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•  Inset: The displacement  
field demonstrates local 
heterogeneities in the flow. 

•  A typical snapshot of an experiment: 
The white spots indicate the positions 
of the beads floating on surface 
waves. 

cedaysan@gmail.com 

http://fcxn.wordpress.com !  
Month 6 General Meeting 

http://xn.unamur.be 

Fluctuations drive viral memes in online social media:       
                     Integrating criticality into network science 

Ceyda Sanlı, Vsevolod Salnikov, Lionel Tabourier, and Renaud Lambiotte  

        CompleXity Networks, naXys, University of Namur, Belgium. 

   To spread our posts throughout online social network 
such as Twitter: 
 
•  When do we need to post?  
•  How often should a #hashtag be posted? 
 
   These questions emphasize the time features of our 
twitting activity. They would be controlled much more easily 
compared to the followings: What we post and how many 
number of followers we have. 
 

   To be mobile in dense granular media such as highly 
packed beads on surface waves: 
 
•  Do single beads move independently or form a group?  
•  Is the trajectory of each bead regular in time? 
 
   The quantification of the bead dynamics shows that the 
beads perform heterogenous motion with a distinct time 
scale to characterize this heterogeneity.  
 

restricted amount of attention restricted amount of space 

•  Restricted amount of sources forces social 
and physical systems to present 
emergence of order.  

hypothesis 

•  Twitter users want to spread their messages and 
beads under driving want to be mobile. As a 
result, the twitter users collectively advertise and 
the beads form groups to move together. Both 
systems self-organize and create dynamic 
heterogeneity. 

       The origin of the fluctuations in  
dynamics would be the same origins:  

   Therefore, the interpretation of the dynamic 
heterogeneity of the beads in a critical limit  
   would help to characterize viral memes 
                (#hashtags) in twitter. 

Refs: 
1  C. Sanlı et al. (arXiv - 2013). 
2  L. Berthier (2011). 

Refs: 
1  H. Simon (1971). 
2  L. Weng et al. (2012). 
3  J. P. Gleeson et al. (2014). 
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Twitter #hashtag analysis

•  single beads: •  groups: 
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•  quantifying 
dynamic  
heterogeneity: 
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•  #nice: •  #pepsi: 

•  observation: •  artificial representation: 
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Two Directions of my PhD Thesis:

• Clustering on 
standing Faraday 
waves

• Heterogeneous flow 
on capillary Faraday 
waves

• C. Sanlı et al,                               
Phys. Rev. E 89, 053011 (2014). 

• C. Sanlı et al,                                 
Phys. Rev. E 90, 033018 (2014). 
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Observation
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• a ~ 0.8 mm
• f = 19 Hz

5 m
m

• a ~ 1.2 mm
• f = 20 Hz

• low ɸ:

• high ɸ:

!
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Experimental set-up
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SANLI, LOHSE, AND VAN DER MEER PHYSICAL REVIEW E 89, 053011 (2014)
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FIG. 1. (Color online) Experimental setup: (a) shaker, (b) glass
container, 81×45×10 mm3, (c) Schott fiber light source, (d) Photron
Fastcam SA.1, (e) an illustration of a camera image, (f) pinned
brim-full boundary condition, (g) the surface deformation around
our hydrophilic heavy floaters causes an attractive force, (h) the
direction of the period-averaged drift of a single floater, where A
and N represent the antinode and the node, respectively.

taken to be large enough to capture the maximum vertical
displacement (2.5 ± 0.1 mm) of the floaters.

In the period-averaged context, there are two mechanisms
that drive the floaters on the standing Faraday wave. The first
one is the attractive capillary interaction [6,7] due to the surface
deformation around the floaters [Fig. 1(g)], which is significant
when the distance between the floaters l is smaller than the
capillary length lc = (σ/ρg)1/2. Here, σ is the surface tension
coefficient of the interface, ρ the liquid density, and g the
acceleration of gravity. (For an air-water interface at 20 ◦C,
lc = 2.7 mm.) The second is due to the standing Faraday wave,
which causes a time-averaged drift of the floaters towards
the antinodes [Fig. 1(h)], which is observed and described in
Refs. [1,3]. This drift, which is discussed in greater detail in
Appendix A2, is reminiscent of the famous Stokes drift of an
object on a traveling wave.

The control parameter of the experiment is the floater
concentration φ. We simply measure φ by dividing the area
covered with floaters by that of the total horizontal field of
view. In Fig. 2 we show a top view of the distribution of the
particles in two distinct limits, namely for low φ and high φ.
The remarkable difference between the two states is clear: For
low φ [Fig. 2(a)] small clusters float around the antinodes,
whereas for high φ [Fig. 2(b)] there is one large cluster around
the nodal lines. This completely inverts the pattern and the
particles now seen to avoid the antinodal regions.

To inspect this concentration-dependent clustering we
introduce the correlation factor c, which quantifies to what
extent the position of the clusters is correlated with the wave
antinodes

c ≡ ⟨φ(r,t)a(r)⟩r,t

⟨φ(r,t)⟩r,t
, (1)

where the brackets ⟨⟩r,t indicate that the average is taken with
respect to both space r = (x,y) and time t [13]. Here, φ(r,t)
is the floater concentration and the wave distribution a(r) is a
test function that is positive at the antinodes and negative at

(a) (b)

(c) (d)

x
y

FIG. 2. (Color online) (a), (b) Clustering of floaters on a rectan-
gular standing wave in experiment. The snapshots show the stationary
state when the surface wave elevation is nearly zero. The small yellow
rectangles mark the location of the antinodes and the yellow lines that
of the nodal lines. Clearly, for φ = 0.08 (a) particles cluster at the
antinodes, whereas for φ = 0.61 (b) the pattern is spontaneously
inverted into a large cluster around the nodal lines. Note that in (b) all
particles touch whereas the average distance between particles in (a)
is somewhat larger. This is due to the breathing effect explained in
the text. (c), (d) Artificial antinode clusters at φ = 0.10 (c) and node
clusters at φ = 0.44 (d) as used in the potential energy calculation.
The white bars indicate a length scale of 5 mm.

the nodes. More specifically, a(r) is defined as

a(r) =
{
βacos(r) when acos(r) > 0 (antinodes),
acos(r) when acos(r) < 0 (nodes). (2)

Here, acos(r) = 2 cos2 kxx cos2 kyy − 1, with kx,ky the wave
numbers in the x,y direction. Since with the above definition
the nodal regions are three times as small as the nodal ones, a
constant β = 3 is introduced such that c = 0 when the floaters
are equally distributed over the two-dimensional wave surface
[14]. To check the robustness of c regarding the precise form
of a(r), we also use a step function astep(r), which equals 1 at
the antinodes and −1 at the nodes.

In Fig. 3(a) we present the correlation factor c plotted
against φ for both acos and astep. We observe three distinct
regions: For low φ (<0.2) the clear positive value of c indicates
the presence of the antinode clusters (region I). Second, for
very high φ (>0.5) we find node clusters for which c < 0
(region III). Finally, there is a broad intermediate region
II, in which we observe morphologically rich self-organized
floater patterns, some of which are steadier than others.
These quasisteady patterns cause the large scatter in c in the
region between φ = 0.2 and 0.35. Between φ = 0.35 and 0.5,
patterns are quite dynamic leading to an even spreading of
particles over the waves (c ≈ 0).

In addition to the position, another remarkable difference
between the antinode and the node clusters is hidden in their
dynamics during a single wave period: Experimentally we

053011-2

• Control parameters

• θ: contact angle of spheres 
• R: radius of spheres  
• a: shaking amplitude 
• f: shaking frequency 
• h: depth of water layer 
• ɸ: area fraction

ɸ =bead area/total area

!
a, f

h
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Part-1:
• Why the antinode clusters at low ɸ ? 

• Why the node clusters at high ɸ ? 
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Floaters on a static surface
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Chapter 1. General introduction

Figure 1.1: Champagne bubbles, aggregated at the wall of a wine glass, and accumulated
leaves floating on a wavy sea surface [3].

sion. The surface profile around each floater is not axisymmetric in the presence of
an other floater so that the floaters are driven to each other. This attractive inter-
action among floaters is called gravity-induced capillary interaction. (A repulsive
interaction is also possible, but only if the floaters have different wetting properties
or densities.) Similarly, the wall disturbs the surface profile, and so it drives an at-
traction (or repulsion) between the floaters and the wall. Both floater-to-floater and
floater-to-wall interactions can be well formulated when the meniscus deformation
is small by minimizing the total potential energy (both gravity and surface tension)
of the floaters [1, 2]. In the present Thesis, “floater” refers to an object floating on
a liquid, which is exposed to not only gravity and Archimedes’ buoyancy, but also
surface tension.

Without applying any calculation, one can conceptually understand [1] why a
bubble floating on champagne is attracted by the wall of a wine glass as shown in
Fig. 1.1. Consider a bubble floating on champagne. In the static case, there are three
vertical forces acting on the bubble, namely the weight, the buoyancy, and the sur-
face tension. Since the bubble is much lighter than the champagne, the buoyancy is
much larger than its weight. To create a balance, the surface tension acts downwards
which creates a convex-shaped surface profile around the bubble. However, there
is a physical limit such that the surface tension cannot bend the meniscus beyond a
certain angle. Therefore, there is an excess upwards force due to lack of downwards
forces. On the other side, the glass wall creates a meniscus with also a convex-shape

2



Bubble in an equilibrium 
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bubble
interface



Bubble in a curved interface 
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glass



Heavy particle in a curved interface 
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glass



Phenomenological conclusion 

C. Sanli, CompleXity Networks, UNamur

• bubbles (light particles) drift to 
a local surface maximum

• heavy particles drift to a 
local surface minimum

Floaters on Faraday waves           10
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Floaters on a dynamic surface
Chapter 1. General introduction

Figure 1.1: Champagne bubbles, aggregated at the wall of a wine glass, and accumulated
leaves floating on a wavy sea surface [3].

sion. The surface profile around each floater is not axisymmetric in the presence of
an other floater so that the floaters are driven to each other. This attractive inter-
action among floaters is called gravity-induced capillary interaction. (A repulsive
interaction is also possible, but only if the floaters have different wetting properties
or densities.) Similarly, the wall disturbs the surface profile, and so it drives an at-
traction (or repulsion) between the floaters and the wall. Both floater-to-floater and
floater-to-wall interactions can be well formulated when the meniscus deformation
is small by minimizing the total potential energy (both gravity and surface tension)
of the floaters [1, 2]. In the present Thesis, “floater” refers to an object floating on
a liquid, which is exposed to not only gravity and Archimedes’ buoyancy, but also
surface tension.

