
Continuity of solutions of a problem in the
calculus of variations

Pierre Bousquet ∗

17th December 2010

Abstract

We study the problem of minimizing
∫
Ω
L(x, u(x), Du(x)) dx over

the functions u ∈ W 1,p(Ω) that assume given boundary values φ on
∂Ω. We assume that L(x, u,Du) = F (Du) + G(x, u) and that F is
convex. We prove that if φ is continuous and Ω is convex, then any
minimum u is continuous on the closure of Ω. When Ω is not convex,
the result holds true if F (Du) = f(|Du|). Moreover, if φ is Lipschitz
continuous, then u is Hölder continuous.

1 Introduction

We study the regularity of solutions to the following problem (P) in the
multiple integral calculus of variations:

min
u

∫
Ω
L(x, u(u), Du(x)) dx subject to u ∈W 1,1

0 (Ω) + φ,

where Ω is a bounded domain in Rn, u is scalar-valued and L : Ω×R×Rn → R
is convex with respect to the last variable. Under suitable assumptions on L,
one may invoke the direct method to deduce the existence of a solution u to
problem (P). The issue then becomes the regularity of u. In particular, if u
is continuous on Ω, the boundary conditions are assumed pointwise (rather
than in the sense of trace).

Following the pioneering work of De Giorgi ([7]), Giaquinta and Giusti
([11, Theorem 3.1]) proved the Hölder continuity of any bounded solution
u when φ is Hölder continuous and the Lagrangian L satisfies the growth
condition

|ξ|p − d ≤ L(x, u, ξ) ≤ c|ξ|p + d (1)

for some c, d ∈ R and for every (x, u, ξ) ∈ Ω × R × Rn. The constrained
growth of the same order p from both above and below has subsequently
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been weakened ([14, 8]). However, this condition is almost necessary to
ensure local regularity: there exists a Lagrangian L(x, u, ξ) = F (ξ) which is
uniformly elliptic, satisfies

−d+ |ξ|2 ≤ F (ξ) ≤ c|ξ|4 + d , ξ ∈ Rn.

and for which the solution fails to be continuous on Ω (see [10, 14]). In such
an example, though, the boundary function φ is itself discontinuous.

In this article, we follow another approach more relevant to Lagrangians
which do not satisfy any upper growth condition: when some regularity
properties are imposed on φ, this induces regularity of the solution u. We
proceed to recall the main results that illustrate this principle. Consider
first the case when L(x, u, ξ) = F (ξ) is strictly convex, coercive and Ω is
convex. If φ satisfies the so-called bounded slope condition (equivalently, φ
is the restriction to ∂Ω of a convex function and the restriction of a concave
function), then the solution of (P) is Lipschitz continuous (see [18]). When
φ is the restriction of a convex function on Rn, Clarke [5] has proved that the
solution u is locally Lipschitz on Ω. Finally, when φ is merely continuous,
the solution u is continuous on Ω (see [5, 1, 16]).

These results have been extended in two different ways. On the one
hand, when F is convex and superlinear but not necessarily strictly convex,
several minima may exist. However, there exist a minimum of the minima
and a maximum of the minima which satisfy the same regularity properties
as above (see [4, 15, 16, 1]).

On the other hand, when L depends also on x and u, minima may have
interior singularities (see [8, 9]). However, when Ω is convex and if L can
be written as L(x, u, ξ) = F (ξ) +G(x, u), with F uniformly convex (see (2)
below) and G Lipschitz continuous, then any bounded minimum is

1) Lipschitz continuous when φ satisfies the bounded slope condition (see
[21]),

2) locally Lipschitz continuous when φ is the restriction of a convex func-
tion (see [2]).

All these results naturally lead to the following conjecture. Assume that
L(x, u, ξ) = F (ξ) +G(x, u) is smooth and uniformly convex with respect to
ξ, that Ω is smooth (but not necessarily convex), and that φ is smooth (but
not necessarily the restriction of a convex function). Then any solution of
(P) is continuous on Ω.

We observe in particular that the problem of the continuity of u when the
boundary condition φ is continuous and G different from 0 is open. Theorem
1 below settles this question when Ω is convex. When L also depends on x
and u, the Lagrangian is not convex and the comparison principle used in
[1, 4, 5, 16, 17] does not apply.
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We emphasize the fact that all the results quoted above were limited to
convex domains Ω. In Theorem 2 below, we remove this restriction when
F depends only on the norm of the gradient: if φ is continuous, then any
bounded solution is continuous as well. This result is new even when G = 0.

We proceed now to state more specifically the main results of the article.

2 The main results

We first detail our assumptions. We denote by | · | the Euclidean norm in
Rn. We introduce the following geometric condition on Ω :

Definition 1 1) We say that Ω satisfies the exterior sphere condition if
for any γ ∈ Γ := ∂Ω, there exist x ∈ Rn and r > 0 such that

i) |γ − x| = r,

ii) B(x, r) ⊂ Rn \ Ω.

2) We say that Ω satisfies the uniform exterior sphere condition if there
exists r > 0 such that for any γ ∈ Γ, there exists x ∈ Rn satisfying
conditions i) and ii) above.

Any convex set satisfies the uniform exterior sphere condition for any r > 0.
Any set of class C1,1 satisfies the uniform sphere condition for some r > 0.
On the contrary, for any α ∈ (0, 1), there exists a set of class C1,α which
does not satisfy the exterior sphere condition, e.g. {(x, y) ∈ R2 : y < |x|1+α}.
However, the exterior sphere condition is not limited to convex or C1,1 sets.
For instance, it is satisfied by {(x, y) ∈ R2 : y < x2 sin(1/x)} and also by
R2 \ (B((0, 0), 1) ∪ B((2, 0), 1)). In terms of nonsmooth analysis, Ω satisfies
the exterior sphere condition if and only if the proximal normal cone of Ω at
γ ∈ Γ is non trivial, for any γ (see [6, Chapter 1] and also [20]).

In the following, the open set Ω is always assumed to be bounded. We
now detail the assumptions on the Lagrangian F : Rn → R.

Definition 2 Let F : Rn → R. We say that

1) F is superlinear when lim
|ξ|→∞

F (ξ)
|ξ|

= +∞.

2) F is coercive of order p > 1 when there exist a > 0, b ∈ R such that
F (ξ) ≥ a|ξ|p + b, for any ξ ∈ Rn.

3) F is uniformly convex if there exists µ > 0 such that for all θ ∈ (0, 1)
and ξ, ξ′ ∈ Rn :

θF (ξ) + (1− θ)F (ξ′) ≥ F (θξ+ (1− θ)ξ′) + (µ/2)θ(1− θ)|ξ− ξ′|2. (2)
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We remark that when F is of class C2, F is uniformly convex if and only if,
for every ξ ∈ Rn, we have

〈z,∇2F (ξ)z〉 ≥ µ|z|2 ∀z ∈ Rn. (3)

When F is uniformly convex, F is coercive of order 2.

When F is convex,
∫

Ω
F (Dw) is well-defined (possibly as +∞) for any

w ∈ W 1,1(Ω). Moreover,
∫

Ω
F (Dw) < +∞ implies that Dw ∈ Lp(Ω) when

F is coercive of order p > 1.

