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1 Introduction

We study the following problem (P) in the multiple integral calculus of
variations:

min
u

∫
Ω
F (∇u(x)) dx subject to u ∈W 1,1(Ω), tru|Γ = φ

where Ω is a bounded Lipschitz open set in Rn and tru|Γ signifies the trace
of u on Γ, the boundary of Ω. Throughout the article, we assume that the
function F : Rn → R is convex: for any θ ∈ (0, 1), for any p, q ∈ Rn,

F (θp+ (1− θ)q) ≤ θF (p) + (1− θ)F (q).

Under a coercivity assumption on F, the direct method in the calculus of
variations yields the existence of a solution to (P). For instance if F is
superlinear, that is, lim

|p|→∞
F (p)/|p| = +∞, then there exists a minimimum

in W 1,1
φ (Ω), the set of those functions u in W 1,1(Ω) such that tru|Γ = φ.

In this article, we address the question of the continuity of a minimum
on the closure of Ω, cl Ω. An obvious necessary condition is the continuity of
φ on Γ. It is an open problem to know whether it is also a sufficient condition
when one assumes the convexity of the domain Ω.

The problem of the continuity of the minima of (P) in Ω or in the closure
of Ω has been solved under a great number of hypotheses. Most of them
require a growth assumption from above for F. This is the case of the works
based on a Cacciopoli type inequality and the classes of De Giorgi (see [9]
Theorem 7.8, [12], Chapter 5, Theorem 4.1). A growth hypothesis for F
is also essential to build most of the barriers used in the theory of elliptic
partial differential equations. Barriers have proved to be a useful tool to
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prove the continuity of minimizers near the boundary (see [8], Chapter 14,
part 5). However, Giaquinta [7] has found a Lagrangian F of class C2

satisfying
c1|ξ|2 ≤ 〈∇2F (p)ξ, ξ〉 ≤ c2(1 + |p|2)|ξ|2

for some constants c1, c2 > 0, such that the minimum is singular along a line.
This emphasizes the fact that the growth hypothesis on F must be rather
restrictive to get continuity on cl Ω (Marcellini [13] has provided sharpen
hypotheses which guarantee this continuity).

When no growth assumption from above is available on the Lagrangian
F, the continuity of a minimum u on Ω or on cl Ω should depend on some
properties of the boundary function φ defining the Dirichlet condition and/or
on the geometrical or regularity properties of Γ. This is indeed the core of
the Hilbert-Haar theory where a classical hypothesis for φ is the bounded
slope condition. We say that φ satisfies the bounded slope condition of
constant Q > 0 if for any x ∈ Γ, there exist ζ−x , ζ

+
x ∈ Rn, |ζ−x |, |ζ+

x | ≤ Q such
that

φ(x) + 〈ζ−x , y − x〉 ≤ φ(y) ≤ φ(x) + 〈ζ−x , y − x〉 ∀y ∈ Γ.

Under this assumption on φ, the Hilbert-Haar’s theorem (see [9], chapter 1
and also [15]) asserts that there exists a minimum to problem (P) on the
set W 1,1

φ (Ω) which is globally Lipschitz on Ω. No regularity assumption on
F is required here. If F is C2 and ∇2F > 0 (in particular F is strictly
convex and the minimum is unique), then the De Giorgi’s theorem on the
regularity of solutions to uniformly elliptic linear differential equations with
bounded measurable coefficients implies that this minimum is locally C1,α.
The continuity of u up to the boundary is trivially implied by the fact that
u is globally Lipschitz on Ω.

However, this bounded slope condition is rather restrictive. First, when
φ is not affine, it implies that Ω is convex (see [10]). Moreover, it implies
that φ is affine on each affine subset of Γ. For instance, if Ω is a square in
R2, the map φ satisfies the bounded slope condition if and only if φ is affine
on each side of the square.

Recently, Clarke has introduced a new condition: the lower bounded
slope condition. We say that φ satisfies the lower bounded slope condition
of constant Q > 0 if for any x ∈ Γ, there exist ζ−x ∈ Rn, |ζ−x | ≤ Q such that

φ(x) + 〈ζ−x , y − x〉 ≤ φ(y) ∀y ∈ Γ.

This condition is satisfied if and only if φ is the restriction to Γ of a convex
function defined on Rn. In particular, it implies that φ is Lipschitz continu-
ous. Further caracterizations and properties are provided in [1], where an
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example shows that the mere lower bounded slope condition does not imply
the global Lipschitz continuity of a minimum. Yet, under this assumption
and when F is strictly convex and Ω convex, Clarke has proved that any
minimum of the problem (P) on W 1,1

φ (Ω) is locally Lipschitz in Ω. Moreover,
the continuity on cl Ω of the minimum was proved when (see [5],[1])

• Ω is C1,1 and F is coercive of order r > (n+1)/2 (i.e |F (p)| ≥ c|p|r + d
for some c > 0, d ∈ R),

• Ω is a polyhedron,

• Ω is strictly convex.

However, nothing was known for convex sets for which Γ is the union of affine
faces and extremal points. For instance, the case when Ω is the intersection
of a ball and an half plane was open.

When F is assumed to be merely convex (so that several distinct minima
may exist), Mariconda and Treu [16] have generalized [5] to prove the inner
regularity of the minima, under a generalized lower bounded slope condition.
The question of the continuity up to the boundary remained open.

In this paper, we establish the continuity of a solution of (P) when F
is convex and superlinear, Ω is convex and when φ is continuous. We also
consider the case of convex Lagrangians which are not strictly convex nor
superlinear.

We now state our results specifically.
We assume throughout the article that there exists ū ∈W 1,1(Ω), tr ū = φ

such that
∫

Ω
F (Dū(x)) dx <∞.

Theorem 1 Assume that F : Rn → R is convex and superlinear, that
φ : Γ → R is Lispchitz continuous and let γ ∈ Γ such that there exists a
supporting hyperplane to Ω at γ. Then any minimum u of (P) on W 1,1

φ (Ω)
satisfies

lim
x→γ,x∈A

u(x) exists and is equal to φ(γ),

where A is the set of Lebesgue points of u.

Remark 1 In Theorem 1, we do not assume that Ω is convex. The existence
of a supporting hyperplane means that there exists ν ∈ Rn \ {0} such that

Ω ⊂ {x ∈ Rn : 〈ν, x− γ〉 ≤ 0}.
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Corollary 1 Assume that Ω is convex, that F : Rn → R is convex and
superlinear and that φ satisfies the lower bounded slope condition. Then any
minimum u of (P) on W 1,1

φ (Ω) is continuous on the closure of Ω.

In the following theorem, we consider the case when φ is merely contin-
uous.

Theorem 2 Assume that Ω is convex, that F : Rn → R is superlinear and
convex and that φ : Γ → R is continuous. Then there exists a solution of
(P) in W 1,1

φ (Ω) which is continuous on the closure of Ω.