Without applying any calculation, one can conceptually understand [1] why a
bubble floating on champagne is attracted by the wall of a wine glass as shown in
Fig. 1.1. Consider a bubble floating on champagne. In the static case, there are three
vertical forces acting on the bubble, namely the weight, the buoyancy, and the sur-
face tension. Since the bubble is much lighter than the champagne, the buoyancy is
much larger than its weight. To create a balance, the surface tension acts downwards
which creates a convex-shaped surface profile around the bubble. However, there
is a physical limit such that the surface tension cannot bend the meniscus beyond a
certain angle. Therefore, there is an excess upwards force due to lack of downwards
forces. On the other side, the glass wall creates a meniscus with also a convex-shape

2

Floaters on Faraday waves           11



Heavy particle on a standing wave 
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2.4. The wave elevator Chapter 2. Playing with surface tension ...

The vertical wave acceleration ζ̈ ẑ oscillates with respect to t. (Here, we use ζ̈ =

∂ 2ζ/∂ t2 for simplicity.) The vertical acceleration which the floater experiences is
g+ ζ̈ when t < T/2 and g− ζ̈ when t > T/2. Since the floater acceleration is larger for
t < T/2 the contribution of this part of the wave cycle to the drift is larger. Therefore,
in the time averaged situation, the bubble (BΣ < 0) drifts towards N, and so the sphere
(BΣ > 0) towards A. This is consistent with the result suggested by the derived drift
force given in Eq. 2.33. The time dependent drift within T is sketched in Fig. 2.9(a) for
the sphere and in Fig. 2.9(b) for the bubble. The mechanism discussed here resembles
an accelerating elevator, and so can be called a wave elevator.
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Figure 2.9: The wave elevator: The asymmetry in the vertical floater acceleration and the
corresponding drift are illustrated for a sphere with BΣ > 0 (a), and a sphere or a bubble with
BΣ < 0 (b). ζ̈ = ∂ 2ζ/∂ t2 is the vertical surface wave acceleration and T is the wave period.
Since the contribution of the drift in the lower cycle (t < T/2) is larger than the one shown
above (t > T/2), on average, the floater in (a) drifts towards the antinode (A), whereas the
floater in (b) drifts towards the node (N).
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Antinode clusters at low ɸ 
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SANLI, LOHSE, AND VAN DER MEER PHYSICAL REVIEW E 89, 053011 (2014)
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FIG. 1. (Color online) Experimental setup: (a) shaker, (b) glass
container, 81×45×10 mm3, (c) Schott fiber light source, (d) Photron
Fastcam SA.1, (e) an illustration of a camera image, (f) pinned
brim-full boundary condition, (g) the surface deformation around
our hydrophilic heavy floaters causes an attractive force, (h) the
direction of the period-averaged drift of a single floater, where A
and N represent the antinode and the node, respectively.

taken to be large enough to capture the maximum vertical
displacement (2.5 ± 0.1 mm) of the floaters.

In the period-averaged context, there are two mechanisms
that drive the floaters on the standing Faraday wave. The first
one is the attractive capillary interaction [6,7] due to the surface
deformation around the floaters [Fig. 1(g)], which is significant
when the distance between the floaters l is smaller than the
capillary length lc = (σ/ρg)1/2. Here, σ is the surface tension
coefficient of the interface, ρ the liquid density, and g the
acceleration of gravity. (For an air-water interface at 20 ◦C,
lc = 2.7 mm.) The second is due to the standing Faraday wave,
which causes a time-averaged drift of the floaters towards
the antinodes [Fig. 1(h)], which is observed and described in
Refs. [1,3]. This drift, which is discussed in greater detail in
Appendix A2, is reminiscent of the famous Stokes drift of an
object on a traveling wave.

The control parameter of the experiment is the floater
concentration φ. We simply measure φ by dividing the area
covered with floaters by that of the total horizontal field of
view. In Fig. 2 we show a top view of the distribution of the
particles in two distinct limits, namely for low φ and high φ.
The remarkable difference between the two states is clear: For
low φ [Fig. 2(a)] small clusters float around the antinodes,
whereas for high φ [Fig. 2(b)] there is one large cluster around
the nodal lines. This completely inverts the pattern and the
particles now seen to avoid the antinodal regions.

To inspect this concentration-dependent clustering we
introduce the correlation factor c, which quantifies to what
extent the position of the clusters is correlated with the wave
antinodes

c ≡ ⟨φ(r,t)a(r)⟩r,t

⟨φ(r,t)⟩r,t
, (1)

where the brackets ⟨⟩r,t indicate that the average is taken with
respect to both space r = (x,y) and time t [13]. Here, φ(r,t)
is the floater concentration and the wave distribution a(r) is a
test function that is positive at the antinodes and negative at

(a) (b)

(c) (d)

x
y

FIG. 2. (Color online) (a), (b) Clustering of floaters on a rectan-
gular standing wave in experiment. The snapshots show the stationary
state when the surface wave elevation is nearly zero. The small yellow
rectangles mark the location of the antinodes and the yellow lines that
of the nodal lines. Clearly, for φ = 0.08 (a) particles cluster at the
antinodes, whereas for φ = 0.61 (b) the pattern is spontaneously
inverted into a large cluster around the nodal lines. Note that in (b) all
particles touch whereas the average distance between particles in (a)
is somewhat larger. This is due to the breathing effect explained in
the text. (c), (d) Artificial antinode clusters at φ = 0.10 (c) and node
clusters at φ = 0.44 (d) as used in the potential energy calculation.
The white bars indicate a length scale of 5 mm.

the nodes. More specifically, a(r) is defined as

a(r) =
{
βacos(r) when acos(r) > 0 (antinodes),
acos(r) when acos(r) < 0 (nodes). (2)

Here, acos(r) = 2 cos2 kxx cos2 kyy − 1, with kx,ky the wave
numbers in the x,y direction. Since with the above definition
the nodal regions are three times as small as the nodal ones, a
constant β = 3 is introduced such that c = 0 when the floaters
are equally distributed over the two-dimensional wave surface
[14]. To check the robustness of c regarding the precise form
of a(r), we also use a step function astep(r), which equals 1 at
the antinodes and −1 at the nodes.

In Fig. 3(a) we present the correlation factor c plotted
against φ for both acos and astep. We observe three distinct
regions: For low φ (<0.2) the clear positive value of c indicates
the presence of the antinode clusters (region I). Second, for
very high φ (>0.5) we find node clusters for which c < 0
(region III). Finally, there is a broad intermediate region
II, in which we observe morphologically rich self-organized
floater patterns, some of which are steadier than others.
These quasisteady patterns cause the large scatter in c in the
region between φ = 0.2 and 0.35. Between φ = 0.35 and 0.5,
patterns are quite dynamic leading to an even spreading of
particles over the waves (c ≈ 0).

In addition to the position, another remarkable difference
between the antinode and the node clusters is hidden in their
dynamics during a single wave period: Experimentally we
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2.2. Floaters at a static interface Chapter 2. Playing with surface tension ...

face of the liquid (with density ρl) is deformed to satisfy the vertical force balance.
This means that the weight of the sphere, the buoyancy force and the surface tension
force (with surface tension coefficient σ ) must sum up to zero.

The surface deformation due to a single sphere in a static equilibrium is shown
schematically in Fig. 2.1 for four distinct spheres, namely (a) hydrophilic [wetting,
i.e., θ < π/2] and heavy [ρs > ρl], (b) hydrophobic [non-wetting, i.e., θ > π/2] and
heavy, (c) hydrophilic and light [ρs < ρl], and finally (d) hydrophobic and light.
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Figure 2.1: A floating sphere trapped at a liquid-air interface in the static case: (a) Hy-
drophilic heavy sphere, (b) hydrophobic heavy sphere, (c) hydrophilic light sphere, and (d)
hydrophobic light sphere. The shaded regions indicate the volume of the liquid displaced by
the corresponding sphere as calculated in Ref. [11]. In (d), the total displaced liquid volume
is the shaded volume below the dashed line with subtracting the volume of the shaded tri-
angular regions. In (a), the sphere radius R, the contact angle θ , the submerged part δ , the
interfacial profile of the surface height far away from the meniscus zc and the interfacial slope
z′c at the contact point are shown. The line contour of the dark shaded region C, the sphere
density ρs, the liquid density ρl , and the acceleration of the gravity g are also presented. Since
the meniscus induced by the sphere is convex in (a, b) and concave in (c, d), the corresponding
surface tension F⃗c acts upwards in (a, b) and downwards in (c, d).
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2.5 Conclusion

We have provided a summary of the physics of floaters at interfaces under the influ-
ence of gravity. More specifically, the static balance of a floating sphere, the modified
buoyancy force with surface tension, and the capillary interaction between two iden-
tical floaters have been discussed. Furthermore, at an oscillating interface, the drift
mechanism for a single floater has been described. Utilizing the knowledge from the
static balance, the drift force provided in [8–10] has been slightly corrected. In addi-
tion, a more elaborate derivation of the drift force has been provided. Thus, we have
presented the main ingredients to understand and characterize the observations of
floating spheres both on static and dynamic interfaces. Additionally, we have em-
phasized and clarified the different regimes, i.e., the dependency on the physical
parameters of the spheres.

