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Abstract

We are interested in the location of the singularities of maps u ∈
W s,p(SN , S1) when 1 ≤ s, p and 1 < sp < 2. To this end, we consider
the distributional Jacobian. We show that the range of this opera-
tor on W s,p(SN , S1) is the closure in W s−2,p ∩W−1,sp of the set of
N − 2 currents defined as the integration on smooth oriented N − 2
dimensional boundaryless submanifolds.

1 Introduction

In this article, we are interested in the location of the singularities of maps u
defined on SN with values into S1. Assume first that u ∈ C∞(SN \A,S1)∩
W 1,1(SN , S1). When A is ‘small’ (i.e. of finite (N − 2) Hausdorff measure),
the set A can be recovered from u by computing the Jacobian of u. This
quantity has been introduced in [8] in the context of liquid cristals, and also
studied in [15] and [1]. It is defined as follows: let ω0 be the 1 form in R

2

given by
ω0(y) := y1dy2 − y2dy1.

Its restriction to the unit circle is exactly the standard volume form on S 1.
The pullback of ω0 by u is defined by

u]ω0 := u1du2 − u2du1 =: j(u).

This definition makes sense not only when u is smooth (that is when
A = ∅) but also when u belongs merely to W 1,1(SN , S1). In this case, the
Jacobian J(u) of u will be defined, in the distribution sense, as 1/2d(u]ω0),
that is:

〈J(u), ω〉 =
1

2
〈d(u]ω0), ω〉 := −

1

2
〈u]ω0, δω〉, ∀ω ∈ C∞(Λ2SN ).

Here, 〈., .〉 denotes the inner product between forms of the same degree and δ
is the formal adjoint of the differential operator d. Using the Hodge operator
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? (see precise definitions in section 2), the Jacobian of u can also be written
as:

〈J(u), ω〉 = −
1

2

∫

SN

(u]ω0) ∧ (?δω).

First, note that when u is smooth with values into S1 (that is when
A = ∅), the Jacobian J(u) is zero, since we have in local coordinates:

J(u) =
1

2
d(u1du2 − u2du1) =

1

2
(du1 ∧ du2 − du2 ∧ du1)

= du1 ∧ du2 =
∑

i<j

(u1xiu2xj − u1xju2xj )dxi ∧ dxj .

The rank of the tangent map Txu is at most 1, so that all the minors of
order 2 vanish. This shows that J(u) is zero when u is smooth.

Consider now the case when N = 2 and A is a nonempty finite set of
points. Then (see [8] and also [4]), we have:

?J(u) = π
∑

a∈A

deg (u, a)δa, (1)

where δa is the Dirac mass in a and deg (u, a) is the degree of the restriction
of u to a small well-oriented circle around a.

When N ≥ 3, there is an analogue of (1) provided A is a finite union
of N − 2 dimensional connected oriented boundaryless manifolds. Let C be
any small circle which links with such a manifold, say Γ. On C there is a
natural orientation which is consistent with the orientation of Γ. For any
u ∈ C∞(SN \ Γ, S1), we can define the degree of the restriction of u to C.
This degree is independent of the choice of C (see a more precise statement
in section 2) and we denote it by deg (u,Γ).

Then the value of J(u) is given by the following proposition (stated in
[1]):

Proposition 1 When A is a smooth oriented N −2 dimensional boundary-
less manifold (N ≥ 3), with connected components A1, ..., Ar , we have

?J(u) := π
r

∑

i=1

deg (u,Ai)

∫

Ai

· (2)

Here,

∫

Ai

· is the N − 2 current defined on the set of smooth forms of degree

N − 2 by: ζ 7→

∫

Ai

ζ and deg (u,Ai) is the degree of u around Ai.

Note that there exist topological obstructions on A and the degrees.
For instance, when N = 2, 〈J(u), 1〉 = 0 (by definition of J(u)) so that
∑

a∈A deg (u, a) = 0.
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The interest of J(u) is the possibility to identify a singular set A which is
still relevant for any map u ∈W 1,1(SN , S1). Indeed, let R0 be the following
set:

•N = 2 : R0 := {u ∈
⋂

1≤r<2

W 1,r(S2, S1);u is smooth outside

a finite set of points}

•N ≥ 3 : R0 := {u ∈
⋂

1≤r<2

W 1,r(SN , S1);u is smooth outside

a smooth oriented N − 2 dimensional boundaryless submanifold}.