As an obvious consequence of Theorem 2, we get

Corollary 2 Assume that Ω is convex, that F : Rn → R is superlinear and
strictly convex and that φ : Γ → R is continuous. Then there exists a unique
solution of (P) in W 1,1

φ (Ω). This solution is continuous on the closure of Ω.

However, we have the following

Open Problem 1 Under the assumptions of Theorem 2, is it true that any
solution of (P) is continuous on the closure of Ω ?

In Theorem 3, we consider convex Lagrangians which are not necessarily
superlinear. This is for instance the case of F (ξ) :=

√
1 + |ξ|2. Before stating

the theorem, we introduce some definitions.
We denote the epigraph of F by

epiF := {(x, t) ∈ Rn × R : F (x) ≤ t}.

A face of the epigraph of F is a set Σ ⊂ Rn × R such that there exist
x, ζ ∈ Rn which satisfy

Σ := {(x′, F (x′)) ∈ Rn × R : F (x′) = F (x) + 〈ζ, x′ − x〉}.

The projection of Σ on Rn is

{x′ ∈ Rn : F (x′) = F (x) + 〈ζ, x′ − x〉}.

Then ζ belongs to the convex subdifferential of F at x′, for any x′ in the
projection of Σ on Rn. In Theorem 3, we assume that the projections of the
faces of epiF have diameters which are unifomrly bounded. Let us formulate
it explicitly : there exists D > 0 such that for any x, x′ ∈ Rn, if there exists
ζ ∈ Rn satisfying

F (x′) = F (x) + 〈ζ, x′ − x〉,
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then |x− x′| ≤ D.
Moreover, this assumption is automatically satisfied when F is strictly

convex.

Theorem 3 Assume that φ satisfies a lower bounded slope condition, that
the projections of the faces of epiF have diameters which are uniformly
bounded and that Ω is convex. Then any solution w is locally Lipschitz
continuous on Ω. For any γ ∈ Γ,

lim inf
x∈Ω,x→γ

w(x) = φ(γ). (1)

Moreover, w is continuous at γ ∈ Γ when one of the following assumptions
is satisfied:

i) γ is an extreme point of Γ,

ii) γ belongs to an n− 1 dimensional face of Γ,

iii) there exists ζγ ∈ Rn such that

φ(γ′) + 〈ζγ , γ′ − γ〉 ≥ φ(γ) ∀γ′ ∈ Γ.

Remark 2 i) The first part of Theorem 3 is [5], Theorem 1.2, in case
when F is strictly convex and [16], Theorem 4.15 in the general case,
except that (1) was only an inequality there: lim inf

x∈Ω,x→γ
w(x) ≥ φ(γ).

ii) For the meaning of extreme point and face, we refer the reader to
Definition 2.

The third case in Theorem 3 suggests the following

Definition 1 We say that φ satisfies the weak bounded slope condition if
for any γ ∈ Γ, there exists ζ−γ , ζ

+
γ ∈ Rn such that

φ(γ) + 〈ζ−γ , γ′ − γ〉 ≤ φ(γ′) ≤ φ(γ) + 〈ζ+
γ , γ

′ − γ〉 ∀γ′ ∈ Γ.

Remark 3 i) Using the tools in [2], Appendix A1, it may be seen that
in general, the weak bounded slope condition is not equivalent to the
classical bounded slope condition.

ii) The weak bounded slope condition implies the convexity of Ω except
when φ is affine. This can be seen as for the bounded slope condition
(see [10]).
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Then we have

Corollary 3 Assume that F is convex and that the projections on Rn of
the faces of epiF are uniformly bounded. If φ satisfies a weak bounded slope
condition, then any minimum w is continuous at any point of the boundary
in the following sense:

lim
x→γ,x∈A

w(x) exists and is equal to φ(γ),

where A is the set of Lebesgue points of w. Moreover, there exists a minimum
which is continuous on the closure of Ω.

We end this introduction with the following

Open Problem 2 Assume that F is convex and that the projections on
Rn of the faces of the epigraph of F are uniformly bounded. Assume that
φ satisfies the lower bounded slope condition and that Ω is convex. Is any
solution continuous on clΩ ?

The problem is even open when F is strictly convex (but not superlinear).
In section 2, we prove Theorem 1. Theorems 2 and 3 are proved in

section 3 and 4 respectively. In the last section, we generalize these results
to more general lagrangians.

2 Proof of Theorem 1

In this section, we consider a convex superlinear Lagrangian F : Rn → R and
a Lispchitz continuous map φ : Γ → R. Then, the problem (P) of minimizing

u ∈W 1,1
φ (Ω) 7→

∫
Ω
F (∇u(x)) dx

has a solution. This solution is non necessarily unique, since the Lagrangian
is not assumed to be strictly convex. The following observation on the
minima of (P) is due to Mariconda and Treu (see [16], Proposition 4.2):

Lemma 1 There exists a (unique) solution u ∈W 1,1
φ (Ω) of (P) which satis-

fies u(x) ≥ v(x) a.e. x ∈ Ω, for any other solution v. We call u the maximal
minimum of (P) on W 1,1

φ (Ω).

Remark 4 i) When F is strictly convex, the maximal minimum is the
unique minimum of (P).
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ii) Analogously, we could define the minimal minimum.

Then, we can state the following comparison principle (see [16], Theorem
2.12):

Lemma 2 Let u be the maximal minimum of (P) in W 1,1
φ (Ω). Let v ∈

W 1,1
ψ (Ω) be a minimum of (P) with respect to another boundary condition

ψ ∈ L1(Γ). Then we have

φ(γ) ≥ ψ(γ) a.e. γ ∈ Γ =⇒ u(x) ≥ v(x) a.e. x ∈ Ω.

Lemma 2 has the following consequence:

Lemma 3 Let u be a maximal minimum of (P) with respect to φ. Let ψ :
Rn → R be a convex function such that ψ|Γ ≤ φ. Then

ψ(x) ≤ u(x) a.e. x ∈ Ω.

Proof: Let x ∈ Ω be a Lebesgue point of u and ζ in the convex subdifferential
of ψ at x :

ψ(y) ≥ ψ(x) + 〈ζ, y − x〉 ∀y ∈ Rn.

Consider the affine map ax : y 7→ ψ(x)+〈ζ, y−x〉. Then ax is a minimum
of (P) in W 1,1

ax|Γ(Ω) and
ax|Γ ≤ ψ|Γ ≤ φ.

Lemma 2 then implies

u(y) ≥ ax(y) a.e. y ∈ Ω.

In particular, this is true for y = x since x is a Lebesgue point of u. Since
ax(x) = ψ(x), we have

u(x) ≥ ψ(x),

which completes the proof of Lemma 3
�

Remark 5 Lemma 3 has a natural counterpart where maximal minimum
and convex are replaced by minimal minimum and concave.

We follow [18], section 18, for the following definition and the basic pro-
perties of faces.
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Definition 2 A face of clΩ is a convex subset Σ of clΩ such that every
closed line segment in clΩ with a relative interior point in Σ has both end-
points in Σ (relative means: with respect to the affine hull topology of Σ).
The empty set and clΩ itself are faces of clΩ. The dimension of a face is the
dimension of its affine hull. The zero-dimensional faces of clΩ are called
the extreme points of clΩ.