There is an important remaining issue, namely how the drift mechanism, dis-
cussed here for a single sphere, works for many floating spheres on a standing wave.
This will be the main question we will try to answer in the coming Chapter From
antinode clusters to node clusters.
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Experiment: Clusters 3
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FIG. 2. (Color online) Floater patterns on a standing Fara-
day wave with a rectangular wave pattern for various floater
concentrations �. To indicate the corresponding wave struc-
tures, in a small subset of the field of view the antinodes and
the nodes are presented by small yellow rectangles and yellow
lines, respectively. The images which lie in (or nearby) the
transition region from the antinode to the node clusters are
marked by the red line. The morphological di↵erences in the
clusters are clear: At low �, circular, irregularly packed antin-
ode clusters are observed (a, b). At intermediate �, when we
enter the transition region, clusters with a large heterogene-
ity in space evolve (c). Further into the transitional region,
loosely packed filamentary structures occur (d), which when
� increases even more evolve into densely clustered regions (e)
from which finally densely packed grid-shaped node clusters
form (f). The white bars indicate a length scale of 5 mm.

large number of holes disappears when r further increases
as illustrated by the last figure.

(c)

r= R r= 2R r= 3R
y

x

(b)(a)

FIG. 3. The Minkowski point pattern approach is demon-
strated using the particle pattern at the intermediate floater
concentration � = 0.37 [see Fig. 2(d) for the corresponding
experimental image]. Here, we show the morphological defor-
mation of the particle pattern when the Minkowski radius r
increases from the particle radius R (a), which provides an
image identical to the experimental one, to twice the radius
2R (b), and finally to three times the radius r = 3R (c). The
dashed (red) lines are the boundaries of the corresponding
experimental image. The white bars indicate a length scale
of 5 mm.

The morphology of the point patterns can be quantified
by the Minkowski functionals, which are introduced in
the next Section.

B. Minkowski functionals

The Minkowski functionals are a set of functionals
providing information of geometry, shape (i.e. curva-
ture), and connectivity of any pattern of interest. They
have been successfully employed to characterize large-
scale structures such as galaxy samples [24], turbulent
and regular patterns in chemical reaction-di↵usion sys-
tems [33], spinodal decomposition structures in a simula-
tion [34] and also in an experiment of a colloid-polymer
mixture [35], particle and bubble distributions in turbu-
lent flow [26], and aggregations of colloids at fluid inter-
faces [36]. Detailed extensive reviews can be found in
Refs. [25, 37], and the sensitivity of the method for some
data sets in comparison with the other methods are dis-
cussed in Ref. [23].
The Minkowski functionals

f
M0(D), fM1(D), fM2(D), . . . , fM

d

(D) are functionals
of integral geometry, which are additive, motion-
invariant, and continuous on a given domain D in
d�dimensional Euclidean space [34]. Mathematically,

the f
M
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mensions, @D is the boundary of the domain D, and R
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are the principal radii of curvature with i = 1, . . . , d� 1.

Here, the summation is performed over the multiplication
of all permutations i

⌫

of d� 1 curvatures.

We will now compute the Minkowski functionals for
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FIG. 1. (Color online) Experimental setup: (a) shaker, (b) glass
container, 81×45×10 mm3, (c) Schott fiber light source, (d) Photron
Fastcam SA.1, (e) an illustration of a camera image, (f) pinned
brim-full boundary condition, (g) the surface deformation around
our hydrophilic heavy floaters causes an attractive force, (h) the
direction of the period-averaged drift of a single floater, where A
and N represent the antinode and the node, respectively.

taken to be large enough to capture the maximum vertical
displacement (2.5 ± 0.1 mm) of the floaters.

In the period-averaged context, there are two mechanisms
that drive the floaters on the standing Faraday wave. The first
one is the attractive capillary interaction [6,7] due to the surface
deformation around the floaters [Fig. 1(g)], which is significant
when the distance between the floaters l is smaller than the
capillary length lc = (σ/ρg)1/2. Here, σ is the surface tension
coefficient of the interface, ρ the liquid density, and g the
acceleration of gravity. (For an air-water interface at 20 ◦C,
lc = 2.7 mm.) The second is due to the standing Faraday wave,
which causes a time-averaged drift of the floaters towards
the antinodes [Fig. 1(h)], which is observed and described in
Refs. [1,3]. This drift, which is discussed in greater detail in
Appendix A2, is reminiscent of the famous Stokes drift of an
object on a traveling wave.

The control parameter of the experiment is the floater
concentration φ. We simply measure φ by dividing the area
covered with floaters by that of the total horizontal field of
view. In Fig. 2 we show a top view of the distribution of the
particles in two distinct limits, namely for low φ and high φ.
The remarkable difference between the two states is clear: For
low φ [Fig. 2(a)] small clusters float around the antinodes,
whereas for high φ [Fig. 2(b)] there is one large cluster around
the nodal lines. This completely inverts the pattern and the
particles now seen to avoid the antinodal regions.

To inspect this concentration-dependent clustering we
introduce the correlation factor c, which quantifies to what
extent the position of the clusters is correlated with the wave
antinodes

c ≡ ⟨φ(r,t)a(r)⟩r,t

⟨φ(r,t)⟩r,t
, (1)

where the brackets ⟨⟩r,t indicate that the average is taken with
respect to both space r = (x,y) and time t [13]. Here, φ(r,t)
is the floater concentration and the wave distribution a(r) is a
test function that is positive at the antinodes and negative at

(a) (b)

(c) (d)

x
y

FIG. 2. (Color online) (a), (b) Clustering of floaters on a rectan-
gular standing wave in experiment. The snapshots show the stationary
state when the surface wave elevation is nearly zero. The small yellow
rectangles mark the location of the antinodes and the yellow lines that
of the nodal lines. Clearly, for φ = 0.08 (a) particles cluster at the
antinodes, whereas for φ = 0.61 (b) the pattern is spontaneously
inverted into a large cluster around the nodal lines. Note that in (b) all
particles touch whereas the average distance between particles in (a)
is somewhat larger. This is due to the breathing effect explained in
the text. (c), (d) Artificial antinode clusters at φ = 0.10 (c) and node
clusters at φ = 0.44 (d) as used in the potential energy calculation.
The white bars indicate a length scale of 5 mm.

the nodes. More specifically, a(r) is defined as

a(r) =
{
βacos(r) when acos(r) > 0 (antinodes),
acos(r) when acos(r) < 0 (nodes). (2)

Here, acos(r) = 2 cos2 kxx cos2 kyy − 1, with kx,ky the wave
numbers in the x,y direction. Since with the above definition
the nodal regions are three times as small as the nodal ones, a
constant β = 3 is introduced such that c = 0 when the floaters
are equally distributed over the two-dimensional wave surface
[14]. To check the robustness of c regarding the precise form
of a(r), we also use a step function astep(r), which equals 1 at
the antinodes and −1 at the nodes.

In Fig. 3(a) we present the correlation factor c plotted
against φ for both acos and astep. We observe three distinct
regions: For low φ (<0.2) the clear positive value of c indicates
the presence of the antinode clusters (region I). Second, for
very high φ (>0.5) we find node clusters for which c < 0
(region III). Finally, there is a broad intermediate region
II, in which we observe morphologically rich self-organized
floater patterns, some of which are steadier than others.
These quasisteady patterns cause the large scatter in c in the
region between φ = 0.2 and 0.35. Between φ = 0.35 and 0.5,
patterns are quite dynamic leading to an even spreading of
particles over the waves (c ≈ 0).

In addition to the position, another remarkable difference
between the antinode and the node clusters is hidden in their
dynamics during a single wave period: Experimentally we
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In the period-averaged context, there are two mechanisms
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deformation around the floaters [Fig. 1(g)], which is significant
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acceleration of gravity. (For an air-water interface at 20 ◦C,
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the antinodes [Fig. 1(h)], which is observed and described in
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numbers in the x,y direction. Since with the above definition
the nodal regions are three times as small as the nodal ones, a
constant β = 3 is introduced such that c = 0 when the floaters
are equally distributed over the two-dimensional wave surface
[14]. To check the robustness of c regarding the precise form
of a(r), we also use a step function astep(r), which equals 1 at
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floater patterns, some of which are steadier than others.
These quasisteady patterns cause the large scatter in c in the
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FIG. 3. (Color online) Experimental (a) and calculated (b), (c)
transition from antinode to node clusters. (a) The correlation factor c

is plotted versus the floater concentration φ for both acos (red circles)
and astep (blue squares), where the error bars indicate the standard
deviation of a single experiment. (b) The total potential energy E/N

per floater particle for the artificial patterns [see Figs. 2(c), 2(d)],
nondimensionalized by σ l2

c , is plotted versus φ for both the antinode
(black circles) and node (black squares) configurations. #E/N (red
stars) represents the energy difference between the antinode and node
configurations. (c) Constituents of E/N versus φ. Circles indicate the
capillary energy Ec/N (orange) and the drift energy Ed/N (purple)
for the antinode configurations, whereas squares indicate the same
quantities for the node clusters. For comparison, the purple dashed
lines show the drift energy Ed without incorporating the breathing
effect.

observe that in the antinode clusters the floaters periodically
move away from and towards the antinode [Fig. 4(a)]. This
happens because when the wave reaches its maximum the
(downward moving) floaters move away from the antinode,
whereas in the minimum they move towards it. We call this
periodic motion at the antinode clusters breathing. In contrast,
nodal clusters do not breathe; instead the clusters as a whole
oscillate back and forth around the nodal lines [Fig. 4(b)].
As a result, the floaters in the node clusters stay closely
together without changing their relative distance (which is
approximately equal to the particle diameter 2R), whereas the
period-averaged distance between the particles in the antinode

A N

(c) (d)

x
y

A N

A
(a) (b)

x
y

FIG. 4. (Color online) The breathing effect: When we compare
an experimental antinode (a) with a node cluster (b), we clearly see
that particles in the first are much farther apart due to breathing (see
text). Again, the antinodes (A) are marked by small yellow rectangles
and the nodes (N) with yellow lines. The bars indicate a length scale
of 5 mm. We artificially design hexagonal clusters to incorporate this
breathing effect: An antinode cluster (c) is grown by adding hexagonal
rings at decreasing increments rnn starting from a large initial value,
whereas a node cluster (d) is grown from a close-packed hexagonal
structure with increasing increments rnn. The color coding identifies
consecutive rings.

cluster is significantly larger than 2R [15]. The breathing
phenomenon is discussed in more detail in Appendix A2.