The class R0 is dense in W 1,1(SN , S1) (see [2]). Furthermore, J is a
continuous map from W 1,1(SN , S1) into (W 1,∞(Λ2SN ))∗, the dual space of
Lipschitz forms of degree 2 on SN . Using these two results together, we get
(see [10] for the case N = 2 and [1] for N ≥ 3):

• N = 2, ?J(u) = π
∑

(δPi − δNi) with
∑

i d(Pi, Ni) ≤ C||du||L1(Λ1S2).
• N ≥ 3, ?J(u) = π∂S where S is anN−1 dimensional rectifiable current

(in the sense of [12]) whose mass ||S|| satisfies ||S|| ≤ C||du||L1(Λ1SN ).
There exists a converse to the previous properties (see [10] and [1]):
• N = 2, let T :=

∑

(δPi − δNi) with
∑

i d(Pi, Ni) < ∞. Then there
exists u ∈W 1,1(SN , S1) such that ?J(u) = πT.

• N ≥ 3, let T be the boundary of an N − 1 dimensional rectifiable
current with finite mass. Then there exists u ∈ W 1,1(SN , S1) such that
?J(u) = πT.

To see that J(u) does describe in some sense the singular set of u, the
following result, due to Bethuel, is relevant:

u ∈ C∞(SN , S1)
W 1,1

⇐⇒ J(u) = 0. (3)

The aim of this paper is twofold: we want to describe the range of J(u)
when u belongs to a fractional Sobolev space W s,p(SN , S1), and to generalise
(3) to this context.

Let us first note that C∞(SN , S1) is dense in W s,p(SN , S1) when sp <
1 (see [11]) or sp ≥ 2 (see [7] when N = 2 and [3] when N ≥ 3), and
thus there is no ‘good’ notion of singular set in that case. Hence, in the
following, we will assume that 1 ≤ sp < 2. If s ≥ 1, then W s,p(SN , S1) ⊂
W 1,1(SN , S1), so that J(u) is defined as above. In particular, it is still true
that ?J(u) is the boundary of a rectifiable current with codimension 1 and
finite mass. However, such a current is not in general the Jacobian of some
u ∈W s,p(SN , S1). A counterexample is given at the beginning of section 3.

Let E denote the set of N − 2 currents of the form:

•N = 2 : π

r
∑

i=1

(δBi − δCi) , r ∈ N, where Bi, Ci are points in S2,
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•N ≥ 3 : π

r
∑

i=1

∫

Ai

· , r ∈ N, where Ai is a smooth oriented connected

N − 2 dimensional boundaryless submanifold.
Our main result is the following:

Theorem 1 Let s ≥ 1, 1 ≤ p <∞, 1 < sp < 2.

a) If u belongs to W s,p(SN , S1), then ?J(u) belongs to the closure of E in
W s−2,p(ΛN−2SN ) ∩W−1,sp(ΛN−2SN ). Moreover, we have

||J(u)||W s−2,p(Λ2SN ) ≤ C||u||W s,p(SN ) , ||J(u)||W−1,sp(Λ2SN ) ≤ C||u||
1/s

W s,p(SN )
.

b) Conversely, if M belongs to the closure of E in W s−2,p(ΛN−2SN ) ∩
W−1,sp(ΛN−2SN ), then there exists u ∈W s,p(SN , S1) such that ?J(u) = M.
In addition, we may choose u such that

||u||W s,p(SN ) ≤ C(||M ||W s−2,p(ΛN−2SN ) + ||M ||sW−1,sp(ΛN−2SN ))

for some constant C ≥ 0.

To prove this theorem, we will use a density result:

Theorem 2 The set R := R0 ∩W
s,p(SN , S1) is dense in W s,p(SN , S1).

This answers an open problem raised in [6]. Theorem 2 was already known
for s = 1 (see [2]), and s < 1 (see [5], which generalizes previous results in
[21], [13]). Our result covers the remaining case 1 < s.

Finally, the analogue of (3) in the context of W s,p(SN , S1) spaces is

Theorem 3

u ∈ C∞(SN , S1)
W s,p(SN ,S1)

⇐⇒ J(u) = 0.

