

Final MOTIMO workshop, Collective dynamics of active particles, September 22-23, 2015, Institut de Mecanique des Fluides d

Floaters on Faraday waves. Clustering and heterogeneous flow

@CeydaSanli

September 23, 2015, Toulouse.

CompleXity Networks

Physics of Fluids

UNIVERSITY OF TWENTE.

Greetings, ...

d.lohse @utwente.nl

d.vandermeer @utwente.nl

UNIVERSITY OF TWENTE.

cedaysan@gmail.com

renaud.lambiotte @unamur.be

C. Sanlı, CompleXity Networks, UNamur

Two Directions of my PhD Thesis:

- Clustering on standing Faraday waves
- Heterogeneous flow on **capillary** Faraday waves

- C. Sanlı *et al*, Phys. Rev. E **89**, 053011 (2014).
- C. Sanlı, CompleXity Networks, UNamur
- C. Sanlı *et al*, Phys. Rev. E **90**, 033018 (2014).

Observation

5 mm • low *φ*: wondershare™ • *a* ~ 0.8 mm • *f* = 19 Hz 5 mm wondershare™ • high *φ*: • a ~ 1.2 mm • *f* = 20 Hz

C. Sanlı, CompleXity Networks, UNamur

Experimental set-up

- Control parameters
 - θ : contact angle of spheres
 - R: radius of spheres
 - a: shaking amplitude
 - f: shaking frequency
 - *h*: depth of water layer
 - *φ*: area fraction
 - ϕ =bead area/total area

C. Sanlı, CompleXity Networks, UNamur

Part-1:

Why the antinode clusters at low *q* ?

• Why the node clusters at high ϕ ?

C. Sanlı, CompleXity Networks, UNamur

Floaters on a static surface

C. Sanlı, CompleXity Networks, UNamur

Bubble in an equilibrium

bubble interface

C. Sanlı, CompleXity Networks, UNamur

Bubble in a curved interface

C. Sanlı, CompleXity Networks, UNamur

Heavy particle in a curved interface

C. Sanlı, CompleXity Networks, UNamur

Phenomenological conclusion

C. Sanlı, CompleXity Networks, UNamur

Floaters on a dynamic surface

C. Sanlı, CompleXity Networks, UNamur

Heavy particle on a standing wave

C. Sanlı, CompleXity Networks, UNamur

Antinode clusters at low ϕ

- The drift force is always towards the antinodes for our floaters.
- The drift force is a single floater force.
- G. Falkovich, A. Weinberg, P. Denissenko, and S. Lukaschuk, "Floater clustering in a standing wave", Nature (London) **435**, 1045–1046 (2005).

C. Sanlı, CompleXity Networks, UNamur

Full story at low ϕ

J. B. Keller, "Surface tension force on a partly submerged body", Phys.
 Fluids 10, 3009–3010 (1998).

C. Sanlı, CompleXity Networks, UNamur

Attractive capillary interaction

- D. Vella and L. Mahadevan, "The Cheerios effect", Am. J. Phys. **73**, 817–825 (2005).
- D. Y. C. Chan, J. D. Henry, Jr., and L. R. White, "The interaction of colloidal particles collected at fluid interfaces", J. Colloid Interface Sci. **79**, 410–418 (1981).
- N. D. Vassileva, D. van den Ende, F. Mugele, and J. Mellema, "Capillary forces between spherical particles floating at a liquid-liquid interface", Langmuir **21**, 11190–11200 (2005). (PhD Thesis, UTwente)

C. Sanlı, CompleXity Networks, UNamur

Experiment: Clusters

arXiv: 1405.2027

C. Sanlı, CompleXity Networks, UNamur

Floaters on Faraday waves

(a)

Correlation number c

C. Sanlı, CompleXity Networks, UNamur

Correlation number c

<u>)</u>....

Why the node clusters at high ϕ ?