III. POTENTIAL ENERGY ESTIMATE

Now, what is the reason for the observed pattern inversion?
To answer this question we estimate the energy in artificially
created node and antinode clusters, which are inspired by our
experimental observations [Figs. 4(a) and 4(b)]: The antinode
cluster is modeled as a two-dimensional static hexagonally
packed cluster where the distance between the neighboring
floaters increases towards the antinode point (A) [Fig. 4(c)]
to implement the observed breathing effect. The distance
here can be considered as the period-averaged experimental
distance between the floaters. The node cluster, in contrast,
is designed as a two-dimensional hexagonal cluster where the
distance between the neighboring floaters sitting exactly at
the crossing of two nodal lines (N) is equal to an average
floater diameter 2R [Fig. 4(d)]. Furthermore, the distance
slightly increases away from N. Further details on the artificial
antinode and node cluster configurations can be found in
Appendix B.

During the motion of the floaters on the wave there is an
intricate exchange of wave energy (input), potential energy,
kinetic energy, and dissipation (output). However, in a steady
state the input and output must balance and since the particles
return to (approximately) the same positions after each period
of the wave it is sufficient to compare the potential energy
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and astep (blue squares), where the error bars indicate the standard
deviation of a single experiment. (b) The total potential energy E/N
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c , is plotted versus φ for both the antinode
(black circles) and node (black squares) configurations. #E/N (red
stars) represents the energy difference between the antinode and node
configurations. (c) Constituents of E/N versus φ. Circles indicate the
capillary energy Ec/N (orange) and the drift energy Ed/N (purple)
for the antinode configurations, whereas squares indicate the same
quantities for the node clusters. For comparison, the purple dashed
lines show the drift energy Ed without incorporating the breathing
effect.

observe that in the antinode clusters the floaters periodically
move away from and towards the antinode [Fig. 4(a)]. This
happens because when the wave reaches its maximum the
(downward moving) floaters move away from the antinode,
whereas in the minimum they move towards it. We call this
periodic motion at the antinode clusters breathing. In contrast,
nodal clusters do not breathe; instead the clusters as a whole
oscillate back and forth around the nodal lines [Fig. 4(b)].
As a result, the floaters in the node clusters stay closely
together without changing their relative distance (which is
approximately equal to the particle diameter 2R), whereas the
period-averaged distance between the particles in the antinode
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an experimental antinode (a) with a node cluster (b), we clearly see
that particles in the first are much farther apart due to breathing (see
text). Again, the antinodes (A) are marked by small yellow rectangles
and the nodes (N) with yellow lines. The bars indicate a length scale
of 5 mm. We artificially design hexagonal clusters to incorporate this
breathing effect: An antinode cluster (c) is grown by adding hexagonal
rings at decreasing increments rnn starting from a large initial value,
whereas a node cluster (d) is grown from a close-packed hexagonal
structure with increasing increments rnn. The color coding identifies
consecutive rings.

cluster is significantly larger than 2R [15]. The breathing
phenomenon is discussed in more detail in Appendix A2.

III. POTENTIAL ENERGY ESTIMATE

Now, what is the reason for the observed pattern inversion?
To answer this question we estimate the energy in artificially
created node and antinode clusters, which are inspired by our
experimental observations [Figs. 4(a) and 4(b)]: The antinode
cluster is modeled as a two-dimensional static hexagonally
packed cluster where the distance between the neighboring
floaters increases towards the antinode point (A) [Fig. 4(c)]
to implement the observed breathing effect. The distance
here can be considered as the period-averaged experimental
distance between the floaters. The node cluster, in contrast,
is designed as a two-dimensional hexagonal cluster where the
distance between the neighboring floaters sitting exactly at
the crossing of two nodal lines (N) is equal to an average
floater diameter 2R [Fig. 4(d)]. Furthermore, the distance
slightly increases away from N. Further details on the artificial
antinode and node cluster configurations can be found in
Appendix B.

During the motion of the floaters on the wave there is an
intricate exchange of wave energy (input), potential energy,
kinetic energy, and dissipation (output). However, in a steady
state the input and output must balance and since the particles
return to (approximately) the same positions after each period
of the wave it is sufficient to compare the potential energy
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and astep (blue squares), where the error bars indicate the standard
deviation of a single experiment. (b) The total potential energy E/N
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nondimensionalized by σ l2

c , is plotted versus φ for both the antinode
(black circles) and node (black squares) configurations. #E/N (red
stars) represents the energy difference between the antinode and node
configurations. (c) Constituents of E/N versus φ. Circles indicate the
capillary energy Ec/N (orange) and the drift energy Ed/N (purple)
for the antinode configurations, whereas squares indicate the same
quantities for the node clusters. For comparison, the purple dashed
lines show the drift energy Ed without incorporating the breathing
effect.

observe that in the antinode clusters the floaters periodically
move away from and towards the antinode [Fig. 4(a)]. This
happens because when the wave reaches its maximum the
(downward moving) floaters move away from the antinode,
whereas in the minimum they move towards it. We call this
periodic motion at the antinode clusters breathing. In contrast,
nodal clusters do not breathe; instead the clusters as a whole
oscillate back and forth around the nodal lines [Fig. 4(b)].
As a result, the floaters in the node clusters stay closely
together without changing their relative distance (which is
approximately equal to the particle diameter 2R), whereas the
period-averaged distance between the particles in the antinode
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FIG. 4. (Color online) The breathing effect: When we compare
an experimental antinode (a) with a node cluster (b), we clearly see
that particles in the first are much farther apart due to breathing (see
text). Again, the antinodes (A) are marked by small yellow rectangles
and the nodes (N) with yellow lines. The bars indicate a length scale
of 5 mm. We artificially design hexagonal clusters to incorporate this
breathing effect: An antinode cluster (c) is grown by adding hexagonal
rings at decreasing increments rnn starting from a large initial value,
whereas a node cluster (d) is grown from a close-packed hexagonal
structure with increasing increments rnn. The color coding identifies
consecutive rings.

cluster is significantly larger than 2R [15]. The breathing
phenomenon is discussed in more detail in Appendix A2.

III. POTENTIAL ENERGY ESTIMATE

Now, what is the reason for the observed pattern inversion?
To answer this question we estimate the energy in artificially
created node and antinode clusters, which are inspired by our
experimental observations [Figs. 4(a) and 4(b)]: The antinode
cluster is modeled as a two-dimensional static hexagonally
packed cluster where the distance between the neighboring
floaters increases towards the antinode point (A) [Fig. 4(c)]
to implement the observed breathing effect. The distance
here can be considered as the period-averaged experimental
distance between the floaters. The node cluster, in contrast,
is designed as a two-dimensional hexagonal cluster where the
distance between the neighboring floaters sitting exactly at
the crossing of two nodal lines (N) is equal to an average
floater diameter 2R [Fig. 4(d)]. Furthermore, the distance
slightly increases away from N. Further details on the artificial
antinode and node cluster configurations can be found in
Appendix B.

During the motion of the floaters on the wave there is an
intricate exchange of wave energy (input), potential energy,
kinetic energy, and dissipation (output). However, in a steady
state the input and output must balance and since the particles
return to (approximately) the same positions after each period
of the wave it is sufficient to compare the potential energy
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stars) represents the energy difference between the antinode and node
configurations. (c) Constituents of E/N versus φ. Circles indicate the
capillary energy Ec/N (orange) and the drift energy Ed/N (purple)
for the antinode configurations, whereas squares indicate the same
quantities for the node clusters. For comparison, the purple dashed
lines show the drift energy Ed without incorporating the breathing
effect.

observe that in the antinode clusters the floaters periodically
move away from and towards the antinode [Fig. 4(a)]. This
happens because when the wave reaches its maximum the
(downward moving) floaters move away from the antinode,
whereas in the minimum they move towards it. We call this
periodic motion at the antinode clusters breathing. In contrast,
nodal clusters do not breathe; instead the clusters as a whole
oscillate back and forth around the nodal lines [Fig. 4(b)].
As a result, the floaters in the node clusters stay closely
together without changing their relative distance (which is
approximately equal to the particle diameter 2R), whereas the
period-averaged distance between the particles in the antinode
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an experimental antinode (a) with a node cluster (b), we clearly see
that particles in the first are much farther apart due to breathing (see
text). Again, the antinodes (A) are marked by small yellow rectangles
and the nodes (N) with yellow lines. The bars indicate a length scale
of 5 mm. We artificially design hexagonal clusters to incorporate this
breathing effect: An antinode cluster (c) is grown by adding hexagonal
rings at decreasing increments rnn starting from a large initial value,
whereas a node cluster (d) is grown from a close-packed hexagonal
structure with increasing increments rnn. The color coding identifies
consecutive rings.

cluster is significantly larger than 2R [15]. The breathing
phenomenon is discussed in more detail in Appendix A2.

III. POTENTIAL ENERGY ESTIMATE

Now, what is the reason for the observed pattern inversion?
To answer this question we estimate the energy in artificially
created node and antinode clusters, which are inspired by our
experimental observations [Figs. 4(a) and 4(b)]: The antinode
cluster is modeled as a two-dimensional static hexagonally
packed cluster where the distance between the neighboring
floaters increases towards the antinode point (A) [Fig. 4(c)]
to implement the observed breathing effect. The distance
here can be considered as the period-averaged experimental
distance between the floaters. The node cluster, in contrast,
is designed as a two-dimensional hexagonal cluster where the
distance between the neighboring floaters sitting exactly at
the crossing of two nodal lines (N) is equal to an average
floater diameter 2R [Fig. 4(d)]. Furthermore, the distance
slightly increases away from N. Further details on the artificial
antinode and node cluster configurations can be found in
Appendix B.

