH(£).
T

Apply the above with,

/@kx— ls t')ds

and take limits as T; 10 and T5 | t, to deduce that for t > 0,

L
u(x, £) = (1 + Ady) / Si(x — X(s', ), t)ds .
0

26
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Maxwell resistive force theory

Applying the same local approximation as for the Newtonian case
then yields (for planar motion),

Up & CTH(Fy + Mef),  ur ~ C7 (e + AO:fy).
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Maxwell resistive force theory

Applying the same local approximation as for the Newtonian case
then yields (for planar motion),

Up & CTH(Fy + Mef),  ur ~ C7 (e + AO:fy).

These relations provide a means to approximate the force per unit
length on an imaged flagellum by solving a pair of ordinary
differential equations.
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Outline

Elastohydrodynamics
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Motivation

The above shows how the local force per unit length on the
flagellum can be approximated from experimental data. One
question of interest is, what does the internal active structure of
the flagellum have to do in order to create this fluid dynamic force
— and how much energy is required?
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Motivation

The above shows how the local force per unit length on the
flagellum can be approximated from experimental data. One
question of interest is, what does the internal active structure of
the flagellum have to do in order to create this fluid dynamic force

— and how much energy is required?

Outer fiber
(doublet)

Outer dynein arm

Membrane —_

Central
fiber

Nexin

Radial link

head sheath

Radial
link

Bending and motion of cilia
and flagella is produced as
a result of relative sliding of
adjacent microtubule
doublets, produced by the
motor protein, dynein
ATPase.
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Dynamics of an elastic rod with external forcing

» Consider a one-dimensional curved rod X(s) bending in a
plane, with tangent angle ¢(s) relative to a fixed axis.

30 /46



Dynamics of an elastic rod with external forcing

» Consider a one-dimensional curved rod X(s) bending in a
plane, with tangent angle ¢(s) relative to a fixed axis.

» Considering the rod as two segments [0, s] and (s, L], we can
define the contact moment M(s) and contact force F(s)
exerted by the distal segment [s, L] on the proximal segment
[0, s] at X(s).

30 /46



Dynamics of an elastic rod with external forcing

» Consider a one-dimensional curved rod X(s) bending in a
plane, with tangent angle ¢(s) relative to a fixed axis.

» Considering the rod as two segments [0, s] and (s, L], we can
define the contact moment M(s) and contact force F(s)
exerted by the distal segment [s, L] on the proximal segment
[0, s] at X(s).

» At the distal end, N(L) =0 and M(L) = 0.
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Dynamics of an elastic rod with external forcing

Taking a small strain, finite curvature (¢s) constitutive model for
elasticity:

M(s) = E(s)os(s)-
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Dynamics of an elastic rod with external forcing

Taking a small strain, finite curvature (¢s) constitutive model for
elasticity:

M(s) = E(s)os(s)-

The surrounding fluid exerts a force per unit length f(s). Force
balance and the distal boundary condition yield,

N(s) = /SL fds'.

Moment balance on an infinitesimal segment of the rod then yields,

L
n-/ fds' + 0s(Ex) =0,

S

where n is a unit normal.
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Flagellar bending stiffness E(s)

Based on micrograph data on thinning of the sperm flagellum we

can approximate E(s) by a quadratic,

(Ep — Eq) (575">2 +Ey s<sq

Sd

Eq S > 5.

Ep(s) (Nm?)
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Active moments

The simplest model of an active flagellum decomposes it into a
compound structure of two effective ‘filaments’ separated by
distance b, with interfilament force per unit length having
tangential component f(s) (so that the moment per unit length is
bf).
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Sliding filament elastohydrodynamics

Modelling each filament as an elastic rod with tangential
interfilament force f, leads to the elastohydrodynamic equation,

L
n- / fds' + bf + 0s(Ex) = 0.

S
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The interfilament force f arises from both active motor proteins
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Sliding filament elastohydrodynamics

Modelling each filament as an elastic rod with tangential
interfilament force f, leads to the elastohydrodynamic equation,

L
n- / fds' + bf + 0s(Ex) = 0.
S
The interfilament force f arises from both active motor proteins
(dynein ATPase) and passive elastic bonds (nexin links, radial
spokes):

f=fl+fP

Introduce the relative sliding between the filaments, A(s). A linear
elastic passive resistance fP = —KA.
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Basal sliding

For small separation between the filaments we have the
approximate relation,

A(s) = A(0) + b(4(s) — ¢(0))-

If the filaments are restrained at the base so that A(0) =: Ay =0
then we have simply,
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Basal sliding

For small separation between the filaments we have the
approximate relation,

A(s) = A(0) + b(4(s) — ¢(0))-

If the filaments are restrained at the base so that A(0) =: Ay =0
then we have simply,

If however (as is probable) relative sliding does occur, then we need
to model the basal compliance. Taking a linear model with stiffness
& and balancing the jump in contact force at the base yields,

L
/ fds' = €.
0
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Basal sliding

Integrating the elastohydrodynamic equation and rearranging then

yields,
AV §b< / / s')ds'ds + E¢s(0 ))
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Basal sliding

