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Abstract

We consider a nonlinear elliptic equation of the form div [a(∇u)] +
F [u] = 0 on a domain Ω, subject to a Dirichlet boundary condition
tru = φ. We do not assume that the higher order term a satisfies
growth conditions from above. We prove the existence of continuous
solutions either when Ω is convex and φ satisfies a one-sided bounded
slope condition, or when a is radial: a(ξ) = l(|ξ|)

|ξ| ξ for some increasing
l : R+ → R+.

1 Introduction

In this article, we consider the following nonlinear elliptic equation:{
div [a(∇u)] + F [u] = 0 on Ω,
u = φ on ∂Ω.

(1)

Here, Ω is a bounded open Lipschitz set in Rn (n ≥ 2) and φ : ∂Ω → R
is Lipschitz continuous. The vector field a : Rn → Rn is continuous and
elliptic:

〈a(ξ)− a(ξ′), ξ − ξ′〉 ≥ 0 ∀ ξ, ξ′ ∈ Rn. (2)

For x ∈ Ω and u ∈ C0(Ω), F [u](x) is a non linear functional of u. This
term can be nonlocal. For instance, the following variational problem is
considered in [10]:

Minimize

{∫
Ω
L(∇u(x)) dx−

(∫
Ω
h(x, u(x)) dx

)β
}
.

The Euler equation can be written as in (1) with a(ξ) = ∇L(ξ) and

F [u](x) = β

(∫
Ω
h(x, u(x)) dx

)β−1

hu(x, u(x)).
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A solution of (1) is a function u ∈ W 1,1(Ω) such that a(∇u) ∈ L1
loc(Ω),

F [u] ∈ L1
loc(Ω), tru|∂Ω = φ and

(E)
∫

Ω

(
〈a(∇u(x)),∇η(x)〉 − F [u](x)η(x)

)
dx = 0 , ∀ η ∈ C∞c (Ω).

A natural approach to solve (1) is to consider it as a quasilinear elliptic
equation to which Schauder’s theory applies (see [8, 11]). One then obtains
a classical solution u. This requires however that a belong to C1,α(Ω) and
satisfies some structure conditions that we do not assume here.

Consider now the case when a satisfies the following growth assumptions:
there exists p > 1 and α1, α2 and β1, β2 in (0,∞) such that

〈a(ξ), ξ〉 ≥ α1|ξ|p − β1 ∀ξ ∈ Rn, (3)

|a(ξ)| ≤ α2|ξ|p−1 + β2 ∀ξ ∈ Rn. (4)

Then, under suitable conditions on F [u], there exists a solution to (E)
in W 1,p(Ω). This is the consequence of a theory initiated by Visik and then
developped by many authors, notably Minty, Browder, Leray, Lions, and
Morrey (see [12] and the references therein). Once the existence of a W 1,p

solution u is established, the question of the regularity of u arises. Is the
solution C1(Ω) or even C2(Ω), so that equation (1) is satisfied in a classical
sense ? Is the solution continuous up to the boundary of Ω, so that the trace
is a ‘true’ restriction to ∂Ω ?

Another way to prove the existence of classical solutions of (E) has been
considered by Hartman and Stampacchia. In [10], they proved the existence
of regular solutions to (E) without assuming any growth assumption from
above on a. Here, ‘regular’ means Lipschitz continuous. This is the key
regularity property from which we may deduce further regularity when the
coefficients of the equation are smooth (see [10], section 14).

We proceed to detail the strategy of Hartman and Stampacchia. We first
introduce for K > 0 the set Lipφ(Ω,K) of those functions u : Ω → R which
are Lipschitz continuous on Ω, their Lipschitz rank being not larger than K.
This set is not empty except when K is lower than the Lipschitz rank Kφ

of φ. We also denote by Lipφ(Ω) the set of Lipschitz continuous functions
on Ω. The set C0(Ω) is endowed with the L∞ norm. For K ≥ Kφ, we say
that uK ∈ Lipφ(Ω,K) is a K quasi solution of (E) if∫

Ω
〈a(∇uK),∇(v − uK)〉 − F [uK ](v − uK) ≥ 0 , ∀v ∈ Lipφ(Ω,K). (5)

When a satisfies (2), there exists a K quasi solution uK for each K ≥ Kφ

([10] Theorem 1.1). Under a stronger ellipticity condition on a, Hartman
and Stampacchia prove that there exists C > 0 such that for any K ≥ Kφ,

||uK ||L∞(Ω) + ||∇uK ||L∞(Ω) ≤ C. (6)
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In order to obtain such an estimate without any growth assumption from
above on a, φ is required to satisfy the bounded slope condition: there exists
Q > 0 such that for any γ ∈ ∂Ω, there exist ζ−γ and ζ+

γ in Rn which satisfy
|ζ±γ | ≤ Q and

φ(γ) + 〈ζ−γ , y − γ〉 ≤ φ(y) ≤ φ(γ) + 〈ζ+
γ , y − γ〉 , ∀y ∈ ∂Ω.

By using (6), one can extract from (uK)K≥Kφ
a subsequence which converges

to a Lipschitz solution of (E).
In [3], we have generalized this result to a larger class of functions φ. The

bounded slope condition used in [10] is indeed quite restrictive. It requires
that Ω be convex (except when φ is affine). It forces φ to be affine on ‘flat
parts’ of ∂Ω. Moreover, if Ω is smooth, then φ must be smooth as well (see
Hartman [9] for precise statements; see also [1]). Recently, Clarke [6] has
introduced a new hypothesis on φ, the lower bounded slope condition of rank
Q (Q > 0): given any point γ ∈ ∂Ω, there exists an affine function

y 7→ 〈ζγ , y − γ〉+ φ(γ)

with |ζγ | ≤ Q such that

〈ζγ , y − γ〉+ φ(γ) ≤ φ(y) , ∀y ∈ ∂Ω. (7)

The map φ : ∂Ω → R satisfies the lower bounded slope condition if and only
if φ is the restriction to ∂Ω of a convex function defined on Rn. When Ω is
uniformly convex, φ satisfies the lower bounded slope condition if and only
if it is the restriction to ∂Ω of a semiconvex function (see [1] for details and
further properties).

When φ satisfies the lower bounded slope condition (rather than the full
two-sided bounded slope condition), it can be proved (see [3]) that a solution
u of (E) still exists in W 1,2(Ω) ∩W 1,∞

loc (Ω) when a satisfies

〈a(ξ)− a(ξ′), ξ − ξ′〉 ≥ µ|ξ − ξ′|2 (8)

and F satisfies growth assumptions similar to those of [10]. The convexity
of Ω is also required here. The main idea of the proof, inspired from [6],
was that a ‘one sided barrier’ is enough to obtain local Lipschitz continuity.
Moreover, the result was optimal in the following sense: even when a(p) = p,
F [u] = 0 and Ω is a disk in R2, it may happen that the corresponding
solution is not globally Lipschitz on Ω if φ satisfies the mere lower bounded
slope condition.

