
Local Lipschitz continuity of solutions to a problem

in the calculus of variations

Pierre Bousquet∗ and Francis Clarke†

December 2006

Dedicated to Arrigo Cellina
on the occasion of his 65th birthday

Abstract

This article studies the problem of minimizing
∫
Ω
F (Du) +G(x, u)

over the functions u ∈ W 1,1(Ω) that assume given boundary values φ
on ∂Ω. The function F and the domain Ω are assumed convex. In con-
sidering the same problem with G = 0, and in the spirit of the classical
Hilbert-Haar theory, Clarke has introduced a new type of hypothesis
on the boundary function φ: the lower (or upper) bounded slope condi-
tion. This condition, which is less restrictive than the classical bounded
slope condition of Hartman, Niremberg and Stampacchia, is satisfied if
φ is the restriction to ∂Ω of a convex (or concave) function. We show
that for a class of problems in which G(x, u) is locally Lipschitz (but
not necessarily convex) in u, the lower bounded slope condition implies
the local Lipschitz regularity of solutions.

1 Introduction.

We study the regularity of solutions to the following problem (P ) in
the multiple integral calculus of variations:

min
u

∫
Ω

{F (Du(x)) +G(x, u(x))} dx subject to u ∈W 1,1(Ω), tru = φ,

where Ω is a domain in Rn, u is scalar-valued, and tru signifies the
trace of u on Γ := ∂Ω.
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The aim is to deduce local Lipschitz regularity from properties of
the boundary function φ. This is in the general spirit of the well-
known Hilbert-Haar theory (see for example [5][10]), which requires
that φ satisfy the bounded slope condition (BSC). The BSC of rank K
is the assumption that, given any point γ ∈ Γ, there exist two affine
functions

y 7→ 〈ζ−γ , y − γ〉+ φ(γ), y 7→ 〈ζ+
γ , y − γ〉+ φ(γ)

agreeing with φ at γ, whose slopes satisfy |ζ−γ | ≤ K, |ζ+
γ | ≤ K, and

such that

〈ζ−γ , γ′ − γ〉+ φ(γ) ≤ φ(γ′) ≤ 〈ζ+
γ , γ

′ − γ〉+ φ(γ) ∀γ′ ∈ Γ.

The classical Hilbert-Haar theorem asserts that if F is convex, G =
0, and φ satisfies the BSC, then there exists a (globally) Lipschitz
minimizer for (P ). The first proof of this statement is due to Miranda
[9], although there are several special cases that are antecedents to
this. The case in which G is different from 0 has been treated by
Stampacchia [11] (and implicitly in [7]) under stronger smoothness
assumptions on the data than used here. As regards other and more
recent uses of the BSC, see notably Cellina [2] and other references
cited therein.

The BSC is a restrictive requirement on flat parts of Γ, since it
forces φ to be affine. Moreover, if Ω is smooth, then it forces φ to
be smooth as well (see Hartman [6] for precise statements). Recently,
Clarke [3] has introduced a new hypothesis on φ, the lower bounded
slope condition (LBSC) of rank K : given any point γ on the boundary,
there exists an affine function

y 7→ 〈ζγ , y − γ〉+ φ(γ)

with |ζγ | ≤ K such that

〈ζγ , γ′ − γ〉+ φ(γ) ≤ φ(γ′) ∀γ′ ∈ Γ.

This requirement, which can be viewed as a one-sided BSC, enlarges
considerably the class of boundary functions which it allows (compared
to the BSC). The property has been studied by Bousquet in [1], where
it is shown that φ satisfies the LBSC if and only if it is the restriction
to Γ of a convex function. When Ω is uniformly convex, φ satisfies the
LBSC if and only if it is the restriction to Γ of a semiconvex function.

It turns out that the LBSC has significant implications for the
regularity of the solution u, although it implies less than the full, two-
sided BSC. In fact, it is shown in [3] that in the case where G = 0,
the one-sided BSC gives the crucial regularity property that one seeks:
u is locally Lipschitz in Ω. This allows one to assert that u is a weak
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solution of the Euler equation, in the absence of the usual upper growth
conditions on F . Furthermore, the local Lipschitz property allows one
to invoke De Giorgi’s regularity theory (when the data are sufficiently
smooth) to obtain the continuous differentiability of the solution.

