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Figure 3
The path of the sperm to the egg within the human female reproductive tract. Up to 300 million sperm are
ejaculated at the cervical opening. The interface of the cervical mucus is a substantial barrier to sperm
progression with only 0.1% of sperm colonizing the cervical canal, even under optimal conditions (Croxatto
1995). Migration through the cervix is hindered by a viscous mucus and numerous epithelial crypts, which
may possibly act as slow-release reservoirs (Croxatto 1995, Suarez 2002). In contrast, progress through the
uterus is understood to be typically rapid and assisted by peristalsis (Kunz et al. 1996). As indicated in the
sagittal cross section, the interior of the uterus is a thin film of mucus between two closely opposed surfaces,
not an open liquid environment. Passage to the isthmic region of the fallopian tubes (oviducts) proceeds via a
narrow lumen, the utero-tubal junction, which is approximately 300 μm in diameter and filled with
viscoelastic mucus. A continual flux of sperm is observed through the oviducts in fertile human couples
around the time of ovulation, although the numbers present at any given time range from less than 10 to a
few thousand (Williams et al. 1993); however, there is substantial uncertainty regarding such observations
(Croxatto 1995). The oviductal epithelium is lined with motile cilia, interspersed with peg-like secretory
cells; as highlighted in the cross sections, there is also a convoluted geometry of epithelial folds within the
ampulla regions of the oviducts, where the sperm may encounter the egg. The oviduct diameter in the
vicinity of the ovaries is of the order of centimeters, as indicted on the left-hand tube and the fimbriae move
to and fro across the ovaries on the timescale of minutes. Further descriptions of the numerous
microenvironments encountered on this journey, and the sperm’s response to these, are detailed in the text.

stretching the mucus microstructure, as directly observed by Yudin et al. (1989). Despite such
resistance, sperm can propagate remarkably quickly, at speeds of 25–45 μm s−1 (Katz et al. 1989),
which approaches their swimming motility in lower viscosity semen and in vitro fertilization media,
the latter of which has a viscosity approaching that of water. Similar observations can be drawn
when considering the viscoelastic mucus analog studies by Smith et al. (2009c), as highlighted
in Figure 1. Lindemann’s (1996) modeling study of pinned bull sperm strongly indicates that
the 9 + 9 + 2 mammalian sperm structure is important in supporting swimming in mucus and
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Sperm migration

I In natural fertilisation, an initial population of several hundred
million sperm is reduced to tens or hundreds near the egg, and
at most one fertilising cell.

I Sperm actively migrate several thousand body lengths by
beating their flagella.

I This migration is through viscous and/or viscoelastic fluid,
including mucus and the cumulus mass surrounding the egg.
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The human sperm
I Human sperm swim at up to about 100 µm/s; the tail beat

frequency is anywhere from 2-30 Hz depending on
temperature, liquid properties and biochemistry.

I A typical ‘physiological’ migratory cell will beat at 10-15 Hz
and swim at 50 µm/s in cervical mucus substitute.
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Different strokes

Low viscosity sperm High viscosity sperm
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The importance of sperm energy metabolism
Perhaps due to Purcell’s famous 1976 lecture... is energy a limiting
factor in microscale propulsion?

There is significant evidence of its
importance in mammalian fertilisation, and considerable interest in
the sperm biology community.

I There is a statistically significant correlation between
infertility and mitochondrial volume in human sperm [Mundy
et al. Hum. Reprod. 10:116-9, 1995].

I Mitochondria occupy about 2× 10−18 m3 and can normally
produce about 106 W/m−3 chemical power via ATP:ADP
ratio, i.e. about 2× 10−12 W.

I A fibre 5× 10−5 m in length undergoing oscillations of
5× 10−6 m at frequency 10 Hz in fluid of viscosity 0.2 Pa.s
will cause viscous power dissipation of the order of 10−12 W.

