
Rate of convergence to equilibrium for discrete-time
stochastic dynamics with memory

Maylis Varvenne

June 12, 2019

PhD advisors : Laure Coutin & Fabien Panloup

Alfréd Rényi Institute of Mathematics, Budapest Rate of convergence to equilibrium 1 / 20



Introduction

Setting

Let X := (Xn)n>0 be an Rd -valued process such that

Xn+1 = F (Xn,∆n+1)

where (∆n)n∈Z is an ergodic stationary Gaussian sequence with d-independent
components and F : Rd × Rd → Rd is (at least) continuous.

Questions:
Definition of invariant distribution in this a priori non-Markovian setting ?
Existence and uniqueness of such measure ? Rate of convergence to
equilibrium ?
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Introduction

Example : Euler scheme of a Gaussian SDE

Let h > 0 be fixed.

Xn+1 = Xn + hb(Xn) + σ(Xn)∆n+1

with ∆n+1 := Z(n+1)h − Znh where (Zt) is a Gaussian process with stationary
increments.
Then,

Xn+1 = Fh(Xn,∆n+1)

and

Fh : Rd × Rd → Rd

(x ,w) 7→ x + hb(x) + σ(x)w .
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Introduction

Example : Euler scheme of a Gaussian SDE

Example of noise process (Zt)
Fractional Brownian motion (fBm) with Hurst parameter H ∈ (0, 1), denoted by
(Bt)t∈R. The fBm is a centered Gaussian process with covariance function given
by: for all t, s ∈ R

E[B i
tBj

s ] = 1
2δij

[
t2H + s2H − |t − s|2H] , i , j ∈ {1, . . . , d}.

In particular, the fBm increments are stationary: for all t, s ∈ R

E[(B i
t − B i

s)(Bj
t − Bj

s)] = δij |t − s|2H , i , j ∈ {1, . . . , d}.

Remark: The fBm is neither a semimartingale nor a Markov process, except for
H = 1/2. In this case, B is the standard Brownian motion and has independent
increments.
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Markovian structure and invariant distribution

Let X := Rd be the state space and W := (Rd )Z− be the noise space.
Idea:

(Xn)n∈N ∈ XN 99K (Xn, (∆n+k)k60)n∈N ∈ (X ×W)N

Equivalent system:

(Xn+1, (∆n+1+k)k60) = ϕ ((Xn, (∆n+k)k60),∆n+1) (2.1)

where

ϕ : (X ×W)× Rd → X ×W
((x ,w), δ) 7→ (F (x , δ),w t δ).
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Markovian structure and invariant distribution

Transition kernel: For all measurable function g : X ×W → R,
Q : X ×W →M1(X ×W) is defined by :∫

X×W
g(x ′,w ′)Q((x ,w), (dx ′,dw ′)) =

∫
Rd

g(F (x , δ),w t δ)P(w ,dδ).

where P(w ,dδ) := L(∆n+1|(∆n+k)k60 = w).

Definition
A measure µ ∈M1(X ×W) is said to be an invariant distribution for our
system if it is invariant by Q, i.e.

Qµ = µ.

Uniqueness: Let S :M1(X ×W)→M1(XN) be the application which maps µ
into Sµ := L((Xµn )n>0). Then

µ ' ν ⇐⇒ Sµ = Sν (?)

Alfréd Rényi Institute of Mathematics, Budapest Rate of convergence to equilibrium 6 / 20



Markovian structure and invariant distribution

Transition kernel: For all measurable function g : X ×W → R,
Q : X ×W →M1(X ×W) is defined by :∫

X×W
g(x ′,w ′)Q((x ,w), (dx ′,dw ′)) =

∫
Rd

g(F (x , δ),w t δ)P(w ,dδ).

where P(w ,dδ) := L(∆n+1|(∆n+k)k60 = w).

Definition
A measure µ ∈M1(X ×W) is said to be an invariant distribution for our
system if it is invariant by Q, i.e.

Qµ = µ.

Uniqueness: Let S :M1(X ×W)→M1(XN) be the application which maps µ
into Sµ := L((Xµn )n>0). Then

µ ' ν ⇐⇒ Sµ = Sν (?)

