Rate of convergence to equilibrium for discrete-time stochastic dynamics with memory

Maylis Varvenne

June 12, 2019

INSTITUT
de MATHEMATIQUES
de TOULOUSE

PhD advisors: Laure Coutin \& Fabien Panloup

Setting

Let $X:=\left(X_{n}\right)_{n \geqslant 0}$ be an \mathbb{R}^{d}-valued process such that

$$
X_{n+1}=F\left(X_{n}, \Delta_{n+1}\right)
$$

where $\left(\Delta_{n}\right)_{n \in \mathbb{Z}}$ is an ergodic stationary Gaussian sequence with d-independent components and $F: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is (at least) continuous.

Setting

Let $X:=\left(X_{n}\right)_{n \geqslant 0}$ be an \mathbb{R}^{d}-valued process such that

$$
X_{n+1}=F\left(X_{n}, \Delta_{n+1}\right)
$$

where $\left(\Delta_{n}\right)_{n \in \mathbb{Z}}$ is an ergodic stationary Gaussian sequence with d-independent components and $F: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is (at least) continuous.

Questions:

- Definition of invariant distribution in this a priori non-Markovian setting ?
- Existence and uniqueness of such measure ? Rate of convergence to equilibrium ?

Example : Euler scheme of a Gaussian SDE

Let $h>0$ be fixed.

$$
X_{n+1}=X_{n}+h b\left(X_{n}\right)+\sigma\left(X_{n}\right) \Delta_{n+1}
$$

with $\Delta_{n+1}:=Z_{(n+1) h}-Z_{n h}$ where $\left(Z_{t}\right)$ is a Gaussian process with stationary increments.
Then,

$$
X_{n+1}=F_{h}\left(X_{n}, \Delta_{n+1}\right)
$$

and

$$
\begin{aligned}
& F_{h}: \quad \mathbb{R}^{d} \times \mathbb{R}^{d} \\
&(x, w) \mapsto \mathbb{R}^{d} \\
&(x, h b(x)+\sigma(x) w .
\end{aligned}
$$

Example : Euler scheme of a Gaussian SDE

Example of noise process $\left(Z_{t}\right)$
Fractional Brownian motion (fBm) with Hurst parameter $H \in(0,1)$, denoted by $\left(B_{t}\right)_{t \in \mathbb{R}}$. The fBm is a centered Gaussian process with covariance function given by: for all $t, s \in \mathbb{R}$

$$
\mathbb{E}\left[B_{t}^{i} B_{s}^{j}\right]=\frac{1}{2} \delta_{i j}\left[t^{2 H}+s^{2 H}-|t-s|^{2 H}\right], \quad i, j \in\{1, \ldots, d\} .
$$

In particular, the fBm increments are stationary: for all $t, s \in \mathbb{R}$

$$
\mathbb{E}\left[\left(B_{t}^{i}-B_{s}^{i}\right)\left(B_{t}^{j}-B_{s}^{j}\right)\right]=\delta_{i j}|t-s|^{2 H}, \quad i, j \in\{1, \ldots, d\} .
$$

Example : Euler scheme of a Gaussian SDE

Example of noise process $\left(Z_{t}\right)$

Fractional Brownian motion (fBm) with Hurst parameter $H \in(0,1)$, denoted by $\left(B_{t}\right)_{t \in \mathbb{R}}$. The fBm is a centered Gaussian process with covariance function given by: for all $t, s \in \mathbb{R}$

$$
\mathbb{E}\left[B_{t}^{i} B_{s}^{j}\right]=\frac{1}{2} \delta_{i j}\left[t^{2 H}+s^{2 H}-|t-s|^{2 H}\right], \quad i, j \in\{1, \ldots, d\} .
$$

In particular, the fBm increments are stationary: for all $t, s \in \mathbb{R}$

$$
\mathbb{E}\left[\left(B_{t}^{i}-B_{s}^{i}\right)\left(B_{t}^{j}-B_{s}^{j}\right)\right]=\delta_{i j}|t-s|^{2 H}, \quad i, j \in\{1, \ldots, d\} .
$$

Remark: The fBm is neither a semimartingale nor a Markov process, except for $H=1 / 2$. In this case, B is the standard Brownian motion and has independent increments.

Let $\mathcal{X}:=\mathbb{R}^{d}$ be the state space and $\mathcal{W}:=\left(\mathbb{R}^{d}\right)^{\mathbb{Z}^{-}}$be the noise space. Idea:

$$
\left(X_{n}\right)_{n \in \mathbb{N}} \in \mathcal{X}^{\mathbb{N}} \longrightarrow\left(X_{n},\left(\Delta_{n+k}\right)_{k \leqslant 0}\right)_{n \in \mathbb{N}} \in(\mathcal{X} \times \mathcal{W})^{\mathbb{N}}
$$

Let $\mathcal{X}:=\mathbb{R}^{d}$ be the state space and $\mathcal{W}:=\left(\mathbb{R}^{d}\right)^{\mathbb{Z}^{-}}$be the noise space. Idea:

$$
\left(X_{n}\right)_{n \in \mathbb{N}} \in \mathcal{X}^{\mathbb{N}} \rightarrow\left(X_{n},\left(\Delta_{n+k}\right)_{k \leqslant 0}\right)_{n \in \mathbb{N}} \in(\mathcal{X} \times \mathcal{W})^{\mathbb{N}}
$$