I Energy transport is also important (enzymatic shuttles, local
glycolysis, see reviews by C. Ford [Hum. Reprod. Update
12:269, 2006], also B. Storey, K. Miki, recent data in mouse
by Takei et al. [J. Exp. Biol. 217:1876, 2014]).
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Dynamics of incompressible fluid

Momentum and mass balance yield,

ρ

(
∂u∗

∂t∗
+ (u∗ · ∇∗)u∗

)
= ∇∗ · σ∗,

∇∗ · u∗ = 0,

where σ∗ is the stress tensor, which can be divided into an
isotropic part and a deviatoric part, σjk = −pδjk + τjk .

A Newtonian fluid is defined by the constitutive law,

τjk = µ(∂juk + ∂kuj).
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Very low Reynolds number flow

Newtonian incompressible flow is then described by the
Navier-Stokes equations,

ρ

(
∂u∗

∂t∗
+ (u∗ · ∇∗)u∗

)
= −∇∗p∗ + µ∇∗2u∗,

∇∗ · u∗ = 0.

Nondimensionalising with respect to typical velocity scale U and
length scale L yields the dimensionless equations,

Re

(
∂u

∂t
+ (u · ∇)u

)
= −∇p + µ∇2u, (1)

∇ · u = 0, (2)

where Re = ρUL/µ is the Reynolds number. Typical scales are
U = 50 µm/s and L = 50 µm, so Re� 1.
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Stokes flow
I Very low Reynolds number physically means that inertia is

negligible relative to viscosity.

0 = −∇p + µ∇2u, ∇ · u = 0,

I This balance yields the ‘Scallop Theorem’ of E.M. Purcell
(but known much earlier): a time-irreversible motion is
essential for a cell to propel itself.

Mucus is not saline
As explained above, viscous forces dominate the motion of sperm in
all fluids, from mucus (Fig. 1c and d) to saline (Fig. 1a and b).
However, the greatly increased viscosity of mucus relative to saline
imposes greatly increased resistance to progression, resulting in a
very different ‘meandering’ waveform in mammalian cells and
reduced head yaw (side-to-side movement across the directional
axis; Fig. 1c and d). While mucus is a complex fluid that does not
have a clearly defined viscosity, a Maxwell fitting procedure suggests
an effective viscosity of mid-cycle mucus being �200 times that of
saline (Smith et al., 2009b, re-analysing the data of Wolf et al.,
1977). Despite this greatly increased resistance, human sperm are
able to migrate with similar progressive velocity in physiological
viscosity fluid compared with saline. Externally fertilizing sperm are
not adapted to maintain progressive velocity in high-viscosity fluids
(Woolley 2003). Finally, the increased viscosity results in greatly
increased metabolic requirements, which may be satisfied by glycoly-
sis (Ford 2006; Storey, 2008). Data from our group suggest that the
characteristic waveform of mammalian high-viscosity swimming may
provide significant improvements in efficiency; nevertheless, this
factor must be taken into account when comparing external and
internal fertilization. The change in swimming trajectory and head
yaw also emphasize that it is not straightforward to extrapolate moti-
lity changes in saline, for example due to chemotaxis, to a physiologi-
cal function. Moreover, a recent theoretical and computational study
(Gadêlha et al., 2010) suggests that increased viscosity may cause the
sperm flagellum to undergo a ‘buckling instability’ that results in
asymmetric flagellar beating and circling motility (a form of ‘trap-
ping’), without any need for asymmetric internal actuation. We
have observed this type of high viscosity ‘trapping’ in high-viscosity
migration experiments (reported and interpreted mechanically in
Gadêlha et al., 2010).

In vitro observations of viscous
effects upon sperm
David Woolley and colleagues in an innovative series of experiments
with hamster and mouse sperm developed many of the techniques
and told us much about the flagellar beat as we understand it today
(Woolley, 1977, 1981; Cooper and Woolley, 1982; Yeung and
Woolley, 1983, 1984).