Assumption (H) Let G : Ω × R → R. We introduce the following as-
sumption (H) for G:

1) G(x, u) is measurable in x and differentiable in u,

2) for every T in R, there is a constant χ = χ(T ) such that for almost all
x ∈ Ω,

|G(x, u)−G(x, u′)| ≤ χ|u− u′| ∀u, u′ ∈ [−T, T ], (4)

3) there exists a bounded function b such that
∫

Ω
G(x, b(x)) dx is well-

defined and finite.

By 2) and 3),
∫

Ω
G(x, u(x)) dx is well-defined and finite for any u ∈ L∞(Ω).

In problem (P), the Dirichlet boundary condition is defined by u ∈
W 1,1
φ (Ω), where φ ∈W 1,1

loc (Rn). Here, W 1,1
φ (Ω) is the set of those u ∈W 1,1(Ω)

such that the map{
u(x) if x ∈ Ω,
φ(x) if x ∈ Rn \ Ω

belongs to W 1,1
loc (Rn). (5)

Hence, the boundary condition is well-defined for any bounded open set Ω.

When F is convex andG satisfies (H), I(u) =
∫

Ω
F (Du) +G(x, u) is well-

defined (possibly as +∞) on W 1,1
φ (Ω) ∩ L∞(Ω). We say that an admissible

map u solves (P ) relative to L∞(Ω) if u is itself bounded, I(u) < +∞ and
if we have I(u) ≤ I(v) for all bounded v that are admissible for (P ).

We now state our first main result:

Theorem 1 We assume that Ω is convex, F is uniformly convex and G
satisfies (H). Then any solution u of (P ) relative to L∞(Ω) is

1) continuous on Ω if φ is continuous,
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2) Hölder continuous of order α = 1/(n+ 1) if φ is Lipschitz continuous.

This generalizes [1, Theorem 2] and [16, Theorem 4.5] to the case when
the Lagrangian also depends on (x, u). We remark that Stampacchia [21]
has described structural assumptions on G which guarantee a priori the
existence and boundedness of solutions of (P ). Under these assumptions,
one may extend Theorem 1 to the case when G is not differentiable in u
(exactly as in [2], section 3).

When Ω is not convex, we do not know whether Theorem 1 remains true,
except in one case, namely when F depends only on the norm of the gradient.

Theorem 2 We assume that F is uniformly convex, that G satisfies (H),
and there exists f : [0,∞) → R such that F (ξ) = f(|ξ|) for any ξ ∈ Rn.
Then any solution u of (P ) relative to L∞(Ω) is

1) continuous on Ω if φ is continuous and Ω satisfies an exterior sphere
condition,

2) Hölder continuous of order α = 1/(n+ 1) if φ is Lipschitz continuous
and Ω satisfies a uniform exterior sphere condition.

We remark that the map f appearing in the statement of Theorem 2 is
necessarily convex and nondecreasing.

Theorem 2 is new even when G = 0. As a matter of fact, in that case,
it is enough to assume that F (ξ) = f(|ξ|) is convex and superlinear. Since
F is not necessarily strictly convex, several minima may exist. Mariconda
and Treu [15] have proved however that the set of minima has a minimum.
This means that there exists a minimum u of (P) and u ≤ v a.e. for any
other minimum v. Symmetrically, there exists a maximum of the minima.
We then have:

Theorem 3 We assume that G = 0, F is convex and there exists f :
[0,+∞) → R such that F (ξ) = f(|ξ|), ξ ∈ Rn.

1) If f is superlinear, φ : Rn → R is continuous and Ω satisfies the
exterior sphere condition, then the minimum and the maximum of the
solutions of (P) are continuous on Ω.

2) If f is coercive of order p > 1, φ : Rn → R is Lipschitz continuous and
Ω satisfies a uniform exterior sphere condition, then the minimum and
the maximum of the solutions of (P) are Hölder continuous of order α
with

α :=
p− 1

n+ p− 1
.

We have not been able to prove the continuity of any solution of (P).
However, if we assume further that the projections of the faces of the epigraph

5



of f on Rn are uniformly bounded, the difference of two minima is a Lipschitz
continuous function. This implies that any solution is continuous on Ω (see
[16, Theorem 4.7] for details).

When F = f(| · |) is not superlinear, the continuity of φ is not enough
to guarantee the continuity of u, as shown by the minimum area problem:
f(t) =

√
1 + t2.

Even if f is coercive, regularity and/or geometric assumptions on the
domain must be introduced somehow to obtain the continuity of the minima:
we know from classical potential theory (f(t) = t2) that the point at the tip
of a sharp inward-pointing spine of a domain is not a regular boundary
point. However, it is not clear what the exact regularity of Ω and φ required
in Theorem 3 should be.

Remark 1 In this article, W 1,p
0 (Ω) is the set of those functions u ∈W 1,p(Ω)

that we may extend by 0 to get a map in W 1,p(Rn). Alternatively, W 1,p
0 (Ω)

could have been defined as the closure of C∞c (Ω) in W 1,p(Ω). The first defi-
nition seems to be more convenient to prove Proposition 1 below. In general,
these two definitions are not equivalent, so that the sets of admissible func-
tions for the problem (P) may differ. However, both definitions of W 1,p

0 (Ω)
coincide in the case of Lipschitz domains (in particular, when Ω is convex)
or when Ω satisfies a uniform exterior sphere condition and 1 < p. A similar
remark holds true for the set W 1,p

φ (Ω).

In the following section, we introduce the main tool of the paper: a
comparison principle, and several variants to treat the nonconvex term G.
In section 4, we prove Theorem 1. Section 5 is devoted to the case when Ω
is an annulus. This specific case is useful to prove Theorem 3 and Theorem
2 in sections 6 and 7 respectively.

3 Several variants of the comparison principle

The three lemmas below give important tools to derive the comparison prin-
ciples needed in the proofs or our regularity results.

To begin with, we introduce the framework of this section. Let Ω be a
bounded open set in Rn and φ ∈ W 1,1

loc (Rn). We recall that W 1,1
φ (Ω) is the

set of those functions u ∈W 1,1(Ω) such that uφ ∈W 1,1
loc (Rn) where

uφ :=
{
u(x) if x ∈ Ω,
φ(x) if x 6∈ Ω.

We begin with the following

Lemma 1 Let Ω1,Ω2 be two bounded open subsets of Rn such that Ω1∩Ω2 6=
∅. Let G1 : Ω1×R → R, G2 : Ω2×R → R satisfy (H). Let φ1, φ2 ∈W 1,1

loc (Rn).
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We define for i = 1, 2,

Ii(u) :=
∫

Ωi

F (Du(x)) +Gi(x, u(x)) dx

For i = 1, 2, let ui ∈ W 1,1
φi

(Ωi) be a minimum of Ii on W 1,1
φi

(Ωi) relative
to L∞(Ωi).

We assume that there exists α0 ∈ R such that u1
φ1 ≤ u2

φ2 + α0 a.e. on
Rn \ (Ω1 ∩ Ω2). Let α ≥ α0 and A := {x ∈ Ω1 ∩ Ω2 : u1(x) > u2(x) + α}.
When F is uniformly convex, we have

µ

∫
A
|Du1 −Du2|2 ≤

∫
A
(G1,u(x, u1)−G2,u(x, u2))(u2 + α− u1), (6)

where µ is given by (2). Here, Gi,u, i ∈ {1, 2}, is the derivative of Gi with
respect to u.

Proof: Let α ≥ α0 and t ∈ [0, 1]. We define

v1(x) :=
{
tu1(x) + (1− t) min(u1(x), u2(x) + α) if x ∈ Ω1 ∩ Ω2,
u1(x) if x ∈ Ω1 \ Ω2.