In the case when s < 1, the Jacobian can still be defined, but with
another formula (see [5]). The description of J(u) in that case remains
open. However, Theorem 3 still holds when N = 2 and s < 1 (see [20]).

The paper is organized as follows. In the next section, we describe the
notations and give the precise definitions used throughout the article. In
section 3, we prove Proposition 1 and the first part of Theorem 1. The proof
relies on the regularity theory for the Laplace-Beltrami operator (briefly
recalled in the last section) and the density of R (whose proof is postponed
to section 5). Section 4 is dedicated to the proof of the second part of
Theorem 1 and to the proof of Theorem 3.
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2 Definitions

The unit sphere SN is a smooth manifold of dimension N, embedded in
R

N+1, and it inheritates from R
N+1 its Riemannian structure and its orien-

tation (via its outer normal).
The Riemannian metric gives birth to an inner product on any tangent

space TxS
N to SN at x ∈ SN . We will denote it by (.|.) (without mentioning

the dependence on x). It can be extended to antisymetric multilinear forms
on TxS

N with the same notation. Then, we can define an inner product on
l forms (0 ≤ l ≤ N) as

〈α, β〉 :=

∫

SN

(αx|βx)dHN (x)

for any α, β ∈ C∞(ΛlSN ), that is the set of smooth l forms on SN . This
inner product will be extended to measurable forms as soon as x→ (αx|βx)
is an integrable function on SN .

We follow [12] for the definitions of the exterior differential d, the cod-
ifferential δ and the Hodge operator. In particular, the Hodge operator ?
is a map from the l forms onto the N − l forms (0 ≤ l ≤ N) such that if
(e1, ..., eN ) is an oriented orthonormal basis on TxS

N , then

?eα = σ(α, ᾱ)eᾱ

where α = (α1 < ... < αl), eα = eα1 ∧ ... ∧ eαl
, ᾱ is the complement of

α in [|1, N |] in the natural increasing order and σ(α, ᾱ) is the sign of the
permutation which reorders (α, ᾱ) in the natural increasing order. Then

?? = (−1)l(N−l)

on l forms. We will use the fact that:

〈α, β〉 =

∫

SN

α ∧ (?β) , ∀α, β ∈ C∞(ΛlSN ).

The codifferential operator δ maps the smooth l forms C∞(ΛlSN ) into
the smooth l−1 forms C∞(Λl−1SN ). It is the formal adjoint of the differential
operator d, that is:

〈δα, β〉 = −〈α, dβ〉, ∀α ∈ C∞(ΛlSN ), β ∈ C∞(Λl−1SN ).

The following property will be often used:

δ = (−1)N(l+1) ? d ? .

The Laplace-Beltrami operator on C∞(ΛlSN ) is

∆ := dδ + δd.
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We need to define the degree of u around a smooth oriented connected
N − 2 dimensional boundaryless submanifold, say Γ. Fix x0 ∈ Γ. There
exists a connected neighborhood U of x0 in Γ and two smooth vector fields
v1, v2 on SN such that (v1(x), v2(x)) is an orthonormal basis of (TxΓ)⊥

for any x ∈ U (actually, this property could be assumed on the whole Γ
since the normal bundle of an N − 2 dimensional oriented boundaryless
submanifold is trivial, see [16]). We may assume that (v1(x), v2(x)) is ‘well-
oriented’, i.e. that, when (e1, .., eN−2) is a well-oriented basis of TxΓ, then
(e1, .., eN−2, v1(x), v2(x)) is a well-oriented basis of TxS

N .
There exists η > 0 such that the endpoint e(x, t1, t2) of the geodesic

segment of length r := (t21 + t2
2)1/2 which starts at x with the initial velocity

vector (t1/r)v1(x)+(t2/r)v2(x) is well defined for any r < η. Then, the map

e : (x, t1, t2) ∈ U ×BR2(0, η) 7→ e(x, t1, t2)

is a diffeomorphism from U ×BR2(0, η) onto a neighborhood Uη of U in SN

(see the Product Neighborhood Theorem, [18]). Now, for any x ∈ U, we can
define the circle C(x, r) centered in x and of radius r < η as the set

C(x, r) := {e(x, r cos θ, r sin θ) : θ ∈ [0, 2π]}.