Alfréd Rényi Institute of Mathematics, Budapest Rate of convergence to equilibrium 6 / 20



Markovian structure and invariant distribution

Transition kernel: For all measurable function g : X ×W → R,
Q : X ×W →M1(X ×W) is defined by :∫

X×W
g(x ′,w ′)Q((x ,w), (dx ′,dw ′)) =

∫
Rd

g(F (x , δ),w t δ)P(w ,dδ).

where P(w ,dδ) := L(∆n+1|(∆n+k)k60 = w).

Definition
A measure µ ∈M1(X ×W) is said to be an invariant distribution for our
system if it is invariant by Q, i.e.

Qµ = µ.

Uniqueness: Let S :M1(X ×W)→M1(XN) be the application which maps µ
into Sµ := L((Xµn )n>0). Then

µ ' ν ⇐⇒ Sµ = Sν (?)

Alfréd Rényi Institute of Mathematics, Budapest Rate of convergence to equilibrium 6 / 20



Moving average representation

Moving average representation

Wold’s decomposition theorem,

∀n ∈ Z, ∆n =
+∞∑
k=0

akξn−k (3.1)

with {
(ak)k>0 ∈ RN such that a0 6= 0 and

∑+∞
k=0 a2

k < +∞
(ξk)k∈Z an i.i.d sequence such that ξ1 ∼ N (0, Id ).

Remarks
B Without loss of generality, we assume that a0 = 1. If a0 6= 1, we can come

back to this case by setting ∆̃n =
∑+∞

k=0 ãkξn−k with ãk = ak/a0.
B The memory induced by the noise is quantified by (ak)k>0.
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Moving average representation

Preliminary tool : a Toeplitz type operator

Definition

Let Ta be defined on `a(Z−,Rd ) :=
{

w ∈ (Rd )Z− ∣∣ ∀k > 0,
∣∣∑+∞

l=0 al w−k−l
∣∣ < +∞

}
by

∀w ∈ `a(Z−,Rd ), Ta(w) =
(+∞∑

l=0
alw−k−l

)
k>0

.

Remark : This operator links (∆n)n∈Z to the underlying noise process (ξn)n∈Z.

Proposition

Let Tb be defined on `b(Z−,Rd ) with the following sequence (bk)k>0

b0 = 1
a0

and ∀k > 1, bk = − 1
a0

k∑
l=1

albk−l .

Then, Tb = Ta
−1.

Alfréd Rényi Institute of Mathematics, Budapest Rate of convergence to equilibrium 8 / 20



Moving average representation

Preliminary tool : a Toeplitz type operator

Definition

Let Ta be defined on `a(Z−,Rd ) :=
{

w ∈ (Rd )Z− ∣∣ ∀k > 0,
∣∣∑+∞

l=0 al w−k−l
∣∣ < +∞

}
by

∀w ∈ `a(Z−,Rd ), Ta(w) =
(+∞∑

l=0
alw−k−l

)
k>0

.

Remark : This operator links (∆n)n∈Z to the underlying noise process (ξn)n∈Z.

Proposition

Let Tb be defined on `b(Z−,Rd ) with the following sequence (bk)k>0

b0 = 1
a0

and ∀k > 1, bk = − 1
a0

k∑
l=1

albk−l .

Then, Tb = Ta
−1.

Alfréd Rényi Institute of Mathematics, Budapest Rate of convergence to equilibrium 8 / 20



Assumptions and main result Assumptions

(Hpoly): The following conditions are satisfied,
• There exist ρ, β > 0 and Cρ,Cβ > 0 such that

∀k > 0, |ak | 6 Cρ(k + 1)−ρ and ∀k > 0, |bk | 6 Cβ(k + 1)−β .

• There exist κ > ρ+ 1 and Cκ > 0 such that

∀k > 0, |ak − ak+1| 6 Cκ(k + 1)−κ.

Remark
B Even though (ak)k>0 and (bk)k>0 are intrinsically linked, there is no general

rule which connects ρ to β.
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Assumptions and main result Assumptions

Two general hypothesis on F .

Example : Euler scheme with step h > 0.