(7)

We claim that v1 ∈W 1,1
φ1

(Ω1). Indeed,

v1(x)− u1(x) = (1− t)
{

min(u2(x) + α− u1(x), 0) if x ∈ Ω1 ∩ Ω2,
0 if x ∈ Ω1 \ Ω2

= (1− t) min(u2
φ2 + α− u1

φ1 , 0)(x)

where

u1
φ1 =

{
u1 if x ∈ Ω1,
φ1 if x ∈ Rn \ Ω1

, u2
φ2 =

{
u2 if x ∈ Ω2,
φ2 if x ∈ Rn \ Ω2

.

Since u1
φ1 and u2

φ2 belong to W 1,1
loc (Rn) and min(u2

φ2 +α− u1
φ1 , 0) = 0 on

Rn \ Ω1, we have v1 ∈W 1,1
φ1

(Ω1). Similarly, we define

v2(x) :=
{
tu2(x) + (1− t) max(u2(x), u1(x)− α) if x ∈ Ω1 ∩ Ω2,
u2(x) if x ∈ Ω2 \ Ω1.

(8)

Then v2 ∈ W 1,1
φ2

(Ω2). Since u1 and u2 are minima, we have I1(u1) ≤ I1(v1)
and I2(u2) ≤ I2(v2).

Now, we write I1(u1) + I2(u2) ≤ I1(v1) + I2(v2). This gives∫
A
F (Du1) +G1(x, u1) +

∫
A
F (Du2) +G2(x, u2)

≤
∫
A
F (tDu1 + (1− t)Du2) +G1(x, tu1 + (1− t)(u2 + α))

+
∫
A
F (tDu2 + (1− t)Du1) +G2(x, tu2 + (1− t)(u1 − α)).
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We recall that A = {x ∈ Ω1 ∩ Ω2 : u1(x) > u2(x) + α}. We write F (Du1) =
tF (Du1) + (1 − t)F (Du1) and similarly for F (Du2). By using the uniform
convexity of F (see (2)), we get∫

A
F (Du1) + F (Du2)− F (tDu1 + (1− t)Du2)− F (tDu2 + (1− t)Du1)

≥ µt(1− t)
∫
A
|Du1 −Du2|2.

This gives

µt(1− t)
∫
A
|Du1 −Du2|2 ≤

∫
A
G1(x, tu1 + (1− t)(u2 + α))−G1(x, u1)

+
∫
A
G2(x, tu2 + (1− t)(u1 − α))−G2(x, u2). (9)

We divide (9) by (1− t) and let t→ 1. In the right hand side, we may justify
the use of the dominated convergence theorem with (H). We get

µ

∫
A
|Du1 −Du2|2 ≤

∫
A
(G1,u(x, u1)−G2,u(x, u2))(u2 + α− u1).

This completes the proof of Lemma 1.
�

We may obtain a plain comparison principle in the following situation :

Lemma 2 Let Ωi, F, Gi, φi, ui be as in Lemma 1. We further assume that
Ω1 ⊂ Ω2 and

G2(x, u) =
{
G1,u(x, u1(x))u if x ∈ Ω1,
0 otherwise.

Then u1 ≤ u2 + α0 a.e. on Ω1.

Proof: By (6) with α = α0 and the fact that G2,u(x, u2(x)) = G1,u(x, u1(x))

when x ∈ Ω1, we get µ
∫
A
|Du1 −Du2|2 ≤ 0. Hence

∫
Ω1

|Du1 −D[min(u1, u2 + α0)]|2 = 0.

Since u1 −min(u1, u2 + α0) ∈W 1,1
0 (Ω1), this implies u1 = min(u1, u2 + α0),

so that u1 ≤ u2 + α0 a.e. on Ω1.
�

When Ω1 = Ω2, φ1 = φ2 and α0 = 0, Lemma 2 implies that a minimum

u1 of I1(u) =
∫

Ω1

F (Du) +G1(x, u) onW 1,1
φ1

(Ω1) is also the unique minimum
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of u 7→
∫

Ω1

F (Du) + g1(x)u, where g1(x) = G1,u(x, u1(x)). We observe that

in this last problem, the Lagrangian is now convex in (u,Du).
We now introduce some notation to state Lemma 3 below. Let H :

Rn → Rn be an affine map. We say that H is a rotation if there exists a
2 dimensional plane P such that H is a rotation on P and is equal to the
identity on the orthogonal of P. In that case, we denote by |Id − H| the
distance (with respect to the Euclidean norm) between Id and the linear
part of the affine map H. When H is a translation of vector τ, we denote by
|Id−H| the norm of τ. We have

Lemma 3 Let Ωi, Gi, φi, ui, α0 and F be as in Lemma 1. We further
assume that there exists H : Rn → Rn such that

• H is a translation or a rotation,

• Ω2 = H−1(Ω1), G2(x, u) = G1(H(x), u), φ2 = φ1 ◦H and u2 = u1 ◦H.

Then there exists q > 0 such that

u1(x)− u1(Hx) ≤ q|Id−H|+ α0 a.e. x ∈ Ω1 ∩ Ω2. (10)

The constant q depends on n, Ω1 and χ/µ where χ is such that (4) holds
true for T = |u1|L∞(Ω1), namely the sup norm of u1 on Ω1.

Proof: Let α ≥ α0. We define v := u2 + α − u1 on Ω1 ∩ Ω2 and

w := min(u2
φ2 + α− u1

φ1 , 0) =
{

min(v, 0) on Ω1 ∩ Ω2,
0 on Rn \ (Ω1 ∩ Ω2)

. We have

∫
A
(G1,u(x, u1)−G2,u(x, u2))(u2+α−u1) =

∫
Ω1

G1,u(x, u1)w−
∫

Ω2

G2,u(x, u2)w

=
∫

Ω1

G1,u(x, u1(x))w(x) dx−
∫

Ω1

G1,u(x, u1(x))w(H−1(x)) dx. (11)

If H is a translation, we define γ(t) = tId + (1 − t)H−1. If H is a rotation
of angle θ, we define γ(t) = H(t−1)θ (where we denote by Hλ, λ ∈ R the
rotation of angle λ in the same plane P as H and with the same center).

Then by (11)∫
A
(G1,u(x, u1)−G2,u(x, u2))(u2 + α− u1)

=
∫

Ω1

G1,u(x, u1) dx
∫ 1

0
Dw(γ(t)(x))(γ̇(t)(x)) dt

≤ C χ|Id−H|
∫

Ω1

dx

∫ 1

0
|Dw(γ(t)(x))| dt

where C = C(n,Ω1).
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Now, for any t ∈ (0, 1),∫
Ω1

|Dw(γ(t)(x))| dx ≤
∫

Rn

|Dw(y)| dy =
∫
A
|Du1 −Du2|.

Hence,∫
A
(G1,u(x, u1)−G2,u(x, u2))(u2 + α− u1) ≤ C χ|Id−H|

∫
A
|Du1 −Du2|.