The first detailed study of sperm in high-viscosity fluids appears to
be that of Brokaw (1966), the beginning of a programme of exper-
imental and theoretical research investigating the coupling of
axoneme and viscous drag by modulating the viscous drag (for
other examples of work and commentary on this major research
effort, see for example Brokaw, 1975; Pate and Brokaw, 1980;
Rikmenspoel, 1984; Brokaw, 2002; Pelle et al., 2009; Woolley et al.,
2009; Lindemann, 2010; Woolley, 2010). While a handful of studies
have examined the human sperm waveform in high-viscosity fluids
(Katz et al., 1978; Ishijima, 1986; Smith et al., 2009b and Fig. 3) we
are not aware of significant findings linking waveform modulation
and migrational ‘guidance’, in high viscosity, as would be required in
a model of physiological chemotaxis.

In vitro: how far to go?
Independently of research considering realistic scale and fluid mechanic
effects on human sperm, research into different selective and tactic
responses of the sperm has developed. These include suggestions
such as thermotaxis (Bahat et al., 2003, 2006, 2010); more detailed
observations from many laboratories of human sperm chemotaxis (to
odorant molecules led by Spehr et al., 2003, 2004, 2006, and progester-
one at picomolar levels by Laura Giojalas, e.g. Teves et al., 2006, 2009);
and stimulus-specific cell behaviours evoked via different chemorecep-
tors by Veitinger et al., 2011. All of these studies have been undertaken
in conventional laboratory ART media at low viscosities; this may mean

Figure 3 Plots of sperm in standard low-viscosity medium (left)
and ovulatory physiological viscosity medium (right), showing a time-
lapse of flagellar positions (black lines) and the trajectory of the cell
(green lines). Yaw (side-to-side movement across the directional
axis) is greatly reduced at high viscosity; progressive velocity is
similar despite the greatly increased viscous resistance to movement.
Reprinted from Smith et al. (2009b), copyright Wiley.

Figure 2 On the microscale, sperm are subject to a very different
balance of physical effects from macroscopic swimmers. In particular,
time-reversible ‘flapping’ motions would not successfully propel the
cell, hence sperm generally exhibit bending wave propagation,
which have an inherent directionality.
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Irreversible beat pattern

I How is irreversibility achieved?
Oblique movements cause a
thrust in one direction through
slender body drag anisotropy:
fn ≈ Cnun, ft ≈ Ctut ,
(Cn/Ct ≈ 2).

I Sperm swim by propagating
waves; these waves cause
oblique movements of the
slender flagellum, the
anisotropic drag law results in
thrust (balanced by the drag on
the head).

How sperm swim
• Microscopic scales imply near 

zero Reynolds number, inertia is 
negligible.

• This yields the ‘Scallop Theorem’ 
of Purcell (but known much 
earlier) – a time-irreversible 
motion is essential for a cell to 
propel itself.

• How is this achieved? Oblique 
movements cause a thrust in one 
direction through drag anisotropy.

• Sperm swim by propagating 
waves.

• These waves cause oblique 
movements, and hence thrust.
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Boundary conditions

Biological flow problems typically involve moving, curved
boundaries, e.g. the cell body, flagellum, cilia...

The fluid velocity at a material surface point X must satisfy the
no-slip, no-penetration condition u(X) = ∂tX.
For the purpose of this talk, we will consider ‘local’ models only:
assume that the flow around the cell approaches zero at long
distances.
In many situations, boundaries are very important, e.g. epithelial
surfaces, microscope slide... these surfaces can be dealt with via
boundary integral methods and/or the method of images (e.g. the
‘blakelet’).
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Mathematical approaches to flagellar propulsion
Linearity of the Stokes flow equations motivates methods based on
superposition of fundamental solutions.

The Stokes flow equations
with spatially concentrated force are,

−∇p +∇2u + ekδ(x) = 0, (3)

∇ · u = 0. (4)

The velocity part of the solution defines the ‘stokeslet’/Oseen
tensor Sjk := uj .

uj(x) =
1

8π

(
δjk
r

+
xjxk
r3

)
=: Sjk(x), (5)

where r = |x|.
The pressure part yields,

p(x) =
1

4π

xk
r3

:= Pk(x).
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Higher-order singularities
Spatial derivatives of stokeslets are also solutions of the Stokes
flow equations:

Third-rank tensor (stokes doublet):

−∂`Sjk =
1

8π

(
δjkx`
r3
− δj`xk

r3
− xjδ`k

r3
+ 3

xjxkx`
r5

)
.