Thus a point γ ∈ cl Ω is an extreme point of cl Ω if there is no way to
express x as a convex combination (1− λ)y+ λz such that y ∈ cl Ω, z ∈ cl Ω
and 0 < λ < 1, except by taking y = z = x.

Since a face which is not cl Ω itself is contained in Γ, we also say a face
or an extreme point of Γ.

We now establish some notation used in [5] and which will be useful in
the proof of Lemma 4. For any x ∈ cl Ω, y ∈ Ω, x 6= y, we denote by πΓ(x|y)
the projection of x onto Γ in the direction of y; that is, the unique point
z ∈ Γ of the form x+ t(y−x), t > 0. Then dΓ(x|y), the distance from x to Γ
in the direction of y, is given by dΓ(x|y) := |x− πΓ(x|y)|. We also consider
the function jx(y) := |x− y|/dΓ(x|y), which can be written as

jx(y) := inf{λ > 0 :
y − x

λ
∈ Ω− x}. (2)

It is well known that for any x ∈ Ω, jx is convex on Rn. Remark that even
if πΓ(x|y) is not defined when x = y, we can extend jx by continuity to {x}:
jx(x) = 0.

Lemma 4 Let Ω0 be a bounded open set in Rn, φ0 : ∂Ω0 → R satisfy
the lower bounded slope condition and u0 be the maximal minimum of the
problem (P0) :

Minimize u ∈W 1,1
φ0

(Ω0) 7→
∫

Ω0

F (∇u0(x)) dx.

Let γ ∈ ∂Ω0 belong to an n− 1 dimensional face. Then u0 is continuous at
γ.

Remark 6 i) In particular, if Ω0 is a convex polyhedron, then u0 is
continuous on clΩ.

ii) In this lemma, we do not use the fact that F is superlinear.

iii) If F were assumed to be strictly convex, then Lemma 4 would be a
consequence of the proof of [5], Theorem 2.2.
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Proof of Lemma 4:
The proof of [14], Theorem 4.15 (which generalizes the proof of [5], The-

orem 1.2 to the non strictly convex setting) implies that there exists Q > 0
such that for any Lebesgue points x, y ∈ Ω0 of u0,

u0(x) ≤ u0(y) +Qjx(y) = u0(y) +Q|x− y|/dΓ0(x|y), (3)

where Γ0 := ∂Ω0. In particular, u0 is locally Lipschitz in Ω0. Let γ belong
to an n− 1 dimensional face of Ω0, say Σ. We first prove that

lim sup
x→γ,x∈A

u0(x) ≤ φ0(γ). (4)

Assume first that γ belongs to the relative interior of Σ, (i.e. with respect
to the affine hull topology of Σ. Let (xn) be a sequence of Lebesgue points
in Ω0 converging to γ such that

lim sup
n→+∞

u0(xn) = lim sup
x→γ,x∈A

u0(x).

Fix a Lebesgue point y ∈ Ω0 of u. Then (3) implies

u0(xn) ≤ u0(y) +Q
|xn − y|
|xn − zn|

, n ≥ 1,

with zn := πΓ0(xn|y). The sequence (zn) converges to the unique point
z ∈ Γ0 of the form γ + t(y − γ), t > 0. In particular, z does not belong to
Σ. This implies that

lim sup
n→+∞

u0(xn) ≤ u0(y) +Q
|γ − y|
|γ − z|

≤ u0(y) +Q
|γ − y|
d∂Σ(γ)

, a.e y ∈ Ω0, (5)

where d∂Σ(γ) denotes the distance of γ to the relative boundary of Σ. Since
φ0 is the trace of u0, for almost every γ′ in the relative interior of Σ, γ′ 6= γ,
we have

lim
r→0

1
|B(γ′, r) ∩ Ω0|

∫
B(γ′,r)∩Ω0

u0(y) dy = φ0(γ′). (6)

Hence, (5) implies that for a.e. γ′ ∈ Σ,

lim sup
n→+∞

u0(xn) ≤ φ0(γ′) +
Q

d∂Σ(γ)
|γ − γ′|.

Since φ0 is continuous, this yields (letting γ′ → γ)

lim sup
x→γ,x∈A

u0(x) = lim sup
n→+∞

u0(xn) ≤ φ(γ), (7)
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which completes the proof of (4) when γ belongs to the relative interior of
Σ. When γ belongs to the relative boundary of Σ, let γ′ be in the interior
of Σ. We still have

lim sup
x→γ,x∈A

u0(x) ≤ u0(y) +Q
|γ − y|
|γ − z|

a.e. y ∈ Ω,

where z is the unique point in Γ0 of the form γ+ t(y−γ), t > 0. By the case
above, we know that φ0 is continuous at γ′. Hence, letting y → γ′, we get

lim sup
x→γ,x∈A

u0(x) ≤ φ0(γ′) +Q
|γ − γ′|
|γ − z′|

(8)

where z′ is the unique point in ∂Σ (the relative boundary of Σ) of the form
γ + t(γ′ − γ), t > 0. In particular, inequality (8) is true for any γ′ ∈ (γ, z′).
Since φ0 is continuous, this yields

lim sup
x→γ,x∈A

u0(x) ≤ φ(γ),

that is (4).
We now prove that lim inf

x→γ,x∈A
u0(x) ≥ φ0(γ). Observe that

φ0(γ′) ≥ φ0(γ) + 〈ζγ , γ′ − γ〉 , γ′ ∈ Γ0

for some ζ ∈ Rn (this follows from the fact that φ satisfies the lower bounded
slope condition). On the other hand, since affine maps are minimizers of the
problem, we have (using Lemma 2)

u0(x) ≥ φ0(γ) + 〈ζγ , x− γ〉 a.e. x ∈ Ω.

Hence, lim inf
x→γ,x∈A

u0(x) ≥ φ0(γ), which completes the proof of Lemma 4.

�
We now prove Theorem 1. Fix γ ∈ Γ and denote by A the set of Lebesgue

points in Ω of a minimum u. We claim that

Lemma 5
lim sup
x→γ,x∈A

u(x) ≤ φ(γ). (9)

We could prove similarly that

lim inf
x→γ,x∈A

u(x) ≥ φ(γ). (10)

Then (9) and (10) would imply that lim
x→γ,x∈A

u(x) = φ(γ). To prove (9), we

consider an auxiliary problem. There exists a cube Ω0 ⊂ Rn such that
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i) Ω0 ⊃ Ω,

ii) γ ∈ Γ0, where Γ0 := ∂Ω0.

(the existence of Ω0 is an easy consequence of the existence of a supporting
hyperplane to Ω at γ). Denote by Q a Lipschitz rank of φ and define

φ0(x) := φ(γ) +Q|x− γ| , x ∈ Rn.