We define the degree of u on C(x, r) as the degree of the map v : S1 →
S1, v(cos θ, sin θ) := u(e(x, r cos θ, r sin θ)). Note that the parametrization
θ 7→ e(e, r cos θ, r sin θ) defines an orientation on C(x, r), and that the degree
of u on C(x, r) is precisely the degree of u with respect to this orientation.

We next check that this degree does not depend on x and on small
r > 0. Let (x, r), (x′, r′) ∈ U × [0, η). We want to show that there exists
an orientation preserving homotopy which maps continuously C(x, r) onto
C(x′, r′). Since Γ is connected, there exists a continuous map l : [0, 1] → Γ
such that l(0) = x and l(1) = x′. Then, we define:

H : (t, θ) ∈ [0, 1] × [0, 2π] → e(l(t), [(1 − t)r + tr ′] cos θ, [(1 − t)r + tr′] sin θ).

The map H is the desired homotopy. By connectedness, it does make sense
to define the degree deg (u,Γ) of u as the degree of u restricted to C(x, r)
for any x ∈ Γ and any r sufficently small.

Let (U ′
i , V

′
i , φi)i∈{1,2} be an oriented atlas of SN and Ui ⊂ U i ⊂ U ′

i be

open sets such that U1 ∪ U2 = SN . We denote Vi := φi(Ui). Let (θi)i∈{1,2}

be a partition of unity subordinate to the covering (Ui)i∈{1,2}. We will also

introduce ψi = φ−1
i . We will denote by

gjk(x) := (
∂

∂xj
|
∂

∂xk
)

the coefficients of the metric tensor of g (in local coordinates (x1, ..., xN ) :=
φi) and (gjk(x)) = (gjk(x))

−1. By continuity and compacity, there exists
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C > 0 such that

||dxφi|| ≤ C, ||dyψi|| ≤ C,
1

C
|η|2 ≤

∑

j,k

gjk(x)ηjηk ≤ C|η|2

for any i = 1, 2, x ∈ Ui, y ∈ Vi, η = (η1, ..., ηN ) ∈ RN .
The space of l currents is the topological dual of the space of l forms:

C∞(ΛlSN ), the latter being equipped with the usual topology, see [23]. It
will be denoted by D′(ΛlSN ). Any integrable l form α ∈ L1(ΛlSN ) defines
an l current by:

〈Tα, β〉 :=

∫

SN

(αx|βx)dHN (x) , ∀β ∈ C∞(ΛlSN ). (4)

In the following, we will identify α and Tα. This identification is a guideline
to define several operations on currents. For instance,

〈?T, ω〉 = (−1)l(N−l)〈T, ?ω〉

for any ω ∈ C∞(ΛlSN ). The exterior differential d as well as the codifferen-
tial δ are defined by duality on D′(ΛlSN ).

The multiplication of a distribution on l forms T ∈ D ′(Λl(M)) and a
smooth function θ is defined as:

〈θT, α〉 := 〈T, θα〉, ∀α ∈ C∞(ΛlSN ).

The pushing forward of a distribution T ∈ D ′(Λl(SN )) compactly sup-
ported in some Ui by the smooth diffeomormphism φi : Ui → Vi is defined
by

〈φi]T, α〉 = 〈?T, φ]
i(?0α)〉, ∀α ∈ C∞(ΛlVi),

where ?0 is the Hodge operator in R
N (endowed with the Euclidean metric)

and φ]
i(?0α) denotes the pullback of ?0α by φi.

To justify this definition, note that if T = Tω were defined by an inte-
grable l form ω, as in (4), then we would set φi]Tω := Tφi]ω, that is for any

α ∈ C∞(ΛlVi):

〈φi]Tω, α〉 =

∫

Vi

(φi]ω|α)0 =

∫

Vi

(φi]ω) ∧ (?0α)

=

∫

Ui

φ]
i{(φi]ω) ∧ (?0α)} =

∫

Ui

ω ∧ φ]
i(?0α) = 〈?Tω, φ

]
i(?0α)〉.

(In the first line, we have denoted by (·|·)0 the Euclidean inner product on
R

N ).
Note also that since φi]T is compactly supported in Vi (its support being

included in φi(suppT )), we can consider it as an element of D ′(Λl
R

N ).
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The multiplication of a distribution by an element of the partition of
unity is called localization. The pushing forward of a distribution by φi is
called rectification. Finally, when a distribution is compactly supported in
an open set V ⊂ R

N , we will automatically identify it with a distribution
on R

N , in the usual way. This procedure corresponds to the one described
in the case of 0 forms in [26].