This can be decomposed into an antisymmetric part (rotlet) and a
symmetric part (stresslet).
Stresslets can be added to yield a source:

Wj := δ`k(−∂`Sjk) =
1

4π

( xj
r3

)
,

differentiating further yields a source dipole (as in potential
theory):

Kjk := −∂kWj =
1

4π

(
−δjk

r3
+ 3

xjxk
r5

)
.
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Stokes’ Law

Stokeslets, rotlets, stresslets, source dipoles etc. can be used to
construct solutions to flow problems. For example, the flow due to
a sphere of radius a moving in with velocity (0, 0,U) is given by,

uj = 6πaUδk3

(
1

8π

(
δjk
r

+
xjxk
r3

)
− a2

6

1

4π

(
−δjk

r3
+ 3

xjxk
r5

))
,

which satisfies uj = δj3U on r = a, and yields Stokes’ law that the
(dimensional) drag on a sphere has magnitude 6πµaU. The
moment on a rotating sphere can be derived similarly via the rotlet.
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Linear superposition of stokeslets
A concentrated point force located at y with strength F, produces
a velocity field (the ‘stokeslet’/Oseen tensor),

uj(x) = Sjk(x− y)Fk ,

with the summation convention.

Flow due to a slender body with centreline X(s) can be expressed
approximately as,

uj(x) =

∫ L

0
Sjk(x,X(s ′))fk(s ′)ds ′,

where the force per unit length fk(s ′) is determined so that
uj(X(s) + an(s)) ≈ ∂tX(s) where n(s) is a vector normal to the
centreline and a is slender body radius (small).
There are quite a few variants of slender body theory and
associated error analyses developed in the 1970s (Lighthill,
Batchelor, Cox, Johnson...). The above is accurate to O(

√
a) in

theory and often works better in practice.
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More modern methods

More modern approaches include the use of boundary integral
methods (surface integrals of stokeslets), regularised stokeslets,
hybrid regularised stokeslet-boundary element methods,
force-coupling methods, finite elements...

This talk will however work with a local approximation to slender
body theory, and its generalisation to include viscoelastic effects.
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Resistive force theory

Recall the relation fn = Cnun, ft = Ctut with Cn/Ct ≈ 2. This can
be derived by neglecting the ‘non-local’ part of the integral,

uj(X(s)) =

∫
|s−s′|<q

Sjk(x,X(s ′))fk(s ′)ds ′

+
((((((((((((((∫
|s−s′|>q

Sjk(x,X(s ′))fk(s ′)ds ′,

for a parameter q = O(
√
a).
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Local coordinates: tangential component

Moving into a local coordinate system such that the section of
flagellum for s − q < s ′ < s + q is centred at the origin and lies
along the x1 axis, we can consider what force per unit length would
be needed to produce velocity ut in the x1-direction and un in the
x2 (or x3) direction at x1 = 0, x22 + x23 = a2:

ut ≈
1

8π

∫ q

−q

(
1√

s2 + a2
+

(−s)2

(s2 + a2)3/2

)
ftds.

Evaluating the integral and taking the leading order terms yields,

ut ≈
ft
8π

(
4 ln

(
2q

a

)
− 2

)
.
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Local coordinates: normal component

Repeating this process for velocity un in the x2 direction:

un ≈
1

8π

∫ q

−q

(
1√

s2 + a2
+

x22
(s2 + a2)3/2

)
fnds.