Equivalent system:

$$
\begin{equation*}
\left(X_{n+1},\left(\Delta_{n+1+k}\right)_{k \leqslant 0}\right)=\varphi\left(\left(X_{n},\left(\Delta_{n+k}\right)_{k \leqslant 0}\right), \Delta_{n+1}\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\varphi:(\mathcal{X} \times \mathcal{W}) \times \mathbb{R}^{d} & \rightarrow \mathcal{X} \times \mathcal{W} \\
((x, w), \delta) & \mapsto(F(x, \delta), w \sqcup \delta) .
\end{aligned}
$$

Transition kernel: For all measurable function $g: \mathcal{X} \times \mathcal{W} \rightarrow \mathbb{R}$, $\mathcal{Q}: \mathcal{X} \times \mathcal{W} \rightarrow \mathcal{M}_{1}(\mathcal{X} \times \mathcal{W})$ is defined by :

$$
\int_{\mathcal{X} \times \mathcal{W}} g\left(x^{\prime}, w^{\prime}\right) \mathcal{Q}\left((x, w),\left(\mathrm{d} x^{\prime}, \mathrm{d} w^{\prime}\right)\right)=\int_{\mathbb{R}^{d}} g(F(x, \delta), w \sqcup \delta) \mathcal{P}(w, \mathrm{~d} \delta) .
$$

where $\mathcal{P}(w, \mathrm{~d} \delta):=\mathcal{L}\left(\Delta_{n+1} \mid\left(\Delta_{n+k}\right)_{k \leqslant 0}=w\right)$.

Transition kernel: For all measurable function $g: \mathcal{X} \times \mathcal{W} \rightarrow \mathbb{R}$, $\mathcal{Q}: \mathcal{X} \times \mathcal{W} \rightarrow \mathcal{M}_{1}(\mathcal{X} \times \mathcal{W})$ is defined by :

$$
\int_{\mathcal{X} \times \mathcal{W}} g\left(x^{\prime}, w^{\prime}\right) \mathcal{Q}\left((x, w),\left(\mathrm{d} x^{\prime}, \mathrm{d} w^{\prime}\right)\right)=\int_{\mathbb{R}^{d}} g(F(x, \delta), w \sqcup \delta) \mathcal{P}(w, \mathrm{~d} \delta)
$$

where $\mathcal{P}(w, \mathrm{~d} \delta):=\mathcal{L}\left(\Delta_{n+1} \mid\left(\Delta_{n+k}\right)_{k \leqslant 0}=w\right)$.
Definition
A measure $\mu \in \mathcal{M}_{1}(\mathcal{X} \times \mathcal{W})$ is said to be an invariant distribution for our system if it is invariant by \mathcal{Q}, i.e.

$$
\mathcal{Q} \mu=\mu .
$$

Transition kernel: For all measurable function $g: \mathcal{X} \times \mathcal{W} \rightarrow \mathbb{R}$, $\mathcal{Q}: \mathcal{X} \times \mathcal{W} \rightarrow \mathcal{M}_{1}(\mathcal{X} \times \mathcal{W})$ is defined by :

$$
\int_{\mathcal{X} \times \mathcal{W}} g\left(x^{\prime}, w^{\prime}\right) \mathcal{Q}\left((x, w),\left(\mathrm{d} x^{\prime}, \mathrm{d} w^{\prime}\right)\right)=\int_{\mathbb{R}^{d}} g(F(x, \delta), w \sqcup \delta) \mathcal{P}(w, \mathrm{~d} \delta)
$$

where $\mathcal{P}(w, \mathrm{~d} \delta):=\mathcal{L}\left(\Delta_{n+1} \mid\left(\Delta_{n+k}\right)_{k \leqslant 0}=w\right)$.
Definition
A measure $\mu \in \mathcal{M}_{1}(\mathcal{X} \times \mathcal{W})$ is said to be an invariant distribution for our system if it is invariant by \mathcal{Q}, i.e.

$$
\mathcal{Q} \mu=\mu .
$$

Uniqueness: Let $\mathcal{S}: \mathcal{M}_{1}(\mathcal{X} \times \mathcal{W}) \rightarrow \mathcal{M}_{1}\left(\mathcal{X}^{\mathbb{N}}\right)$ be the application which maps μ into $S \mu:=\mathcal{L}\left(\left(X_{n}^{\mu}\right)_{n \geqslant 0}\right)$. Then

$$
\mu \simeq \nu \Longleftrightarrow \mathcal{S} \mu=\mathcal{S} \nu \quad(\star)
$$

Moving average representation

Wold's decomposition theorem,

$$
\begin{equation*}
\forall n \in \mathbb{Z}, \quad \Delta_{n}=\sum_{k=0}^{+\infty} a_{k} \xi_{n-k} \tag{3.1}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\left(a_{k}\right)_{k \geqslant 0} \in \mathbb{R}^{\mathbb{N}} \text { such that } a_{0} \neq 0 \text { and } \sum_{k=0}^{+\infty} a_{k}^{2}<+\infty \\
\left(\xi_{k}\right)_{k \in \mathbb{Z}} \text { an i.i.d sequence such that } \xi_{1} \sim \mathcal{N}\left(0, I_{d}\right) .
\end{array}\right.
$$