The goal of this article is to prove local Lipschitz regularity of
the solution for a class of problems with G different from 0, under
weak regularity hypotheses on the data of the problem, and when the
LBSC is satisfied (rather than the BSC). The next section describes
the hypotheses and gives a self-contained proof of the main theorem of
the article. It is most closely related to the work of Stampacchia, but
the method of proof differs in several important respects. A variant
of the main theorem is developed in Section 3, and the final section
discusses the issue of the continuity of the solution at the boundary.

2 The main result.

We now specify the hypotheses on the data of the problem (P ). The
first one, in particular, justifies the use of trace.

(HΩ) Ω is an open bounded convex set.

We require that F be uniformly elliptic, and that G be locally Lip-
schitz in u. More precisely:

(HF ) For some µ > 0, F satisfies, for all θ ∈ (0, 1) and p, q ∈ Rn:

θF (p) + (1− θ)F (q) ≥ F (θp+ (1− θ)q) + (µ/2)θ(1− θ)|p− q|2.

We remark that when F is of class C2, (HF ) holds if and only if, for
every v ∈ Rn, we have〈

z,∇2F (v)z
〉
≥ µ|z|2 ∀ z ∈ Rn.

Under (HF ), it is easy to see that
∫
Ω
F (Dw) dx is well-defined (possibly

as +∞) for any w ∈W 1,1(Ω).

(HG) G(x, u) is measurable in x and differentiable in u, and for every
bounded interval U in R there is a constant L such that for almost all
x ∈ Ω,

|G(x, u)−G(x, u′)| ≤ L|u− u′| ∀u, u′ ∈ U.

We also postulate as part of (HG) that for some bounded function b,
the integral

∫
Ω
G(x, b(x)) dx is well-defined and finite. It follows that

the same is true for all bounded measurable functions w.
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In the presence of (HΩ), (HF ), and (HG), it follows that

I(w) :=
∫

Ω

{F (Dw(x)) +G(x,w(x))} dx

is well-defined for all w ∈ W 1,1(Ω) for which w is bounded. We say
that u solves (P ) relative to L∞(Ω) if u is itself bounded, and if we
have I(u) ≤ I(w) for all bounded w that are admissible for (P ).

The theorem to be proved is the following.

Theorem 2.1
Under the hypotheses (HΩ), (HF ), and (HG), and when φ satisfies
the Lower Bounded Slope Condition, any solution u of (P ) relative to
L∞(Ω) is locally Lipschitz in Ω.

In the context of the theorem, even when G = 0 and F (v) =
|v|2, a bounded solution u of (P ) may fail to be globally Lipschitz;
an example of this type is given in [1][3]. Let us also point out that
the theorem has an alternate version in which the LBSC is replaced by
the upper BSC; the conclusion is the same. Finally, we remark that
Stampacchia [11] has described structural assumptions on G which
guarantee a priori the existence and boundedness of solutions of (P );
these will be described in the next section.

2.1 The lower barrier condition

The proof of the main result uses in part the well-known barrier tech-
nique. Our one-sided version of this is the following.

Theorem 2.2
Under hypotheses (HΩ), (HF ), and (HG), let u be a bounded solu-
tion of problem (P ) as described above, where φ satisfies the Lower
Bounded Slope Condition of rank K. Then there exists K̄ > 0 with
the following property: for any γ ∈ Γ there exists a function w which
is Lipschitz of rank K̄, which agrees with φ at γ, and which satisfies
w ≤ u a.e. in Ω.

Proof We may suppose that φ is a globally defined convex function
of Lipschitz rank K. Thus there is an element ζ with |ζ| ≤ K in the
subdifferential of φ at γ:

φ(x)− φ(γ) ≥ 〈ζ, x− γ〉 ∀x ∈ Rn.

By (HG) there is a Lipschitz constant L valid for G(x, ·) over the
interval [

−‖u‖L∞(Ω), ‖φ‖L∞(Γ) +Kdiam Ω
]
,
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for x ∈ Ω a.e. Fix any T > (L + 1) exp(diam Ω)/µ, where µ is given
by (HF ).