Notice we now have a term which varies azimuthally, x2. This can
be cancelled by adding a dipole distribution, or alternatively we can
just take its azimuthal average, < x22 >=< a2 cos2 θ >= a2/2.
Then,

un ≈
fn
8π

(
2 ln

(
2q

a

)
+ 1

)
.
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Resitive force theory

The (Gray & Hancock 1955) resistive force coefficients are then,

Ct =
4π

2 ln
(
2q
a

)
− 1

, Cn =
8π

2 ln
(
2q
a

)
+ 1

.

The slender body integral equation can then be approximated as,

uj(X(s)) ≈ tjC
−1
t t · f + njC

−1
n n · f

= ej · C−1 · f,

where C−1 = C−1t tt + C−1n nn.
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Weak viscoelastic effects: Linearised Maxwell fluid

Mucus is viscoelastic, indeed so is the analogue fluid
(methylcellulose) we use in the lab: typical relaxation time 0.006 s
(compared with 10–20 Hz beat frequency).

To estimate the effect of this, we considered a linearised version of
the (dimensionless) Maxwell fluid model,

(1 + λ∂t) τjk = (∂juk + ∂kuj),

or
τjk = L(∂juk + ∂kuj).
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Fundamental solution of Linearised Maxwell fluid (Smith,
Gaffney & Blake)

The Maxwell-Stokes flow equations with forcing singular in time
and space are,

−∇p + L∇2u + ekδ(x, t) = 0.

We can then construct a solution P̃k , S̃jk from the Newtonian
Stokeslet,

P̃k(x, t) := Pk(x)δ(t), S̃jk(x, t) := Sjk(x) (1 + λ∂t) δ(t).
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Viscoelastic slender body theory

We will construct a solution through an integral both along
arclength and in time (assuming zero flow for t 6 0):

u(x, t) =

∫ t+

0−

∫ L

0
S̃jk(x− X(s ′), t − t ′)fk(s′, t ′)ds ′dt ′,

=

∫ t+

0−

∫ L

0
(1 + λ∂t) δ(t − t ′)Sjk(x− X(s ′))fk(s ′, t ′)ds ′dt ′,

where 0− and t+ denotes limits taken from below at zero and
from above at t.
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Viscoelastic slender body theory

Let T1 < 0 and T2 > t, with H(t) being a test function. Then,∫ T2

T1

(1 + λ∂t)δ(t − t ′)H(t ′)dt ′ = H(t) + λH ′(t).

Apply the above with,

H(t ′) :=

∫ L

0
Sjk(x− X(s ′))fk(s ′, t ′)ds ′

and take limits as T1 ↑ 0 and T2 ↓ t, to deduce that for t > 0,

u(x, t) = (1 + λ∂t′)

∫ L

0
Sjk(x− X(s ′, t ′))fk(s ′, t ′)ds ′t′=t .
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Maxwell resistive force theory

Applying the same local approximation as for the Newtonian case
then yields (for planar motion),

un ≈ C−1n (fn + λ∂t fn), ut ≈ C−1n (ft + λ∂t ft).

These relations provide a means to approximate the force per unit
length on an imaged flagellum by solving a pair of ordinary
differential equations.
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Motivation

The above shows how the local force per unit length on the
flagellum can be approximated from experimental data. One
question of interest is, what does the internal active structure of
the flagellum have to do in order to create this fluid dynamic force
– and how much energy is required?

Bending and motion of cilia
and flagella is produced as
a result of relative sliding of
adjacent microtubule
doublets, produced by the
motor protein, dynein
ATPase.

29 / 46



Motivation

The above shows how the local force per unit length on the
flagellum can be approximated from experimental data. One
question of interest is, what does the internal active structure of
the flagellum have to do in order to create this fluid dynamic force
– and how much energy is required?

Bending and motion of cilia
and flagella is produced as
a result of relative sliding of
adjacent microtubule
doublets, produced by the
motor protein, dynein
ATPase.

29 / 46



Dynamics of an elastic rod with external forcing

I Consider a one-dimensional curved rod X(s) bending in a
plane, with tangent angle φ(s) relative to a fixed axis.

I Considering the rod as two segments [0, s] and (s, L], we can
define the contact moment M(s) and contact force F(s)
exerted by the distal segment [s, L] on the proximal segment
[0, s] at X(s).