Several spaces of functions, of forms, of distributions on forms appear in
the statement of the theorems or in the proofs below. Sobolev spaces on l
forms (0 ≤ l ≤ N) W k,p(ΛlSN ), k ∈ N, p ≥ 1 are defined as in [19], Chapter
7 (or [12]), that is via charts defining an atlas on SN . In [24], one can find an
intrinsic definition of Sobolev spaces on forms (that is without references to
local charts), which turns out to be rather convenient. When 1 < p <∞ and
k ∈ N

∗, we define W−k,p(ΛlSN ) := (W k,p′(ΛlSN ))∗, where p′ = p/(p − 1).
Besov spaces of functions and of distributions on the boundary of an open
set (which is the case of SN ) are defined in [26], and some properties of these
sets are studied there. We will denote them Bs

p,q(S
N ), s ∈ R, p, q ≥ 1. The

corresponding definitions for p forms and distributions on p forms (which
could be called Besov currents) remain to be given, thanks to a localization-
rectification procedure.

Let A(RN ) be a vector subspace of D′(RN ), equipped with a norm
||.||A(RN ). We make two hypotheses on A(RN ) : the multiplication prop-
erty and the diffeomorphism property. The multiplication property re-
quires that for any u ∈ A(RN ) and any θ ∈ C∞

c (RN ), θu ∈ A(RN ) with
||θu||A(RN ) ≤ C(θ)||u||A(RN ). The diffeomorphism property requires that for

any u ∈ A(RN ) compactly supported in some open set V and for any diffeo-
morphism φ between two open sets U and V in R

N , the distribution u ◦ φ
belongs to A(RN ) and satisfies ||u ◦ φ||A(RN ) ≤ C(φ)||u||A(RN ).

Now, it is possible to define A(Λl
R

N ) as the product of l copies of A(RN ),
endowed with the product topology (and a norm defining it). This definition
follows the definition of D′(Λl

R
N ), the set of distributions on l forms, which

can be identified with the product of l copies of D ′(RN ). Then A(Λl
R

N )
still satisfies the multiplication property and the diffeomorphism property
(where the multiplication and the composition are now understood in the
sense of l currents D′(Λl

R
N ), exactly as we have done above in the case of

SN ).
Finally, we define A(ΛlSN ) as the set of those elements T in D′(ΛlSN )

such that for i = 1, 2, φi](θiT ) ∈ A(Λl
R

N ). (Recall that φi](θiT ) is extended
by 0 on R

N \ Vi). A norm on A(ΛlSN ) is then given by

∑

i

||φi](θiT )||A(ΛlRN )).

Different atlases and partitions of unity yield equivalent norms.
The Besov spaces Bs

p,q(R
N ) (see [26]) satisfy the multiplication property
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and the diffeomorphism property, so that we can define Bs
p,q(Λ

lSN ), the

Besov space of l forms on SN .
Among the Besov spaces, only the fractional Sobolev spaces and their du-

als will be of interest to us. When s is not an integer, we set W s,p(ΛlSN ) :=
Bs

p,p(Λ
lSN ).

For the following, it is also convenient to have intrinsic definitions of
W s,p(SN ) when s ∈]1, 2[. We can see that u ∈ W s,p(SN ) if and only if
u ∈W 1,p(SN ) and Dσ,pdu ∈ Lp(SN ) where σ := s− 1 and

Dσ,pα(x) := {

∫

SN

|αx − αy|
p

d(x, y)N+σp
dy}1/p ∀α ∈ Lp(Λ1SN ),

with |αx − αy| defined by

|αx − αy| :=
∑

i:x,y∈Ui

|αx − αy|i (5)

and if x, y ∈ Ui,

|αx − αy|i =

N
∑

k=1

|αk(x) − αk(y)|

where α =:
∑

k α
kdxk in the local coordinates (x1, ..., xN ) := φi on Ui. Then,

for any α ∈W σ,p(Λ1SN ), we define

||α||W σ,p(Λ1SN ) := ||α||Lp(Λ1SN ) + ||Dσ,pdu||Lp(SN ).

Now, a norm on W s,p(SN ) is given by

||u||W s,p(SN ) := ||u||Lp(SN ) + ||du||W σ,p(Λ1SN ).