During the motion of the floaters on the wave there is an
intricate exchange of wave energy (input), potential energy,
kinetic energy, and dissipation (output). However, in a steady
state the input and output must balance and since the particles
return to (approximately) the same positions after each period
of the wave it is sufficient to compare the potential energy
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FIG. 3. (Color online) Experimental (a) and calculated (b), (c)
transition from antinode to node clusters. (a) The correlation factor c

is plotted versus the floater concentration φ for both acos (red circles)
and astep (blue squares), where the error bars indicate the standard
deviation of a single experiment. (b) The total potential energy E/N

per floater particle for the artificial patterns [see Figs. 2(c), 2(d)],
nondimensionalized by σ l2

c , is plotted versus φ for both the antinode
(black circles) and node (black squares) configurations. #E/N (red
stars) represents the energy difference between the antinode and node
configurations. (c) Constituents of E/N versus φ. Circles indicate the
capillary energy Ec/N (orange) and the drift energy Ed/N (purple)
for the antinode configurations, whereas squares indicate the same
quantities for the node clusters. For comparison, the purple dashed
lines show the drift energy Ed without incorporating the breathing
effect.

observe that in the antinode clusters the floaters periodically
move away from and towards the antinode [Fig. 4(a)]. This
happens because when the wave reaches its maximum the
(downward moving) floaters move away from the antinode,
whereas in the minimum they move towards it. We call this
periodic motion at the antinode clusters breathing. In contrast,
nodal clusters do not breathe; instead the clusters as a whole
oscillate back and forth around the nodal lines [Fig. 4(b)].
As a result, the floaters in the node clusters stay closely
together without changing their relative distance (which is
approximately equal to the particle diameter 2R), whereas the
period-averaged distance between the particles in the antinode
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FIG. 4. (Color online) The breathing effect: When we compare
an experimental antinode (a) with a node cluster (b), we clearly see
that particles in the first are much farther apart due to breathing (see
text). Again, the antinodes (A) are marked by small yellow rectangles
and the nodes (N) with yellow lines. The bars indicate a length scale
of 5 mm. We artificially design hexagonal clusters to incorporate this
breathing effect: An antinode cluster (c) is grown by adding hexagonal
rings at decreasing increments rnn starting from a large initial value,
whereas a node cluster (d) is grown from a close-packed hexagonal
structure with increasing increments rnn. The color coding identifies
consecutive rings.

cluster is significantly larger than 2R [15]. The breathing
phenomenon is discussed in more detail in Appendix A2.

III. POTENTIAL ENERGY ESTIMATE

Now, what is the reason for the observed pattern inversion?
To answer this question we estimate the energy in artificially
created node and antinode clusters, which are inspired by our
experimental observations [Figs. 4(a) and 4(b)]: The antinode
cluster is modeled as a two-dimensional static hexagonally
packed cluster where the distance between the neighboring
floaters increases towards the antinode point (A) [Fig. 4(c)]
to implement the observed breathing effect. The distance
here can be considered as the period-averaged experimental
distance between the floaters. The node cluster, in contrast,
is designed as a two-dimensional hexagonal cluster where the
distance between the neighboring floaters sitting exactly at
the crossing of two nodal lines (N) is equal to an average
floater diameter 2R [Fig. 4(d)]. Furthermore, the distance
slightly increases away from N. Further details on the artificial
antinode and node cluster configurations can be found in
Appendix B.

During the motion of the floaters on the wave there is an
intricate exchange of wave energy (input), potential energy,
kinetic energy, and dissipation (output). However, in a steady
state the input and output must balance and since the particles
return to (approximately) the same positions after each period
of the wave it is sufficient to compare the potential energy
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c , is plotted versus φ for both the antinode
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stars) represents the energy difference between the antinode and node
configurations. (c) Constituents of E/N versus φ. Circles indicate the
capillary energy Ec/N (orange) and the drift energy Ed/N (purple)
for the antinode configurations, whereas squares indicate the same
quantities for the node clusters. For comparison, the purple dashed
lines show the drift energy Ed without incorporating the breathing
effect.

observe that in the antinode clusters the floaters periodically
move away from and towards the antinode [Fig. 4(a)]. This
happens because when the wave reaches its maximum the
(downward moving) floaters move away from the antinode,
whereas in the minimum they move towards it. We call this
periodic motion at the antinode clusters breathing. In contrast,
nodal clusters do not breathe; instead the clusters as a whole
oscillate back and forth around the nodal lines [Fig. 4(b)].
As a result, the floaters in the node clusters stay closely
together without changing their relative distance (which is
approximately equal to the particle diameter 2R), whereas the
period-averaged distance between the particles in the antinode
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FIG. 4. (Color online) The breathing effect: When we compare
an experimental antinode (a) with a node cluster (b), we clearly see
that particles in the first are much farther apart due to breathing (see
text). Again, the antinodes (A) are marked by small yellow rectangles
and the nodes (N) with yellow lines. The bars indicate a length scale
of 5 mm. We artificially design hexagonal clusters to incorporate this
breathing effect: An antinode cluster (c) is grown by adding hexagonal
rings at decreasing increments rnn starting from a large initial value,
whereas a node cluster (d) is grown from a close-packed hexagonal
structure with increasing increments rnn. The color coding identifies
consecutive rings.

cluster is significantly larger than 2R [15]. The breathing
phenomenon is discussed in more detail in Appendix A2.

III. POTENTIAL ENERGY ESTIMATE

Now, what is the reason for the observed pattern inversion?
To answer this question we estimate the energy in artificially
created node and antinode clusters, which are inspired by our
experimental observations [Figs. 4(a) and 4(b)]: The antinode
cluster is modeled as a two-dimensional static hexagonally
packed cluster where the distance between the neighboring
floaters increases towards the antinode point (A) [Fig. 4(c)]
to implement the observed breathing effect. The distance
here can be considered as the period-averaged experimental
distance between the floaters. The node cluster, in contrast,
is designed as a two-dimensional hexagonal cluster where the
distance between the neighboring floaters sitting exactly at
the crossing of two nodal lines (N) is equal to an average
floater diameter 2R [Fig. 4(d)]. Furthermore, the distance
slightly increases away from N. Further details on the artificial
antinode and node cluster configurations can be found in
Appendix B.

During the motion of the floaters on the wave there is an
intricate exchange of wave energy (input), potential energy,
kinetic energy, and dissipation (output). However, in a steady
state the input and output must balance and since the particles
return to (approximately) the same positions after each period
of the wave it is sufficient to compare the potential energy
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effect.
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ɸ = bead area/total area!
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FIG. 1. (Color online) Left panel: Experimental setup: (a) Shaker, (b) far field light source, (c) transparent hydrophilic glass container, (d)
hydrophilic spheres, (e) high speed camera, and (f) sample from a camera image for densely packed floater configuration. The advantage of
using a far field light source is that all particles can be detected using the white spots in the images. (g) Pinned brim-full boundary condition.
Right panel: (h) Top view of capillary Faraday waves, with the elliptic boundary containing the particles (red ellipse) and the field of view of
the camera (yellow rectangle). (i) and (j) Sketch of the typical meniscus around the hydrophilic floaters in moderate (i) and expected that in
extremely densely packed (j) regimes.

universality [17–19,37–40]. There is evidence pointing to
universality in the above sense in various systems [17–19,27].
However, investigation is ongoing [32,41–43]. Furthermore,
increasing the number of systems either obeying or disobeying
the universality and determining the universality class of the
transition are key to reach a more complete understanding.

We will therefore analyze our system in the light of both
dynamic heterogeneity and dynamic criticality.

II. EXPERIMENT

A schematic illustration of the experimental setup, which is
the same one having been already used in our earlier study [25],
is shown in Fig. 1. A rectangular container [Fig. 1(a)] is
attached to a shaker providing a vertical sinusoidal oscillation
such that the vertical position of the container varies as a
function of time t as a0 sin(2πf0 t), where a0 is the shaking
amplitude and f0 is the shaking frequency. Here both a0 and f0
are fixed to 0.1 mm and 250 Hz, respectively. This combination
is chosen to create capillary ripples on the water surface with
a wavelength in the order of the floater diameter (≈0.62 mm).
The container is filled with purified water (Millipore water
with a resistivity >18 M" cm) such that the water level is
perfectly matched with the container edge as shown in Fig. 1(g)
to create the brim-full boundary condition [44]. Spherical
hydrophilic polystyrene floaters [Fig. 1(d)], contact angle 74◦,
and density 1050 kg/m3, with an average radius R of 0.31 mm
are carefully distributed over the water surface to make a
monolayer of floaters [45]. The polydispersity of the floaters
is approximately 14% and assumed to be just wide enough to
avoid crystallization [46]. To avoid any surfactant effects, both
the container and the floaters are cleaned by performing the
cleaning protocol as described in Ref. [47].

A continuous white fiber light source (Schott) is used to
illuminate the floaters from far away as shown in Fig. 1(b).
The positions of the floaters are recorded with a high-speed
camera (Photron Fastcam SA.1) at 60–500 frames per second.
The lens (Carl Zeiss 60 mm) is adjusted such that it focuses
on the floaters at the nondeformed water surface. Here we
use the random capillary Faraday waves to just agitate the
densely packed floaters so that there is no macroscopic
apparent amplitude observed. The wave amplitude is always
considerably smaller than the floater radius (≈0.31 mm).

The resultant capillary ripples on the water surface in
the container, made from transparent hydrophilic glass with
10 mm height and a 81 × 45 mm2 rectangular cross section,
are shown in Fig. 1(h). To eliminate the boundary effects due
to the sharp corners of the container, an elliptic rim made
from plastic is used to contain the particles. Each image taken
with the high speed camera is 512 × 640 px2 (36 × 28 mm2),
where px means pixel, as shown by the yellow rectangle (size
ratios are preserved). The horizontal field of view is ∼35%
of the total area of the ellipse. Due to the asymmetric surface
deformation around each hydrophilic heavy sphere, there is
an attraction [23,24] between the spheres so that the floaters
are cohesive [48]. For moderate φ, the monolayer can be
considered two dimensional [Fig. 1(i)]. In the densely packed
regime however [Fig. 1(j)], particles are so close that the layer
may (locally) buckle and have three-dimensional aspects [49].

The control parameter of the experiment is the floater (pack-
ing) concentration φ, which (ignoring buckling) is measured
by determining the area fraction covered by the floaters in the
area of interest [Fig. 1(h)]. In this study, φ is increased from
moderate to large concentrations, φ = 0.65–0.77.