The following construction is a refinement of that proposed by Hart-
mann and Stampacchia [7] (Lemma 10.1). Let ν be a unit outward
normal vector to Ω at γ, and define

w(x) := φ(γ) + 〈ζ, x− γ〉 − T{1− exp(〈x− γ, ν〉)}.

We proceed to prove that w has the required properties. Clearly w
agrees with φ at γ, and is Lipschitz of rank

K̄ := K + T exp(diam Ω).

We need only show that the set

S := {x ∈ Ω : w(x) > u(x)}

has measure 0.
The function M(x) := max[u(x), w(x)] belongs to W 1,1(Ω) (see for

example [4] or [8]), and we have:

DM(x) = Dw(x), x ∈ S a.e., DM(x) = Du(x), x ∈ Ω\S a.e.

It follows from the subgradient inequality for ζ that M ∈ φ+W 1,1
0 (Ω)

(in deriving this, we also use the fact that 〈x− γ, ν〉 ≤ 0 for x ∈ Ω).
By the optimality of u (relative to M) we deduce∫

S

{F (Du(x)) +G(x, u(x))} dx ≤
∫

S

{F (Dw(x)) +G(x,w(x))} dx.

The Lipschitz condition satisfied by G now leads to∫
S

{F (Du(x))− F (Dw(x))} dx ≤ L

∫
S

{w(x)− u(x)} dx (1)

In deriving the next estimate (which concludes the proof), let us make
the temporary assumption that F is smooth (C2 or better). Then, by
straightforward calculation, the function ψ(x) := ∇F (Dw(x)) satisfies

divψ(x) = T exp(〈x− γ, ν〉)
〈
ν,∇2F (Dw(x))ν

〉
≥ L+ 1, (2)

in light of (HF ), and because of how T was chosen. We proceed to
deduce from (1) the following:

L

∫
S

{w(x)− u(x)} dx ≥
∫

S

{F (Du(x))− F (Dw(x))} dx

≥
∫

S

〈ψ(x), Du(x)−Dw(x)〉 dx



2 THE MAIN RESULT. 6

(by the subdifferential inequality)

=
∫

Ω

〈ψ(x), Dmin[u,w](x)−Dw(x)〉 dx

=
∫

Ω

(divψ(x))(w(x)−min[u,w](x)) dx

(integration by parts, noting that min[u,w] = w on Γ)

≥ (L+ 1)
∫

Ω

{w(x)−min[u,w](x)} dx

(in view of (2))

≥ (L+ 1)
∫

S

{w(x)− u(x)} dx.

This shows that S is of measure 0, since w − u > 0 in S.
In the general case in which F is not smooth, we consider a non-

decreasing sequence {Fk}k∈N of functions in C∞(Rn) converging to F
uniformly on bounded sets, and such that the ellipticity condition in
(HF ) holds for Fk when p, q are restricted to a ball B(0,K + 1) con-
taining all the values of Dw. Such a sequence exists by a mollification-
truncation argument; see Morrey [10], Lemma 4.2.1. Then, arguing as
above, we derive, for any k ≥ 1,∫

S

{Fk(Du(x))− Fk(Dw(x))} dx ≥ (L+ 1)
∫

S

{w(x)− u(x)} dx.

The result now follows from the Monotone Convergence Theorem. 2

2.2 Proof of Theorem 2.1.

Let λ and q be parameters satisfying

λ ∈ [1/2, 1), q > q̄ := K̄ diam Ω + ||φ||L∞(Γ),

and fix any point z ∈ Γ. We denote

Ωλ := λ(Ω− z) + z.

Note that Ωλ is a subset of Ω, since the latter is convex. We proceed
to define the following function on Ωλ:

uλ(x) := λu ((x− z)/λ+ z)− q(1− λ).

Then uλ belongs to W 1,1
0 (Ωλ) + φλ, where

φλ(y) := λφ((y − z)/λ+ z)− q(1− λ).

For every x ∈ Rn, we will denote (x− z)/λ+ z by xλ.
We are now going to compare uλ and u on Γλ := ∂Ωλ; this com-

parison via dilation was introduced in [3].
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Lemma 1. We have uλ ≤ u on Γλ.