We will also use the notation Dσ,p for functions u ∈ Lp(SN ):

Dσ,pu(x) := {

∫

SN

|u(x) − u(y)|p

d(x, y)N+σp
dy}1/p

or for 1 forms with values into some R
d (if α := (α1, .., αd), the quantity

|αx − αy| becomes
∑

i:x,y∈Ui

N
∑

k=1

d
∑

j=1

|αk
j (x) − αk

j (y)|i).

The following remarks will be useful: The operator d is a bounded linear
operator from W s,p(ΛlSN ) into W s−1,p(Λl+1SN ), for 1 < p < ∞, s ∈ Z

or 1 ≤ p < ∞, s /∈ Z. The multiplication property implies that if T ∈
W s,p(ΛlSN ) and θ ∈ C∞(SN ), then θT ∈ W s,p(ΛlSN ). Any embedding
between two Besov spaces on R

N has its counterpart for Besov currents on
SN .
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3 Proof of Theorem 1, first part

In this section, we want to prove Theorem 1 a). First, we are going to justify
its interest by presenting an example of some T ∈ ?J(W 1,1(SN , S1)) which
does not belong to ?J(W s,p(SN , S1)). We consider the case s = 1, p ∈]1, 2[
and N = 2. In that case, we know that

?J(W 1,1(S2, S1)) := {π
∑

i

(δPi − δNi) :
∑

i

d(Pi, Ni) <∞}.

Moreover, it is easy to see that J(W 1,p(S2, S1)) ⊂W−1,p(Λ2S2) (see details
below).

Let di := 1/i1/α where α ∈]1 − 1/p′, 1[. Let Ni := (
√

1 − d2
i , 0, di) and

Pi := (
√

1 − 4d2
i , 0, 2di). Set T :=

∑

i

(δPi − δNi). For any n ≥ 1, we define

un(x, y, z) = zα if z > 1/n and 1/nα elsewhere. Then, un is Lipschitz on
S2. The sequence (||un||W 1,p′ (S2))n is bounded (here, we use (1 − α)p′ <

1). Hence, if T were in W−1,p(S2), then the sequence (|T (un)|)n would be
bounded too. We now show that this is not the case.

First, we note that if 0 < z1 < z2, then

zα
2 − zα

1 ≥ α(z2 − z1)
α(
z2 − z1
z2

)1−α.

This implies that, if di ≥ 1/n, then

un(Pi) − un(Ni) ≥ α2α−1dα
i ,

so that
T (un) ≥ α2α−1

∑

i:di≥1/n

dα
i = α2α−1

∑

i≤nα

1/i.

The right side goes to +∞, as claimed. This completes the proof of the fact
that J(W 1,p(S2, S1)) is strictly contained in J(W 1,1(S2, S1)).

To prove Theorem 1, we will first calculate J on the set R (Proposi-
tion 1): the result is well known but to our knowledge, no proof has been
published yet. Then, we will show that J is continuous from W s,p(SN , S1)
into W s−2,p(Λ2SN ) ∩W−1,sp(Λ2SN ). Finally, we will use the density of R
into W s,p(SN , S1) (the proof of which is postponed to section 6) to get the
result.

Proof of Proposition 1. In the case when N = 2, a proof can be found in
[4]. Hence, we restrict our attention to the case N ≥ 3. Let Γ be a smooth
oriented N − 2 dimensional boundaryless submanifold of SN . Let u be a
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smooth map on SN \Γ, and we assume that u belongs to W 1,1(SN , S1). We
want to prove that:

〈J(u), ζ〉 = π
r

∑

i=1

deg (u,Γi)

∫

Γi

?ζ , ∀ζ ∈ C∞(Λ2SN ), (6)

where Γ1, ..,Γr are the connected components of Γ. As stated in section 2,
there exist two smooth vector fields v1, v2 on SN such that (v1(x), v2(x)) is
an orthonormal basis of (TxΓ)⊥ for any x ∈ Γ. In addition, we may assume
that (v1, v2) is well-oriented. There exists η > 0 such that the endpoint
e(x, t1, t2) of the geodesic segment of length r := (t21 + t2

2)1/2 which starts
at x with the initial velocity vector (t1/r)v1(x) + (t2/r)v2(x) is well defined
for any r < η and the map

e : (x, t1, t2) ∈ Γ ×BR2(0, η) 7→ e(x, t1, t2)

is a diffeomorphism from Γ ×BR2(0, η) onto a neighborhood ∆η of Γ. Each
point x ∈ Γ belongs to the domain U of a well-oriented chart φ0 : U ⊂
SN → V ⊂ R

N which satisfies:

φ0(U ∩ Γ) = V ∩ (RN−2 × {(0, 0)}).