Moving average representation

Wold's decomposition theorem,

$$
\begin{equation*}
\forall n \in \mathbb{Z}, \quad \Delta_{n}=\sum_{k=0}^{+\infty} a_{k} \xi_{n-k} \tag{3.1}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\left(a_{k}\right)_{k \geqslant 0} \in \mathbb{R}^{\mathbb{N}} \text { such that } a_{0} \neq 0 \text { and } \sum_{k=0}^{+\infty} a_{k}^{2}<+\infty \\
\left(\xi_{k}\right)_{k \in \mathbb{Z}} \text { an i.i.d sequence such that } \xi_{1} \sim \mathcal{N}\left(0, I_{d}\right) .
\end{array}\right.
$$

Remarks

\triangleright Without loss of generality, we assume that $a_{0}=1$. If $a_{0} \neq 1$, we can come back to this case by setting $\tilde{\Delta}_{n}=\sum_{k=0}^{+\infty} \tilde{a}_{k} \xi_{n-k}$ with $\tilde{a}_{k}=a_{k} / a_{0}$.

Moving average representation

Wold's decomposition theorem,

$$
\begin{equation*}
\forall n \in \mathbb{Z}, \quad \Delta_{n}=\sum_{k=0}^{+\infty} a_{k} \xi_{n-k} \tag{3.1}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\left(a_{k}\right)_{k \geqslant 0} \in \mathbb{R}^{\mathbb{N}} \text { such that } a_{0} \neq 0 \text { and } \sum_{k=0}^{+\infty} a_{k}^{2}<+\infty \\
\left(\xi_{k}\right)_{k \in \mathbb{Z}} \text { an i.i.d sequence such that } \xi_{1} \sim \mathcal{N}\left(0, I_{d}\right) .
\end{array}\right.
$$

Remarks

\triangleright Without loss of generality, we assume that $a_{0}=1$. If $a_{0} \neq 1$, we can come back to this case by setting $\tilde{\Delta}_{n}=\sum_{k=0}^{+\infty} \tilde{a}_{k} \xi_{n-k}$ with $\tilde{a}_{k}=a_{k} / a_{0}$.
\triangleright The memory induced by the noise is quantified by $\left(a_{k}\right)_{k \geqslant 0}$.

Preliminary tool : a Toeplitz type operator

Definition
Let $\mathbf{T}_{\mathbf{a}}$ be defined on $\ell_{a}\left(\mathbb{Z}^{-}, \mathbb{R}^{d}\right):=\left\{w \in\left(\mathbb{R}^{d}\right)^{\mathbb{Z}^{-}}\left|\forall k \geqslant 0,\left|\sum_{l=0}^{+\infty} a^{\prime} w_{-k-1}\right|<+\infty\right\}\right.$ by

$$
\forall w \in \ell_{\mathbf{a}}\left(\mathbb{Z}^{-}, \mathbb{R}^{d}\right), \quad \mathbf{T}_{\mathbf{a}}(w)=\left(\sum_{l=0}^{+\infty} a_{l} w_{-k-l}\right)_{k \geqslant 0} .
$$

Remark: This operator links $\left(\Delta_{n}\right)_{n \in \mathbb{Z}}$ to the underlying noise process $\left(\xi_{n}\right)_{n \in \mathbb{Z}}$.

Preliminary tool : a Toeplitz type operator

Definition

Let $\mathbf{T}_{\mathbf{a}}$ be defined on $\ell_{a}\left(\mathbb{Z}^{-}, \mathbb{R}^{d}\right):=\left\{w \in\left(\mathbb{R}^{d}\right)^{\mathbb{Z}^{-}}\left|\forall k \geqslant 0,\left|\sum_{l=0}^{+\infty} a\right| w_{-k-1}\right|<+\infty\right\}$ by

$$
\forall w \in \ell_{\mathbf{a}}\left(\mathbb{Z}^{-}, \mathbb{R}^{d}\right), \quad \mathbf{T}_{\mathbf{a}}(w)=\left(\sum_{l=0}^{+\infty} a_{l} w_{-k-l}\right)_{k \geqslant 0} .
$$

Remark: This operator links $\left(\Delta_{n}\right)_{n \in \mathbb{Z}}$ to the underlying noise process $\left(\xi_{n}\right)_{n \in \mathbb{Z}}$.
Proposition
Let $\mathbf{T}_{\mathbf{b}}$ be defined on $\ell_{b}\left(\mathbb{Z}^{-}, \mathbb{R}^{d}\right)$ with the following sequence $\left(b_{k}\right)_{k \geqslant 0}$

$$
b_{0}=\frac{1}{a_{0}} \quad \text { and } \quad \forall k \geqslant 1, \quad b_{k}=-\frac{1}{a_{0}} \sum_{l=1}^{k} a_{l} b_{k-1} .
$$