In [3], the solution that we obtained satisfied the boundary condition only
in the sense of traces. We were unable at that time to prove the continuity
of the solution up to the boundary, except when Ω was a polyhedron. This
is the content of our first main result Theorem 3 below to generalize this
property to any convex domains (under the same assumptions). As in [2],
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the proof uses ‘implicit barriers’. In contrast with classical barriers which
are explicitly defined in terms of the distance to the boundary and the
function φ (see e.g. [8, 10]), the implicit barriers are obtained as solutions of
auxiliary problems stated on larger domains Ω0 ⊃ Ω with different boundary
conditions.

Up to now, only convex domains have been considered. It is an open
problem to know whether Theorem 3 holds true on any smooth domain,
even when φ is smooth. However, we prove in Theorem 5 that the Lipschitz
continuity of φ is enough to prove the existence of Hölder continuous solu-

tions when a is radial: there exists l : R+ → R+ such that a(ξ) =
l(|ξ|)
|ξ|

ξ,

where | · | is the Euclidean norm in Rn. Once again, we only assume that l
satisfies a growth assumption from below which corresponds to (8).

The next section describes the hypotheses that we posit on the data.
Each of the following sections is devoted to the proof of Theorems 3 and 5
respectively.

2 Main results

Throughout the paper, Ω is a bounded open Lipschitz set. We denote by Γ
the boundary of Ω. Hence, there is a δ > 0 such that for every point γ ∈ Γ,
Γ∩B(γ, δ) is the graph of a Lipschitz function (in an appropriate coordinate
system varying with γ). We also assume that the map φ : Γ → R is Lipschitz
continuous of rank Kφ.

For the sake of clarity, we proceed to quote some results from [10]. As-
sume that F : C0(Ω) → L1(Ω) is continuous:

(HF1) If uh ∈ C0(Ω) for h = 1, 2, ... converges uniformly to u

on Ω as h→∞, then F [uh] → F [u] in L1(Ω).

We also assume that F is locally bounded: for every M > 0, there exists
χ(M) > 0 such that

(HF2) |u(x)| ≤M on Ω ⇒ |F [u](x)| ≤ χ(M).

The existence of quasi solutions follows from

Theorem 1 ([10] Lemma 12.1) Assume that a is continuous and elliptic
(see (2)), and that F satisfies (HF1) and (HF2). Then for each K ≥ Kφ,
there exists at least one uK ∈ Lipφ(Ω,K) such that∫

Ω
〈a(∇uK),∇(v − uK)〉 − F [uK ](v − uK) ≥ 0 , ∀v ∈ Lipφ(Ω,K). (9)
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The a priori L∞ bound on quasi solutions can be obtained under the fol-
lowing assumptions (see [10] for more general conditions): we assume that
a ∈ C0(Rn,Rn) satisfy (3) for some 1 < p ≤ n, and that

(HF3) F [u](x) sgnu(x) ≤ c

m∑
i=1

||u||β(i)

Lα(i)(Ω)
|u(x)|γ(i)−1 , x ∈ Ω a.e.

where c ≥ 0, α(i) ≥ 1, β(i) ≥ 0, γ(i) ≥ 1 and α(i) ≤ p∗, β(i)+γ(i) < p. Here,
p∗ = np/(n − p) if n > p. When n ≤ p, we replace the condition α(i) ≤ p∗

by α(i) <∞.
We then have

Theorem 2 ([10, Theorem 8.1]) There exists a constant T such that for
any K ≥ Kφ, for any K quasi solution u, we have

||u||L∞(Ω) ≤ T.

The constant T depends on |Ω|, ||φ||L∞(Ω) and the parameters in (3) and
(HF3).

For later use, we observe that (8) implies (3) for any p ≤ 2 (for p = 2,
one can take e.g. α1 = µ/2 and β1 = |a(0)|2/(2µ)).

We can now state our first main result:

Theorem 3 Assume that Ω is convex, φ satisfies the lower bounded slope
condition as in (7), and a ∈ C0(Rn,Rn) is uniformly elliptic as in (8). If F
satisfies (HF1), (HF2) and (HF3) with p = 2, then there exists a solution
u to (E) in W 1,2(Ω) ∩ L∞(Ω) which is locally Lipschitz in Ω. Moreover, u
is Hölder continuous on Ω and agrees with φ on ∂Ω.

As explained in the introduction, the first sentence of the above state-
ment is proved in [3]. The continuity of u is established in section 3 below.

In the class of those functions which are locally Lipschitz on Ω and
continuous up to the boundary, a uniqueness result can be stated provided
that a further condition is introduced on F [u] regarding its monotonicity.

Theorem 4 In addition to the assumptions of Theorem 3, assume that for
any u1, u2 ∈ C0(Ω), we have∫

Ω
(F [u1]− F [u2])(u1 − u2) ≤ 0.

Then there exists one and only one locally Lipschitz solution u to the equa-
tion (E) which is continuous on the closure of Ω.

Theorem 4 is proved at the end of section 3.
When the domain Ω is not necessarily convex or when the Lipschitz

function φ does not satisfy a one sided bounded slope condition, it is still
possible to prove the existence of a continuous solution when a is radial:
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Theorem 5 Assume that a ∈ C0(Rn,Rn) can be written as a(ξ) =
l(|ξ|)
|ξ|

ξ

where l : R+ → R+ satisfies:

(Hl) there exists µ > 0 and p ≥ 2 such that for any 0 < s < t,

l(t)− l(s) ≥ µ(t− s)p−1.

Assume that F satisfies (HF1), (HF2) and (HF3) (for the same exponent
p). If Ω has the uniform exterior sphere condition and φ is Lipschitz con-
tinuous, then there exists a solution u of (E) in W 1,p(Ω) which is Hölder
continuous on Ω.

Please remember that a solution u is such that a(∇u) and F [u] belong
to L1

loc(Ω), tru|∂Ω = φ and (E) is satisfied. We say that Ω has the uniform
exterior sphere condition if there exists r > 0 such that for any γ ∈ Γ, there
exists z ∈ Rn which satisfies:

1) |z − γ| = r,

2) B(z, r) ⊂ Rn \ Ω.

Since a is continuous, we necessarily have l(0) = 0.
One of the most classical examples of radial fields a satisfying the above

assumptions is the p Laplacian (p ≥ 2): a(ξ) = |ξ|p−2ξ. More generally, any

C1 map l such that inf
t>0

l′(t)
tp−2

> 0 satisfies (Hl).

3 Proof of Theorem 3

Since φ satisfies the lower bounded slope condition, it is the restriction to
Γ of a convex function which is globally Lipschitz on Rn (see [1]). We still
denote by φ this extension and by Kφ its Lipschitz rank on Rn.
By Theorem 1, for every K ≥ Kφ, there exists a K quasi solution to (5). By
Theorem 2 and (HF2), there exists a constant T (independent of K) such
that if u is a K quasi solution, then

||u||L∞(Ω) ≤ T , ||F [u]||L∞(Ω) ≤ χ(T ).

It then easily follows from (8) that there exists S > 0 such that ||u||W 1,2(Ω) ≤
S for any K quasi solution (see [3, Proposition 3.3] for details). Here, S
depends on ||φ||W 1,∞(Ω), ||a(∇φ)||L∞(Ω), |Ω|, µ, T and χ(T ).