I At the distal end, N(L) = 0 and M(L) = 0.
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Dynamics of an elastic rod with external forcing

Taking a small strain, finite curvature (φs) constitutive model for
elasticity:

M(s) = E (s)φs(s).

The surrounding fluid exerts a force per unit length f(s). Force
balance and the distal boundary condition yield,

N(s) =

∫ L

s
fds ′.

Moment balance on an infinitesimal segment of the rod then yields,

n ·
∫ L

s
fds ′ + ∂s(Eκ) = 0,

where n is a unit normal.
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Flagellar bending stiffness E (s)
Based on micrograph data on thinning of the sperm flagellum we
can approximate E (s) by a quadratic,

Eb(s) =

(Ep − Ed)
(
s−sd
sd

)2
+ Ed s 6 sd

Ed s > sd .
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x 10
−5

0

2

4

6

8

10

Arclength s (m)

E
B
(s
)
(N

m
2
)

32 / 46



Active moments

The simplest model of an active flagellum decomposes it into a
compound structure of two effective ‘filaments’ separated by
distance b, with interfilament force per unit length having
tangential component f (s) (so that the moment per unit length is
bf ).

flagellum and g ¼ j?=jk is the ratio between the perpen-
dicular, j?, and parallel, jk, fluid dynamic resistance
coefficients. The sperm-compliance parameter

Sp ¼ L
vj?
E

� �1=4

ð2:2Þ

is dimensionless and characterizes the relative impor-
tance of elastic forces to viscous drag (Wiggins et al.
1998). The tensile force T(s,t) is related to the Lagrange
multiplier for inextensibility, and it is implicitly deter-
mined by the constraint Xs . Xs ¼ 1. Under appropriate
variable transformations, these equations are equivalent
to earlier models proposed by Hines & Blum (1978),
Gueron & Liron (1993) and Camalet & Jülicher
(2000). A detailed derivation is presented in the elec-
tronic supplementary material as well as the explicit
form of the inextensibility constraint.

Although the sliding filament mechanism has been
successful in explaining flagellar bending, there is a lim-
ited quantitative understanding of the regulation and
nature of the internal shear stress f, which represents
the coupling between the dynein molecular motor
activity and the passive cross-linking proteins within
the flagellum (Brokaw 2009; Mitchison & Mitchison
2010). There have been several attempts to explain
the observed flagellar beat via different shear-control
hypotheses dictating the regulation of internal shear f
(Brokaw 1971, 1975, 2009; Hines & Blum 1978;
Lindemann & Kanous 1995; Camalet et al. 1999;
Camalet & Jülicher 2000; Mitchison & Mitchison
2010), although comparison with experiments has
only become possible recently (Riedel-Kruse et al.
2007). Here, it is beyond the scope of the study to con-
sider detailed assessments of the internal shear
regulation and the difficulties associated with dynein
control mechanisms. Instead, we use a symmetric
model, based on observations of shear in situ, to explore
the symmetry-breaking event. As detailed in the elec-
tronic supplementary material, travelling waves of
bending (Smith et al. 2009b), and thus internal shear
forces, periodically propagate down the flagellum;
given that the dominant mode typically dictates the
dynamics (Riedel-Kruse et al. 2007), we therefore

model the internal shear density as a simple travelling
wave

f ðs; tÞ ¼ A cosðks � tÞ; ð2:3Þ

with dimensionless force amplitude A and wavenumber
k. This particular choice of internal shear will not
just isolate the potential for symmetry breaking of a
symmetrically driven flagellum, it will also enable us
to investigate a wide range of shear distribution k,
bringing to light new nonlinear effects within a general
framework.

2.3. Boundary conditions

The equations governing the flagellar dynamics are
closed by defining the initial cell configuration together
with the boundary conditions, in which either the
movement of the flagellar endpoints is specified or a bal-
ance of forces and torques at each end is imposed. In
particular, at the distal boundary, s ¼ L, the flagellum
is free to move and, therefore, the external torques
and forces are zero, i.e.