Then φ0 is a convex map which satisfies

∀γ′ ∈ Γ, φ0(γ′) ≥ φ(γ′) , φ0(γ) = φ(γ). (11)

Consider the maximal minimum u0 of the problem (P0):

Minimize u ∈W 1,1
φ0

(Ω0) 7→
∫

Ω0

F (∇u0(x)) dx.

Since φ0 is convex, its restriction to Γ satisfies the lower bounded slope
condition (see for instance [1]). By Lemma 4, we know that u0 is continuous
on cl Ω and locally Lipschitz continuous in Ω. Moreover, Lemma 3 implies
that u0 ≥ φ0 on Ω0. In particular,

u0|Γ ≥ φ0|Γ = φ.

It is easy to see (by contradiction) that u0|Ω is still a maximal minimum for
(P) in W 1,1

u0|Γ(Ω). Hence, Lemma 2 implies that

u0(x) ≥ u(x) a.e. x ∈ Ω.

Finally, we get

φ(γ) = φ0(γ) = lim
x→γ

u0(x) ≥ lim sup
x→γ,x∈A

u(x),

which proves (9). This completes the proof of Theorem 1.
�

To prove Corollary 1, use [16], Theorem 4.15 to get the continuity inside
the domain and Theorem 1 (the Lipschitz continuity is a consequence of the
lower bounded slope condition) to get the continuity up to the boundary.
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3 Proof of Theorem 2

In this section, F is convex and superlinear, and Ω is bounded and convex.
We begin with the following

Lemma 6 If w1 and w2 are two minima of I on W 1,1
φ (Ω), then for almost

every x ∈ Ω, ∇w1(x) and ∇w2(x) belong to projection of a same face of
epiF.

Proof: Since w1 and w2 are minima, we have

I(
w1 + w2

2
) ≥ 1

2
I(w1) +

1
2
I(w2). (12)

Since F is convex,

F (
∇w1(x) +∇w2(x)

2
) ≤ 1

2
F (∇w1(x)) +

1
2
F (∇w1(x)) a.e. x ∈ Ω (13)

with equality if and only if ∇w1(x) and ∇w2(x) belong to the projection of
a same face. By integration over Ω, (13) yields

I(
w1 + w2

2
) ≤ 1

2
I(w1) +

1
2
I(w2). (14)

Inequality (12) implies that (14) is an equality. Hence, for almost every
x ∈ Ω, ∇w1(x) and ∇w2(x) belong to the projection of a same face.

�
We now prove Theorem 2. Assume first that φ is Lipschitz continuous

and denote by w the maximal minimum of (P) in W 1,1
φ (Ω).

Let us extend w by φ out of Ω. The resulting function is denoted by w̄.
By Theorem 1, for any γ ∈ Γ, w̄ satisfies

lim
y→γ, y∈A∪(Rn\Ω)

w̄(y) = φ(γ), (15)

where A is the set of Lebesgue points of w in Ω.
Let ρε be a smooth kernel and consider

w̄ε := w̄ ∗ ρε. (16)

We may assume , without loss of generality, that 0 ∈ Ω.
We define an increasing family {Ωε}ε→0 of strictly convex subsets of Ω

such that
max
y∈∂Ωε

dist (y, ∂Ω) ≤ ε (17)

12



as follows
Ωε := {x ∈ Rn : j0(x) + ε′|x|2 < 1},

with ε′ := ε/maxy∈Ω(1 + |y|)3 (see (2) for the definition of j0).
We say that a function fΩ → R is uniformly convex if there exists µ > 0

such that for any x ∈ Ω, there exists ζ ∈ ∂f(x) which satisfies

f(y) ≥ f(x) + 〈ζ, y − x〉+ µ|y − x|2 , y ∈ Ω.

The map x 7→ j0(x)+ ε′|x|2 is uniformly convex, as the sum of a convex and
a uniformly convex map Hence, Ωε is uniformly convex; that is, there exists
µ > 0 such that ∀x ∈ ∂Ωε, there exists nx ∈ Rn, |nx| = 1 which satisfies

〈nx, y − x〉 ≥ µ|y − x|2 y ∈ ∂Ωε.

Let vε be the maximal minimum of v 7→
∫

Ωε

F (∇v) on W 1,1
w̄ε|∂Ωε

(Ωε). We

claim that

Lemma 7 The map vε is continuous on clΩε.

Proof: Since w̄ε is smooth, its restriction to the boundary of the uniformly
convex set Ωε satisfies the bounded slope condition (see [17]). Hence, there

exists a minimum ṽ of v 7→
∫

Ω
F (∇v) on W 1,1

w̄ε|∂Ωε
(Ωε) which is Lipschitz

continuous on cl Ωε. By Lemma 6, for almost every x ∈ Ωε, ∇v̄(x) and ∇vε
belong to the projection of the same face of epiF.

Let M > 0 be such that |∇v̄(x)| ≤M for almost every x ∈ Ω. We claim
that there exists K > 0 such that for any p, q ∈ Rn, |p| ≤M, if there exists
ζ ∈ Rn satisfying

F (q)− F (p) = 〈ζ, p− q〉, (18)

then |q| ≤ K (observe that (18) means that p and q belong to the projection
of the same face of epiF and thatζ ∈ ∂F (p)). Indeed, assume by contra-
diction that there exists pi, qi ∈ Rn, |pi| ≤ K, |qi| ≥ i and ζi ∈ ∂F (pi) such
that F (qi)− F (pi) = 〈ζi, qi − pi〉. Then we get

F (qi)
|qi|

=
F (pi)
|qi|

+ 〈ζi,
qi − pi
|qi|

〉.

Since F is Lipschitz on B(0,M), the sequence (ζi) is bounded. Hence, we
get a contradiction when i→ +∞.

This implies (with M a Lipschitz rank for ∇v̄) that there exists K > 0
such that vε is Lipschitz of rank K on cl Ω.
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�
Using (15), it is easy to prove (by contradiction) that for any η > 0,

there exists δ := δ(η) > 0 such that for any y ∈ A∪ (Rn \Ω), x ∈ Γ, we have

||x− y|| ≤ δ =⇒ |φ(x)− w̄(y)| < η.

Fix η > 0. By the Coarea’s formula (see [6]), for almost every ε > 0, almost
every y ∈ ∂Ωε is a Lebesgue point of w. For any ε < δ(η)/2 satisfying this
property and any Lebesgue point y ∈ ∂Ωε, there exists x ∈ Γ such that
||y − x|| ≤ ε (see (17)). Hence, |w(y)− φ(x)| ≤ η. Moreover,

|w̄ε(y)− φ(x)| ≤
∫
Bε(0)

ρε(z)|w̄(y − z)− φ(x)| dz ≤ η

since for any z ∈ Bε(0), ||y − z − x|| ≤ 2ε ≤ δ(η) and for almost every
z ∈ Bε(0), y − z is a Lebesgue point of w̄.