Barriers are the basic tool to control the behaviour of quasi solutions
near the boundary.

Definition 1 Let K0 ≥ Kφ and γ ∈ ∂Ω. Then we say that a function
w : Ω → R is a lower barrier for (E) at γ in Lipφ(Ω,K0) if the following
properties are satisfied:
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• the function w is Lipschitz continuous on Ω of rank ≤ K0,

• w(γ) = φ(γ) and w ≤ φ on ∂Ω,

• for K ≥ K0, any K quasi solution u of (E) satisfies u ≥ w on Ω.

We define similarly an upper barrier. We can construct lower barriers for K
quasi solutions by using the lower bounded slope condition (see [3, Proposi-
tion 3.4]):

Proposition 1 There exists K0 ≥ Kφ such that for any γ ∈ Γ, there exists
a lower barrier w in Lipφ(Ω,K0).

This lower barrier was used to prove the following key estimate (see [3],
inequality (3.10)):

Proposition 2 There exists Q ≥ 0 such that for any K ≥ K0, for any K
quasi solution u, we have

u(x) ≤ u(y) +Q
|x− y|

|x− πΓ(x|y)|
, x, y ∈ Ω. (10)

Here πΓ(x|y) denotes the unique point of Γ of the form x+ t(y − x), t > 0.

The constants K0 in Proposition 1 and Q in Proposition 2 depend on µ, T,
χ(T ), ||φ||L∞(Ω), Kφ and the diameter diam Ω of Ω. Moreover, (10) implies
that on any compact subset Ω0 ⊂ Ω, the Lipschitz rank of uK is bounded
by Q/d (Ω0,Γ) (here, d (Ω0,Γ) denotes the distance between Ω0 and Γ).

The new result of this section is given by the following proposition:

Proposition 3 There exists C > 0 such that for any K ≥ K0, for any K
quasi solution u, we have

|u(x)− u(y)| ≤ C|x− y|α x, y ∈ Ω, (11)

where α := 1
n+1 .

Proof of Proposition 3 Estimate (11) will follow from

Lemma 1 [2] Let u ∈ W 1,p((−1, 1)n), p > 1. We assume that there exists
Q > 0 such that for a.e. t ∈ (−1, 1), for a.e. x′1, x

′
2 ∈ (−1, 1)n−1,

|u(x′1, t)− u(x′2, t)| ≤ Q|x′1 − x′2|. (12)

Then there exists C > 0 only depending on n, p, Q and ||∂tu||Lp((−1,1)n) such
that for some representative ũ of u, we have for any x1, x2 ∈ (−1, 1)n,

|ũ(x1)− ũ(x2)| ≤ C|x1 − x2|
p−1

n−1+p .
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Proof: By reflection and regularisation, we can assume that u is the restric-
tion to (−1, 1)n of a map in C∞(Rn) still denoted by u. We introduce a
smooth kernel ρ ∈ C∞c (Rn−1,R+),

∫
Rn−1 ρ = 1, supp ρ ⊂ Bn−1(0, 1). We

denote by ρε the function defined by ρε(·) = ρ(·/ε)/εn−1. We consider

uε(x′, t) =
∫

Rn−1

u(x′ − y′, t)ρε(y′) dy′.

By (12), we have |uε(x′, t)− u(x′, t)| ≤ Qε.
Let x′ ∈ (−1, 1)n−1 and −1 < t1 < t2 < 1. Then

|u(x′, t1)− u(x′, t2)| ≤ |u(x′, t1)− uε(x′, t1)|
+ |uε(x′, t1)− uε(x′, t2)|+ |uε(x′, t2)− u(x′, t2)|

≤ 2εQ+
∫

Rn−1

ρε(x′ − y′) dy′
∫ t2

t1

|∂tu(y′, t)| dt.

By Hölder’s inequality, we get∫ t2

t1

dt

∫
Rn−1

ρε(x′ − y′)|∂tu(y′, t)| dy′

≤ ||∂tu||Lp(Bn−1(x′,ε)×(−1,1))|t2 − t1|1−
1
p
||ρ||Lp′ (Rn−1)

ε
n−1

p

.

Therefore,

|u(x′, t1)−u(x′, t2)| ≤ 2εQ+
||ρ||Lp′ (Rn−1)

ε
n−1

p

||∂tu||Lp(Bn−1(x′,ε)×(−1,1))|t2−t1|
1− 1

p .

We now take ε := |t2 − t1|
p−1

n−1+p . This gives

|u(x′, t1)− u(x′, t2)| ≤ C|t2 − t1|
p−1

n−1+p (13)

where C depends only on n, p, Q and ||∂tu||Lp((−1,1)n). Lemma 1 follows
from (12) and (13).

�
We observe that the possibility to exploit the continuity of a map in one

direction together with the integrability properties in the other directions
had already been used in [6].

The construction of upper barriers will be based on:

Lemma 2 Let Ω∗ be a bounded subset of Rn such that Ω∗ ⊃ Ω. Let φ∗ :
Rn → R be a convex function such that φ∗|Ω∗ ∈ C∞(Ω∗). We assume that
φ∗ ≥ φ on Γ. Let u∗ ∈ Lipφ∗(Ω∗,K) be a K quasi solution in Lipφ∗(Ω∗,K) :∫

Ω∗
〈a(∇u∗),∇(v − u∗)〉 − χ(T )(v − u∗) ≥ 0 , ∀v ∈ Lipφ∗(Ω∗,K). (14)

Then for any K quasi solution u of (E) in Lipφ(Ω,K), u∗ ≥ u on Ω.
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(The constant χ(T ) > 0 has been introduced at the beginning of Section 3:
|F [u]| ≤ χ(T ) for any K quasi solution u of (E) in Lipφ(Ω,K).)
Proof: We first prove that φ∗ ≤ u∗ on Ω∗ by inserting v(x) := max(u∗(x),
φ∗(x)) in (14). This gives∫

[φ∗>u∗]
〈a(∇u∗),∇φ∗ −∇u∗〉 − χ(T )(φ∗ − u∗) ≥ 0.

Using (8), we obtain∫
[φ∗>u∗]

〈a(∇φ∗),∇u∗ −∇φ∗〉 ≤ −χ(T )
∫

[φ∗>u∗]
(φ∗ − u∗). (15)

We claim that the left hand side is non negative.
Indeed, let

{
aε = (a1

ε , ..., a
n
ε )

}
ε>0

be a family of smooth vector fields which
converge locally uniformly to a and satisfy (8) with the same µ (a convolution
of a by a smooth kernel will do). For each ε, Stokes formula implies∫

[φ∗>u∗]
〈aε(∇φ∗),∇u∗ −∇φ∗〉 =

∫
[φ∗>u∗]

div [aε(∇φ∗)](φ∗ − u∗)

=
∫

[φ∗>u∗]

n∑
i,j=1

∂ai
ε

∂ξj
(∇φ∗) ∂2φ∗

∂xi∂xj
(φ∗ − u∗) ≥ 0,

by convexity of φ∗. By letting ε→ 0, we get∫
[φ∗>u∗]

〈a(∇φ∗),∇u∗ −∇φ∗〉 ≥ 0. (16)