Mext ¼ Fext ¼ 0 at s ¼ L:

At the proximal end of the flagellum, s ¼ 0, we consider
three distinct boundary conditions motivated by
laboratory examples:

— The clamped head. The sperm head is strongly
adhered, with no rotation about its point of attach-
ment, so that both its position and tangent vectors
are fixed: Xtjs¼0 ¼Xstjs¼0 ¼ 0.

— The pivoting head. The sperm head is adhered so
that it does not move except for rotation about its
attachment, due to the absence of an external
moment: Xtjs¼0 ¼Mextjs¼0 ¼ 0.

— The swimming sperm. The cell body experiences a
hydrodynamic viscous drag force, Fhead, and
moment, Mhead, which are balanced by the contact
force and torque between the sperm head and the
flagellum at their junction. This balance yields the
required boundary condition for the flagellum in
terms of the motion of the sperm head via a specifi-
cation of Xtjs¼0 and Xstjs¼0.

r+

r−

ŝ

n̂

X(s,t)

x̂

ŷ

s = 0

s = L

b

f(s)

−f(s)

a

Figure 2. A schematic of the sliding filament mechanism. Relative to a laboratory fixed frame fx̂, ŷg, the vector X(s,t) describes
the position of the point which is an arclength s along the flagellum neutral line (dashed curve) at time t. The internal shear force
f(s,t) is acting tangentially and in opposite directions on each sliding filament r+(s) (solid grey curves) causing the flagellum to
bend. The distance between the centre of mass of the sperm head and the flagellum junction is denoted by a and the flagellar
axoneme diameter is b.

1692 Nonlinear instability in flagella H. Gadêlha et al.
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the position of the point which is an arclength s along the flagellum neutral line (dashed curve) at time t. The internal shear force
f(s,t) is acting tangentially and in opposite directions on each sliding filament r+(s) (solid grey curves) causing the flagellum to
bend. The distance between the centre of mass of the sperm head and the flagellum junction is denoted by a and the flagellar
axoneme diameter is b.
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J. R. Soc. Interface (2010)

 on October 25, 2010rsif.royalsocietypublishing.orgDownloaded from 

33 / 46



Sliding filament elastohydrodynamics

Modelling each filament as an elastic rod with tangential
interfilament force f , leads to the elastohydrodynamic equation,

n ·
∫ L

s
fds ′ + bf + ∂s(Eκ) = 0.

The interfilament force f arises from both active motor proteins
(dynein ATPase) and passive elastic bonds (nexin links, radial
spokes):

f = f d + f p.

Introduce the relative sliding between the filaments, ∆(s). A linear
elastic passive resistance f p = −K∆.
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Basal sliding

For small separation between the filaments we have the
approximate relation,

∆(s) = ∆(0) + b(φ(s)− φ(0)).

If the filaments are restrained at the base so that ∆(0) =: ∆0 = 0
then we have simply,

∆(s) = b(φ(s)− φ(0)).

If however (as is probable) relative sliding does occur, then we need
to model the basal compliance. Taking a linear model with stiffness
ξ and balancing the jump in contact force at the base yields,∫ L

0
fds ′ = ξ∆0.
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Basal sliding

Integrating the elastohydrodynamic equation and rearranging then
yields,

∆0 =
1

ξb

(
−
∫ L

0
n(s) ·

∫ L

s
f(s ′)ds ′ds + Eφs(0)

)
.