We have thus proved that for almost every y ∈ ∂Ωε, |w̄ε(y)−w(y)| < 2η.
Since (w + 2η)|Ωε

is a maximal minimum in W 1,1
(w+2η)|∂Ωε

(Ω) (this can be
easily seen by contradiction), we have (using Lemma 2)

vε(x) ≤ w(x) + 2η a.e. x ∈ Ωε.

Since vε is a maximal minimum in W 1,1
w̄ε|∂Ωε

(Ω), we also have

vε(x) ≥ w(x)− 2η a.e. x ∈ Ωε.

Finally,
||vε − w||L∞(Ωε) ≤ 2η.

This proves that for any compact subset K ⊂ Ω, (vε) converges to w
uniformly on K. By Lemma 7, vε is continuous. Hence, w is continuous on
Ω and A = Ω. In view of (15), w is then continuous on the closure of Ω. This
completes the proof of Theorem 2 in case when φ is Lipschitz continuous.

When φ is merely continuous, consider the maximal minimum w of (P)
in W 1,1

φ (Ω). Let (φi) be a sequence of Lipschitz maps converging uniformly
to φ on Γ. In light of the proof above, for each i, the maximal minimum
wi of I on W 1,1

φi
(Ω) is continuous on cl Ω. Since w and wi are two maximal

minima, we have (as above)

||wi − w||L∞(Ω) ≤ ||φi − φ||L∞(Γ)

which implies that wi converges uniformly to w on cl Ω. Hence, w is conti-
nuous on cl Ω. This completes the proof of Theorem 2.

�
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4 Non superlinear Lagrangians

In this section, we assume that the projections of the faces of epiF have
diameters which are uniformly bounded (and that F is convex). We do not
assume that F is superlinear. The map φ satisfies the lower bounded slope
condition and the set Ω is convex.

We have the following counterpart of Lemma 1, which is also due to
Mariconda and Treu (see [16], Proposition 4.2):

Lemma 8 Assume that there exists a solution to (P) in W 1,1
φ (Ω). Then,

there exists a (unique) solution u ∈W 1,1
φ (Ω) to the problem (P) which satis-

fies u(x) ≥ v(x) a.e. x ∈ Ω, for any other solution v. We call u the maximal
minimum of (P) on W 1,1

φ (Ω).

Assume that there exists a solution of (P) in W 1,1
φ (Ω). By Lemma 8

(and its counterpart for the minimum of the minima), there exist w−, w+ ∈
W 1,1
φ (Ω) the minimum and the maximum of the minima respectively.
When φ satisfies the lower bounded slope condition, it is known that

(see [5] for the case when F is strictly convex and [16] for the generalization
when F is not necessarily strictly convex) that

i) any minimum w is bounded. Actually,

||w||L∞(Ω) ≤ ||φ||L∞(Γ) +R0diam Ω

where R0 is the radius of any ball containing the projection of the face
of the epigraph of F which contains (0, F (0)).

ii) Each minimum w is locally Lipschitz on Ω.

iii) The minimum and the maximum of the minima satisfy

there exists K > 0 such that w±(x) ≤ w±(y) +Kjx(y) , ∀x, y ∈ Ω.
(19)

Moreover, K depends on φ and Ω but not on F.

To prove that any minimum w is continuous at a point γ ∈ Γ, it is
enough to prove that

lim inf
x→γ

w−(x) ≥ φ(γ) (20)

lim sup
x→γ

w+(x) ≤ φ(γ). (21)
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Indeed, if (20) and (21) are satisfied, then for any minimum w,

φ(γ) ≤ lim inf
x→γ

w−(x) ≤ lim inf
x→γ

w(x) ≤ lim sup
x→γ

w(x) ≤ lim sup
x→γ

w+(x) ≤ φ(γ).

This will prove the continuity of w at γ. Property (20) is true for any γ ∈ Γ.
Indeed, let aγ(x) := φ(γ)+〈ζγ , x−γ〉 such that φ ≥ aγ on Γ (the existence of
aγ follows from the lower bounded slope condition). Then, aγ is a minimum
of I on W 1,1

aγ|Γ(Ω). By Lemma 8, there exists a minimal minimizer a−γ of
I on W 1,1

aγ|Γ(Ω). By Lemma 6, we know that ∇aγ(x) and ∇a−γ (x) belong
to the projection of the same face of epiF, for almost every x ∈ Ω. Since
∇a−γ (x) = ζ and the faces of the epigraph are bounded, the map a−γ is
Lispchitz continuous, and in particular continuous on cl Ω. By Lemma 2
(more specifically, its counterpart for minimal minimum), we have w− ≥ a−γ
almost everywhere on Ω. This implies (20).

We now prove Theorem 3 iii). Assume that there exists ζ+
γ ∈ Rn such

that
φ(γ′) ≤ φ(γ) + 〈ζ+

γ , γ
′ − γ〉 ∀γ′ ∈ Γ.

Then (21) holds exactly for the same reasons as (20). This proves Theorem
3 iii).

Lemma 4 and Remark 6 imply that (21) also holds when γ belongs to an
n − 1 dimensional face. This proves Theorem 3 ii). It remains to consider
the case when γ is extremal:

Lemma 9 If γ ∈ Γ is an extreme point, then (21) holds.

Proof: For any x ∈ RN , define

S(x) := {(T, µ1, ...µm, x1, ..., xm) : x =
m∑
i=1

µixi , T ≥ 0, µi ≥ 0,

m∑
i=1

µi = 1, xi ∈ Γ,m > 0},

and for any s > ||φ||L∞(Γ),

φs(x) := sup
S(x)

{s+ T

m∑
i=1

µi(φ(xi)− s)}.

The map φs has been introduced in [10]. It is easy to see that φs is a concave
function on Rn and that φs ≥ φ on Γ. Let asγ(x) := φs(γ)+ 〈ζ, x−γ〉, where
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ζ is in the concave subdifferential of φs at γ. Let as+γ be the maximum of
the minima of I on W 1,1

as
γ|Γ

(Ω). Then, as in the proof of (20), we may see that

as+γ is continuous on cl Ω and as+γ ≥ w+ almost everywhere on Ω.
Moreover, φs(γ) converges to φ(γ) when γ is an extreme point of Γ (see

[10], Proposition 3.5). Then for any s > ||φ||L∞(Γ),

lim sup
x∈Ω,x→γ

w+(x) ≤ lim sup
x∈Ω,x→γ

as+γ (x) = φs(γ).

Now, let s→∞. We get

lim sup
x∈Ω,x→γ

w+(x) ≤ φ(γ).

This completes the proof of Lemma 9.
�

To complete the proof of Theorem 3, it remains to prove (1).
In the following, we assume (without loss of generality) that 0 ∈ Ω.
Assume that φ satisfies the lower bounded slope condition. We may

extend it as a convex function on Rn, still denoted by φ. Let w+ be the
maximum of the minima in W 1,1

φ (Ω). Lemma 3 then shows that φ ≤ w+ on
Ω. In particular, for any γ ∈ Γ,

lim inf
x∈Ω,x→γ

w+(x) ≥ φ(γ). (22)

Actually, we prove below that this inequality is an equality. We need first
the following

Lemma 10 Let γ ∈ Γ and (xk) be a sequence in Ω such that xk converges to
γ. Then, there exists a subsequence of {xk} (we do not relabel) and yk ∈ [γ, 0]
such that yk → γ and

jxk
(yk) → 0.