Then, $\mathbf{T}_{\mathbf{b}}=\mathbf{T}_{\mathbf{a}}{ }^{-1}$.
$\left(\mathbf{H}_{\text {poly }}\right)$: The following conditions are satisfied,

- There exist $\rho, \beta>0$ and $C_{\rho}, C_{\beta}>0$ such that

$$
\forall k \geqslant 0, \quad\left|a_{k}\right| \leqslant C_{\rho}(k+1)^{-\rho} \quad \text { and } \quad \forall k \geqslant 0, \quad\left|b_{k}\right| \leqslant C_{\beta}(k+1)^{-\beta}
$$

- There exist $\kappa \geqslant \rho+1$ and $C_{\kappa}>0$ such that

$$
\forall k \geqslant 0, \quad\left|a_{k}-a_{k+1}\right| \leqslant C_{\kappa}(k+1)^{-\kappa} .
$$

$\left(\mathbf{H}_{\text {poly }}\right)$: The following conditions are satisfied,

- There exist $\rho, \beta>0$ and $C_{\rho}, C_{\beta}>0$ such that

$$
\forall k \geqslant 0, \quad\left|a_{k}\right| \leqslant C_{\rho}(k+1)^{-\rho} \quad \text { and } \quad \forall k \geqslant 0, \quad\left|b_{k}\right| \leqslant C_{\beta}(k+1)^{-\beta}
$$

- There exist $\kappa \geqslant \rho+1$ and $C_{\kappa}>0$ such that

$$
\forall k \geqslant 0, \quad\left|a_{k}-a_{k+1}\right| \leqslant C_{\kappa}(k+1)^{-\kappa} .
$$

Remark

\triangleright Even though $\left(a_{k}\right)_{k \geqslant 0}$ and $\left(b_{k}\right)_{k \geqslant 0}$ are intrinsically linked, there is no general rule which connects ρ to β.

Two general hypothesis on F.

Example : Euler scheme with step $h>0$.
$\left(\mathbf{H}_{\mathrm{b}, \sigma}\right): b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is continuous, $\sigma: \mathbb{R}^{d} \rightarrow \mathcal{M}_{d}(\mathbb{R})$ is bounded, continuous and $\sigma^{-1}: x \mapsto \sigma(x)^{-1}$ is well defined and continuous. Moreover,

- $\exists C>0$ such that $\forall x \in \mathcal{X},|b(x)| \leqslant C(1+|x|)$
- $\exists \tilde{\beta} \in \mathbb{R}$ and $\tilde{\alpha}>0$ such that $\forall x \in \mathcal{X}, \quad\langle x, b(x)\rangle \leqslant \tilde{\beta}-\tilde{\alpha}|x|^{2}$.

Theorem

Assume the two hyposthesis on the function F. Then,
(i) There exists an invariant distribution μ_{\star}.
(ii) Assume that $\left(\mathbf{H}_{\text {poly }}\right)$ is true with $\rho, \beta>1 / 2$ and $\rho+\beta>3 / 2$. Then, uniqueness holds for μ_{\star}. Moreover, for all initial distribution μ_{0} such that $\int_{\mathcal{X}} V(x) \Pi_{\mathcal{X}}^{*} \mu_{0}(d x)<+\infty$ and for all $\varepsilon>0$, there exists $C_{\varepsilon}>0$ such that

$$
\left\|\mathcal{L}\left(\left(X_{n+k}^{\mu_{0}}\right)_{k \geqslant 0}\right)-\mathcal{S} \mu_{\star}\right\|_{T V} \leqslant C_{\varepsilon} n^{-(v(\beta, \rho)-\varepsilon)} .
$$

where v is defined by

$$
v(\beta, \rho)=\sup _{\alpha \in\left(\frac{1}{2} \vee\left(\frac{3}{2}-\beta\right), \rho\right)} \min \{1,2(\rho-\alpha)\}(\min \{\alpha, \beta, \alpha+\beta-1\}-1 / 2) .
$$

Example 1

When $\left(\Delta_{n}\right)_{n \in \mathbb{Z}}=\left(B_{n h}-B_{(n-1) h}\right)_{n \in \mathbb{Z}}$ (with $\left.h>0\right)$ we have

$$
a_{k}^{H} \sim C_{h, H}(k+1)^{-(3 / 2-H)} \text { and }\left|a_{k}^{H}-a_{k+1}^{H}\right| \leqslant C_{h, H}^{\prime}(k+1)^{-(5 / 2-H)} \text {. }
$$

Example 1

When $\left(\Delta_{n}\right)_{n \in \mathbb{Z}}=\left(B_{n h}-B_{(n-1) h}\right)_{n \in \mathbb{Z}}$ (with $\left.h>0\right)$ we have

$$
a_{k}^{H} \sim C_{h, H}(k+1)^{-(3 / 2-H)} \text { and }\left|a_{k}^{H}-a_{k+1}^{H}\right| \leqslant C_{h, H}^{\prime}(k+1)^{-(5 / 2-H)} .
$$

For $H \in(0,1 / 2): \forall k \geqslant 0, \quad\left|b_{k}^{H}\right| \leqslant C_{h, H}^{\prime \prime}(k+1)^{-(H+1 / 2)}$.