The meaning of this inequality is that (uλ − u)+ := max(0, uλ − u)
belongs to W 1,1

0 (Ωλ), where here u signifies of course the restriction of
u to Ωλ. To prove the Lemma, recall first that in the preceding section
we proved the existence, for any γ ∈ Γ, of a K̄-Lipschitz function wγ

such that wγ(γ) = φ(γ) and wγ ≤ u a.e. in Ω (which implies wγ ≤ φ
on Γ).

Introduce l(y) := supγ∈Γ wγ(y). Then l is a K̄-Lipschitz function
which coincides with φ on Γ and which has l ≤ u a.e. on Ω. Thus
u− l ∈ W 1,1

0 (Ω). There exists therefore a sequence vm ∈ Lip0(Ω) (the
class of Lipschitz functions vanishing at the boundary) converging to
u−l in W 1,1(Ω) and almost everywhere in Ω. We can suppose moreover
vm ≥ 0, by replacing vm by v+

m := max(vm, 0). We have used here the
fact that if a sequence of functions km converges almost everywhere
and in W 1,1(Ω) to k, then k+

m converges to k+ in W 1,1(Ω).
We define the functions

um(x) := vm(x) + l(x) , um,λ(x) := λum((x− z)/λ+ z)− q(1− λ).

(Note that um is defined on Ω, and um,λ on Ωλ.) These regularizations
of u and uλ will allow us to complete the proof of the Lemma.

We have um ∈ C0(Ω̄), l ≤ um on Ω and um = φ = l on Γ. We claim
that um,λ(γ) ≤ um(γ) for every m ≥ 0, γ ∈ Γλ. Suppose for a moment
this claim were true. Then we could assert that

(um,λ − um)+ ∈W 1,1
0 (Ωλ).

Now, um,λ tends to uλ in W 1,1(Ωλ) and almost everywhere, as does
um to u. It would follow therefore that (uλ − u)+ ∈ W 1,1

0 (Ωλ), which
is what we wish to prove.

So it suffices to prove the claim. Fix some γ ∈ Γλ. Then,

um,λ(γ)− um(γ) = λum(γλ)− um(γ)− q(1− λ)
≤ λφ(γλ)− l(γ)− q(1− λ)
= λl(γλ)− l(γ)− q(1− λ)
≤ (l(γλ)− l(γ)) + (1− λ)(||l||L∞(Γ) − q)
≤ K̄|γ − γλ|+ (1− λ)(||l||L∞(Γ) − q)
≤ (1− λ)(K̄ diam Ω + ||l||L∞(Γ) − q)
≤ 0,

since γλ ∈ Γ, ||l||L∞(Γ) = ‖φ‖L∞(Γ), and because q has been chosen to
be greater than q̄. This proves the claim and completes the proof of
Lemma 1.
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The next step of the proof is to show that the set

A := {y ∈ Ωλ : uλ(y) > u(y)}

has measure zero. Let w(x) := min(u, uλ), which belongs toW 1,1
0 (Ωλ)+

φλ in light of Lemma 1, and define

w̃λ(x) :=
1
λ
w(λ(x− z) + z) + q(λ−1 − 1),

an element of W 1,1
0 (Ω)+φ. Fix any θ ∈ (0, 1). Then v := θw̃λ+(1−θ)u

lies in W 1,1
0 (Ω) + φ, so that I(u) ≤ I(v), which yields after an evident

change of variables∫
Ωλ

{
F (Duλ) +G(

y − z

λ
+ z,

uλ + q(1− λ)
λ

)
}
dy ≤∫

Ωλ

{
F (θDw + (1− θ)Duλ) +G(

y − z

λ
+ z, θ

w + q(1− λ)
λ

+

(1− θ)
uλ + q(1− λ)

λ
)
}
dy.