Proof: The function jx(y) has been defined just before Lemma 4. We may
assume that ∀k ≥ 1, xk /∈ [0, γ] (otherwise, we define yk := xk). For any k,
we define yk as any point in [0, γ] such that jxk

attains its minimum on [0, γ]
at yk. Without relabeling, we may assume that yk converges to some point
y ∈ [0, γ]. We claim that y = γ. Assume by contradiction that y 6= γ. Then,

πΓ(xk|yk) converges to πΓ(γ|y). This implies that jxk
(yk) =

|xk − yk|
|xk − πΓ(xk|yk)|

converges to jγ(y). Moreover, for any y′ ∈ Ω, jxk
(y′) converges to jγ(y′).
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Since jxk
(yk) ≤ jxk

(y′) for any y′ ∈ (0, γ), we have

jγ(y) ≤ jγ(y′),

which cannot hold for any y′ ∈ (y, γ). (Here, we use the fact that πΓ(γ|0) =
πΓ(γ|y) = πΓ(γ|y′)). Hence, y = γ and (the whole sequence) (yk) converges
to γ.

Finally, we show that jxk
(yk) → 0. The sequence jxk

converges point-
wisely on {tγ : t ∈ (0, 1)} to the continuous function jγ which satisfies

jγ(tγ) =
(1− t)|γ|
dΓ(γ|0)

.

Define a := |γ|/dΓ(γ|0). Let ε > 0. Restricted to the compact interval
I := {tγ : t ∈ [1− ε

2a
, 1− ε

4a
]}, the family of convex nonnegative uniformly

bounded functions (jxk
) converges uniformly to jγ . Then, there exists k0 ∈ N

such that for any k ≥ k0, jxk
≤ jγ + ε/2 ≤ ε on I. This implies that

jxk
(yk) = min

[0,γ]
jxk

≤ min
I
jxk

≤ ε

for any k ≥ k0. Hence, jxk
(yk) converges to 0. This completes the proof of

Lemma 10.
�

Lemma 11 Let γ ∈ Γ be such that limt→1− w+(tγ) = φ(γ). Then

lim
x∈Ω,x→γ

w+(x) = φ(γ).

Proof: We prove Lemma 11 by contradiction. In light of (22), this means
that there exists ε > 0 and a sequence of points xk in Ω such that xk
converges to γ and

lim
k→∞

w+(xk) = φ(γ) + ε.

Then, up to a subsequence (we do not relabel) and using Lemma 10, there
exists yk ∈ [γ, 0] such that (yk) converges to γ, and

|xk − yk|
dΓ(xk|yk)

→ 0.

Since w+ satisfies property (19), we have

w+(xk) ≤ w+(yk) +K
|xk − yk|
dΓ(xk|yk)
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which implies (using the fact that w+ is continuous on [γ, 0])),

w+(γ) + ε ≤ lim sup
k→∞

(w+(yk) +K
|xk − yk|
dΓ(xk|yk)

) = w+(γ).

This contradiction completes the proof of Lemma 11.
�

Corollary 4 For almost every γ ∈ Γ, limx∈Ω,x→γ w+(x) = φ(γ).

Proof : Let ε > 0 be such that B(0, ε) ⊂ Ω. Denote by w̃+ the function
which is equal to w+ on Ω and to φ on RN \ Ω. For almost every γ ∈ Γ,
the restriction of w̃+ to I := {tγ, t > ε/|γ|} belongs to W 1,1(I), hence is
continuous on I. Then, Lemma 11 implies that limx∈Ω,x→γ w+(x) = φ(γ).

�

Remark 7 Actually, one may improve Corollary 4 using exercise 3.15 in
[19] where it is shown that for B1,r quasi-every x ∈ Rn, w̃+ ∈ W 1,r(Rn),
r ≥ 1, is continuous on almost every ray λx whose endpoint is x (here, B1,r

refers to the Bessel capacity). Hence, limx∈Ω,x→γ w+(x) = φ(γ) for B1,r

quasi-every γ ∈ Γ.

Lemma 12 For any γ ∈ Γ, we have

lim inf
x∈Ω,x→γ

w+(x) = φ(γ).

Proof: Fix γ ∈ Γ. By Corollary 4, there exists a sequence (γi) ⊂ Γ such
that γi converges to γ and lim

x∈Ω,x→γi

w+(x) = φ(γi). For each i, there exists

xi ∈ Ω such that |w+(xi)− φ(γi)| ≤ 1/i. Since φ is continuous, this implies
that w+(xi) converges to φ(γ). The lemma is proven.

�
Since (1) is satisfied for w+, it is automatically satisfied by any minimum

w. This completes the proof of Theorem 3.
�

Proof of Corollary 3 We now assume that φ satisfies a weak bounded
slope condition. Then (20) and (21) hold (this can be seen exactly as for
the proof of (20) in the proof of Theorem 3). Hence, any minimizer is
continuous at the boundary. The existence of a continuous minimum on
cl Ω can be proved as in the proof of Theorem 2 (Lemma 7 remains true for
Lagrangians which are not necessarily superlinear but such that the faces of
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their epigraphs have projections which are uniformly bounded. The proof
is easier and we omit it).

�

5 More general Lagrangians

We now consider the following problem

min
u

∫
Ω
F (Du(x)) +G(x, u(x)) dx subject to u ∈W 1,1(Ω), tru = φ.

We still assume that Ω is convex. We now require that F be uniformly
elliptic, and that G be locally Lipschitz in u. More precisely:

(HF ) For some µ > 0, F satisfies, for all θ ∈ (0, 1) and p, q ∈ Rn :

θF (p) + (1− θ)F (q) ≥ F (θp+ (1− θ)q)− (µ/2)θ(1− θ)|p− q|2.
(HG) G(x, u) is measurable in x and differentiable in u and for every boun-

ded interval U in R, there is a constant L such that for almost all x ∈ Ω,

|G(x, u)−G(x, u′)| ≤ L|u− u′| ∀u, u′ ∈ U.
We also postulate as part of (HG) that for some bounded function b, the

integral
∫

Ω
G(x, b(x)) dx is well-defined and finite. It follows that the same

is true for all bounded measurable functions w. In the presence of (HF ) and
(HG), it follows that

I(w) :=
∫

Ω
F (Dw(x)) +G(x,w(x)) dx

is well-defined for all w ∈W 1,1(Ω) for which w is bounded. We say that u is
a solution relative to L∞(Ω) if u is itself bounded, and if we have I(u) ≤ I(w)
for all bounded w ∈W 1,2(Ω), trw = φ.