Let's look at the experiment more carefully!
 breathing non-breathing

antinode clusters

C. Sanlı, CompleXity Networks, UNamur

Potential energy approach

drift to the antinodes + capillary attraction + breathing

- E_c: capillary energy
- E_d : drift energy

- l_c : capillary length
- N: number of floaters step

21

C. Sanlı, CompleXity Networks, UNamur

Comparison with experiment

Part-2:Floaters on acapillaryFaraday wave:Heterogeneousflows andgroup formations

C. Sanlı, CompleXity Networks, UNamur

Observation

•
$$\phi = 0.63$$

• *a* = 1 mm • *f* = 250 Hz

 4 times slower
 than real time

C. Sanlı, CompleXity Networks, UNamur

Experimental set-up

C. Sanlı, CompleXity Networks, UNamur

Driving interactions and forces

• attractive capillary interactions

• erratic capillary (Faraday) waves

C. Sanlı, CompleXity Networks, UNamur

Four-pointTo quantify thedynamicheterogeneoussusceptibility:dynamics

C. Sanlı, CompleXity Networks, UNamur

Four-point dynamic susceptibility

• To quantify the heterogeneous dynamics by the mobility (self-overlap order parameter):

•
$$\chi_4(l,\tau) = N\left[\langle Q_t^2(l,\tau)\rangle_t - \langle Q_t(l,\tau)\rangle_t^2\right]$$

C. Sanlı, CompleXity Networks, UNamur

Quantifying the heterogeneous flow

• time-scale of the heterogeneity

 amount of the heterogeneity

C. Sanlı, CompleXity Networks, UNamur

Greetings, ...

k.saitoh @utwente.nl

d.vandermeer @utwente.nl

UNIVERSITY OF TWENTE.

cedaysan@gmail.com

s.luding @utwente.nl

C. Sanlı, CompleXity Networks, UNamur

What does $\chi_4(l,\tau)$ measure?

- time-scale of the flow by the diffusion
- time-scale of the heterogeneous flow

• C. Sanlı, <u>Kuniyasu Saitoh</u> et al. PRE 90, 033018 (2014).

C. Sanlı, CompleXity Networks, UNamur

MorphologicalQuantifyinganalysis:dynamics of thegroup deformation

C. Sanlı, CompleXity Networks, UNamur

Observation: Detail looking

C. Sanlı, CompleXity Networks, UNamur

Construction of a subgroup

5 mm

- 5 mm
- At a certain ϕ , we construct a subgroup of beads which For high ϕ , the subgroup deforms at a later time. the initial positions are inside the shaded region. For low ϕ , the subgroup breaks into more pieces. Then, we track these beads as a function of time.

C. Sanlı, CompleXity Networks, UNamur

Morphological parameter when r=2R

C. Sanlı, CompleXity Networks, UNamur

Morphological analysis of subgroups

C. Sanlı, CompleXity Networks, UNamur

Comparative analysis of subgroups

C. Sanlı, CompleXity Networks, UNamur

Quantifying break-up time

• Iow **\$\$**:

• high **\$\$**:

C. Sanlı, CompleXity Networks, UNamur

Morphological parameter

C. Sanlı, CompleXity Networks, UNamur

Comparison: In progress

C. Sanlı, CompleXity Networks, UNamur

Comparison: In progress

Morphological analysis

 Four-point dynamic susceptibility

C. Sanlı, CompleXity Networks, UNamur

Summary

On a standing Faraday wave regime.
 Antinode clusters at low φ and node clusters at high φ.

On a capillary Faraday wave regime: We investigate an alternative approach to quantify heterogeneous flow by group deformation, usually done by the four-point dynamic susceptibility.

C. Sanlı, CompleXity Networks, UNamur

Take home messages

- Dynamics of floaters is too complicated
 ~ further 4 years project is indeed
 necessary.
- The deep theory behind and there is no exact solution, even for just two floating spheres on a static surface
- Currently, our numerical simulation cannot reach the experimental limits at high *\u03c6*.

C. Sanlı, CompleXity Networks, UNamur