We also note that the right side is finite, since
∫
Ω
F (Du) dx is finite,

and in light of the convexity of F . This implies∫
A

{
F (Duλ) +G(

y − z

λ
+ z,

uλ + q(1− λ)
λ

)
}
dy ≤∫

A

{
F (θDw + (1− θ)Duλ) +G(

y − z

λ
+ z, θ

w + q(1− λ)
λ

+

(1− θ)
uλ + q(1− λ)

λ
)
}
dy,

whence (since w = u on A)∫
A

{F (Duλ)− F (θDu+ (1− θ)Duλ)} dy ≤∫
A

{
G(
y − z

λ
+ z, θ

u+ q(1− λ)
λ

+ (1− θ)
uλ + q(1− λ)

λ
)

−G(
y − z

λ
+ z,

uλ + q(1− λ)
λ

)
}
dy. (3)

Now let W (x) := max(u(x), uλ(x)) for x ∈ Ωλ, and W (x) := u(x)
for x ∈ Ω\Ωλ. Then W ∈ W 1,1

0 (Ω) + φ since uλ ≤ u on Γλ. With
v := θW + (1− θ)u, we have I(u) ≤ I(v), which yields∫

A

{(F (Du) +G(y, u))} dy ≤∫
A

{(F (θDuλ + (1− θ)Du) +G(y, θuλ + (1− θ)u))} dy,
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so that∫
A

{(F (Du)− F (θDuλ + (1− θ)Du))} dy ≤∫
A

{(G(y, θuλ + (1− θ)u)−G(y, u))} dy. (4)

Summing (3) and (4), we get∫
A

{
(1− θ)F (Duλ) + θF (Du)− F (θDu+ (1− θ)Duλ)

+ θF (Duλ) + (1− θ)F (Du)− F (θDuλ + (1− θ)Du)
}
dy

≤
∫

A

{
G(
y − z

λ
+ z, θ

u+ q(1− λ)
λ

+ (1− θ)
uλ + q(1− λ)

λ
)

−G(
y − z

λ
+ z,

uλ + q(1− λ)
λ

)

+G(y, θuλ + (1− θ)u)−G(y, u)
}
dy. (5)

Thanks to (HF ) we see that the left side of the last inequality is no
less than

µθ(1− θ)
∫

A

|Duλ −Du|2dy.

Substituting into (5), dividing by θ, and letting θ go to 0, we find

µ

∫
A

|Duλ −Du|2 dy ≤
∫

A

(
1
λ
g(
y − z

λ
+ z)− g(y))(uλ − u) dy,

where we have denoted by g(y) the function −Gu(y, u(y)), which be-
longs to L∞(Ω). Write for any y ∈ Ωλ :

1
λ
g(
y − z

λ
+ z)− g(y) = (

1
λ
− 1
λn

)g(
y − z

λ
+ z) + h(y)

where we define h(y) := 1/λng((y − z)/λ + z) − g(y) for y ∈ Ωλ and
h(y) = 0 for y ∈ Rn\Ωλ. Then

µ

∫
A

|Duλ −Du|2dy ≤
∫

A

[(
1
λn

− 1
λ

)g0 + h(y)](uλ − u) dy, (6)

where g0 := ||g||∞.

Lemma 2. There exists f = (f1, . . . , fn) ∈ L∞(Rn)n such that
for each j ∈ {1, . . . , n}, for almost every (y1, . . . , yj−1, yj+1, . . . , yn) ∈
Rn−1, the function

yj 7→ fj(y1, . . . , yj−1, yj , yj+1, . . . , yn)
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is absolutely continuous on R with

∂fj

∂yj
∈ L∞(Rn)

and

div f :=
n∑

j=1

∂fj

∂yj
= h a.e. in Ωλ (7)

and such that ||f ||L∞(Ω) ≤ C0(1 − λ) for some constant C0 which
depends only on g0 and Ω (λ being restricted to [1/2, 1)).

Proof of Lemma 2. We extend g by setting it equal to 0 outside
Ω. There exists c = (c1, . . . , cn) ∈ Rn such that

Ω ⊂ {(x1, . . . , xn) ∈ Rn : xj ≥ cj ∀j = 1, . . . , n}.