Rate of convergence
Example $1=\left\{\begin{array}{lll}H(1-2 H) & \text { if } & H \in(0,1 / 4] \\ 1 / 8 & \text { if } & H \in(1 / 4,1 / 2)\end{array}\right.$

Example 1

When $\left(\Delta_{n}\right)_{n \in \mathbb{Z}}=\left(B_{n h}-B_{(n-1) h}\right)_{n \in \mathbb{Z}}$ (with $\left.h>0\right)$ we have

$$
a_{k}^{H} \sim C_{h, H}(k+1)^{-(3 / 2-H)} \text { and }\left|a_{k}^{H}-a_{k+1}^{H}\right| \leqslant C_{h, H}^{\prime}(k+1)^{-(5 / 2-H)} .
$$

For $H \in(0,1 / 2): \forall k \geqslant 0, \quad\left|b_{k}^{H}\right| \leqslant C_{h, H}^{\prime \prime}(k+1)^{-(H+1 / 2)}$.

Example 2

$$
\text { If } \quad a_{k}=(k+1)^{-(3 / 2-H)}, \quad \text { then } \quad\left|b_{k}\right| \leqslant(k+1)^{-(3 / 2-H)} .
$$

Rate of convergence

References (continuous time setting) : Hairer (2005) - Fontbona \& Panloup (2014) - Deya, Panloup \& Tindel (2016)

References (continuous time setting) : Hairer (2005) - Fontbona \& Panloup (2014) - Deya, Panloup \& Tindel (2016)

Scheme of coupling (discrete time setting) : We consider $\left(X^{1}, X^{2}\right)$ the solution of the system :

$$
\left\{\begin{array}{l}
X_{n+1}^{1}=F\left(X_{n}^{1}, \Delta_{n+1}^{1}\right) \tag{5.1}\\
X_{n+1}^{2}=F\left(X_{n}^{2}, \Delta_{n+1}^{2}\right)
\end{array}\right.
$$

with initial conditions $\left(X_{0}^{1},\left(\Delta_{k}^{1}\right)_{k \leqslant 0}\right) \sim \mu_{0}$ and $\left(X_{0}^{2},\left(\Delta_{k}^{2}\right)_{k \leqslant 0}\right) \sim \mu_{\star}$.

References (continuous time setting) : Hairer (2005) - Fontbona \& Panloup (2014) - Deya, Panloup \& Tindel (2016)

Scheme of coupling (discrete time setting) : We consider $\left(X^{1}, X^{2}\right)$ the solution of the system :

$$
\left\{\begin{array}{l}
X_{n+1}^{1}=F\left(X_{n}^{1}, \Delta_{n+1}^{1}\right) \tag{5.1}\\
X_{n+1}^{2}=F\left(X_{n}^{2}, \Delta_{n+1}^{2}\right)
\end{array}\right.
$$

with initial conditions $\left(X_{0}^{1},\left(\Delta_{k}^{1}\right)_{k \leqslant 0}\right) \sim \mu_{0}$ and $\left(X_{0}^{2},\left(\Delta_{k}^{2}\right)_{k \leqslant 0}\right) \sim \mu_{\star}$.
We have

$$
\left\|\mathcal{L}\left(\left(X_{n+k}^{1}\right)_{k \geqslant 0}\right)-\mathcal{S} \mu_{\star}\right\|_{T V} \leqslant \mathbb{P}\left(\tau_{\infty}>n\right) .
$$

where $\tau_{\infty}:=\inf \left\{n \geqslant 0 \mid X_{k}^{1}=X_{k}^{2}, \forall k \geqslant n\right\}$.

References (continuous time setting) : Hairer (2005) - Fontbona \& Panloup (2014) - Deya, Panloup \& Tindel (2016)

Scheme of coupling (discrete time setting) : We consider $\left(X^{1}, X^{2}\right)$ the solution of the system :

$$
\left\{\begin{array}{l}
X_{n+1}^{1}=F\left(X_{n}^{1}, \Delta_{n+1}^{1}\right) \tag{5.1}\\
X_{n+1}^{2}=F\left(X_{n}^{2}, \Delta_{n+1}^{2}\right)
\end{array}\right.
$$

with initial conditions $\left(X_{0}^{1},\left(\Delta_{k}^{1}\right)_{k \leqslant 0}\right) \sim \mu_{0}$ and $\left(X_{0}^{2},\left(\Delta_{k}^{2}\right)_{k \leqslant 0}\right) \sim \mu_{\star}$.
We have

$$
\left\|\mathcal{L}\left(\left(X_{n+k}^{1}\right)_{k \geqslant 0}\right)-\mathcal{S} \mu_{\star}\right\|_{T V} \leqslant \mathbb{P}\left(\tau_{\infty}>n\right) .
$$

where $\tau_{\infty}:=\inf \left\{n \geqslant 0 \mid X_{k}^{1}=X_{k}^{2}, \forall k \geqslant n\right\}$.
We choose

$$
\left(\Delta_{k}^{1}\right)_{k \leqslant 0}=\left(\Delta_{k}^{2}\right)_{k \leqslant 0} \quad \Leftrightarrow \quad\left(\xi_{k}^{1}\right)_{k \leqslant 0}=\left(\xi_{k}^{2}\right)_{k \leqslant 0} .
$$