In view of (6), we then get

µ

∫
A
|Du1 −Du2|2 ≤ C χ|Id−H|

∫
A
|Du1 −Du2|,

so that
|Du1 −Du2|L2(A) ≤ C

χ

µ
|A|1/2|Id−H|. (12)

By Hölder’s inequality,

|u1 − u2 − α|L1(A) ≤ |A|1−1/2∗ |u1 − u2 − α|L2∗ (A),

with 2∗ = 2n/(n − 2) if n > 2 and 2∗ any number > 2 if n = 2. We then
apply Sobolev’s lemma to the function w ∈W 1,1

0 (Ω1) to obtain

|u1 − u2 − α|L1(A) ≤ S|A|1−1/2∗ |Du1 −Du2|L2(A)

for some constant S > 0 which depends only on n (and on Ω1 when n = 2).
In view of (12), this implies

|u1 − u2 − α|L1(A) ≤ CS
χ

µ
|Id−H||A|γ (13)

with γ := 1− 1/2∗ + 1/2 = 1 + 1/n > 1.
If H = Id, (10) is obvious. Otherwise we define q0 := α0/|Id−H| and for

any q ≥ q0, we denote by A(q) := {x ∈ Ω1∩Ω2 : u1(x) ≥ u2(x)+q|Id−H|},
ρ(q) = |A(q)|. By Fubini Theorem and (13), we get for q ≥ q0∫ +∞

q
ρ(q′) dq′ =

1
|Id−H|

∫
A(q)

(u1 − u2 − q|Id−H|) ≤ CS
χ

µ
ρ(q)γ .

Then (see [13, Lemma 7.2]) ρ(q) = 0 for q ≥ q0 +(n+1)CS χµ |Ω1|1/n. Hence,
for a.e. x ∈ Ω1,

u1(x) ≤ u1(Hx)+(q0+(n+1)CS
χ

µ
|Ω1|1/n)|Id−H| = u1(Hx)+α0+q|Id−H|

for some q = q(n,Ω1,
χ
µ ). This completes the proof of Lemma 3.

�
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Remark 2 When the map H is a rotation, if we assume further that Ω :=
Ω1 = Ω2 is Lipschitz continuous, φ1, φ2 ∈ C0(Rn) ∩ W 1,1

loc (Rn), then it is
enough to assume that φ1 ≤ φ2 + α0 on ∂Ω1.

To prove this, we introduce ψ1 := min(φ1, φ2+α0) which belongs to C0(Rn)∩
W 1,1
loc (Rn). Since ψ1 − φ1 = 0 on ∂Ω, (ψ1 − φ1)|Ω ∈ C∞c (Ω)

W 1,1

= W 1,1
0 (Ω)

(here, we use that Ω is Lipschitz). Hence, W 1,1
φ1

(Ω) = W 1,1
ψ1

(Ω). Since ψ1 ≤
φ2+α0 on Rn, we may apply Lemma 3 with ψ1 and φ2 to obtain u1 ≤ u2+α0

on Ω.
Here is the corresponding version of Lemma 1 when G1 = G2 = 0 and F

is merely convex.

Lemma 4 Let Ω1,Ω2 be two bounded open subsets of Rn such that Ω1∩Ω2 6=
∅. Let φ1, φ2 ∈W 1,1

loc (Rn). We define for i = 1, 2,

Ii(u) :=
∫

Ωi

F (Du(x)) dx

For i = 1, 2, let ui ∈ W 1,1
φi

(Ωi) be a minimum of Ii on W 1,1
φi

(Ωi), i = 1,
2.

We assume that there exists α0 ∈ R such that u1
φ1 ≤ u2

φ2 + α0 a.e. on
Rn \ (Ω1 ∩ Ω2).

When F is convex and either u1 is the minimum of the minima or u2 is
the maximum of the minima, we have

u1 ≤ u2 + α0 on Ω1 ∩ Ω2. (14)

Proof : Assume for instance that u1 is the minimum of the minima. Define
v1 and v2 as in the proof of Lemma 1 (see (7), (8)) with t = 0 and α = α0.
We get ∫

A
F (Du1) ≤

∫
A
F (Du2) and

∫
A
F (Du2) ≤

∫
A
F (Du1),

where the set A is defined by A := {x ∈ Ω1 ∩ Ω2 : u1(x) > u2(x) + α0}. This
implies I1(u1) = I1(min(u1, v1)). Hence, min(u1, v1) is another solution on
W 1,1
φ1

(Ω1). Since u1 is the minimum of the solutions, we get u1 ≤ min(u1, v1),
so that u1 ≤ u2 + α0 on Ω1 ∩ Ω2. This implies Lemma 4.

�
In the following proposition, we consider a solution u of (P); that is, u is

a minimum of I(u) =
∫

Ω
F (Du) +G(x, u) on W 1,1

φ (Ω). We prove that if u is

continuous at the boundary, then u is continuous on Ω.

Proposition 1 Let φ ∈W 1,1
loc (Rn) ∩ C0(Rn). Assume either that

11



a) F is uniformly convex, G satisfies (H), u is a solution of (P ) on
W 1,1
φ (Ω) relative to L∞(Ω),

b) or F is convex and superlinear, G = 0 and u is the minimum or the
maximum of the minima of I on W 1,1

φ (Ω).

Then for any Lebesgue points x and y of u, we have

|u(x)− u(y)| ≤ C {|x− y|+ α(|x− y|)} , (15)

where α(t) := max( sup
z∈J,b∈Rn\Ω
|z−b|≤t

|u(z)− φ(b)|, sup
b,b′∈Rn\Ω
|b−b′|≤t

|φ(b)− φ(b′)|). Here, J

is the set of Lebesgue points of u in Ω.

The main tool of the proof is Lemma 3 when the map H is a translation.
The method of translations has already been used to obtain a similar result
when G = 0 and Ω is convex (see [18]) or when G is convex and Ω∩ (Ω− h)
is regular for all h ∈ Rn (see [17]). This last assumption is quite restrictive:
For instance, if Ω := B(0, 3)\B(0, 1) ⊂ R2 and h = (2, 0), the set Ω∩(Ω−h)
is not Lipschitz. This is also the reason why we have introduced the space
W 1,1
φ (Ω), with φ ∈W 1,1

loc (Rn). This set is well defined for any open set Ω and
seems to be more convenient to get (15) without any further assumption.

When G is not convex, there exists a corresponding version of Proposition
1 in the framework of nonlinear elliptic equations, when the set of admissible
maps is a subset of Lipschitz continuous functions, see [13, Lemma 10.0]. The
proof below shares also some ideas with the proof of [16, Theorem 4.5].

Proof of Proposition 1: a) We first consider the case when F is uniformly
convex and G satisfies (H). Let x̄, ȳ be two Lebesgue points of u and τ :=
ȳ− x̄. We introduce Ωτ := Ω− τ, φτ (x) := φ(x+ τ), Gτ (x, v) = G(x+ τ, v).
It follows from an obvious change of variables that uτ (x) = u(x + τ) is a
minimum of

Iτ (v) =
∫

Ωτ

F (Dv(x)) +G(x, v(x)) dx

on W 1,1
φτ

(Ωτ ) relative to L∞(Ωτ ).
In view of the definition of α(|τ |) and the fact that

Rn \ (Ω ∩ Ωτ ) = (Rn \ (Ω ∪ Ωτ )) ∪ (Ω \ Ωτ ) ∪ (Ωτ \ Ω),

we have uφ ≤ uτ
φτ + α(|τ |) a.e. on Rn \ (Ω ∩ Ωτ ). Indeed, for any x ∈

Rn \ (Ω ∪ Ωτ ), φ(x)− φ(x+ τ) ≤ α(|τ |). Hence, uφ(x)− uτ
φτ (x) ≤ α(|τ |)

for a.e. x ∈ Rn \ (Ω ∪ Ωτ ). Similarly, a.e x ∈ Ω \ Ωτ belongs to J, so
that u(x)− φ(x+ τ) ≤ α(|τ |); that is, uφ(x)− uτ

φτ (x) ≤ α(|τ |). The same
inequality holds true for a.e. x ∈ Ωτ \ Ω.