Define f1(y1, . . . , yn) to be∫ y1

c1

[
1
λ
g(
y′1 − z1
λ

+ z1, y2, . . . , yn)− g(y′1, y2, . . . , yn)
]
dy′1

and similarly set fj(y1, . . . , yn) equal to∫ yj

cj

[ 1
λj
g(
y1 − z1
λ

+ z1, . . . ,
y′j − zj

λ
+ zj , yj+1, . . . , yn)

]
dy′j−∫ yj

cj

[ 1
λj−1

g(
y1 − z1
λ

+z1, . . . ,
yj−1 − zj−1

λ
+zj−1, y

′
j , yj+1, . . . , yn)

]
dy′j

This implies
∂fj

∂yj
∈ L∞(Rn)

and that f satisfies (7). Upon making the change of variables y′′j =
(y′j − zj)/λ+ zj in the first integral defining fj , we find readily

|fj(y1, ..., yn)| ≤ g0
1

λj−1
{|yj − zj

λ
+ zj − yj |+ |cj − zj

λ
+ zj − cj |}

= g0
1− λ

λj
{|yj − zj |+ |cj − zj |}

≤ g0
1− λ

λj
{diam Ω + |c|+ max

z∈Ω
|z|},

if the yi lie in Ω. This completes the proof of the Lemma.
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Thanks to Lemma 2, we can write (6) as

µ

∫
A

|Duλ −Du|2dy ≤∫
A

{
〈f,Du−Duλ〉+ g0(

1
λn

− 1
λ

)(uλ − u)
}
dy. (8)

We have used the divergence theorem for this, based on the fact that∫
A

(uλ − u) div f dy =
∫

Ωλ

(uλ − u)+ div f dy

and since (uλ − u)+ ∈ W 1,1
0 (Ωλ). Now Poincaré’s inequality, applied

to (uλ−u)+, yields the existence of a constant CP which depends only
on Ω such that ∫

A

(uλ − u) dy ≤ CP

∫
A

|Duλ −Du| dy.

Then (8) implies

µ

∫
A

|Duλ−Du|2dy ≤
[
||f ||L∞(Ω) +g0CP (

1
λn

− 1
λ

)
] ∫

A

|Duλ−Du| dy.

Applying the Cauchy-Schwartz inequality on the right side, we get

µ‖Duλ −Du‖L2(A) ≤
[
||f ||L∞(Ω) + g0CP (

1
λn

− 1
λ

)
]
|A|1/2. (9)

Let 1∗ be the Sobolev conjugate of 1 defined by 1/1∗ = 1 − 1/n. We
now observe that

‖uλ − u‖L1(A) ≤ ‖uλ − u‖L1∗ (A)|A|1−1/1∗

(by Hölder’s inequality)

≤ S1‖Duλ −Du‖L1(A)|A|1/n

(for some S1 depending only upon α, n and Ω, by the Gagliardo-
Nirenberg-Sobolev Lemma, with w = (uλ − u)+)

≤ S1‖Duλ −Du‖L2(A)|A|1/2+1/n,

by Hölder’s inequality. Then, using this in (9), we get

‖uλ − u‖L1(A) ≤ C
[
||f ||L∞(Ω) + (

1
λn

− 1
λ

)
]
|A|γ .

with γ := 1+1/n > 1 and for some constant C which depends only on
Ω, g0, and µ. By Lemma 2 we have ||f ||L∞(Ω) ≤ C0(1− λ). Moreover,
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(1/λn − 1/λ) is bounded above by C1(1− λ) (where C1 depends only
on n; recall that λ ≥ 1/2). Thus

‖uλ − u‖L1(A) ≤ C2(1− λ)|A|γ .

with C2 := C(C0 + C1).
Now let us denote A by A(q) to display its dependence on q. Put

ρ(q) := |A(q)|. Then ρ is a nonnegative, nonincreasing function such
that ρ(q) → 0 when q → +∞. Moreover, we have for any q > q̄, thanks
to Fubini’s theorem,∫ +∞

q

ρ(t) dt =
1

1− λ

∫
A(q)

|uλ − u| dy ≤ C2ρ(q)γ . (10)

(The proof also uses the observation that, setting uq
λ(x) := λu((x −

z)/λ+ z)− q(1− λ), the equality uq+s
λ = uq

λ − s(1− λ) holds.)
We now require the following result (cf. Hartman and Stampacchia

[7]):

Lemma 3 Let ρ be a nonnegative, nonincreasing function on [0,+∞)
such that ρ(t) → 0 as t→ +∞ and∫ +∞

q

ρ(t) dt ≤ cρ(q)γ , q > q̄,

where c > 0, γ > 1 are constants. Then ρ(t) = 0 for

t > cγρ(q̄)γ−1/(γ − 1) + q̄.