We then have (see [3])

Theorem 4 Under the hypotheses (HF ) and (HG), when Ω is bounded and
convex, if φ satisfies the lower bounded slope condition, then any solution w
relative to L∞(Ω) satisfies

w(x) ≤ w(y) +K
|x− y|

|x− πΓ(x|y)|
∀x, y ∈ Ω, (23)

for some K > 0. In particular, w is locally Lipschitz in Ω.
is locally Lipschitz in Ω.
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As in Theorem 1, we address the question whether u is continuous on
cl Ω. The following theorem significantly improves [3], Theorems 4 and 5.

Theorem 5 Under the hypotheses (HF ) and (HG) and when Ω is a bounded
open convex set, if φ satisfies a lower bounded slope condition and w is a
solution relative to L∞(Ω), then for any γ ∈ Γ,

lim inf
x∈Ω,x→γ

w(x) = φ(γ). (24)

Moreover, w is continuous at γ ∈ Γ when one of the following assumptions
is satisfied:

i) γ is an extreme point of Γ,

ii) there exists 1 ≤ k ≤ n− 1 such that γ belongs to an n− k dimensional
face of Γ and

a) k = 1,

b) F is coercive of order r with r ≥ k,

c) Ω is locally C1,α near γ for some 0 ≤ α ≤ 1 and F is coercive of
order r with r ≥ (k + α)/(1 + α).

Proof of Theorem 5 We begin with the following

Lemma 13 Let ψ : Rn → R be a convex function such that ψ|Γ ≤ φ. Then
there exists T > 0 such that for any γ ∈ Γ, there exists ζγ ∈ Rn, νγ ∈ Rn,
|νγ | = 1 such that

w(x) ≥ ψ(γ) + 〈ζγ , x− γ〉 − T (1− e〈νγ ,x−γ〉) ∀x ∈ Ω.

Remark 8 In Lemma 13 , we do not use the fact that φ satisfies the lower
bounded slope condition. Moreover, the analogue for concave functions holds
true: if ψ is concave and ψ|Γ ≥ φ, then

w(x) ≤ ψ(γ) + 〈ζγ , x− γ〉+ T (1− e〈νγ ,x−γ〉) ∀x ∈ Ω

for some ζγ ∈ Rn, νγ ∈ Rn, |νγ | = 1 and T > 0.

For a proof of Lemma 13, see [3], Theorem 2.
Lemma 13 then implies that for any γ ∈ Γ, we have

lim inf
x∈Ω,x→γ

w(x) ≥ φ(γ). (25)
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The fact that equality holds in (25) can be proven using Lemma 10, 11
and 12 exactly as in the proof of Theorem 3.

The proof of Lemma 9 can be generalized as follows: we do not assert
that w ≤ φs any more. However, using Remark 8 for fixed s > 0 and γ ∈ Γ,
we get

w(x) ≤ φs(γ) + 〈ζγ , x− γ〉+ T (1− e〈νγ ,x−γ〉) ∀x ∈ Ω

for some ζγ ∈ Rn, νγ ∈ Rn, |νγ | = 1 and T > 0. We now let x→ γ :

lim sup
x∈Ω,x→γ

w(x) ≤ φs(γ).

Now, when γ is an extreme point, let s→∞. We get

lim sup
x∈Ω,x→γ

w(x) ≤ φ(γ).

This completes the proof of the analogue of Theorem 5 i).

Lemma 14 Let Σ ⊂ Γ be a face of Γ and denote its dimension by k. Assume
that 1 ≤ k ≤ n − 1. Let γ be a relative interior point in Σ. Consider the
n− k dimensional affine plane G perpendicular to Σ at γ. Then G∩Ω 6= ∅.

Proof: Let ζ be the minimal norm subgradient in ∂j0(γ) (||ζ|| > 0, since
0 /∈ ∂j0(γ)). Then (see [4]) there exists δ > 0 such that j0(γ − tζ) < j0(γ)
for any t ∈ (0, δ). It implies that γ − tζ ∈ Ω. Since j0 = 1 on Σ ⊂ Γ and
γ ∈ intΣ, ζ is in the vector space generated by G. Thus

{γ − tζ : t ∈ (0, δ)} ⊂ Ω ∩G.

This completes the proof of Lemma 14.
�

Definition 3 The set Ω is said to be locally C1,α near γ ∈ Γ if one can
choose coordinates with the origin at γ and a neighborhood U of γ such that

U ∩ clΩ = {x ∈ U : x1 ≥ f(x′)}

where x′ = (x2, ..., xn) and f ∈ C1,α.

Necessarily, f(0) = 0. Since Ω is convex, f is convex. Up to a change of
coordinates, one may further assume that f ≥ 0 and x1 = 〈x, n〉, where −n
is the unit outer normal vector to Ω at γ. Since f is C1,α, there exists d > 0
such that f(x′) ≤ d(x′)1+α.
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Lemma 15 Let v ∈ W 1,p(Ω) satisfy (23). If p ≥ n, then v is continuous
on clΩ.

Proof: The lemma is obvious when p > n by the Morrey-Sobolev embed-
dings. When p = n, it is based on a modification of Lemma 2.12 in [5]. Let
γ ∈ Γ. Since Ω is convex, there exist ρ, a ∈ (0, 1) and a unit vector n such
that

C := {x ∈ B(γ, ρ) \ {γ} : 〈n, x− γ

|x− γ|
〉 > a} ⊂ Ω.

Moreover, n can be chosen such that −n is in the normal cone to Ω at γ.
We may assume that 0 ∈ D where D := {γ + tn : t > 0} ∩B(γ, aρ). For any
x ∈ D, we consider the affine hyperplane Hx perpendicular to D at x. Then

B(x,R) := {y ∈ Hx : |x− y| < R} ⊂ C,

for any R ≤ Rx := |x− γ|
√

1− a2

a
.

Let α : x ∈ [γ, γ/2] → αx ∈ (0,∞) be such that αx ≤ Rx and αx = o(Rx)
when x → γ. The map αx will be subject to further restrictions below.
Fix x ∈ (γ, γ/2]. We denote B(x, αx) by Bαx . For any y ∈ Bαx such that
v|[y,πΓ(0|y)] ∈ W 1,1((y, πΓ(0|y))) (a.e. y ∈ Bαx satisfies this condition), we
have (using (23))

v(x) ≤ v(y) +K
|x− y|

|x− πΓ(x|y)|
≤ v(y) +K

αx
Rx

≤ φ(πΓ(0|y)) +
∫

[y,πΓ(0|y)]
|∇v|+K

αx
Rx

.

We now integrate this inequality on Bαx :

v(x) ≤ 1
|Bαx |

∫
Bαx

φ(πΓ(0|y)) dy +
1

|Bαx |

∫
Mx

|∇v|+K
αx
Rx

where we have denoted by Mx the set

Mx := {ty + (1− t)πΓ(0|y) : 0 ≤ t ≤ 1, y ∈ Bαx}.