Under the influence of the erratic capillary waves and the
attractive capillary interaction, a large scale convective motion
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¾ Illustrations of the break-up of an initial subgroup into pieces 
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¾  average grain radius R << l   c 

¾ The susceptibility               gives both the 
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¾ The Lagrangian trajectory of each floater is obtained by an 
image analysis. The travelling distance in a time interval     is 
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¾ A subgroup of floaters is constructed at time=0. 
 
¾ Then, each floater in the subgroup is tracked in time.  

 
¾ A morphological structure is constructed by drawing a larger 
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each floater. 
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• To quantify the heterogeneous dynamics by 
the mobility (self-overlap order parameter):
5.3. Dynamic susceptibility Chapter 5. Dense heterogenous flow...
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Figure 5.7: The four-point dynamic susceptibility χ4(l, τ) as a function of the time difference τ for
various φ . The distance l is equal to 2R (a), 8R (b), and 15R (c). The peak position τχ4 (l, τ) and peak height
hχ4 (l, τ) characterize the typical time scale of and the amount of floaters contributing to the dynamical
heterogeneity.
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Figure 5.8: The decay width wQ(l, φ) of Q(l, τ) (a), the peak position τχ4 (l, φ) (b) and the height hχ4 (l, φ)
(c), both of the dynamic susceptibility χ4(l, τ), as a function of φ . For each quantity, the distance l varies
from 2R to 15R. The results indicate that l does not change the overall trend when φ increases. See main
text for further details.
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(a) (b) (c)

FIG. 3. (Color online) (a) The scaled four-point correlation function G4(r/ξ ∗) ≡ (r/ξ ∗)βg4(r,τ ∗)/A where we use Gaussians for the coarse
graining and overlap functions respectively [case (iii) in Table I] and the solid line represents e−r/ξ∗

. (b) The time scale of the dynamic
heterogeneity τ ∗ vs φ obtained from the four-point dynamic susceptibility χ4(τ ). The solid line represents τ ∗ ∼ (φc − φ)−3.9. Inset: χ4(τ ) for
φ = 0.75, where the green dotted line is obtained without subtracting the convective displacement li(t) [case (i) in Table I] and the red solid
line with the subtraction [case (iii) in Table I]. (c) The dynamic correlation length ξ ∗ obtained from g4(r,τ ) for τ = τ ∗. The solid line represents
ξ ∗ ∼ (φc − φ)−1.4. The legend in (c) indicates the conditions described in Table I and explains the symbols in (b) and (c).

external driving [56]. In addition, φc needs to be considerably
larger than φexpt = 0.77, the largest experimental average at
which we are able to measure, so that we can assume the
critical density is in the range φexpt = 0.77 < φc < φRCP.

By fitting a power law τα ∼ (φc − φ)α to our data [57]
we find that φc ≈ 0.82, which is consistent with the above
and leads us to conclude that φc = 0.82 ± 0.02. It is worth
mentioning that previous experiments found a similar di-
vergence of the relaxation time (associated with the contact
number) near the critical density 0.8151 [28,33]. Note that
this value is considerably larger than the suggested static
buckling density of the attractive monodisperse spheres [58],
namely φb ≃ 0.71. Next, we use this fixed value for φc in our
power-law fit to obtain the exponent α ≃ −3.9 ± 0.9, which
is consistent with the exponent α ≃ −4.0 ± 0.6 found in an
earlier experiment [27].

To quantify the heterogenous dynamics of the floaters,
we introduce the self-overlap order parameter qa(t,τ ) =∑

i wa[Di(t,τ )]/N and the four-point dynamic susceptibility
χ4(τ ) = N [⟨q2

a (t,τ )⟩t − ⟨qa(t,τ )⟩2
t ]. Here wa(x) is the overlap

function defined as a Gaussian e−(x/a)2
or a Heaviside step

function 'a(x) as defined previously (1 for x ! a and 0,
otherwise). The width of the overlap function a is a measure
for the typical distance over which a single floater can move
within time τ . To disregard the motion of the floaters in the
cages, a is chosen to be larger than their typical displacement
inside a cage and also chosen to maximize [19] the extremal
value of the χ4(τ ) as shown in the inset of Fig. 3(b).

The various coarse graining functions and overlap functions
in total give us six different manners of analyzing the data,
if we also include the possibility of not subtracting the
displacement due to the large scale convection before the
dynamic heterogeneity analysis. These are summarized in
Table I, together with the optimal values of d and a obtained
as described above [59]. When we plot the χ4(τ ) we obtain
similar results in all six cases [case (i) in Table I is shown in
the inset of Fig. 3(b)]. In particular the location of the peak
in χ4(τ ) provides us with an estimate of the typical time scale
τ ∗ of the dynamic heterogeneity, which are plotted for all six
cases as functions of φ in Fig. 3(b).

To investigate the dynamic correlation length of the floaters,
we apply the four-point correlation function [60]

g4(r,τ ) = 1
2πrN

〈
∑

i,j

δ[r − rij (t)]cij (t,τ )

〉

t

− ρ⟨qa(t,τ )⟩2
t

(2)
satisfying χ4(τ ) = 2π

∫
r g4(r,τ )dr , where ρ ≡ N/S and S

are the number density of the floaters and the area of
interest, respectively. N is the number of floaters as introduced
previously. In addition, we define rij (t) ≡ |ri(t) − rj (t)| and
cij (t,τ ) ≡ wa[Di(t,τ )]wa[Dj (t,τ )]. Furthermore, we assume
the Ornstein-Zernike form of the four-point correlation func-
tion [60], in which the dynamic correlation length ξ ∗ is
obtained considering the scaling g4(r,τ ∗) = A(r/ξ ∗)−βe−r/ξ∗

for some amplitude A and exponent β, where τ ∗ is the time
scale obtained from χ4(τ ).

Figure 3(a) shows the function G4(r/ξ ∗) ≡
(r/ξ ∗)βg4(r,τ ∗)/A, where the (very weak) exponent
β = 0.01 is taken to be independent of φ. The resultant
G4(r/ξ ∗) successfully collapses onto a single master curve
e−r/ξ∗

for each φ except for the tails. This procedure is
repeated for each condition in Table I. Remarkably, we find
that neither the value of the exponent nor the master curve
presents any significant difference.

Figure 3 displays the time scale of the dynamic hetero-
geneity τ ∗ [Fig. 3(b)] and the dynamic correlation length

TABLE I. Analysis methods: The set of the coarse graining
functions and the overlap functions, with d and a as described in
the main text, both in terms of the floater diameter σ .

Coarse graining function Overlap function d/σ a/σ

(i) none Gaussian – 0.49
(ii) none Heaviside – 0.52
(iii) Gaussian Gaussian 1.0 0.038
(iv) Gaussian Heaviside 1.0 0.042
(v) Heaviside Gaussian 1.6 0.042
(vi) Heaviside Heaviside 1.6 0.046
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FIG. 2. (Color online) (a) Mean-square displacement !(τ ) of the floaters for φ = 0.75. The open squares are obtained without subtracting
the displacement li(t) due to the large scale convection. The open circles and open triangles are the results with the subtraction, where we use
a Gaussian with d = σ and a step function with d = 1.6σ as coarse graining functions, respectively. Here σ is the floater diameter. The red
solid and the green dotted lines have slopes 1.9 and 1.1, respectively. (b) Crossover time τα plotted against φ, where the closed circles and
squares are obtained using the Gaussian (d = σ ) and the step (d = 1.6σ ) coarse graining functions, respectively. The solid line represents
τα ∼ (φc − φ)−3.9 with φc = 0.82.

is observed with a typical length scale ∼60 times larger than
the floater diameter, which is ∼1/2 of the system size, and a
typical time scale ∼250 times longer than that of the capillary
Faraday waves.

III. DYNAMIC HETEROGENEITY AND
DYNAMIC CRITICALITY

To focus on microscopic fluctuations, we subtract the
displacement due to the large scale convective motion from
our experimental data. At first we define the velocity field by
the coarse graining method [50–52] as

u(x,t) =
∑

i vi(t)ψd [|x − xi(t)|]∑
i ψd [|x − xi(t)|]

, (1)

with the position xi(t) and the velocity vi(t) of the ith
floater, where we adopt both Gaussian [e−(x/d)2

] and Heaviside
['d (x) = 1 (x ! d) and zero otherwise] as coarse graining
kernel functions ψd (x). Here d is a length scale of the
order of the particle diameter. Subsequently we subtract the
displacement li(t) =

∫ t

0 ds u[xi(s),s] due to this macroscopic
flow from the position as ri(t) ≡ xi(t) − li(t) and define an
actual displacement during the time interval τ as Di(t,τ ) ≡
|ri(t + τ ) − ri(t)|.

First, we look at single particle dynamics. Approaching
high packing fractions, the particles experience caging [33],
i.e., a cage composed of a group of particles locally trapped
by their neighbors. The particles in the cages are immobile.
However, in the presence of fluctuations near the critical
packing density, escape jumps occurring at a certain relaxation
time create heterogeneous flow, i.e., fast and slow flow regions
appear simultaneously [3].

The caging and the successive jumps leave their tracks in the
mean-square displacement of individual particles: It has been
first theoretically suggested as a measure of the relaxation time
for densely packed suspensions exhibiting jamming [39] and
then also experimentally confirmed in both a jammed driven
granular system [28,39] and colloidal glasses [53]. Unlike

glassy systems, in jammed systems there are no jumps and
the particles only do jittering motion in the cages [28,39].
Therefore, one can observe a very long plateau in the temporal
evolution of the mean-square displacement near the jamming
packing fraction [28] (or the plateau persists as long as the
simulation runs [39]). On the other hand, the plateau in glasses
either does not persist very long [5,53] or may not even
exist at all near the critical packing fraction (or the glass
transition temperature). Moreover, two diffusive regimes are
observed [5,53]. For our system, we find very similar behavior
to a glass transition: A subdiffusion for short times and an
ordinary diffusion at later times. However, instead of observing
the finite plateau, we observe an intermediate (a transient)
regime to separate the two diffusions.