To see this, note that the function H(q) :=
∫ +∞

q
ρ(t) dt is absolutely

continuous and satisfies

H ′(q) = −ρ(q) ≤ −[H(q)/c]1/γ .

Then
G(q) := γH(γ−1)/γ(q)/(γ − 1) + q/c1/γ

has G′(q) ≤ 0 for q > q̄, as long as H > 0. For such q we may therefore
write

0 ≤ γH1−1/γ(q)/(γ − 1) ≤ γH1−1/γ(q̄)/(γ − 1)− (q − q̄)/c1/γ .

Consequently, H(q) = 0 for every

q ≥ q0 := γc1/γH1−1/γ(q̄)/(γ − 1) + q̄,
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in which case ρ(t) = 0 for t > q0. The Lemma follows from the fact
that H(q̄) ≤ cρ(q̄)γ .

Applying this Lemma to (10), we deduce that for any choice of q0
satisfying

q0 > C2|Ω|γ−1γ/(γ − 1) + q̄,

we have |A(q)| = 0 if q ≥ q0. We may summarize the current state
of the proof as follows: for any choice of z ∈ Γ, we have, almost
everywhere on Ωλ := λ(Ω− z) + z, the inequality

uλ(x) := λu((x− z)/λ+ z)− q0(1− λ) ≤ u(x).

Note that q0 does not depend on λ, so that this assertion is true for
any λ ∈ [1/2, 1).

The final step in the proof is to deduce from this that u is locally
Lipschitz in Ω. Let x0 ∈ Ω, and let x, y ∈ B(x0, dΓ(x0)/8) be two
Lebesgue points for u; thus x, for example, satisfies

lim
ε→0

1
|B(x, ε)|

∫
B(x,ε)

u(ω) dω = u(x).

Let z := πΓ(y|x) be the unique point of Γ of the form y+ t(x− y) with
t ≥ 0. There exists λ ∈ [1/2, 1) such that y = (x − z)/λ + z. Then
x ∈ Ωλ. Let ε > 0 such that B(x, ε) ⊂ Ωλ. We have proved that for
almost every ω ∈ B(x, ε), we have

λu((ω − z)/λ+ z) ≤ u(ω) + q0(1− λ).

Integrating this relation over B(x, ε) and dividing by |B(x, ε)|, we get

λ

|B(x, ε)|

∫
B(x,ε)

u((ω−z)/λ+z) dω ≤ 1
|B(x, ε)|

∫
B(x,ε)

u(ω) dω+q0(1−λ)

which, by a change of variables, is equivalent to

λ

|B(y, ε
λ )|

∫
B(y, ε

λ )

u(ω) dω ≤ 1
|B(x, ε)|

∫
B(x,ε)

u(ω) dω + q0(1− λ).

When ε→ 0, we get λu(y) ≤ u(x) + q0(1− λ), so that

u(y) ≤ u(x) +Q
|x− y|

|y − πΓ(y|x)|
, (11)

with Q := q0 + ||u||L∞(Ω).
This inequality holds for almost all x, y ∈ B(x0, dΓ(x0)/8), since

Lebesgue points for u constitute a set of full measure. It follows that
u admits a locally Lipschitz representative for which (11) holds every-
where in Ω, and the theorem is proved.
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Corollary. The solution u satisfies

|Du(x)| ≤ Q

dΓ(x)
, x ∈ Ω a.e., (12)

where Q depends on ‖u‖L∞(Ω) and the data of the problem (P ).

3 A variant of the theorem.

The hypothesis (HG) used in the proof of Theorem 2.1 included the
differentiability of G with respect to u. A natural approach to remov-
ing that condition is to approximate G by a smooth function Gi via
mollification, apply the theorem in the differentiable case to the solu-
tion ui of the perturbed problem (Pi), and then to pass to the limit.
However, this line of argument requires an existence theorem for the
perturbed problem, and one must also verify that the resulting Lip-
schitz condition for its solution ui depends in a suitably stable way
upon the data.