References (continuous time setting) : Hairer (2005) - Fontbona \& Panloup (2014) - Deya, Panloup \& Tindel (2016)

Scheme of coupling (discrete time setting) : We consider $\left(X^{1}, X^{2}\right)$ the solution of the system :

$$
\left\{\begin{array}{l}
X_{n+1}^{1}=F\left(X_{n}^{1}, \Delta_{n+1}^{1}\right) \tag{5.1}\\
X_{n+1}^{2}=F\left(X_{n}^{2}, \Delta_{n+1}^{2}\right)
\end{array}\right.
$$

with initial conditions $\left(X_{0}^{1},\left(\Delta_{k}^{1}\right)_{k \leqslant 0}\right) \sim \mu_{0}$ and $\left(X_{0}^{2},\left(\Delta_{k}^{2}\right)_{k \leqslant 0}\right) \sim \mu_{\star}$.
We have

$$
\left\|\mathcal{L}\left(\left(X_{n+k}^{1}\right)_{k \geqslant 0}\right)-\mathcal{S} \mu_{\star}\right\|_{T V} \leqslant \mathbb{P}\left(\tau_{\infty}>n\right) .
$$

where $\tau_{\infty}:=\inf \left\{n \geqslant 0 \mid X_{k}^{1}=X_{k}^{2}, \forall k \geqslant n\right\}$.
We choose

$$
\left(\Delta_{k}^{1}\right)_{k \leqslant 0}=\left(\Delta_{k}^{2}\right)_{k \leqslant 0} \quad \Leftrightarrow \quad\left(\xi_{k}^{1}\right)_{k \leqslant 0}=\left(\xi_{k}^{2}\right)_{k \leqslant 0} .
$$

We define the sequence of r.v. $\left(g_{n}\right)_{n \in \mathbb{Z}}$ by

$$
\forall n \in \mathbb{Z}, \quad \xi_{n+1}^{1}=\xi_{n+1}^{2}+g_{n}, \quad \text { hence } \quad g_{n}=0 \quad \forall n<0
$$

Steps of the coupling procedure

\triangleright Step 1: Try to stick the positions at a given time with a "controlled cost".

Steps of the coupling procedure

\triangleright Step 1: Try to stick the positions at a given time with a "controlled cost".
\triangleright Step 2: Try to keep the paths fastened together (specific to non-Markov process).

Steps of the coupling procedure

\triangleright Step 1: Try to stick the positions at a given time with a "controlled cost".
\triangleright Step 2: Try to keep the paths fastened together (specific to non-Markov process).
\triangleright Step 3 : If Step 2 fails, impose $g_{n}=0$ and wait long enough in order to allow Step 1 to be realized with a "controlled cost" and with a positive probability.

Steps of the coupling procedure

Step 3

Euler scheme (step 1)

At a given time $(\tau+1)$, we want to build $\left(\xi_{\tau+1}^{1}, \xi_{\tau+1}^{2}\right)$ in order to get $X_{\tau+1}^{1}=X_{\tau+1}^{2}$, i.e.

$$
X_{\tau}^{1}+h b\left(X_{\tau}^{1}\right)+\sigma\left(X_{\tau}^{1}\right) \sum_{k=0}^{+\infty} a_{k} \xi_{\tau+1-k}^{1}=X_{\tau}^{2}+h b\left(X_{\tau}^{2}\right)+\sigma\left(X_{\tau}^{2}\right) \sum_{k=0}^{+\infty} a_{k} \xi_{\tau+1-k}^{2}
$$

Euler scheme (step 1)

At a given time $(\tau+1)$, we want to build $\left(\xi_{\tau+1}^{1}, \xi_{\tau+1}^{2}\right)$ in order to get $X_{\tau+1}^{1}=X_{\tau+1}^{2}$, i.e.

$$
\begin{aligned}
& X_{\tau}^{1}+h b\left(X_{\tau}^{1}\right)+\sigma\left(X_{\tau}^{1}\right) \sum_{k=0}^{+\infty} a_{k} \xi_{\tau+1-k}^{1}=X_{\tau}^{2}+h b\left(X_{\tau}^{2}\right)+\sigma\left(X_{\tau}^{2}\right) \sum_{k=0}^{+\infty} a_{k} \xi_{\tau+1-k}^{2} \\
& \Longleftrightarrow \xi_{\tau+1}^{2}=\Lambda_{\mathbf{x}}\left(\xi_{\tau+1}^{1}\right) \text { where } \mathbf{X}=\left(X_{\tau}^{1}, X_{\tau}^{2}, \sum_{k=1}^{+\infty} a_{k} \xi_{\tau+1-k}^{1}, \sum_{k=1}^{+\infty} a_{k} \xi_{\tau+1-k}^{2}\right)
\end{aligned}
$$

Euler scheme (step 1)

At a given time $(\tau+1)$, we want to build $\left(\xi_{\tau+1}^{1}, \xi_{\tau+1}^{2}\right)$ in order to get $X_{\tau+1}^{1}=X_{\tau+1}^{2}$, i.e.