12



By Lemma 3 (see (10)), there exists q > 0 such that

u(x)− u(x+ τ) ≤ q|τ |+ α(|τ |), a.e. x ∈ Ω ∩ (Ω− τ). (16)

The constant q depends on n, Ω, and χ/µ, with µ given by (2) and χ =
χ(|u|L∞(Ω)) given by (4). Since x̄, ȳ are Lebesgue points of u, inequality
(16) holds true for x = x̄. This implies (15) when F is uniformly convex.

b) We now consider the case when F is merely convex and superlinear
and G = 0.

Assume for instance that u is the minimum of the minima. Once again,
we fix x̄, ȳ ∈ J and define as above τ, Ωτ , φτ , uτ (which is the minimum of
the minima of Iτ on W 1,1

φτ
(Ωτ ).) Then, we still have uφ ≤ uτ

φτ + α(|τ |), a.e.
on Rn \ (Ω ∩ Ωτ ). By Lemma 4 (see (14)),

u(x) ≤ uτ (x) + α(|τ |) a.e. x ∈ Ω ∩ Ωτ .

We may now complete the proof of Proposition 1 b) as above.
�

Remark 3 Assume that (15) is satisfied, φ ∈ W 1,1
loc (Rn) ∩ C0(Rn) and u is

continuous at the boundary in the following sense:

lim
x→γ
x∈J

u(x) = φ(γ) γ ∈ Γ, (17)

(as in Proposition 1, J is the set of Lebesgue points of u in Ω). Then u is
continuous on Ω.

To prove Remark 3, one may assume without loss of generality that φ is
uniformly continuous (modifying φ outside a neighborhood of Ω does not
modify the set W 1,1

φ (Ω)). By (17) and the compacity of Ω, we have

lim
r→0

sup
z∈J,b∈Rn\Ω
|z−b|≤r

|u(z)− φ(b)| = 0. (18)

Then limt→0 α(t) = 0, where

α(t) = max

 sup
z∈J,b∈Rn\Ω
|z−b|≤t

|u(z)− φ(b)|, sup
b,b′∈Rn\Ω
|b−b′|≤t

|φ(b)− φ(b′)|

 .

By (15), this implies that u has a representative which is uniformly conti-
nuous on Ω.
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4 Proof of Theorem 1

We first prove the continuity of a solution u at the boundary. To do so, we
use the technique of barriers. Here, the barriers are the solutions of auxiliary
variational problems on domains which are larger than Ω. Fix γ ∈ Γ. Since
Ω is convex, there exists an open hypercube Λ such that:

• Λ ⊃ Ω,

• γ is the center of an n− 1 dimensional face of Λ.

We now introduce a function ψ, the definition of which depends on the
regularity properties of φ.

When φ is merely continuous, let ε > 0 and

ψ(x) := φ(γ) + ε+ a|x− γ|2, (19)

where
a := max

(
χ

nµ
, max
x∈Λ,x 6=γ

φ(x)− φ(γ)− ε

|x− γ|2

)
.

The constant µ is given by (2) while χ = χ(|u|L∞(Ω)) is given by (4). Since
φ is continuous, a <∞.

When φ is Lipschitz continuous, let Q be the Lipschitz rank of φ and

ψ(x) = φ(γ) +Q|x− γ|+ a|x− γ|2 (20)

where a := χ
nµ .

In both cases, ψ ≥ φ on Λ, and ψ is smooth and convex on Λ. Moreover,
in the sense of quadratic forms,

∇2ψ(x) ≥ 2a Id ∀ x ∈ Λ. (21)

We now define

g(x) :=
{
Gu(x, u(x)) if x ∈ Ω,
0 otherwise.

Then |g|L∞(Ω) ≤ χ.
Consider the following auxiliary problem (P0):

Minimize v 7→
∫

Λ
F (Dv(x)) + g(x)v(x) dx v ∈W 1,1

ψ (Λ).

We observe that the domain Λ is a convex polyhedron and the bound-
ary condition ψ is convex. Such variational problems have been thoroughly
studied in [21, 2]. We proceed to recall some a priori bounds satisfied by
the solution of (P0).

14



In view of the uniform convexity of F, the direct method in the calculus
of variations gives a (unique) solution v ∈ W 1,1

ψ (Λ). Moreover, there exists
T0 such that (see [21, Theorem 6.1, Theorem 6.2])

|v|W 1,2(Λ) + |v|L∞(Λ) ≤ T0.

The constant T0 depends on Λ, F, χ, |φ|∞, and the Lipschitz rank Q0 of ψ
on Λ.

The function ψ is convex, so that it satisfies the lower bounded slope
condition introduced in [5]. This implies (see the proof of [2, Theorem 2.1])
that there exists C0 > 0 such that

v(x) ≤ v(y) + C0
|x− y|

|x− π∂Λ(x|y)|
x, y ∈ Λ, (22)

where C0 = C0(Λ, F, χ, |φ|∞, Q0) and π∂Λ(x|y) is the unique point of ∂Λ of
the form x+ t(y − x) with t > 0.

Inequality (22) implies (as in the proof of [5, Lemma 2.11], see also the
proof of (34) below) that there exists C > 0 such that

|v(x)− ψ(γ)| ≤ C|x− γ|1/(n+1) x ∈ Λ, (23)

for some constant C = C(Λ, F, χ, |φ|∞, Q0).
On the other hand, we claim that

v(x) ≥ ψ(x) , x ∈ Λ. (24)

Indeed, since max(v, ψ) ∈W 1,1
ψ (Λ), we have∫

Λ
F (Dv(x)) + g(x)v(x) dx

≤
∫

Λ
F (Dmax(v(x), ψ(x))) + g(x) max(v(x), ψ(x)) dx. (25)

This gives ∫
B

(F (Dv(x))− F (Dψ(x))) dx ≤ χ

∫
B

(ψ(x)− v(x)) dx (26)

where B := {x ∈ Λ : ψ(x) > v(x)}. We claim that the left hand side is not
lower than

2χ
∫
B

(ψ(x)− v(x)) dx.

Indeed, let (Fk) be a nondecreasing sequence of functions in C∞(Rn) converg-
ing uniformly on bounded sets to F, and such that the convexity assumption
(2) holds for Fk with the same constant µ when ξ, ξ′ are restricted to a ball

15



B(0, Q0 + 1) containing all the values of Dψ0 (such a sequence exists, see
[19, Lemma 4.2.1]). For each k, we have∫

B
(Fk(Dv(x))− Fk(Dψ(x))) dx ≥

∫
B
DFk(Dψ(x))(Dv(x)−Dψ(x)) dx.

We have∫
B
DFk(Dψ(x))(Dv(x)−Dψ(x)) dx

= −
∫

Λ
DFk(Dψ(x))(D(max(ψ, v)− v)(x)) dx.