The comparison of (15) and (16) implies that φ∗ ≤ u∗ on Ω∗.
In particular, u∗ = φ∗ ≥ φ on Γ. We now prove that u∗ ≥ u on Ω, for

any K quasi solution u of (E) in Lipφ(Ω,K). The function

v(x) := min(u, u∗)(x)

belongs to Lipφ(Ω,K). The function

v∗(x) :=
{

max(u, u∗)(x) if x ∈ Ω,
u∗(x) otherwise

belongs to Lip(Ω∗,K) and agrees with u∗ on ∂Ω∗.
By inserting v in (5) and v∗ in (14), we get∫

[u>u∗]
(〈a(∇u(x)),∇u∗(x)−∇u(x)〉 − F [u](u∗(x)− u(x))) dx ≥ 0,

∫
[u>u∗]

(〈a(∇u∗(x)),∇u(x)−∇u∗(x)〉 − χ(T )(u(x)− u∗(x))) dx ≥ 0.
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This gives by (8) and the definition of χ(T )

µ

∫
[u>u∗]

|∇u−∇u∗|2 ≤
∫

[u>u∗]
〈a(∇u)− a(∇u∗),∇u−∇u∗〉

≤
∫

[u>u∗]
(F [u]− χ(T ))(u− u∗) ≤ 0,

which implies that u ≤ u∗ on Ω. This completes the proof of Lemma 2.
�

A first consequence of Lemma 2 is given by

Lemma 3 There exists C1 > 0 such that for any K ≥ Kφ, any K quasi
solution u and any γ ∈ Γ, x ∈ Ω, we have

u(x) ≤ φ(γ) + C1|x− γ|α, (17)

where α = 1
n+1 .

Proof: Fix γ ∈ Γ. Since Ω is convex, there exists an open hypercube Ω∗

such that Ω∗ ⊃ Ω and γ is the center of an n− 1 dimensional face Σ of Ω∗.
We introduce

φ∗(x) := φ(γ) +Kφ|x− γ|.

Thus, φ∗ ≥ φ on Γ.
By Theorem 1, for any K ≥ Kφ, there exists a K quasi solution u∗ ∈

Lipφ∗(Ω∗,K). Moreover, there exist T ∗ > 0, S∗ > 0 (not depending on K)
such that

||u∗||L∞(Ω∗) ≤ T ∗ , ||u∗||W 1,2(Ω∗) ≤ S∗.

By Proposition 2,

u∗(x) ≤ u∗(y) +Q∗
|x− y|

|x− π∂Ω∗(x|y)|
, x, y ∈ Ω∗. (18)

Let Ω∗1 = 1
2(Ω∗ − γ) + γ. In view of (18), we can apply Lemma 1 on Ω∗1

with p = 2. We get

|u∗(x)− u∗(γ)| ≤ C1|x− γ|α , x ∈ Ω∗1 (19)

for some C1 > 0. By enlarging C1 if necessary, we can assume that this
inequality holds true for any x ∈ Ω∗.

By Lemma 2 and the fact that u∗(γ) = φ∗(γ) = φ(γ), we have

u(x) ≤ u∗(x) ≤ φ(γ) + C1|x− γ|α , x ∈ Ω.

This completes the proof of Lemma 3.
�

In order to exploit the estimate given by Lemma 3, we need the following
maximum principle:
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Lemma 4 There exists C0 > 0 such that for any K ≥ Kφ, any K quasi
solution u and any x, y ∈ Ω,

|u(x)− u(y)| ≤ max
z∈Ω,γ∈Γ,
|z−γ|≤|x−y|

|u(z)− φ(γ)|+ C0|x− y|. (20)

The constant C0 depends only on χ(T )/µ, and |Ω|. Lemma 4 is a conse-
quence of the proof of [10] Lemma 10.0 (more precisely, it is a rephrasing of
inequality (10.14) there). The lower bounded slope condition plays no role
here, neither does the convexity of Ω.

We now complete the proof of Proposition 3. For any K ≥ K0 and any
K quasi solution u, we have by Proposition 1

u(z) ≥ w(x) ≥ φ(γ)−K0|z − γ| , γ ∈ Γ, z ∈ Ω. (21)

This gives a lower bound of u(z)− φ(γ) when z ∈ Ω.
From (21) and (17), for K ≥ K0, a K quasi solution u satisfies

max
z∈Ω,γ∈Γ,
|z−γ|≤|x−y|

|u(z)− φ(γ)| ≤ (K0(diam Ω)1−α + C1)|x− y|α.

By Lemma 4, this implies that for any x, y ∈ Ω,

|u(x)− u(y)| ≤ C|x− y|α,

with C := (K0 + C0)(diam Ω)1−α + C1. Hence, u is Hölder continuous.
Proposition 3 follows at once.

�
Finally, we complete the proof of Theorem 3. For each K ≥ K1, let uK ∈

Lipφ(Ω,K) a K quasi solution, so that ||uK ||L∞(Ω) ≤ T, ||uK ||W 1,2(Ω) ≤ S
and the Lipschitz rank of uK on any compact subset Ω0 ⊂ Ω is bounded by
Q/d (Ω0,Γ). Finally, (11) holds true for any uK .

Then there exists a subsequence (uKi) which uniformly converges on Ω
to a function u which is locally Lipschitz on Ω, and Hölder continuous on Ω
of order α. As in [3, Proposition 3.6], one can also prove that the function
u is a solution of (E). This completes the proof of Theorem 3.

�

Proof of Theorem 4 Here, we assume further that if u1, u2 are two
continuous functions on Ω, then∫

Ω
(F [u1](x)− F [u2](x))(u1(x)− u2(x)) dx ≤ 0. (22)

Let u1, u2 : Ω → R be such that:

1) u1, u2 are locally Lipschitz on Ω,

11



2) u1, u2 are continuous on Ω and agree with φ on Γ,

3) u1, u2 are solutions of (E).

We then prove that u1 = u2. Let θ : R → R be a smooth odd nondecreasing
function such that

θ(t) =
{

0 if |t| ≤ 1
t if |t| ≥ 2.

We define for each i ≥ 1, θi(t) = θ(it)/i and ηi(x) = θi(u2(x)− u1(x)). Then
ηi is a Lipschitz continuous function on Ω which vanishes on a neighborhood
of Γ (here we use the fact that u1 and u2 are continuous up to the boundary
and agree on the boundary). Hence, we can insert ηi in (E), which yields:∫

Ω
〈a(∇u1),∇ηi〉 − F [u1]ηi = 0.

Since ∇ηi = θ′(i(u2 − u1))(∇u2 −∇u1), we get∫
Ω
θ′(i(u2 − u1))〈a(∇u1),∇u2 −∇u1〉 − F [u1]ηi = 0. (23)

Symetrically, we have (with u2,−ηi instead of u1, ηi)∫
Ω
θ′(i(u1 − u2))〈a(∇u2),∇u1 −∇u2〉+ F [u2]ηi〉 = 0. (24)

The sum of (23) and (24) gives∫
Ω
θ′(i(u2 − u1))〈a(∇u2)− a(∇u1),∇u2 −∇u1〉

=
∫

Ω
(F [u1]− F [u2])

θ(i(u1 − u2))
i

.