(Hb,σ): b : Rd → Rd is continuous, σ : Rd →Md (R) is bounded, continuous and
σ−1 : x 7→ σ(x)−1 is well defined and continuous. Moreover,
• ∃C > 0 such that ∀x ∈ X , |b(x)| 6 C(1 + |x |)
• ∃β̃ ∈ R and α̃ > 0 such that ∀x ∈ X , 〈x , b(x)〉 6 β̃ − α̃|x |2.
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Assumptions and main result Main theorem

Theorem

Assume the two hyposthesis on the function F . Then,
(i) There exists an invariant distribution µ?.
(ii) Assume that (Hpoly) is true with ρ, β > 1/2 and ρ+ β > 3/2. Then,

uniqueness holds for µ?. Moreover, for all initial distribution µ0 such that∫
X V (x)Π∗Xµ0(dx) < +∞ and for all ε > 0, there exists Cε > 0 such that

‖L((Xµ0
n+k)k>0)− Sµ?‖TV 6 Cε n−(v(β,ρ)−ε).

where v is defined by

v(β, ρ) = sup
α∈( 1

2∨( 3
2−β),ρ)

min{1, 2(ρ− α)}(min{α, β, α + β − 1} − 1/2).
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Assumptions and main result Stationary Gaussian sequence of fractional type

Example 1
When (∆n)n∈Z = (Bnh − B(n−1)h)n∈Z (with h > 0) we have

aH
k ∼ Ch,H(k + 1)−(3/2−H) and |aH

k − aH
k+1| 6 C ′h,H(k + 1)−(5/2−H).

For H ∈ (0, 1/2): ∀k > 0, |bH
k | 6 C ′′h,H(k + 1)−(H+1/2).

Example 2

If ak = (k + 1)−(3/2−H), then |bk | 6 (k + 1)−(3/2−H).

1/2

1/8

1/4

1/2

H

Rate of convergence

Example 1 =
{

H(1− 2H) if H ∈ (0, 1/4]
1/8 if H ∈ (1/4, 1/2)

Example 2 = (1− H)2/2
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Coupling procedure

References (continuous time setting) : Hairer (2005) - Fontbona & Panloup
(2014) - Deya, Panloup & Tindel (2016)

Scheme of coupling (discrete time setting) : We consider (X 1,X 2) the solution
of the system : {

X 1
n+1 = F (X 1

n ,∆1
n+1)

X 2
n+1 = F (X 2

n ,∆2
n+1) (5.1)

with initial conditions (X 1
0 , (∆1

k)k60) ∼ µ0 and (X 2
0 , (∆2

k)k60) ∼ µ?.

We have
‖L((X 1

n+k)k>0)− Sµ?‖TV 6 P(τ∞ > n).

where τ∞ := inf{n > 0 | X 1
k = X 2

k , ∀k > n}.

We choose
(∆1

k)k60 = (∆2
k)k60 ⇔ (ξ1

k)k60 = (ξ2
k)k60.

We define the sequence of r.v. (gn)n∈Z by

∀n ∈ Z, ξ1
n+1 = ξ2

n+1 + gn, hence gn = 0 ∀n < 0.
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Coupling procedure

Steps of the coupling procedure

B Step 1 : Try to stick the positions at a given time with a “controlled cost”.

B Step 2 : Try to keep the paths fastened together (specific to non-Markov
process).

B Step 3 : If Step 2 fails, impose gn = 0 and wait long enough in order to allow
Step 1 to be realized with a “controlled cost” and with a positive probability.
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Coupling procedure

Steps of the coupling procedure

Trial j Trial j+1

τj−1 +1 τj τj + 1

Past

gn−1 = g (s)
n−1

Stuck

gn−1 6= g (s)
n−1

Not stuck

gn−1 = 0 gn−1 = g (s)
n−1

Step 1 Step 2 Step 3
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Coupling procedure Step 3

Step 3

Compact return
|X i
τ |≤K

|∑+∞
k=1 akξ

i
τ+1−k|≤K for i=1,2.

Step 1 (mainly)

Memory decrease

|∑+∞
k=n+1 akgτ+n−k|≤(n+1)−α ∀n≥0

Step 2
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Coupling procedure Step 1

Euler scheme (step 1)

At a given time (τ + 1), we want to build (ξ1
τ+1, ξ

2
τ+1) in order to get

X 1
τ+1 = X 2

τ+1, i.e.