Figure 2(a) shows the mean-square displacement of the
floaters !(τ ) = ⟨

∑
i D

2
i (t,τ )/N⟩t , where the brackets ⟨· · · ⟩t

represent an average over time t and N is the number of
floaters in the sample [54]. In our experiment, the floaters
are transported by the large scale convection, and thus, the
resultant motion is always ballistic. Consequently, when we
do not subtract the displacement li(t) from the experimental
data, !(τ ) quadratically increases with time with a slope 2 in
the log-log plot [open squares in Fig. 2(a)]. However, when we
do subtract the additional displacement due to the convection
for a suitable value of d, both the initial subdiffusive and the
later diffusive regimes are found [55].

As shown in Fig. 2(b), the crossover time τα between
these subdiffusive and diffusive regimes, rapidly increases
with φ. Since the subdiffusion represents the cage effect of
the floaters described above, it is plausible that the crossover
time diverges when the system is jammed, where no floater
can ever escape from the cage [28,39]. On physical grounds,
the jamming happens at a critical density φc, e.g., if the system
does not have temperature, φc is nearly equal to the random
close packing of polydisperse disks, φRCP ≈ 0.84, while the
temperature or external driving force slightly increases φc [40].
However, the capillary action keeps floaters at a distance,
which might compete against the increase of φc due to the

033018-3

COLLECTIVE MOTION OF MACROSCOPIC SPHERES . . . PHYSICAL REVIEW E 90, 033018 (2014)

 0

 0.2

 0.4

 0.6

 0.6  0.65  0.7  0.75  0.8

(a) (b)

subtraction

(s)

(s
)

1

2

α(
  )

10

10

−3

−1

10
1

10
3

10
−2

10
0

10
−1

10
1

10
2

−5
10

FIG. 2. (Color online) (a) Mean-square displacement !(τ ) of the floaters for φ = 0.75. The open squares are obtained without subtracting
the displacement li(t) due to the large scale convection. The open circles and open triangles are the results with the subtraction, where we use
a Gaussian with d = σ and a step function with d = 1.6σ as coarse graining functions, respectively. Here σ is the floater diameter. The red
solid and the green dotted lines have slopes 1.9 and 1.1, respectively. (b) Crossover time τα plotted against φ, where the closed circles and
squares are obtained using the Gaussian (d = σ ) and the step (d = 1.6σ ) coarse graining functions, respectively. The solid line represents
τα ∼ (φc − φ)−3.9 with φc = 0.82.

is observed with a typical length scale ∼60 times larger than
the floater diameter, which is ∼1/2 of the system size, and a
typical time scale ∼250 times longer than that of the capillary
Faraday waves.

III. DYNAMIC HETEROGENEITY AND
DYNAMIC CRITICALITY

To focus on microscopic fluctuations, we subtract the
displacement due to the large scale convective motion from
our experimental data. At first we define the velocity field by
the coarse graining method [50–52] as

u(x,t) =
∑

i vi(t)ψd [|x − xi(t)|]∑
i ψd [|x − xi(t)|]

, (1)

with the position xi(t) and the velocity vi(t) of the ith
floater, where we adopt both Gaussian [e−(x/d)2

] and Heaviside
['d (x) = 1 (x ! d) and zero otherwise] as coarse graining
kernel functions ψd (x). Here d is a length scale of the
order of the particle diameter. Subsequently we subtract the
displacement li(t) =

∫ t

0 ds u[xi(s),s] due to this macroscopic
flow from the position as ri(t) ≡ xi(t) − li(t) and define an
actual displacement during the time interval τ as Di(t,τ ) ≡
|ri(t + τ ) − ri(t)|.

First, we look at single particle dynamics. Approaching
high packing fractions, the particles experience caging [33],
i.e., a cage composed of a group of particles locally trapped
by their neighbors. The particles in the cages are immobile.
However, in the presence of fluctuations near the critical
packing density, escape jumps occurring at a certain relaxation
time create heterogeneous flow, i.e., fast and slow flow regions
appear simultaneously [3].

The caging and the successive jumps leave their tracks in the
mean-square displacement of individual particles: It has been
first theoretically suggested as a measure of the relaxation time
for densely packed suspensions exhibiting jamming [39] and
then also experimentally confirmed in both a jammed driven
granular system [28,39] and colloidal glasses [53]. Unlike

glassy systems, in jammed systems there are no jumps and
the particles only do jittering motion in the cages [28,39].
Therefore, one can observe a very long plateau in the temporal
evolution of the mean-square displacement near the jamming
packing fraction [28] (or the plateau persists as long as the
simulation runs [39]). On the other hand, the plateau in glasses
either does not persist very long [5,53] or may not even
exist at all near the critical packing fraction (or the glass
transition temperature). Moreover, two diffusive regimes are
observed [5,53]. For our system, we find very similar behavior
to a glass transition: A subdiffusion for short times and an
ordinary diffusion at later times. However, instead of observing
the finite plateau, we observe an intermediate (a transient)
regime to separate the two diffusions.

Figure 2(a) shows the mean-square displacement of the
floaters !(τ ) = ⟨

∑
i D

2
i (t,τ )/N⟩t , where the brackets ⟨· · · ⟩t

represent an average over time t and N is the number of
floaters in the sample [54]. In our experiment, the floaters
are transported by the large scale convection, and thus, the
resultant motion is always ballistic. Consequently, when we
do not subtract the displacement li(t) from the experimental
data, !(τ ) quadratically increases with time with a slope 2 in
the log-log plot [open squares in Fig. 2(a)]. However, when we
do subtract the additional displacement due to the convection
for a suitable value of d, both the initial subdiffusive and the
later diffusive regimes are found [55].

As shown in Fig. 2(b), the crossover time τα between
these subdiffusive and diffusive regimes, rapidly increases
with φ. Since the subdiffusion represents the cage effect of
the floaters described above, it is plausible that the crossover
time diverges when the system is jammed, where no floater
can ever escape from the cage [28,39]. On physical grounds,
the jamming happens at a critical density φc, e.g., if the system
does not have temperature, φc is nearly equal to the random
close packing of polydisperse disks, φRCP ≈ 0.84, while the
temperature or external driving force slightly increases φc [40].
However, the capillary action keeps floaters at a distance,
which might compete against the increase of φc due to the
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Figure 5.8: The decay width wQ(l, φ) of Q(l, τ) (a), the peak position τχ4 (l, φ) (b) and the height hχ4 (l, φ)
(c), both of the dynamic susceptibility χ4(l, τ), as a function of φ . For each quantity, the distance l varies
from 2R to 15R. The results indicate that l does not change the overall trend when φ increases. See main
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5.4. Visualization & morphology Chapter 5. Dense heterogenous flow...

We now turn back to the time-dependent deformation of the subgroups of Fig. 5.9,
but with rM = 2R for the floaters which are part of the initial subgroup [i.e., the ones
that we can reliably track for the complete duration of the experiment]. The resultant
configuration of the floaters, i.e., the resultant clusters that are formed due to merg-
ing of individual floaters for this larger value of the Minkowski radius rM [green
disks] are clearly visible in Fig. 5.11.
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Figure 5.11: Break-up and deformation of an initially round subgroup for low and high φ re-
spectively, based on the experimental snapshots. This Figure is identical to Fig. 5.9(I-VI), but
here the tracked floater discs [green] are drawn with a Minkowski radius rM = 2R where R is
the average floater radius (≈ 0.31 mm). Since the individual floater discs overlap, floaters have
merged into clusters and can be easily distinguished. Consequently, the morphological defor-
mation of these clusters, from the initial compact circular clusters (I,IV), to slightly deformed
and elongated clusters (II,V) at moderate time, and then to the final stretched filamentary
clusters (III,VI), can be now quantified by calculating the physical Minkowski functionals (see
main text).
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Construction of a subgroup             
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5 mm 5 mm
• At a certain ɸ, we construct a subgroup of beads which 
the initial positions are inside the shaded region.  

• Then, we track these beads as a function of time.

• For high ɸ, the subgroup deforms at a later time.  
• For low ɸ, the subgroup breaks into more pieces.

low ɸ high ɸ



Morphological parameter when r=2R             
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• When r=1R: • When r=2R:

!
!
!

''''''Morphological'analysis'of'the'subgroup'

! 'when'a'disk'radius'r='1R' ! 'r='2R'
! '' ! ''

! 'a'morphological'parameter'='
total'area'of'the'connected'region'

#'of'connected'regions'



Morphological analysis of subgroups             
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5 mm

• time evaluation of a 
subgroup:

• morphological deformation 
of the subgroup:

area
aspect 
ratio

ɸ = 0.76! ɸ = 0.76!
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• low ɸ: • high ɸ:
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Quantifying break-up time             
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• low ɸ: • high ɸ:
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Morphological parameter          
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Comparison: In progress          
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• Morphological analysis • Four-point dynamic 
susceptibility
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5.3. Dynamic susceptibility Chapter 5. Dense heterogenous flow...

0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78

0

5

10

15

20

25

30

35

40

45

50

φ

w Q
(l,

 φ
)  

 (s
)

 

 

l=2R
l=5R
l=8R
l=10R
l=15R φ=0.753

φ=0.761

0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78

0

5

10

15

20

25

30

35

40

45

50

φ

τ χ
4(l,

 φ
)  

 (s
)

 

 

l=2R
l=5R
l=8R
l=10R
l=15R

0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78

0

5

10

15

20

25

30

φ

h χ
4 (l

, φ
)

 

 

l=2R
l=5R
l=8R
l=10R
l=15R

Figure 5.8: The decay width wQ(l, φ) of Q(l, τ) (a), the peak position τχ4 (l, φ) (b) and the height hχ4 (l, φ)
(c), both of the dynamic susceptibility χ4(l, τ), as a function of φ . For each quantity, the distance l varies
from 2R to 15R. The results indicate that l does not change the overall trend when φ increases. See main
text for further details.
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Comparison: In progress          
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• Morphological analysis • Four-point dynamic 
susceptibility

5.5. Comparison between two methods Chapter 5. Dense heterogenous flow...

5.5 Comparison between two methods

In the previous Sections, we have quantified the φ dependence of the typical time
scale of the dynamics of dense cohesive floaters on capillary ripples using the four-
point dynamic susceptibility χ4(l, φ) [see Section 5.3.1] and the morphological ap-
proach [Section 5.4.1]. Two main results are shown comparatively in Fig. 5.17.
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Figure 5.17: Comparing the time scales of the dynamics of dense cohesive floaters on capillary ripples
determined using the two different methods discussed in this Chapter. (a) The time scales following from
the four-point dynamic susceptibility χ4(l = 8R, φ), namely the decay width wQ(l = 8R, φ) and the peak
position of the susceptibility τχ4 (l = 8R, φ), both as a function of φ . (b) One of the time scales following
from the morphology approach, namely the deformation time of the area τA∗ , as a function of φ . There
is a good qualitative agreement between the two methods. Remarkably, in both cases the trend is broken
for the same values of φ , namely φ = 0.753 and 0.761.