After some further rearranging we can then estimate the internal
active force per unit length f d from the fluid dynamic force per
unit length f:

f d = −n(s)

b
·
∫ L

s
fds ′ − 1

b
∂s(Eφs) + bK (φ− φ0)

+
K

ξb

(
−
∫ L

0
n(s) ·

∫ L

s
f(s ′)ds ′ds + Eφs(0)

)
.
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Parameterisation and results

There is uncertainty regarding basal stiffness ξ, however f d more
closely resembles a travelling wave for ξ > 0.1 N/m (significantly
stiffer than say sea urchin). We should be able to recover this
through micromanipulation and ‘counterbend’ observation in
human cells.
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Parameterisation and results
By examining micromanipulation data on animal sperm and
making appropriate scalings we can estimate most of the
parameters for the human sperm model.
Ep

(×10−21 Nm2)

Ed

(×10−21 Nm2)

Kp

(×103 N/m2)

Kd

(×103 N/m2)

ξ

(N/m)

8 2.2 2 2 0.1

∆(s, t) (m) f d(s, t) (N/m)

A peak active force density of 5× 10−3 N/m [=5 pN/nm] is
consistent with data on dynein density and peak force.
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Complex compliance model

We can use this method to assess the ‘complex compliance’ model
of dynein activity of F. Jülicher and colleagues, ∆̂ = kf̂ d for some
parameter k ∈ C by taking a discrete Fourier transform.

|∆̂| = |k ||f̂ d |, arg ∆̂ = arg f̂ d + arg k.
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Rate of working

Material points of the upper and lower filaments are given by,

X±(s, t) := X(s, t)± (bn(s, t) + ∆(s, t)t(s, t)).

Calculating ∂tX
±(s, t) and multiplying by the force components

±f (s, t)t(s, t) yields the rate of working as simply,

f ∆t = (f d + f p)∆t .

The rate of working of the active elements is then,

∆t f
d = ∆t(K∆ + f ) = 1/2K∂t∆

2 + (∆0t + bφt − bφ0t)f .
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Biochemical energy

I Chemical energy (ATP/ADP ratio) is generated by the
mitochondria (at the base of the flagellum) and diffuses / is
transported along the flagellum.

I There may also exist glycolytic enzymes running the length of
the flagellum: the relative importance (particularly in high
viscosity migration) is disputed.

I It is possible to suppress different metabolic pathways, e.g.
with cyanide and to observe the effects on swimming
behaviour.

I Energetic mechanisms are also a possible target for
fertility-promoting drugs and contraceptives. α-chlorohydrin
(blocks sperm-specific GAPDH in glycolysis) was nearly such
a contraceptive.
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Distal rate of working
One interesting quantity is how much power needs to be supplied
to the distal segment [s, L] averaged over time,

<W (s) >=
1

T

∫ T

0

∫ L

s
∆t f

dds ′dt.

After some more manipulation, one can derive,

W (s) =

∫ L

s
∆t f

dds ′

=
1

2
∂t

∫ L

s
K∆2ds ′ +

1

2
∂t

∫ L

s
Eφ2sds

′ + ∂tX ·
∫ L

s
fds ′

+ (∆t − bφt)

∫ L

s
fds ′ − φtEφs(L) + φtEφs −

∫ L

s
∂tX · fds ′.

The first two terms average to zero. The mean rate of working
<W (s) > is therefore given by the time-averages of the remaining
terms, which quantify rate of working by contact force, contact
force jump, contact moment and viscous dissipation.
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Notation

W d =

∫ L

s
∆t f

dds ′,

W f =

∫ L

s
∆t fds

′,

Wmp = φtEφs ,

W c = (∂tX) ·
∫ L

s
fds ′,

W j = (∆t − bφt)

∫ L

s
fds ′

43 / 46



Rate of working
(a) W d (b)
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,
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Observations

I The rate of working in the distal flagellum is not as large as
might be naively expected from looking at the flagellum shape.

I This effect is produced by energy transport by the contact
moment, i.e. transport of elastic bending energy.

I So we can partially ‘rescue’ the idea (dating back to the
1950s) that elastic waves are important in transporting energy.

I Further experimental work is needed to refine the
parameterisation. However this method may be useful in
interpreting pharmacological experiments.
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I Colleagues: Hermes Gadêlha, Eamonn Gaffney, John Blake,
Jackson Kirkman-Brown, Birmingham Women’s Hospital.

46 / 46


	Introduction
	Fluid dynamics
	Elastohydrodynamics