The first term in the right hand side converges to φ(γ) when x → γ (here
we use the fact that φ ◦ πΓ(0|·) is continuous near γ). The third term goes
to 0 (in light of the assumption on αx). It remains to show that

1
|Bαx |

∫
Mx

|∇v| = o(1) , x→ γ. (26)
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By Hölder’s inequality, we have∫
Mx

|∇v| ≤ |Mx|1−1/n(
∫
Mx

|∇v|n)1/n. (27)

For any y ∈ Ω sufficiently close to γ we denote by πHγ (0|y) the unique
point of Hγ of the form ty for some t > 0. Then, for x sufficiently close to
γ, πHγ (0|y) is well defined for any y ∈ Bαx . Moreover, we have

Mx ⊂ {ty + (1− t)πHγ (0|y), y ∈ Bαx}.

Using the fact that πHγ (0|x) = γ and 0 ∈ {γ+tn, t > 0} where −n is normal
to Hγ , we easily get |Mx| ≤ C ′|Bαx ||x−γ|, for some constant C ′ > 0. Thus,
(26) is true if and only if

|x− γ|1−1/n|Bαx |1−1/n

|Bαx |
||∇v||Ln(Mx) = o(1) , x→ γ.

Taking into account the fact that |Bαx | = βαn−1
x (where β depends only on

n), this is equivalent to

(
|x− γ|
αx

)1−1/n||∇v||Ln(Mx) = o(1) , x→ γ.

SinceMx ⊂ Nx := {ty + (1− t)πΓ(0|y) : 0 ≤ t ≤ 1, y ∈ BRx}, we may define

αx = |x− γ|||∇v||Ln(Nx).

(We may assume that ||∇v||Ln(Nx) > 0 since otherwise, v is constant on a
neighborhood of γ and the result is obvious). Then,

(
|x− γ|
αx

)1−1/n||∇v||Ln(Mx) = ||∇v||1/nLn(Nx) = o(1)

and it is easy to check that αx = o(Rx) , x→ γ. This completes the proof
of Lemma 15.

�

Lemma 16 Let v ∈ W 1,p(Ω) satisfy (23). If Ω is locally C1,α near γ ∈ Γ
for some 0 ≤ α ≤ 1 and p ≥ (n+ α)/(1 + α), then v is continuous at γ.

Proof : We indicate here the minor modifications with respect to the proof
of Lemma 15. The cone C now becomes a C1,α paraboloid. More specifically,
we define

C := {x ∈ B(γ, ρ) \ {γ} : |x− γ| cos θ ≥ d(|x− γ| sin θ)1+α
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where cos θ = 〈 x− γ

|x− γ|
, n〉}

for some ρ, d > 0 such that C ⊂ Ω. We now set

Rx := (
|x− γ|
d

)1/(1+α) and αx := |x− γ|1/(1+α)||∇v||Lp(Nx).

Using now Holder’s inequality with p instead of n in (27) we get the result.
�

We now prove Theorem 5ii).

Corollary 5 Assume that γ ∈ Γ belongs to an n−k dimensional face where
1 ≤ k ≤ n − 1. Then w is continuous at γ if one of the three following
assumptions holds true:

i) k = 1,

ii) F is coercive of order r with r ≥ k,

iii) Ω is locally C1,α near γ for some 0 ≤ α ≤ 1 and F is coercive of order
r with r ≥ (k + α)/(1 + α).

Proof: We may assume that γ is not an extreme point. Let Σ be an n − k
dimensional face such that γ ∈ Σ. We denote by intΣ, the interior of Σ for
the relative topology in the affine hull of Σ. For any γ′ ∈ intΣ, we consider
the affine k dimensional plane Hγ′ perpendicular to Σ at γ′. By Lemma 14,
Hγ′ ∩ Ω is not empty. Since w ∈ W 1,r(Ω) with r ≥ 1, for almost every γ′,
the restriction of w to Hγ′ ∩ Ω belongs to W 1,r(Hγ′ ∩ Ω) and satisfies (19).
Hence, Lemma 15 or Lemma 16 imply that w|Hγ′∩Ω is continuous. (Here,
we use the fact that if Ω is locally C1,α near γ′, then Ω∩Hγ′ is locally C1,α

near γ′). Fix such a γ′ ∈ intΣ, γ′ 6= γ. For any x? ∈ Hγ′ ∩ Ω, w|[γ′,x?] is
continuous. We claim that

lim
y∈(γ′,x?),y→γ′

|γ − y|
dΓ(γ|y)

=
|γ − γ′|
|γ − z̄|

(28)

where z̄ ∈ Σ is defined by z̄ = γ+t̄(γ′−γ) with t̄ = max{t > 0 : γ+t(γ′−γ) ∈
Σ}.

Indeed, let (yi) ⊂ (γ′, x?) converging to γ′. Consider zi := πΓ(γ|yi).
There exists ti > 0 such that zi = γ + ti(yi − γ). Since γ′ 6= γ, the sequence
(ti) is bounded, so that, up to a subsequence, converges to some t ≥ 0. Then,
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(zi) converges to z = γ + t(γ′ − γ). We now prove that t = t̄. Assume by
contradiction that

there exists t′ > t such that γ + t′(γ′ − γ) ∈ Σ. (29)

Let Ω′ := Ω ∩ P, Γ′ := Γ ∩ P where P is the 2 dimensional plane defined
by the three points γ, γ′ and x?. Then Ω′ is a 2 dimensional convex set and
zi ∈ Γ∩P. Consider the 1 dimensional face of Γ′, Σ′ := Σ∩P. The assumption
(29) implies that z belongs to the relative interior of Σ′. Hence, zi belongs
to the relative interior of Σ′ for sufficiently large i. But this implies that
yi ∈ [γ, zi] ⊂ Γ, a contradiction. Then z = z̄ and the claim (28) is proven.

Since almost every γ′ ∈ intΣ satisfies w ∈ W 1,r(Ω ∩ Hγ′), it follows
from Fubini’s Theorem and the use of spherical coordinates that there exists
f? ∈ intΣ such that almost every γ′ ∈ (f?, γ) satisfies

w ∈W 1,r(Ω ∩Hγ′).

Hence, there exists a sequence (γi) ⊂ (f?, γ) such that γi converges to γ
and w is continuous on [γi, x?i ] for some x?i ∈ Hγi ∩ Ω.

Since w satisfies (23), for any i ≥ 1 and any y ∈ (x?i , γi), we have

lim sup
x∈Ω,x→γ

w(x) ≤ w(y) +K
|γ − y|
dΓ(γ|y)

. (30)

Then (28) (for γ′ = γi) implies that for each i ≥ 1,

lim sup
x∈Ω,x→γ

w(x) ≤ φ(γi) +K
|γ − γi|
|γ − z̄|

(31)

where z̄ ∈ Σ is defined by z̄ = γ+ t̄(f?− γ) with t̄ = max{t > 0 : γ+ t(f?−
γ) ∈ Σ}.

Finally, letting i→ +∞ in (31), we get

lim sup
x∈Ω,x→γ

w(x) ≤ φ(γ).

This completes the proof of Corollary 5.
�
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