$$
\begin{aligned}
& X_{\tau}^{1}+h b\left(X_{\tau}^{1}\right)+\sigma\left(X_{\tau}^{1}\right) \sum_{k=0}^{+\infty} a_{k} \xi_{\tau+1-k}^{1}=X_{\tau}^{2}+h b\left(X_{\tau}^{2}\right)+\sigma\left(X_{\tau}^{2}\right) \sum_{k=0}^{+\infty} a_{k} \xi_{\tau+1-k}^{2} \\
& \Longleftrightarrow \xi_{\tau+1}^{2}=\Lambda_{\mathbf{x}}\left(\xi_{\tau+1}^{1}\right) \text { where } \mathbf{X}=\left(X_{\tau}^{1}, X_{\tau}^{2}, \sum_{k=1}^{+\infty} a_{k} \xi_{\tau+1-k}^{1}, \sum_{k=1}^{+\infty} a_{k} \xi_{\tau+1-k}^{2}\right)
\end{aligned}
$$

Coupling Lemma to build $\left(\xi_{\tau+1}^{1}, \xi_{\tau+1}^{2}\right)$ such that:

- $\xi_{\tau+1}^{1} \sim \mathcal{N}\left(0, I_{d}\right)$ and $\xi_{\tau+1}^{2} \sim \mathcal{N}\left(0, I_{d}\right)$,
- ensure $\mathbb{P}\left(\xi_{\tau+1}^{2}=\Lambda_{\mathbf{x}}\left(\xi_{\tau+1}^{1}\right)\right) \geq \delta_{K}>0$,
- $\left|\xi_{\tau+1}^{1}-\xi_{\tau+1}^{2}\right| \leqslant M_{K}$ a.s.

Euler scheme (step 2)

Keep the paths fastened: $X_{n+1}^{1}=X_{n+1}^{2} \quad \forall n \geqslant \tau+1$, i.e.

$$
X_{n}^{1}+h b\left(X_{n}^{1}\right)+\sigma\left(X_{n}^{1}\right) \sum_{k=0}^{+\infty} a_{k} \xi_{n+1-k}^{1}=X_{n}^{1}+h b\left(X_{n}^{1}\right)+\sigma\left(X_{n}^{1}\right) \sum_{k=0}^{+\infty} a_{k} \xi_{n+1-k}^{2}
$$

Euler scheme (step 2)

Keep the paths fastened : $X_{n+1}^{1}=X_{n+1}^{2} \quad \forall n \geqslant \tau+1$, i.e.

$$
\begin{align*}
X_{n}^{1}+ & h b\left(X_{n}^{1}\right)+\sigma\left(X_{n}^{1}\right) \sum_{k=0}^{+\infty} a_{k} \xi_{n+1-k}^{1}=X_{n}^{1}+h b\left(X_{n}^{1}\right)+\sigma\left(X_{n}^{1}\right) \sum_{k=0}^{+\infty} a_{k} \xi_{n+1-k}^{2} \\
& \Longleftrightarrow \quad \forall n \geqslant \tau+1, \quad \xi_{n+1}^{1}-\xi_{n+1}^{2}=g_{n}^{(s)}=-\sum_{k=1}^{+\infty} a_{1} g_{n-k} \\
& \Longleftrightarrow \quad \forall n \geqslant 1, \quad g_{\tau+n}^{(s)}=-\sum_{k=1}^{n} a_{k} g_{\tau+n-k}^{(s)}-\sum_{k=n+1}^{+\infty} a_{k} g_{\tau+n-k} \tag{5.2}
\end{align*}
$$

Euler scheme (step 2)

Keep the paths fastened : $X_{n+1}^{1}=X_{n+1}^{2} \quad \forall n \geqslant \tau+1$, i.e.

$$
\begin{align*}
X_{n}^{1}+ & h b\left(X_{n}^{1}\right)+\sigma\left(X_{n}^{1}\right) \sum_{k=0}^{+\infty} a_{k} \xi_{n+1-k}^{1}=X_{n}^{1}+h b\left(X_{n}^{1}\right)+\sigma\left(X_{n}^{1}\right) \sum_{k=0}^{+\infty} a_{k} \xi_{n+1-k}^{2} \\
& \Longleftrightarrow \quad \forall n \geqslant \tau+1, \quad \xi_{n+1}^{1}-\xi_{n+1}^{2}=g_{n}^{(s)}=-\sum_{k=1}^{+\infty} a_{1} g_{n-k} \\
& \Longleftrightarrow \quad \forall n \geqslant 1, \quad g_{\tau+n}^{(s)}=-\sum_{k=1}^{n} a_{k} g_{\tau+n-k}^{(s)}-\sum_{k=n+1}^{+\infty} a_{k} g_{\tau+n-k} \tag{5.2}
\end{align*}
$$

Coupling Lemma to build $\left(\left(\xi_{\tau+n+1}^{1}, \xi_{\tau+n+1}^{2}\right)\right)_{n \in \llbracket 1, T \rrbracket}$ such that:

- ensure (5.2) with lower bounded positive probability,
- $\left\|\left(g_{\tau+n}\right)_{n \in \llbracket 1, T \rrbracket}\right\|$ a.s. upper bounded.