We can assume that U ⊂ ∆η. We define:

φ : x ∈ U 7→ (φ0(x
′), t1, t2) ∈ R

N−2 ×BR2(0, η)

where x′ ∈ Γ, (t1, t2) ∈ BR2(0, η) are defined by e(x′, t1, t2) = x. Then φ is
still a diffeomorphism from U onto φ(U) and we can assume (by shrinking
U if necessary) that V has the form ] − σ, σ[N . The interest of this modi-
fication is that φ−1 maps the circle C(φ(x′), r) := {(φ(x′), r cos θ, r sin θ) :
θ ∈ [0, 2π]} onto the circle in SN : {e(x′, r cos θ, r sin θ) : θ ∈ [0, 2π]}. This
remark will be useful below.

Let ζ ∈ C∞(Λ2SN ). Using a partition of unity, we may assume that ζ is
compactly supported in the domain U of a chart φ of the type above.

In particular, supp ζ intersects only one connected component of Γ, say
Γ1. Let us introduce some notations. We will decompose any x ∈ R

N as
x = (x′, y, z) ∈ R

N−2 × R × R. For small ε > 0 and δ ∈]0, π/2[, we define:

∆ε := φ−1({(x′, y, z) ∈ V : |(y, z)| < ε}),

Σε := φ−1({(x′, y, z) ∈ V : |(y, z)| = ε}),

Σε,δ := φ−1({(x′, ε cos θ, ε sin θ) ∈ V : θ ∈]δ, 2π − δ[}),

A := φ−1({(x′, y, z) ∈ V : z = 0, y ≥ 0}).
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The set U0 := U \ A is simply connected (since it is homeomorphic to a
star-shaped open set in R

N ). The map u is smooth on U0 and takes its
values into S1. So, there exists some smooth function κ : U0 → R such that

u = (cos κ, sin κ) on U0.

Moreover, |∇κ| = |∇u|, so that κ is Lipschitz continuous on U0∩Σε, its Lips-
chitz constant depending only on ε. This implies that κ◦φ−1(x′, ε cos δ, ε sin δ)
has a limit κ ◦ φ−1(x′, ε, 0+) when δ → 0+, the convergence being uniform
with respect to x′ ∈] − σ, σ[N−2. Similarly, κ ◦ φ−1(x′, ε cos δ, ε sin δ) con-
verges to κ ◦ φ−1(x′, ε, 2π−) when δ → 2π−, uniformly with respect to x′.
Furthermore, the quantity κ ◦ φ−1(x′, ε, 2π−) − κ ◦ φ−1(x′, ε, 0+) is exactly
2πdeg (u,Γ1) since

φ−1({(x′, ε cos θ, ε sin θ) : θ ∈ [0, 2π]})

is the circle perpendicular to Γ1 at x with radius ε. The definition of the
Jacobian and the dominated convergence theorem imply that:

〈J(u), ζ〉 = lim
ε→0

1

2

∫

SN\∆ε

j(u) ∧ (d ? ζ) = lim
ε→0

1

2

∫

U\∆ε

j(u) ∧ (d ? ζ).

Using the formula d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ for two forms α, β,
we have:

∫

U\∆ε

j(u) ∧ (d ? ζ) = −

∫

U\∆ε

d(j(u) ∧ (?ζ)) +

∫

U\∆ε

d(j(u)) ∧ (?ζ)

=

∫

∂(U\∆ε)
j(u) ∧ (?ζ).

The second line follows from the Stokes’ formula and the fact that d(j(u)) =
0 pointwise on U \ ∆ε.

On U0, we have j(u) = dκ. Whence (note that Σε,0 = ∂∆ε \A),

∫

∂(U\∆ε)
j(u) ∧ (?ζ) = lim

δ→0

∫

Σε,δ

dκ ∧ (?ζ).