X 1
τ + hb(X 1

τ ) + σ(X 1
τ )

+∞∑
k=0

akξ
1
τ+1−k = X 2

τ + hb(X 2
τ ) + σ(X 2

τ )
+∞∑
k=0

akξ
2
τ+1−k

⇐⇒ ξ2
τ+1 = ΛX(ξ1

τ+1) where X =
(
X 1
τ ,X 2

τ ,
+∞∑
k=1

akξ
1
τ+1−k ,

+∞∑
k=1

akξ
2
τ+1−k

)

Coupling Lemma to build (ξ1
τ+1, ξ

2
τ+1) such that:

ξ1
τ+1 ∼ N (0, Id ) and ξ2

τ+1 ∼ N (0, Id ),
ensure P

(
ξ2
τ+1 = ΛX(ξ1

τ+1)
)
≥ δK > 0,

|ξ1
τ+1 − ξ2

τ+1| 6 MK a.s.
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Coupling procedure Step 2

Euler scheme (step 2)

Keep the paths fastened : X 1
n+1 = X 2

n+1 ∀n > τ + 1, i.e.

X 1
n + hb(X 1

n ) + σ(X 1
n )

+∞∑
k=0

akξ
1
n+1−k = X 1

n + hb(X 1
n ) + σ(X 1

n )
+∞∑
k=0

akξ
2
n+1−k

⇐⇒ ∀n > τ + 1, ξ1
n+1 − ξ2

n+1 = g (s)
n = −

+∞∑
k=1

algn−k

⇐⇒ ∀n > 1, g (s)
τ+n = −

n∑
k=1

akg (s)
τ+n−k−

+∞∑
k=n+1

akgτ+n−k . (5.2)

Coupling Lemma to build ((ξ1
τ+n+1, ξ

2
τ+n+1))n∈J1,TK such that:

ensure (5.2) with lower bounded positive probability,
‖(gτ+n)n∈J1,TK‖ a.s. upper bounded.
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Coupling procedure Conclusion

Aim : Determine for which value of p > 0 we can control E[τp
∞] since:

P(τ∞ > n) 6 E[τp
∞]

np

where τ∞ := inf{n > 0 | X 1
k = X 2

k , ∀k > n}.
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Coupling procedure Conclusion

Thank you !
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Coupling procedure Conclusion

(H1): There exists V : Rd → R∗+ continuous such that lim
|x |→+∞

V (x) = +∞ and

∃γ ∈ (0, 1) and C > 0 such that

∀(x ,w) ∈ Rd × Rd , V (F (x ,w)) 6 γV (x) + C(1 + |w |).

(H2): Let K > 0. We assume that there exists K̃ > 0 such that for every
X := (x , x ′, y , y ′) in B(0,K )4, there exist ΛX : Rd → Rd , MK > 0 and CK̃ such
that the following holds
• ΛX is a bijection from Rd to Rd . Moreover, it is a C1-diffeomorphism between

two open sets U and D such that Rd\U and Rd\D are negligible sets.
• for all u ∈ B(0, K̃ ),

F (x , u + y) = F (x ′,ΛX(u) + y ′) (5.3)
and | det(JΛX (u))| > CK̃ . (5.4)

• for all u ∈ Rd ,
|ΛX(u)− u| 6 MK . (5.5)
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Coupling procedure Conclusion

Step 1

Lemma 1 (inspired by continuous version (J.Fontbona & F.Panloup)

Let K > 0 and µ := N (0, Id ). Under (H2), there exists K̃ > 0, such that for all
(x , x ′, y , y ′) ∈ B(0,K )4, we can build (Z1,Z2) such that
(i) L(Z1) = L(Z2) = µ,
(ii) there exists δK̃ > 0 such that

P(F (x ,Z1 + y) = F (x ′,Z2 + y ′)) > δK̃ > 0 (5.6)

(iii) there exists MK > 0 such that

P(|Z2 − Z1| 6 MK ) = 1. (5.7)
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Coupling procedure Conclusion

Step 3

Proposition (Calibration of Step 3 duration)

Assume (H1) and (H2). Let α ∈
( 1

2 ∨
( 3

2 − β
)
, ρ
)
. Assume that for all j > 1,

∆t(j)
3 = t∗ς j2θ`

∗
j with θ > (2(ρ− α))−1

where ς > 1 is arbitrary. Then, for all K > 0, there exists a choice of t∗ such that,
for all j > 0,

P(Ω1
α,τj
|{τj < +∞}) = 1.

Recall : Ω1
α,τj

corresponds to

∀n > 0,

∣∣∣∣∣
+∞∑

k=n+1
akgτj +n−k

∣∣∣∣∣ 6 (n + 1)−α
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