Here, we have used the fact that θ(x) = −θ(−x) and θ′(x) = θ′(−x). Using
(8), we get

µ

∫
Ω
θ′(i(u2 − u1))|∇u2 −∇u1|2 dx ≤

∫
Ω
(F [u1]− F [u2])

θ(i(u1 − u2))
i

.

By the dominated convergence theorem, the right hand side goes to∫
Ω
(F [u1]− F [u2])(u1 − u2) when i → ∞. This quantity is nonpositive by

(22). Hence, by Fatou’s Lemma in the left hand side, we have

lim inf
i→∞

θ′(i(u2 − u1)(x))|∇u2(x)−∇u1(x)|2 = 0 , a.e. x ∈ Ω.

This implies that

(u2 − u1)(x)|∇u2(x)−∇u1(x)|2 = 0 , a.e. x ∈ Ω

so that u1 = u2 on Ω. This completes the proof of Theorem 4.
�
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4 Proof of Theorem 5

Exactly as in the proof of Theorem 3, for each K ≥ Kφ, there exists a K
quasi solution uK ∈ Lipφ(Ω,K). There exists T > 0 such that for any
K ≥ Kφ,

||uK ||L∞(Ω) ≤ T , ||F [uK ]||L∞(Ω) ≤ χ(T ). (25)

We observe that for any ξ, ξ′ ∈ Rn,

〈a(ξ)− a(ξ′), ξ − ξ′〉 ≥ µ

2p
|ξ − ξ′|p. (26)

Indeed, let r = |ξ|, s = |ξ′| and b = 〈ξ/|ξ|, ξ′/|ξ′|〉. Then

〈a(ξ)− a(ξ′), ξ − ξ′〉 = rl(r) + sl(s)− b(sl(r) + rl(s))

and |ξ − ξ′|p = (r2 + s2 − 2brs)p/2. Then (26) is equivalent to

rl(r)+sl(s)−b(sl(r)+rl(s)) ≥ µ

2p
(r2 +s2−2brs)p/2, r, s ≥ 0,−1 ≤ b ≤ 1.

(27)
By convexity of the right hand side with respect to b, we only need to prove
(27) when b ∈ {−1, 1}. When b = 1, this amounts to

(l(r)− l(s))(r − s) ≥ µ

2p
(r − s)p.

This follows from (Hl) at once. When b = −1, we have to prove that

(l(r) + l(s))(r + s) ≥ µ

2p
(r + s)p. (28)

By (Hl) and the fact that l(0) = 0, we have l(r) ≥ µrp−1, l(s) ≥ µsp−1.
This implies (28) and thus (27) is also true in that case. This completes the
proof of (26).

Step 1: A variational setting
We proceed to prove that uK is the solution of a variational problem on

Lipφ(Ω,K). We introduce λ(t) :=
∫ t

0
l(s) ds and L(ξ) := λ(|ξ|). Then L is

non negative, convex and differentiable with ∇L(ξ) = l(|ξ|)ξ/|ξ| = a(ξ).
Let K ≥ Kφ and v ∈ Lipφ(Ω,K). For any x ∈ Ω, the function

t 7→ L(∇uK(x) + t∇(v − uK)(x))

is convex. Hence, the function

g : t 7→
∫

Ω
L(∇uK + t(∇v −∇uK))− F [uK ](uK + t(v − uK))
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is convex as well. Since v and uK are Lipschitz continuous, their gradients
are uniformly bounded and we can differentiate under the integral sign. We
have

g′(0) =
∫

Ω
〈a(∇uK),∇v −∇uK〉 − F [uK ](v − uK).

Since uK is a K quasi solution, we get g′(0) ≥ 0 so that g is non decrea-
sing on [0,+∞). Whence∫

Ω
L(∇uK)− F [uK ]uK ≤

∫
Ω
L(∇v)− F [uK ]v. (29)

By (Hl), L(∇uK) ≥ µ

p
|∇uK |p. By (29) with v = φ and (25), there exists

S > 0 (independent of K) such that ||uK ||W 1,p(Ω) ≤ S.

Step 2: A uniform Hölder continuity estimate for quasi solutions
In order to establish a Hölder estimate, we need a generalization of Lemma
4:

Lemma 5 Assume that a ∈ C0(Rn,Rn) satisfies

〈a(ξ)− a(ξ′), ξ − ξ′〉 ≥ ν|ξ − ξ′|p , ξ, ξ′ ∈ Rn (30)

for some ν > 0, p > 1. Let φ : Rn → R be a Lipschitz map of rank Kφ,
g ∈ L∞(Ω) and K ≥ Kφ. Let u ∈ Lipφ(Ω,K) such that∫

Ω
〈a(∇u),∇v −∇u〉 − g(x)(v − u) ≥ 0 , v ∈ Lipφ(Ω,K). (31)

Then there exists C0 > 0 depending only on µ/||g||L∞(Ω) and |Ω| such that

|u(x)− u(y)| ≤ max
z∈Ω,γ∈Γ

|z−γ|≤|x−y|

|u(z)− φ(γ)|+ C0|x− y|
1

p−1 . (32)

Proof: This is a mere adaptation of [10] Lemma 10.0. Fix x, y in Ω and
set τ := y − x. We define uτ (·) = u(· + τ) on Ωτ := Ω − τ, as well as
φτ (·) = φ(·+ τ) and gτ (·) = g(·+ τ). Then∫

Ωτ

〈a(∇uτ ),∇w−∇uτ 〉−gτ (x)(w−uτ ) ≥ 0 , w ∈ Lipφτ (Ωτ ,K). (33)

LetM ≥Mτ := max
z∈Ω,γ∈Γ
|z−γ|≤τ

|u(z)− φ(γ)|.We observe that for any x ∈ ∂(Ω∩Ωτ ),

x ∈ ∂Ω or x+ τ ∈ ∂Ω. Hence, |u(x)− uτ (x)| ≤M on ∂(Ω ∩ Ωτ ).
In (31), we take

v :=
{
u on Ω \ Ωτ ,
max(u, uτ −M) on Ω ∩ Ωτ .

14



We get ∫
AM

〈a(∇u),∇uτ −∇u〉 − g(x)(uτ − u−M) ≥ 0 (34)

where AM := {x ∈ Ω ∩ Ωτ : u(x) ≤ uτ (x)−M}. Now, we define

w :=
{
uτ on Ωτ \ Ω,
min(u+M,uτ ) on Ω ∩ Ωτ .

By inserting w in (33), we get∫
AM

〈a(∇uτ ),∇u−∇uτ 〉 − gτ (x)(u− uτ +M) ≥ 0. (35)

By adding (34) and (35) and in view of (30), we get

ν

∫
AM

|∇uτ −∇u|p ≤
∫

AM

(gτ (x)− g(x))v(x) dx (36)

where v(x) := max(uτ (x)− u(x)−M, 0) ∈ Lip0(Ω ∩ Ωτ ). We extend g and
v on Rn by 0. The right hand side of (36) is equal to∫

Rn

g(x)(v(x− τ)− v(x)) dx ≤ ||g||L∞(Ω)|τ |
∫

Rn

|∇v(x)| dx. (37)

By (36) and (37), we have∫
AM

|∇u−∇uτ |p ≤
||g||L∞(Ω)

ν
|τ |

∫
AM

|∇u−∇uτ |.