Stokes’ formula then implies∫
B
DFk(Dψ(x))(Dv(x)−Dψ(x)) dx =

∫
B

div [DFk(Dψ(x))](ψ(x)−v(x)) dx

=
∫
B

n∑
i,j=1

∂2Fk
∂pi∂pj

(Dψ(x))
∂2ψ

∂xi∂xj
(x)(ψ(x)− v(x)) dx

≥ 2a
∫
B

∆Fk(Dψ(x))(ψ(x)− v(x)) dx ≥ 2nµa
∫
B
ψ − v by (3) and (21).

Letting k →∞, we get by the monotone convergence theorem∫
B
F (Dv(x))−F (Dψ(x)) ≥ 2nµa

∫
B

(ψ(x)−v(x)) dx ≥ 2χ
∫
B

(ψ(x)−v(x)) dx.

(27)
Inequalities (26) and (27) imply that ψ ≤ v a.e. on Λ.

Since ψ ≥ φ on Λ, we have vψ ≥ uφ̃ on Rn \ Ω, where φ̃ := min(φ, ψ).
Remark that W 1,1

φ (Ω) = W 1,1

φ̃
(Ω). Hence, by Lemma 2, we have u ≤ v on Ω.

When φ is Lipschitz continuous, we have (see (23) and (20)),

u(x) ≤ v(x) ≤ ψ(γ) + C|x− γ|1/(n+1) = φ(γ) + C|x− γ|1/(n+1) a.e x ∈ Ω.
(28)

Symmetrically, we have

u(x) ≥ φ(γ)− C|x− γ|1/(n+1) a.e x ∈ Ω,

so that |u(x) − φ(γ)| ≤ C|x − γ|1/(n+1) for a.e. x ∈ Ω. Since γ is arbitrary
and φ is Lipschitz continuous, Theorem 1 2) is a consequence of Proposition
1 and Remark 3.

When φ is merely continuous, we have (see (23) and (19))

u(x) ≤ v(x) ≤ ψ(γ)+C|x−γ|1/(n+1) = φ(γ)+ε+C|x−γ|1/(n+1), a.e x ∈ Ω

(note that C now also depends on ε). We then get

lim sup
x→γ

u(x) ≤ lim sup
x→γ

v(x) = ψ(γ) = φ(γ) + ε.
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Since this is true for any ε > 0, this implies lim supx→γ u(x) ≤ φ(γ).
Symmetrically, lim infx→γ u(x) ≥ φ(γ). Hence, we have limx→γ u(x) = φ(γ).

Proposition 1 and Remark 3 then imply Theorem 1 1).
�

5 The case when Ω is an annulus

In this section, Ω := B(0, R) \ B(0, r), f : [0,∞) → R is a nondecreasing
convex function and G : Ω × R → R satisfies (H). Let φ : Rn → R be a
Lipschitz continuous map. Then the problem (P) now reads

min
u

∫
Ω
f(|Du(x)|) +G(x, u(x)) dx , u ∈W 1,1

φ (Ω).

Proposition 2 a) If f is uniformly convex, then any solution of (P) rel-
ative to L∞(Ω) is Hölder continuous on Ω of order α := 1/(n+ 1).

b) If f is superlinear and G = 0, then the minimum or the maximum of
the minima is continuous on Ω.

c) If f is coercive of order p > 1 and G = 0, then the minimum or the
maximum of the minima is Hölder continuous on Ω of order α :=
(p− 1)/(n+ p− 1).

We begin with the following lemma:

Lemma 5 Let p ≥ 1, 0 < r < R and u ∈W 1,p(B(0, R) \B(0, r)).
We assume that there exists Q > 0 such that for a.e. ρ ∈ (r,R), for a.e.

x, y ∈ ∂B(0, ρ), we have

|u(x)− u(y)| ≤ QR

∣∣∣∣ x|x| − y

|y|

∣∣∣∣ . (29)

Then u has a representative u0 ∈W 1,p(B(0, R) \B(0, r)) such that

i) when p = 1, u0 is continuous on B(0, R) \B(0, r).

ii) when p > 1, u0 is Hölder continuous of order α := (p− 1)/(n+ p− 1).

Proof : We first consider the case p > 1.

Step 1 Let u ∈W 1,∞((−1, 1)×Rn−1) be such that u(t, x) = 0 for |x| > 1,
t ∈ (−1, 1). We claim that for any a, b ∈ (−1, 1), for any x ∈ Rn−1, we have

|u(a, x)− u(b, x)| ≤ C|Dxu|(n−1)/(n+p−1)
L∞ |Dtu|p/(n+p−1)

Lp |a− b|(p−1)/(n+p−1).
(30)
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Here, Dtu is the partial derivative of u with respect to the first coordinate,
while Dxu is the (n − 1) vector of the partial derivatives of u with respect
to the other coordinates. To prove (30), we define for ε > 0

uε(a, x) :=
1

αn−1εn−1

∫
Bn−1(x,ε)

u(a, y) dy,

where αn−1 is the volume of the unit ball in Rn−1 and Bn−1(x, ε) is the ball
of center x and radius ε in Rn−1. On the one hand,

|uε(a, x)− u(a, x)| ≤ ε|Dxu|L∞ . (31)

On the other hand,

|uε(a, x)− uε(b, x)| ≤
1

αn−1εn−1

∫
Bn−1(x,ε)

dy

∣∣∣∣∫ b

a
Dtu(t, y) dt

∣∣∣∣ (32)

≤ C
|a− b|(p−1)/p|Dtu|Lp

ε(n−1)/p
(33)

where C depends only on n and p. From (31) and (33), it follows that

|u(a, x)− u(b, x)| ≤ 2ε|Dxu|L∞ + C
|a− b|(p−1)/p|Dtu|Lp

ε(n−1)/p
.

Since u(·, x) = 0 for |x| > 1, one may assume that |Dxu|L∞ > 0 (otherwise
u = 0 and there is nothing to prove). By taking

ε :=
|a− b|(p−1)/(p+n−1)|Dtu|p/(p+n−1)

Lp

|Dxu|p/(p+n−1)
L∞

,

we get

|u(a, x)− u(b, x)| ≤ C|a− b|(p−1)/(p+n−1)|Dtu|p/(p+n−1)
Lp |Dxu|(n−1)/(p+n−1)

L∞ .

This proves Step 1.

Step 2 Let u ∈ W 1,∞((−1, 1)n). We claim that for any a, b ∈ (−1, 1), for
any x ∈ (−1, 1)n−1, we have

|u(a, x)− u(b, x)|

≤ C(|u|L∞ + |Dxu|L∞)(n−1)/(n+p−1)|Dtu|p/(n+p−1)
Lp |a− b|(p−1)/(n+p−1).

(34)

Let h ∈ C∞c (Rn−1) be such that 0 ≤ h ≤ 1 and h(x) = 1 on (−1, 1)n−1,
h(x) = 0 if x /∈ (−2, 2)n−1. For a ∈ (−1, 1), we extend u(a, ·) on Rn−1 by

18



reflection in Rn−1 (as in [3, Lemma 9.2, Remark 10]). We then multiply the
resulting map by h. We get a map v ∈W 1,∞((−1, 1)×Rn−1) which satisfies:

|Dtv|Lp((−1,1)×Rn−1) ≤ C|Dtu|Lp((−1,1)n),

|Dxv|L∞((−1,1)×Rn−1) ≤ C
(
|u|L∞((−1,1)n) + |Dxu|L∞((−1,1)n)

)
.

We now apply Step 1 to v (remark that v(a, x) = 0 if x /∈ (−2, 2)n−1) and
(34) follows.