Integrating the elastohydrodynamic equation and rearranging then

yields,
AV §b< / / s')ds'ds + E¢s(0 ))

After some further rearranging we can then estimate the internal
active force per unit length 9 from the fluid dynamic force per
unit length f:

fd:_“(s)./ fd’-—@(E(;Ss)-i-bK(Qb o)

(/ /f )ds'ds + E¢s(0 )).
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Parameterisation and results

There is uncertainty regarding basal stiffness &, however f¢ more
closely resembles a travelling wave for £ > 0.1 N/m (significantly
stiffer than say sea urchin). We should be able to recover this
through micromanipulation and ‘counterbend’ observation in
human cells.
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Parameterisation and results

By examining micromanipulation data on animal sperm and
making appropriate scalings we can estimate most of the
parameters for the human sperm model.
E, E, Ky Kq 13
(x1072! Nm2) (x1072! Nm?) (x10%® N/m2?) (x103N/m?) (N/m)

8 2.2 2 2 0.1
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Parameterisation and results
By examining micromanipulation data on animal sperm and
making appropriate scalings we can estimate most of the
parameters for the human sperm model.

E, Ey K, Ky 3
(x10~2' Nm?) (x10~2' Nm?) (x10° N/m2) (x10% N/m2) (N/m)
8 22 2 2 0.1
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A peak active force density of 5 x 1073 N/m [=5 pN/nm] is
consistent with data on dynein density and peak force.
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Complex compliance model

We can use this method to assess the ‘complex compliance’ model
of dynein activity of F. Jiilicher and colleagues, A = kf9 for some
parameter k € C by taking a discrete Fourier transform.

‘A’ = |kH?d|, argA =arg Fd + arg k.
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Complex compliance model

We can use this method to assess the ‘complex compliance’ model
of dynein activity of F. Jiilicher and colleagues, A = kf9 for some
parameter k € C by taking a discrete Fourier transform.
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Rate of working

Material points of the upper and lower filaments are given by,

XE(s, t) := X(s, t) = (bn(s, t) + A(s, t)t(s, t)).
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Rate of working

Material points of the upper and lower filaments are given by,
XE(s, t) := X(s, t) = (bn(s, t) + A(s, t)t(s, t)).

Calculating OtXi(s, t) and multiplying by the force components
+1(s, t)t(s, t) yields the rate of working as simply,

FA = (F + fP)A.
The rate of working of the active elements is then,

Acf? = A(KA + f) = 12K A + (Doe + bde — bor ).
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Biochemical energy

» Chemical energy (ATP/ADP ratio) is generated by the
mitochondria (at the base of the flagellum) and diffuses / is
transported along the flagellum.
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Biochemical energy

» Chemical energy (ATP/ADP ratio) is generated by the
mitochondria (at the base of the flagellum) and diffuses / is
transported along the flagellum.

» There may also exist glycolytic enzymes running the length of
the flagellum: the relative importance (particularly in high
viscosity migration) is disputed.

> It is possible to suppress different metabolic pathways, e.g.
with cyanide and to observe the effects on swimming
behaviour.

» Energetic mechanisms are also a possible target for
fertility-promoting drugs and contraceptives. a-chlorohydrin
(blocks sperm-specific GAPDH in glycolysis) was nearly such
a contraceptive.
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Distal rate of working

One interesting quantity is how much power needs to be supplied
to the distal segment [s, L] averaged over time,

1 T L
< W(s) >= / / A fads' dt.
T 0 s
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1 T L
< W(s) >= / / A fads' dt.
T 0 s

After some more manipulation, one can derive,

L
W(s) = / A fds'
S
1 L 1 L L
= 2&/ KA2ds’+2(‘)t/ E¢§ds’+8tx./ fds'

L L
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Distal rate of working

One interesting quantity is how much power needs to be supplied
to the distal segment [s, L] averaged over time,

1 T L
< W(s) >:/ / A fads' dt.
T 0 s
After some more manipulation, one can derive,
L
W(s) = / A f9ds’
S

1 L 1 L L
= 2&/ KA2ds’+2(‘)t/ E¢§ds’+8tx./ fds'

S ) S

L L
+(Ar — b¢t)/ fds' — ot Eds(L) + ¢+E s — / ¢ X - fds'.

The first two terms average to zero. The mean rate of working
< W(s) > is therefore given by the time-averages of the remaining
terms, which quantify rate of working by contact force, contact

force jump, contact moment and viscous dissipation.
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Notation

L
W= [ Afds,
S
L
wf= [ A fds,
S
me = ¢tE¢57

L
We = (8:X) - / fds'

S

L
W/ = (A; — boy) / fds'

S
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Rate of working
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Observations

» The rate of working in the distal flagellum is not as large as
might be naively expected from looking at the flagellum shape.
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Observations

» The rate of working in the distal flagellum is not as large as
might be naively expected from looking at the flagellum shape.

» This effect is produced by energy transport by the contact
moment, i.e. transport of elastic bending energy.

» So we can partially ‘rescue’ the idea (dating back to the
1950s) that elastic waves are important in transporting energy.

» Further experimental work is needed to refine the
parameterisation. However this method may be useful in
interpreting pharmacological experiments.
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