By Hölder inequality, this gives(∫
AM

|∇u−∇uτ |p
) 1

p

≤
( ||g||L∞(Ω)

ν
|τ |

) 1
p−1

|AM |
1
p .

Hence, by Fubini Theorem and the definition of AM , M ≥Mτ , we obtain∫ +∞

M
|AM ′ | dM ′ =

∫
AM

(uτ (x)− u(x)−M) dx

≤
(∫

AM

|uτ − u−M |p∗
) 1

p∗

|AM |1−
1

p∗ ≤ C

(∫
AM

|∇uτ −∇u|p
) 1

p

|AM |1−
1

p∗

≤ C ′|τ |
1

p−1 |AM |β ,

where β > 1 while C and C ′ depend only on n, p, Ω and ||g||L∞(Ω)/ν. Here,
we have used the Sobolev inequality with p∗ = np/(n− p) if p < n (in that
case, β = 1+1/n). When p ≥ n, we take for p∗ any exponent larger than p.
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This implies (see [10] Lemma 7.2) that |AM | = 0 for

M ≥ C ′
β

β − 1
|τ |

1
p−1 |Ω|β−1 +Mτ .

In particular, uτ (x) ≤ u(x) + C0|τ |1/(p−1) +Mτ (C0 = C ′|Ω|β−1β/(β − 1)).
The other inequality can be established similarly. Since τ = y − x, this
completes the proof of Lemma 5.

�
We can now state the Hölder estimate for K quasi solutions:

Proposition 4 There exists C > 0 such that for any K ≥ Kφ, for any K
quasi solution uK ,

|uK(x)− uK(y)| ≤ C|x− y|α ∀x, y ∈ Ω (38)

where α := min(
p− 1

n+ p− 1
,

1
p− 1

).

Proof: By Lemma 5, it is enough to prove that there exists a positive
constant C such that for any γ ∈ Γ, for any K ≥ Kφ and any K quasi
solution u we have

|u(x)− u(γ)| ≤ C|x− γ|
p−1

n+p−1 , ∀x ∈ Ω. (39)

We proceed to prove that u(x)−u(γ) ≤ C|x−γ|1/(n+1). The other inequality
could be established similarly.

Fix γ ∈ Γ. There exists r > 0 not depending on γ and z ∈ Rn such
that B(z, r) ⊂ Rn \ Ω and |z − γ| = r. Let R := r + diam Ω. We define
Ω∗ := B(z,R) \B(z, r) and

φ∗(x) := φ(γ) +Kφ|x− γ|.

Fix K ≥ Kφ and consider u a K quasi solution of (E).
There exists a K quasi solution solution v ∈ Lipφ∗(Ω∗,K) to the inequa-

tion∫
Ω∗
〈a(∇v),∇w −∇v〉 − χ(T )(w − v) ≥ 0 , ∀w ∈ Lipφ∗(Ω∗,K). (40)

Moreover, there exist T ∗ > 0 and S∗ > 0 independent of K such that

||v||L∞(Ω∗) ≤ T ∗ , ||v||W 1,p(Ω∗) ≤ S∗.

By Lemma 2 (wih u∗ = v), we get v ≥ u on Ω.
We claim that the Hölder norm of v can be estimated independently

of K and γ. The proof is very similar to the proof of Lemma 5 except
that we replace translations by rotations. This is the main reason why we
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require that a be radial. Without loss of generality, we can assume that
z = 0. For any linear positive isometry I : Rn → Rn, I(Ω∗) = Ω∗. For any
w ∈ Lipφ∗(Ω∗), we denote by wI the map w ◦ I. By (40) and an obvious
change of variables, we have∫

Ω∗
〈a(∇vI),∇wI −∇vI〉 − χ(T )(wI − vI) ≥ 0, ∀w ∈ Lipφ∗(Ω∗,K). (41)

Here, we have also used the fact that

〈a(∇vI),∇wI −∇vI〉 = 〈a(I∗(∇v ◦ I)), I∗(∇w ◦ I −∇v ◦ I)〉

=
l(|∇v ◦ I|)
|∇v ◦ I|

〈I∗(∇v ◦ I), I∗(∇w ◦ I −∇v ◦ I)〉

= 〈a(∇v ◦ I),∇w ◦ I −∇v ◦ I〉.

Let b := max|y|=1 |I(y) − y|. We now take w = max(vI − KφRb, v) ∈
Lipφ∗(Ω∗,K) in (40):∫

[vI−KφRb>v]
〈a(∇v),∇vI −∇v〉 − χ(T )(vI −KφRb− v) ≥ 0. (42)

With w = min(v, v ◦ I−1 +KφRb) ∈ Lipφ∗(Ω∗,K) in (41), we have:∫
[vI−KφRb>v]

〈a(∇vI),∇v −∇vI〉+ χ(T )(vI −KφRb− v) ≥ 0. (43)

The sum of (42) and (43) (see also (26)) leads to∫
[vI−KφRb>v]

|∇v −∇vI |p ≤ 0. (44)

Hence, for any x ∈ Ω∗, vI(x) − v(x) ≤ KφRb. Symetrically, we have v ≤
vI +KφRb.

Now, if x, y ∈ Ω∗ are such that |x| = |y|, there exists a positive isometry
I such that I(x) = y and

|v(x)− v(y)| = |v(x)− vI(x)| ≤ KφRb ≤ Q|x− y|

for some constant Q which depends only on Kφ, r and R. We now apply to
v the following lemma which is a ‘spherical’ version of Lemma 1:

Lemma 6 Let v ∈W 1,p(B(0, R) \B(0, r)). Assume that there exists Q > 0
such that for any x, y ∈ B(0, R) \B(0, r), |x| = |y|, we have

|v(x)− v(y)| ≤ Q|x− y|.

Then there exists C > 0 depending only on Q, ||v||
W 1,p(B(0,R)\B(0,r))

, r and

R such that for any x, y ∈ B(0, R) \B(0, r),

|v(x)− v(y)| ≤ C|x− y|
p−1

n+p−1 .
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Lemma 6 easily follows from Lemma 1 by the change of variables formula
(see [2, Lemma 5] for a detailed proof). It gives an estimate of the Hölder
norm of the quasi solution v of (40). Since u ≤ v on Ω and u(γ) = φ(γ)
= φ∗(γ) = v(γ), we thus get

u(x)− u(γ) ≤ C|x− γ|
p−1

n+p−1 , x ∈ Ω,

where C depends neither on γ nor on K. This completes the proof of Propo-
sition 4.

�
By Proposition 4, a subsequence of quasi solutions (uKi) uniformly con-

verges to a Hölder continuous function u satisfying (38). Since (uKi) is
bounded in W 1,p(Ω), we can further assume that (uKi) weakly converges to
u in W 1,p(Ω).