We remark that (34) remains true when u ∈ L∞∩W 1,p((−1, 1)n) is such
that Dxu ∈ L∞((−1, 1)n). This follows from an approximation argument :
let η ∈ C∞c (Bn) be such that η ≥ 0,

∫
Rn η = 1 and define ηε := η(·/ε)/εn. On

Ωi := (−1 + 1/i, 1− 1/i)n, i ≥ 1, the map u ∗ ηε is well defined for ε < 1/i.
Fix i ≥ 1. Apply (34) to u ∗ ηε on Ωi : for any a, b ∈ (−1 + 1/i, 1 − 1/i),
x ∈ (−1 + 1/i, 1− 1/i)n−1,

|u∗ηε(a, x)−u∗ηε(b, x)|n+p−1 ≤ C
(
|u ∗ ηε|L∞(Ωi) + |Dx(u ∗ ηε)|L∞(Ωi)

)n−1

|Dt(u ∗ ηε)|pLp(Ωi)
|a− b|p−1

≤ C
(
|u|L∞((−1,1)n) + |Dxu|L∞((−1,1)n)

)n−1

|Dtu|pLp((−1,1)n)|a− b|p−1.

The map (a, x) 7→ u ∗ ηε(a, x) is Hölder continuous in a and Lipschitz
continuous in x. Hence, it is Hölder continuous in (a, x). Moreover, its Hölder
norm does not depend on ε. This implies that (up to a subsequence) when
ε→ 0, u∗ηε uniformly converges on Ωi to a representative of u which satisfies
(34) on Ωi. By letting i→∞, we get the result.

Step 3 Let u ∈ L∞ ∩W 1,p(B(0, R) \ B(0, r)) satisfy (29). We claim that
u has a representative u0 such that for a, b ∈ (r,R) and θ ∈ Sn−1, we have

|u0(aθ)− u0(bθ)| ≤ C(
R

r
)(n−1)/(n+p−1)(

|u|L∞
R

+Q)(n−1)/(n+p−1)

|Dtu|p/(n+p−1)
Lp |a− b|(p−1)/(n+p−1) (35)

where Dtu is the radial derivative of u.
Let Ξ : U → (−1, 1)n−1 be a biLipschitz diffeomorphism from an open

subset U of Sn−1 onto (−1, 1)n−1. We define v(a, x) := u(aΞ−1(x)) for
(a, x) ∈ (−1, 1)×(−1, 1)n−1. Then v ∈W 1,p((r,R)×(−1, 1)n−1) and satisfies
for almost every a ∈ (r,R), for almost every x, y ∈ (−1, 1)n−1,

|v(a, x)− v(a, y)| = |u(aΞ−1(x))− u(aΞ−1(y))| ≤ C0QR|x− y|

where C0 is a Lipschitz rank of Ξ−1. By Step 2, v has a representative v0
which is Hölder continuous and satisfies

|v0(a, x)− v0(b, x)|n+p−1 ≤ C(|v|L∞ + C0QR)n−1|Dtv|pLp |a− b|p−1. (36)
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By the change of variables θ = Ξ−1(x), there exists C1 > 0 such that

|Dtv|pLp((r,R)×(−1,1)n−1)
≤ C1

∫
Sn−1

dθ

∫ R

r
|Dtu(tθ)|p dt

≤ C1

rn−1

∫
B(0,R)\B(0,r)

|Dtu(x)|p dx.

We define u0(x) := v0(|x|,Ξ(x/|x|)). It follows from (36) that there exists
C2 > 0 such that for θ ∈ U and a, b ∈ (r,R),

|u0(aθ)− u0(bθ)|n+p−1 ≤ C2

rn−1
(|u|L∞ +QR)n−1 |Dtu|pLp |a− b|p−1

≤ C2(
R

r
)n−1

(
|u|L∞
R

+Q

)n−1

|Dtu|pLp |a− b|p−1.

Since U is arbitrary, this completes Step 3. In view of (29), this proves
that when p > 1, u has a representative which is Hölder continuous of order
α = (p− 1)/(n+ p− 1).

When p = 1, the proof is essentially the same except that instead of using
Hölder’s inequality in (32), we simply write∣∣∣∣∣ 1

αn−1εn−1

∫
Bn−1(x,ε)

dy

∫ b

a
Dtu(t, y) dt

∣∣∣∣∣ ≤ 1
αn−1εn−1

|Dtu|L1((a,b)×Rn−1).

Then (34) remains true with p = 1 if one replaces |Dtu|p/(n+p−1)
Lp |a −

b|(p−1)/(n+p−1) by |Dtu|1/nL1((a,b)×(−1,1)n−1)
. For a map u ∈ L∞∩W 1,1((−1, 1)n)

such that Dxu ∈ L∞((−1, 1)n), we claim that u has a continuous representa-
tive satisfying (34). Indeed, the map u∗ηε defined at the end of Step 2 satis-
fies on Ωi, i ≥ 1, for any a, b ∈ (−1+1/i, 1−1/i), x ∈ (−1+1/i, 1−1/i)n−1,

|u ∗ ηε(a, x)− u ∗ ηε(b, x)|n ≤ C
(
|u ∗ ηε|L∞(Ωi) + |Dx(u ∗ ηε)|L∞(Ωi)

)n−1

|Dt(u ∗ ηε)|L1((a,b)×(−1+1/i,1−1/i)n−1)

≤ C(|u|L∞((−1,1)n) + |Dxu|L∞((−1,1)n))
n−1J|b−a|(u)

where Jδ(u) = sup
−1<a≤b<1
b−a<δ

∫
(a,b)×(−1,1)n−1

|Dtu|. Since limδ→0 Jδ(u) = 0, the

map (a, x) 7→ u ∗ ηε(a, x) is uniformly continuous in a and Lipschitz contin-
uous in x. Hence, it is uniformly continuous in (a, x). Moreover, its modulus
of continuity does not depend on ε. This implies that when ε → 0, u ∗ ηε
uniformly converges on Ωi to a representative of u which satisfies on Ωi

|u(a, x)− u(b, x)|n ≤ C(|u|L∞ + |Dxu|L∞((−1,1)n))
n−1J|b−a|(u).
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We now let i→∞. This completes the analogue of Step 2 when p = 1. The
analogue of Step 3 follows as in the case p > 1. This completes the proof of
Lemma 5.

�
We now prove Proposition 2 b) and c). Let u be the minimum of the

minima of I. We denote by Q the Lipschitz rank of φ.
Let P be a vector subspace in Rn of dimension 2. Then, for any θ ∈ R,

we denote by HP,θ : Rn → Rn the map which is the rotation of angle θ and
center 0 on P and the identity on the orthogonal of P.

We define v := u ◦HP,θ. Then v ∈ W 1,1(B(0, R) \ B(0, r)). An obvious
change of variables yields I(v) = I(u), which implies that v is the minimum
of the minima with respect to the boundary condition ψ = φ◦HP,θ . We now
apply Lemma 4 (see also Remark 2) to Ω1 = Ω2 = Ω = B(0, R) \ B(0, r),
u1 = u, φ1 = φ and u2 = v, φ2 = ψ with α0 = |φ − ψ|L∞(∂Ω). We get
u ≤ v + |φ− ψ|L∞(∂Ω) on Ω. Symmetrically, v ≤ u+ |φ− ψ|L∞(∂Ω). Hence,

|u− v|L∞(Ω) ≤ RQ|1− eiθ|. (37)

For a.e. ρ ∈ (r,R), a.e. x ∈ ∂B(0, ρ) is a Lebesgue point of u. Fix such a ρ
and 2 Lebesgue points x and y of ∂B(0, ρ). Consider the plane P which con-
tains 0, x and y. We denote by HP,θ the rotation of center 0 which maps x to
y. By (37), for a.e. z ∈ B(0, R) \B(0, r), |u(z)− u(HP,θ(z))| ≤ RQ|1− eiθ|.
This implies

|u(x)− u(y)| ≤ RQ|1− eiθ|.