Aim : Determine for which value of $p>0$ we can control $\mathbb{E}\left[\tau_{\infty}^{p}\right]$ since:

$$
\mathbb{P}\left(\tau_{\infty}>n\right) \leqslant \frac{\mathbb{E}\left[\tau_{\infty}^{p}\right]}{n^{p}}
$$

where $\tau_{\infty}:=\inf \left\{n \geqslant 0 \mid X_{k}^{1}=X_{k}^{2}, \forall k \geqslant n\right\}$.

Thank you !

$\left(\mathbf{H}_{\mathbf{1}}\right)$: There exists $V: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}^{*}$ continuous such that $\lim _{|x| \rightarrow+\infty} V(x)=+\infty$ and $\exists \gamma \in(0,1)$ and $C>0$ such that

$$
\forall(x, w) \in \mathbb{R}^{d} \times \mathbb{R}^{d}, \quad V(F(x, w)) \leqslant \gamma V(x)+C(1+|w|)
$$

$\left(\mathbf{H}_{1}\right)$: There exists $V: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}^{*}$ continuous such that $\lim _{|x| \rightarrow+\infty} V(x)=+\infty$ and $\exists \gamma \in(0,1)$ and $C>0$ such that

$$
\forall(x, w) \in \mathbb{R}^{d} \times \mathbb{R}^{d}, \quad V(F(x, w)) \leqslant \gamma V(x)+C(1+|w|) .
$$

$\left(\mathbf{H}_{\mathbf{2}}\right):$ Let $K>0$. We assume that there exists $\tilde{K}>0$ such that for every $\mathbf{X}:=\left(x, x^{\prime}, y, y^{\prime}\right)$ in $B(0, K)^{4}$, there exist $\Lambda_{\mathbf{x}}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, M_{K}>0$ and $C_{\tilde{K}}$ such that the following holds

- Λ_{X} is a bijection from \mathbb{R}^{d} to \mathbb{R}^{d}. Moreover, it is a \mathcal{C}^{1}-diffeomorphism between two open sets U and D such that $\mathbb{R}^{d} \backslash U$ and $\mathbb{R}^{d} \backslash D$ are negligible sets.
- for all $u \in B(0, \tilde{K})$,

$$
\begin{align*}
& \quad F(x, u+y)=F\left(x^{\prime}, \Lambda_{\mathbf{x}}(u)+y^{\prime}\right) \tag{5.3}\\
& \text { and } \quad\left|\operatorname{det}\left(J_{\Lambda_{\mathbf{x}}}(u)\right)\right| \geqslant C_{\tilde{K}} . \tag{5.4}
\end{align*}
$$

- for all $u \in \mathbb{R}^{d}$,

$$
\begin{equation*}
\left|\Lambda_{\mathbf{x}}(u)-u\right| \leqslant M_{K} . \tag{5.5}
\end{equation*}
$$

Step 1

Lemma 1 (inspired by continuous version (J.Fontbona \& F.Panloup)
Let $K>0$ and $\mu:=\mathcal{N}\left(0, I_{d}\right)$. Under $\left(\mathbf{H}_{2}\right)$, there exists $\tilde{K}>0$, such that for all $\left(x, x^{\prime}, y, y^{\prime}\right) \in B(0, K)^{4}$, we can build $\left(Z_{1}, Z_{2}\right)$ such that
(i) $\mathcal{L}\left(Z_{1}\right)=\mathcal{L}\left(Z_{2}\right)=\mu$,
(ii) there exists $\delta_{\tilde{K}}>0$ such that

$$
\begin{equation*}
\mathbb{P}\left(F\left(x, Z_{1}+y\right)=F\left(x^{\prime}, Z_{2}+y^{\prime}\right)\right) \geqslant \delta_{\tilde{K}}>0 \tag{5.6}
\end{equation*}
$$

(iii) there exists $M_{K}>0$ such that

$$
\begin{equation*}
\mathbb{P}\left(\left|Z_{2}-Z_{1}\right| \leqslant M_{K}\right)=1 . \tag{5.7}
\end{equation*}
$$

Step 3

Proposition (Calibration of Step 3 duration)
Assume $\left(\mathbf{H}_{\mathbf{1}}\right)$ and $\left(\mathbf{H}_{\mathbf{2}}\right)$. Let $\alpha \in\left(\frac{1}{2} \vee\left(\frac{3}{2}-\beta\right), \rho\right)$. Assume that for all $j \geqslant 1$,

$$
\Delta t_{3}^{(j)}=t_{*} \varsigma^{j} 2^{\theta \ell_{j}^{*}} \text { with } \theta>(2(\rho-\alpha))^{-1}
$$

where $\varsigma>1$ is arbitrary. Then, for all $K>0$, there exists a choice of t_{*} such that, for all $j \geqslant 0$,

$$
\mathbb{P}\left(\Omega_{\alpha, \tau_{j}}^{1} \mid\left\{\tau_{j}<+\infty\right\}\right)=1 .
$$

Recall : $\Omega_{\alpha, \tau_{j}}^{1}$ corresponds to

$$
\forall n \geqslant 0, \quad\left|\sum_{k=n+1}^{+\infty} a_{k} g_{\tau_{j}+n-k}\right| \leqslant(n+1)^{-\alpha}
$$