The convexity of L implies that
∫

Ω
L(∇u) ≤ lim inf

i→+∞

∫
Ω
L(∇uKi). From

(29) and (HF1), we thus get for any v ∈ Lipφ(Ω)∫
Ω
L(∇u)− F [u]u ≤

∫
Ω
L(∇v)− F [u]v. (45)

In particular, L(∇u) ∈ L1(Ω). We proceed to prove that u is a solution of
(E). The map u is not Lipschitz continuous so that we cannot differentiate
under the integral sign. Still, the minimum of a problem in the Calculus
of Variations is a solution of the corresponding Euler equation when the
Lagrangian L is convex (and does not depend on x and u). This result
recently proved in [7] does not require any growth assumption on L. We
cannot directly apply it because in our situation, the admissible maps are
Lipschitz continuous whereas u only belongs to W 1,p(Ω). We have to prove
somehow that no Lavrentiev phenomenon can occur.

Step 3: An approximation Lemma We first state

Lemma 7 There exists a sequence (uk)k≥1 ⊂ W 1,1
φ (Ω) converging to u in

W 1,1(Ω) such that

1) for each k ≥ 1, uk is Lipschitz continuous on a neighborhood of ∂Ω in
Ω,

2) for each k ≥ 1, L(∇uk) ∈ L1(Ω),

3) (L(∇uk))k≥1 converges to L(∇u) in L1(Ω).

Proof of Lemma 7: Since Γ is locally the graph of Lipschitz maps, there exist
δ > 0, and finitely many cubes Q(xi, δ) of centers xi and radius δ > 0, i =
1, . . . ,M, such that Γ ⊂ ∪M

i=1Q(xi, δ/4) and for each i, there is an isometry
ζi of Rn which maps Q(xi, δ) onto (−δ, δ)n and Q(xi, δ) ∩ Ω onto

Ui := {(x′, xn) ∈ (−δ, δ)n−1 × (δ, δ) : xn > hi(x′)},
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where hi : [−δ, δ]n−1 → R is Lipschitz continuous. We can further assume
that

ζi(∂Ω ∩Q(xi, δ)) = {(y′, h(y′)) : y′ ∈ (−δ, δ)n−1}. (46)

Let θ ∈ C∞c ((−δ, δ)n) be such that 0 ≤ θ ≤ 1 and θ = 1 on (−δ/2, δ/2)n.
We introduce

ψk(x) := x− 1
k
θ(x)en

where en := (0, . . . , 0, 1). Clearly, for any k ≥ 1,

||ψk − Id||L∞ + ||Dψk − Id||L∞ ≤ C

k
. (47)

Moreover, ψk = Id outside (−δ, δ)n. We claim that there exists C ′ > 0 such
that for any k ≥ 1 and for any i = 1, . . . ,M, we have

d (ψk(x), Ui) ≥
C ′

k
when x ∈ (−δ/2, δ/2)n \ Ui, (48)

d (ψk(x), Ui) ≥ C ′ d (x,Ui) when x ∈ (−δ, δ)n \ Ui. (49)

Indeed, let z = (z′, zn) ∈ (−δ, δ)n \Ui. We then consider y = (y′, h(y′)) ∈ Ui

such that |z − y| = d (z, Ui). Then there exists B > 0 such that

hi(z′) − zn ≤ |zn − hi(y′)| + |hi(y′) − hi(z′)| ≤ B|z − y| = B d (z, Ui).

If z = ψk(x) for some x ∈ (−δ/2, δ/2)n \ Ui, then z′ = x′ and

1
k

= |x− z| ≤ hi(x′)− zn = hi(z′)− zn ≤ B d (z, Ui).

This implies (48) while (49) can be proved similarly.
We now introduce ψi

k = ζ−1
i ◦ ψk ◦ ζi. Then ψi

k satisfies (47), (48) and
(49) in Q(xi, δ). We extend ψi

k by the identity outside Q(xi, δ). Finally, we
define

Φk := ψ1
k ◦ · · · ◦ ψM

k .

We easily get from (47), (48) and (49), that the map Φk satisfies

||Φk − Id||L∞ + ||DΦk − Id||L∞ ≤ A0

k
, (50)

d (Φk(Γ),Ω) ≥ A

k
(51)

for some positive A0, A > 0. By relabelling the sequence Φk, we can assume
that A0 = 1.
There exists a constant C0 > 0 such that for any k ≥ 1,

||DΦk||L∞ + ||D(Φk)−1||L∞ ≤ C0.
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For each k ≥ 1, we define on Γ ∪ Φk(Γ)

φ̃k : y 7→
{
φ(y) on Γ,
||DΦk||L∞φ(Φ−1

k (y)) on Φk(Γ).

We claim that φ̃k is Lipschitz continuous of rank not larger than

C := max(Kφ, C
2
0Kφ,Kφ(1 + 1/A) + ||φ||L∞/A).

Indeed, we only need to prove that for any y, z ∈ Γ, we have |φ̃k(y) −
φ̃k(Φk(z))| ≤ C|y − Φk(z)|. We have

|φ̃k(y)− φ̃k(Φk(z))| = |φ(y)− ||DΦk||L∞φ(z)|

≤ |φ(y)−φ(z)|+ |φ(z)−||DΦk||L∞φ(z)| ≤ Kφ|y−z|+ ||φ||L∞ |1−||DΦk||L∞ |

≤ Kφ|y − Φk(z)|+Kφ|Φk(z)− z|+ ||φ||L∞ ||Id−DΦk||L∞

≤ Kφ|y − Φk(z)|+
Kφ + ||φ||L∞

k

by using (50). By (51), we get

|φ̃k(y)− φ̃k(Φk(z))| ≤ Kφ|y − Φk(z)|+
1
A

(Kφ + ||φ||L∞) d (Γ,Φk(Γ))

≤
(
Kφ(1 +

1
A

) +
1
A
||φ||L∞

)
|y − Φk(z)|.

The claim is proved.
We still denote by φ̃k a Lipschitz extension on Rn of φ̃k with Lipschitz

rank not larger than C. We then introduce

ũk(x) :=
{
u(x) if x ∈ Ω,
φ̃k if x ∈ Rn \ Ω.

Finally, we define for x ∈ Ω

uk(x) :=
1

||DΦk||L∞
ũk ◦ Φk.

Since Φk converges to Id in the C1 topology, (uk) converges to u in W 1,1(Ω).
There exists a subsequence that we still denote by (uk) such that (∇uk)
converges to ∇u almost everywhere in Ω.

Moreover, for any γ ∈ Γ, we have

uk(γ) =
1

||DΦk||L∞
ũk ◦ Φk(γ) =

1
||DΦk||L∞

φ̃k(Φk(γ)) = φ(γ).

For each k ≥ 1, there exists δk > 0 such that for any x ∈ Ω satisfying
d (x,Γ) < δk, we have Φk(x) /∈ Ω.
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Since uk(x) =
1

||DΦk||L∞
φ̃k ◦ Φk(x) when d (x,Γ) < δk, the map uk is

Lipschitz continuous on a neighborhood of Γ in Ω.
We claim that

lim sup
k→∞

∫
Ω
L(∇uk) ≤

∫
Ω
L(∇u). (52)

This follows from the fact that λ is non decreasing:∫
Ω
L(∇uk) =

∫
Ω
λ

(∣∣∣∣ 1
||DΦk||∞

DΦk(x)∗(∇u(Φk(x))
∣∣∣∣) dx

≤
∫

Ω
λ(|∇u(Φk(x))|) dx.