Hence, u satisfies (29). When F is coercive of order p > 1, u belongs to
W 1,p(Ω). Thus, we may apply Lemma 5, which proves Proposition 2 b) and
c).

We now prove Proposition 2 a). Let u be a solution of (P) relative to
L∞(Ω). As above, we introduce HP,θ, ψ and v. We apply Lemma 3 with
H = HP,θ, φ1 = φ, φ2 = ψ, and α0 = |φ− ψ|L∞(∂Ω) to obtain

u ≤ u ◦HP,θ + q|1− eiθ|+ |φ− ψ|L∞(∂Ω)

for some q = q(n,Ω, χ/µ) (as usual, χ = χ(|u|L∞(Ω)) is given by (4) and µ

is given by (2)). This implies u ≤ u ◦HP,θ + C|1− eiθ| for some constant
C = C(n,Ω, χ/µ,Q). Since F is uniformly convex and G(x, u(x)) ∈ L∞(Ω),
the function u belongs to W 1,2(Ω) (recall that uniform convexity implies
coercivity of order 2). In view of Lemma 5, this completes the proof of
Proposition 2 a).

�

Remark 4 1) When φ is merely Hölder continuous, a proof similar to
the one above shows that u is Hölder continuous as well. However, we
have not been able to extend this result to more general open subsets of
Rn.
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2) As a consequence of the proof of Lemma 5, we observe that the Hölder
norm of u in Proposition 2 c) only depends on n, p, |φ|W 1,∞ and r, R
as well as |u|L∞ and |Du|Lp . In Proposition 2 a), the Hölder norm of
u also depends on χ/µ.

6 Proof of Theorem 3

We first consider the case when φ is continuous on Rn, f is superlinear and
Ω satisfies an exterior sphere condition.

Fix γ ∈ Γ. Then there exists r > 0 and x ∈ Rn such that

|x− γ| = r , B(x, r) ⊂ Rn \ Ω. (38)

Since Ω is bounded, there exists R > 0 such that B(x,R) ⊃ Ω. It then
follows that Ω ⊂ Λ where Λ := B(x,R) \B(x, r). Let ε > 0. Then we define
the function ψ as follows:

ψ(x) = φ(γ) + ε+Q|x− γ|,

where
Q := max

x∈Λ,x 6=γ

φ(x)− φ(γ)− ε

|x− γ|
.

Then ψ is a Lipschitz convex function, ψ ≥ φ on Λ and ψ(γ) = φ(γ) + ε.

We consider the problem (P0) of minimizing v 7→
∫

Λ
f(|Dv|) on v ∈

W 1,1
ψ (Λ). Since f(| · |) is convex and superlinear, one may consider the max-

imum of the minima v of (P0).
By Proposition 2 b), v is continuous on Λ. In particular, we have

lim
x∈Ω
x→γ

v(x) = ψ(γ) = φ(γ) + ε.

Since ψ is convex, we have v ≥ ψ (see [1, Lemma 2.6]). Since φ ≤ ψ on Λ,
we obtain by Lemma 4,

v ≥ u on Ω.

This implies
lim sup
x∈J
x→γ

u(x) ≤ lim
x∈J
x→γ

v(x) = φ(γ) + ε,

where J is the set of Lebesgue points of u in Ω. Since ε is arbitrary, this gives
lim supx∈J

x→γ
u(x) ≤ φ(γ). Symmetrically, we have lim inf x∈J

x→γ
u(x) ≥ φ(γ).

Whence limx∈J
x→γ

u(x) = φ(γ). In view of Remark 3, this proves that u is

continuous on Ω.
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When we assume further that f is coercive of order p > 1, φ is Lipschitz
continuous and Ω satisfies a uniform exterior sphere condition, we repeat the
above proof except that we define ψ in the following way

ψ(x) := φ(γ) +Q|x− γ|,

where Q is now the Lipschitz rank of φ. Then ψ is Lipschitz continuous,
convex and satisfies ψ ≥ φ on Rn, ψ(γ) = φ(γ). We observe that the radius
r in (38) can be chosen independently of γ. By Proposition 2 c), v is Hölder
continuous of order α = (p − 1)/(n + p − 1). Moreover, |v|L∞ and |Dv|Lp

are not larger than a constant which depends only on f, |ψ|W 1,∞(Λ) and R.
For |v|L∞ , it is implied by the maximum principle (see [15, Theorem 4.1]).
For |Dv|Lp , it is a consequence of the coercivity of f and the fact that ψ is
Lipschitz continuous and admissible for (P): for some a > 0, b ∈ R,∫

B(0,R)\B(0,r)
(a|Dv|p − b) ≤ I(v) ≤ I(ψ) ≤

∫
B(0,R)

f(|Dψ|∞).

By Remark 4 2), this implies that the Hölder norm of v is not greater than a
constant C which depends only on n, p, f, |φ|L∞(Ω), Q, r and R. In particular,
for any x ∈ Ω,

u(x) ≤ v(x) ≤ ψ(γ) + C|x− γ|α = φ(γ) + C|x− γ|α.

Symmetrically, we have u(x) ≥ φ(γ)+C|x−γ|α. By Proposition 1 (see (15)),
u is Hölder continuous of order α. This completes the proof of Theorem 3
2).

�

7 Proof of Theorem 2

To prove Theorem 2, it is enough to put together the tools of the proofs
of Theorem 1 and Theorem 3. More specifically, let u be a solution of (P)
relative to L∞(Ω). Fix γ ∈ Γ. As in the proof of Theorem 3, one may find
0 < r < R and x ∈ Rn such that Ω ⊂ Λ where Λ := B(x,R) \B(x, r).

We now introduce the same function ψ as in the proof of Theorem 1 (the
definition of ψ depends on the regularity properties of φ, see (19) and (20)).

We also define

g(x) :=
{
Gu(x, u(x)) if x ∈ Ω
0 otherwise.

Consider the following auxiliary problem (P0):

Minimize v 7→
∫

Λ
f(|Dv(x)|) + g(x)v(x) dx , v ∈W 1,1

ψ (Λ).
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In view of the uniform convexity of f, the direct method in the calculus
of variations gives a (unique) solution v ∈ W 1,1

ψ (Λ). Moreover, there exists
T0 = T0(|g|L∞/µ, |ψ|W 1,∞ , r, R) such that

|v|W 1,2(Λ) + |v|L∞(Λ) ≤ T0.

By Proposition 2 a), there exists C > 0 such that

|v(x)− ψ(γ)| ≤ C|x− γ|α x ∈ Λ. (39)

By Remark 4 2), the constant C depends only on n, |g|L∞/µ, |ψ|W 1,∞ , r and
R. As in the proof of Theorem 1, we have u ≤ v on Ω. The end of the proof
is now exactly the same as the proof of Theorem 1.

�
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