As regards existence, the required elements are provided for the
most part in the results of Stampacchia [11], which can be adapted
for the purpose described above. Following [11] (but without assuming
differentiability) we introduce the hypothesis

(HG)′ G is measurable and we have

G(x, v) ≥ −q|v|2 −Q(x)|v|δ −R(x),

where R ∈ L1(Ω), δ ∈ (0, 2), Q ∈ Lt(Ω), with 1/t = 1− δ/2 + δ/n and
q < Λµ/2, where

Λ := inf
u∈W 1,2

0 (Ω)

∫
Ω
|Du|2dx∫

Ω
|u|2dx

.

Further, G is locally Lipschitz in u in the following sense: there exists
M > 0 such that for any u, u′ ∈ R and almost all x ∈ Ω, one has

|G(x, u)−G(x, u′)| ≤M |u− u′|(1 + |u|β + |u′|β),

with 0 ≤ β < 2∗ − 1, where 1/2∗ = 1/2 − 1/n if n > 2, and 2∗ is any
number greater than 2 if n = 2. Finally, we assume there is a function
ū ∈W 1,2(Ω) admissible for (P ) such that I(ū) < +∞.

We say that u solves (P ) relative to W 1,2(Ω) if u is itself in that
class, and if we have I(u) ≤ I(w) for all w ∈ φ+W 1,2

0 (Ω).

Theorem 3.1
Under hypotheses (HΩ), (HF ), and (HG)′, there exists a solution to
problem (P ) relative to W 1,2(Ω). Any such solution u is bounded, and
is a solution of (P ) relative to L∞(Ω); further, if φ satisfies the Lower
Bounded Slope Condition, then u is locally Lipschitz in Ω.
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The fact that a solution u0 exists is provided by Theorem 8.1 in
[11]. As indicated above, the next step in the proof is to approximate
G by a smooth function Gi; a term |u − u0(x)|2 is added to assure
convergence of the solution ui of the perturbed problem to u0. The
existence theorem in [11] must be detailed more completely in order
to observe the stability of the estimates with respect to the type of
perturbations present (in particular, the provenance of the bound on
‖ui‖L∞(Ω) must be carefully traced). Then Theorem 2.1 is applied to
deduce the Lipschitz condition (12), which carries over in the limit to
u0. We omit the essentially routine details of this proof.

4 Continuity at the boundary.

The proof of Theorem 2.1 provided a Lipschitz constant for the solu-
tion u (see (12)) that goes to infinity at the boundary. We know by
example that in general u fails to be globally Lipschitz, so this must
be expected. But there remains the question of whether u is continu-
ous at the boundary. Such a continuity conclusion cannot result from
(12) alone, but it turns out that the directional nature of the Lipschitz
condition (11), together with the barrier provided by Theorem 2.2,
provides the extra information needed to obtain boundary continuity
in a number of special cases. The arguments of [3] go through with no
change, so we content ourselves here with recording the results. Note
that the issue of continuity at the boundary does not arise in the clas-
sical setting with BSC, since then the solution is globally Lipschitz on
Ω.

The theorems below introduce the hypothesis that u belongs to
W 1,p(Ω). Under the hypotheses of either Theorem 2.1 or 3.1, this is
easily seen to hold whenever F satisfies, for certain positive constants
σ and N ,

F (v) ≥ σ|v|p −N ∀ v ∈ Rn.

Our hypothesis (HF ) already guarantees that this holds for p = 2.

Theorem 4.1
In addition to the hypotheses of either Theorem 2.1 or 3.1, assume that
Γ is a polyhedron. Then any solution u of (P ) is Hölder continuous
on Ω of order 1/(n+ 2). If moreover u ∈ W 1,p(Ω) with p > 2, then u
satisfies on Ω a Hölder condition of order

a :=
p− 1

n+ 2p− 2
.
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Theorem 4.2
In addition to the hypotheses of either Theorem 2.1 or 3.1, assume
that Γ is C1,1 and that u is a solution of (P ) lying in W 1,p(Ω), with
p > (n+ 1)/2. Then u satisfies on Ω a Hölder condition of order

b :=
2p− n− 1
4p+ n− 3

.

Under merely the hypotheses of Theorem 2.1 or 3.1, it is an open
question whether a solution u of (P ) must be continuous at the bound-
ary.
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