By the change of variables formula, we then get∫
Ω
L(∇uk) ≤

∫
Φk(Ω)

L(∇u(y))|JacΦ−1
k (y)| dy.

By the dominated convergence theorem, the right hand side converges to∫
Ω
L(∇u). This implies inequality (52). By Fatou Lemma,

lim inf
k→+∞

∫
Ω
L(∇uk) ≥

∫
Ω
L(∇u).

Hence, (L(∇uk))k≥1 converges to L(∇u) in L1(Ω). This completes the proof
of Lemma 7.

�
Finally, we have the following approximation lemma:

Lemma 8 There exists (um) ⊂ Lipφ(Ω) such that (um) converges to u in
W 1,1(Ω) and (L(∇um)) converges to L(∇u) in L1(Ω).

Proof: By Lemma 7, we can assume that u is Lipschitz continuous near the
boundary. We extend u by a Lipschitz continuous function outside Ω. Let
K be a compact subset of Ω such that u is Lipschitz continuous on Ω \K.
Let K1 be a compact subset of Ω such that int K1 ⊃ K. We introduce
θ ∈ C∞c (Ω) such that 0 ≤ θ ≤ 1, θ = 1 on K1. Let ρ ∈ C∞c (B(0, 1)), ρ ≥ 0,∫

Rn

ρ = 1 and ρk(·) := knρ(k·). We then define

uk(x) := θ(x)(u ∗ ρk)(x) + (1− θ(x))u(x).

Then uk is Lipschitz continuous on Ω. We have

∇uk(x) = θ(x)(∇u ∗ ρk)(x) + (1− θ(x))∇u(x) + (u ∗ ρk(x)− u(x))∇θ(x).

21



This implies that (uk) converges in W 1,1(Ω) to u and (up to a subsequence),
(∇uk) converges to ∇u a.e. We also observe that when x ∈ K1, ∇uk(x) =
(∇u ∗ ρk)(x). For k > 1/d (K, ∂K1), ||∇u ∗ ρk||L∞(Ω\K1) ≤ ||∇u||L∞(Ω\K).
Hence, by considering the two cases x ∈ K1 and x /∈ K1 separately, we get
for any k > 1/d (K, ∂K1)

L(∇uk(x)) ≤ KL||∇θ||L∞(Ω)|u ∗ ρk(x)− u(x)|
+ L(θ(x)(∇u ∗ ρk)(x) + (1− θ(x))∇u(x))

where KL is a Lipschitz rank for L on the ball B(0, 2||u||L∞(Ω)||∇θ||L∞(Ω) +
||∇u||L∞(Ω\K)). This gives∫

Ω
L(∇uk) ≤ KL||∇θ||L∞ ||u∗ρk−u||L1 +

∫
Ω
θL(∇u∗ρk)+

∫
Ω
(1−θ)L(∇u).

By Jensen Theorem, we have L(∇u ∗ ρk(x)) ≤ (L(∇u) ∗ ρk)(x). By letting
k → +∞, we thus get:

lim sup
k→+∞

∫
Ω
L(∇uk) ≤

∫
Ω
L(∇u).

Since by Fatou Lemma lim inf
k→+∞

∫
Ω
L(∇uk) ≥

∫
Ω
L(∇u), the sequence (L(∇uk))

converges to L(∇u) in L1(Ω). This completes the proof of Lemma 8.
�

It is worth noting that as a by-product of the proofs of Lemma 7 and
Lemma 8, we have proved the non occurence of the Lavrentiev phenomenon
in the following setting 1:

Theorem 6 Let L : Rn → R be a convex map of the form L(ξ) = l(|ξ|) for
some l : R+ → R. Then

inf
u∈W 1,1

φ (Ω)

∫
Ω
L(∇u) = inf

u∈Lipφ(Ω)

∫
Ω
L(∇u).

Step 4: End of the proof of Theorem 5 Let α ∈ (0, 1) and w ∈ Lipφ(Ω).
For the sequence (um) given by Lemma 8, we write

0 ≤ L(α∇w + (1− α)∇um) ≤ αL(∇w) + (1− α)L(∇um).

By the dominated convergence theorem and up to a subsequence (we do
not relabel), (L(α∇w + (1 − α)∇um)) converges to L(α∇w + (1 − α)∇u)
in L1(Ω). Hence (45) remains true for any v of the form αw + (1 − α)u,
w ∈ Lipφ(Ω).

1A similar result has been recently obtained by Bonfanti and Cellina with a different
method.
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Let w ∈ Lipφ(Ω). For any k ≥ 1,

k

(
L(∇u+

1
k
∇(w − u))− L(∇u)

)
≤ L(∇w)− L(∇u) ∈ L1(Ω).

This implies [〈∇L(∇u),∇(w − u)〉]+ ∈ L1(Ω) and by Fatou’s Lemma∫
Ω
〈∇L(∇u),∇(w − u)〉 − F [u](w − u)

=
∫

Ω

(
lim sup
k→+∞

k

(
L(∇u+

1
k
∇(w − u))− L(∇u)

)
− F [u]

1
k
(w − u)

)

≥ lim sup
k→+∞

k

∫
Ω

((
L(∇u+

1
k
∇(w − u))− L(∇u)

)
− F [u]

1
k
(w − u)

)
= lim sup

k→+∞
k

{∫
Ω
L(∇u+

1
k
∇(w − u))− F [u](u+

1
k
(w − u))

−
∫

Ω
L(∇u)− F [u]u

}
≥ 0 by (45) with v =

1
k
w + (1− 1

k
)u.

We have thus proved

〈∇L(∇u),∇(w − u)〉 ∈ L1(Ω) (53)∫
Ω
〈∇L(∇u),∇(w − u)〉 − F [u](w − u) ≥ 0 (54)

for any w ∈ Lipφ(Ω).
By taking w = (1−η)φ+η where η ∈ C∞c (Ω) is equal to 1 on an arbitrary

compact subset of Ω, we get by (53) 〈∇L(∇u),∇u〉 ∈ L1
loc(Ω). This implies

that 〈∇L(∇u),∇w〉 ∈ L1
loc(Ω) for any w ∈ Lipφ(Ω). In particular, when

w = (1− η)φ± ηxi (1 ≤ i ≤ n and η a bump function as above), we obtain
∇L(∇u) ∈ L1

loc(Ω).
Now let η ∈ C∞c (Ω) and t > 0. We define w = φ + tη ∈ Lipφ(Ω). By

(54), we have∫
Ω
〈∇L(∇u),∇η〉 − F [u]η +

1
t

∫
Ω
〈∇L(∇u),∇(φ− u)〉 − F [u](φ− u) ≥ 0.

We now let t→ +∞. This gives∫
Ω
〈∇L(∇u),∇η〉 − F [u]η ≥ 0.

We then take w = φ− tη to obtain the opposite inequality. Finally, we have∫
Ω
〈∇L(∇u),∇η〉 − F [u]η = 0.
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We have thus proved that u is a solution of (E). This completes the proof
of Theorem 5.

�
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