For both methods, we observe a broken trend in the φ dependence of the time
scales for the same two values of φ , namely φ = 0.753,0.761. This encourages us to
go back to the experiments, where we observe a large scale floater motion which ap-
pears to vary significantly with φ . This large scale motion has a range in the order of
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Summary          
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• On a standing Faraday wave regime: 
Antinode clusters at low ɸ and node 
clusters at high ɸ.

• On a capillary Faraday wave regime:  
We investigate an alternative approach to 
quantify heterogeneous flow by      
group deformation, usually done         
by the four-point dynamic      
susceptibility. 
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0.4

0.2

0

0.2

0.4

0.6 a
a

I II

III

cos
step

−5

−4

−3

−2

−1

0
x 10−5

(E
/σ

l )
/N

E, antinode
(b)

(a)

φ  

c(
  )

t ~~ 0.36

c

2
1
0

−1
−2
−3

−4

(  E
/σl )/ N

c
∆

E, node
E∆             

(E
/σ

l )
/N

c

(c)

−

−

0 0.1 0.3 0.4 0.5 0.6
−5

−4

−3

−2

−1

0
x 10−5

φ
0.7

E  c

E  d

E  c

E  d

config. of 
the node 
clusters

, config. of 
the clusters 
w/o breathing

E  d

config. of 
the antinode 
clusters

φ
0.2

2
2

2

x 10−5

FIG. 3. (Color online) Experimental (a) and calculated (b), (c)
transition from antinode to node clusters. (a) The correlation factor c

is plotted versus the floater concentration φ for both acos (red circles)
and astep (blue squares), where the error bars indicate the standard
deviation of a single experiment. (b) The total potential energy E/N

per floater particle for the artificial patterns [see Figs. 2(c), 2(d)],
nondimensionalized by σ l2

c , is plotted versus φ for both the antinode
(black circles) and node (black squares) configurations. #E/N (red
stars) represents the energy difference between the antinode and node
configurations. (c) Constituents of E/N versus φ. Circles indicate the
capillary energy Ec/N (orange) and the drift energy Ed/N (purple)
for the antinode configurations, whereas squares indicate the same
quantities for the node clusters. For comparison, the purple dashed
lines show the drift energy Ed without incorporating the breathing
effect.

observe that in the antinode clusters the floaters periodically
move away from and towards the antinode [Fig. 4(a)]. This
happens because when the wave reaches its maximum the
(downward moving) floaters move away from the antinode,
whereas in the minimum they move towards it. We call this
periodic motion at the antinode clusters breathing. In contrast,
nodal clusters do not breathe; instead the clusters as a whole
oscillate back and forth around the nodal lines [Fig. 4(b)].
As a result, the floaters in the node clusters stay closely
together without changing their relative distance (which is
approximately equal to the particle diameter 2R), whereas the
period-averaged distance between the particles in the antinode

A N

(c) (d)

x
y

A N

A
(a) (b)

x
y

FIG. 4. (Color online) The breathing effect: When we compare
an experimental antinode (a) with a node cluster (b), we clearly see
that particles in the first are much farther apart due to breathing (see
text). Again, the antinodes (A) are marked by small yellow rectangles
and the nodes (N) with yellow lines. The bars indicate a length scale
of 5 mm. We artificially design hexagonal clusters to incorporate this
breathing effect: An antinode cluster (c) is grown by adding hexagonal
rings at decreasing increments rnn starting from a large initial value,
whereas a node cluster (d) is grown from a close-packed hexagonal
structure with increasing increments rnn. The color coding identifies
consecutive rings.

cluster is significantly larger than 2R [15]. The breathing
phenomenon is discussed in more detail in Appendix A2.

III. POTENTIAL ENERGY ESTIMATE

Now, what is the reason for the observed pattern inversion?
To answer this question we estimate the energy in artificially
created node and antinode clusters, which are inspired by our
experimental observations [Figs. 4(a) and 4(b)]: The antinode
cluster is modeled as a two-dimensional static hexagonally
packed cluster where the distance between the neighboring
floaters increases towards the antinode point (A) [Fig. 4(c)]
to implement the observed breathing effect. The distance
here can be considered as the period-averaged experimental
distance between the floaters. The node cluster, in contrast,
is designed as a two-dimensional hexagonal cluster where the
distance between the neighboring floaters sitting exactly at
the crossing of two nodal lines (N) is equal to an average
floater diameter 2R [Fig. 4(d)]. Furthermore, the distance
slightly increases away from N. Further details on the artificial
antinode and node cluster configurations can be found in
Appendix B.

During the motion of the floaters on the wave there is an
intricate exchange of wave energy (input), potential energy,
kinetic energy, and dissipation (output). However, in a steady
state the input and output must balance and since the particles
return to (approximately) the same positions after each period
of the wave it is sufficient to compare the potential energy
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III. POTENTIAL ENERGY ESTIMATE

Now, what is the reason for the observed pattern inversion?
To answer this question we estimate the energy in artificially
created node and antinode clusters, which are inspired by our
experimental observations [Figs. 4(a) and 4(b)]: The antinode
cluster is modeled as a two-dimensional static hexagonally
packed cluster where the distance between the neighboring
floaters increases towards the antinode point (A) [Fig. 4(c)]
to implement the observed breathing effect. The distance
here can be considered as the period-averaged experimental
distance between the floaters. The node cluster, in contrast,
is designed as a two-dimensional hexagonal cluster where the
distance between the neighboring floaters sitting exactly at
the crossing of two nodal lines (N) is equal to an average
floater diameter 2R [Fig. 4(d)]. Furthermore, the distance
slightly increases away from N. Further details on the artificial
antinode and node cluster configurations can be found in
Appendix B.

During the motion of the floaters on the wave there is an
intricate exchange of wave energy (input), potential energy,
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state the input and output must balance and since the particles
return to (approximately) the same positions after each period
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FIG. 2. (Color online) Floater patterns on a standing Fara-
day wave with a rectangular wave pattern for various floater
concentrations �. To indicate the corresponding wave struc-
tures, in a small subset of the field of view the antinodes and
the nodes are presented by small yellow rectangles and yellow
lines, respectively. The images which lie in (or nearby) the
transition region from the antinode to the node clusters are
marked by the red line. The morphological di↵erences in the
clusters are clear: At low �, circular, irregularly packed antin-
ode clusters are observed (a, b). At intermediate �, when we
enter the transition region, clusters with a large heterogene-
ity in space evolve (c). Further into the transitional region,
loosely packed filamentary structures occur (d), which when
� increases even more evolve into densely clustered regions (e)
from which finally densely packed grid-shaped node clusters
form (f). The white bars indicate a length scale of 5 mm.

large number of holes disappears when r further increases
as illustrated by the last figure.

(c)

r= R r= 2R r= 3R
y

x

(b)(a)

FIG. 3. The Minkowski point pattern approach is demon-
strated using the particle pattern at the intermediate floater
concentration � = 0.37 [see Fig. 2(d) for the corresponding
experimental image]. Here, we show the morphological defor-
mation of the particle pattern when the Minkowski radius r
increases from the particle radius R (a), which provides an
image identical to the experimental one, to twice the radius
2R (b), and finally to three times the radius r = 3R (c). The
dashed (red) lines are the boundaries of the corresponding
experimental image. The white bars indicate a length scale
of 5 mm.

The morphology of the point patterns can be quantified
by the Minkowski functionals, which are introduced in
the next Section.

B. Minkowski functionals

The Minkowski functionals are a set of functionals
providing information of geometry, shape (i.e. curva-
ture), and connectivity of any pattern of interest. They
have been successfully employed to characterize large-
scale structures such as galaxy samples [24], turbulent
and regular patterns in chemical reaction-di↵usion sys-
tems [33], spinodal decomposition structures in a simula-
tion [34] and also in an experiment of a colloid-polymer
mixture [35], particle and bubble distributions in turbu-
lent flow [26], and aggregations of colloids at fluid inter-
faces [36]. Detailed extensive reviews can be found in
Refs. [25, 37], and the sensitivity of the method for some
data sets in comparison with the other methods are dis-
cussed in Ref. [23].
The Minkowski functionals

f
M0(D), fM1(D), fM2(D), . . . , fM

d

(D) are functionals
of integral geometry, which are additive, motion-
invariant, and continuous on a given domain D in
d�dimensional Euclidean space [34]. Mathematically,

the f
M

⌫

(D) are defined as [35]
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where !

d

= ⇡

d/2
/�(1 + d/2) is the unit volume in d di-

mensions, @D is the boundary of the domain D, and R

i

are the principal radii of curvature with i = 1, . . . , d� 1.

Here, the summation is performed over the multiplication
of all permutations i

⌫

of d� 1 curvatures.

We will now compute the Minkowski functionals for
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• Dynamics of floaters is too complicated 
~ further 4 years project is indeed 
necessary. 

• The deep theory behind and there is no 
exact solution, even for just two floating 
spheres on a static surface

• Currently, our numerical simulation 
cannot reach the experimental limits at 
high 

!   r(t) increases & decreases at the breathing antinode clusters. 

!   r(t) is almost constant at the non-breathing node clusters. 

Attractive capillary interaction: 

air 

water 

ɸ.