Write once again:
∫

Σε,δ

dκ ∧ (?ζ) =

∫

Σε,δ

d(κ(?ζ)) −

∫

Σε,δ

κd(?ζ)

=

∫

∂Σε,δ

κ(?ζ) −

∫

Σε,δ

κd(?ζ).

We have:
∫

∂Σε,δ

κ(?ζ) =

∫

Sε,δ

κ(?ζ) +

∫

Sε,2π−δ

κ(?ζ),
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where
Sε,δ := φ−1({(x′, ε cos δ, ε sin δ) ∈ V })

is oriented by Σε,δ. Let us write explicitly the first quantity

∫

Sε,δ

κ(?ζ):

−

∫

]−σ,σ[N−2

κ ◦ φ−1(x′, ε cos δ, ε sin δ)φ](?ζ)(x
′, ε cos δ, ε sin δ) dx′.

As explained above, the quantity under the sign

∫

converges uniformly with

respect to x′ ∈] − σ, σ[N−2 when δ → 0 (and ε is fixed) to

κ ◦ φ−1(x′, ε, 0+)φ](?ζ)(x
′, ε, 0).

So, we have:

lim
δ→0

∫

∂Σε,δ

κ(?ζ) =

∫

]−σ,σ[N−2

φ](?ζ)(x
′, ε, 0)(κ(x′, ε, 2π−) − κ(x′, ε, 0+)) dx′

= 2πdeg (u,Γ1)

∫

]−σ,σ[N−2

φ](?ζ)(x
′, ε, 0) dx′.

Before letting ε go to 0, it remains to estimate

∫

Σε,δ

κd(?ζ).

This quantity is not greater than ||dζ||L∞(U)||κ||L1(Σε), and

||κ||L1(Σε) ≤ C

∫

]−σ,σ[N−2

dx′
∫ 2π

0
εκ ◦ φ−1(x′, ε cos θ, ε sin θ)d θ.

We claim that this last quantity goes to 0. Let us admit this claim for a
moment and complete the proof. We have

∫

∂(U\∆ε)
j(u) ∧ (?ζ) = 2πdeg (u,Γ1)

∫

]−σ,σ[N−2

φ](?ζ)(x
′, ε, 0) dx′ + o(1).

When ε goes to 0, we obtain:

〈J(u), ζ〉 = πdeg (u,Γ1)

∫

]−σ,σ[N−2

φ](?ζ)(x
′, 0, 0) dx′

= πdeg (u,Γ1)

∫

Γ1

?ζ,

which was required.
Let us now prove the claim. It amounts to proving the following result.
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Lemma 1 Let v ∈ W 1,1(RN ). Let Ξε := {(x′, y, z) : |(y, z)| = ε}. Then,
||v||L1(Ξε) goes to 0 when ε goes to 0.

Proof: Let Zε := {(x′, y, z) : |(y, z)| < ε}. The Stokes’ formula implies (with
ν the outing unit normal to Ξε):

∫

Ξε

|v| =

∫

Ξε

|v|ν.ν =

∫

Zε

div (|v|ν) =

∫

Zε

|v|div ν + ∇|v|.ν

=

∫

Zε

|v|

(y2 + z2)1/2
+ ∇|v|.ν ≤

∫

Zε

|v|

(y2 + z2)1/2
+ |∇v|.

So, it is enough to show that |v|/(y2 + z2)1/2 is summable on Z1. This
follows from the above computation with ε = 1. This completes the proof of
Proposition 1.

�

We now show the following:

Proposition 2 The operator J is continuous from W s,p(SN , S1) into

W s−2,p(SN ) ∩W−1,sp(SN ).

This proposition relies on the multiplication properties of the fractional
Sobolev spaces. To show some of them, we will have a frequent use of
the following lemma (where σ := s− 1 ∈]0, 1[).

Lemma 2 ([17]) Let w ∈W 1,p(SN ). Then there exists some constant C ≥ 0
such that for almost every x ∈ SN , we have

Dσ,pw(x) ≤ C(M|w −w(x)|p(x))(1−σ)/p(M|dw|p(x))σ/p.

Here, M denotes the maximal function

M|dw|p(x) = sup
r>0

1

|B(x, r)|

∫

B(x,r)
|dw|p(y) dy.

Corollary 1 There exists C > 0 such that:
a) For any w ∈W 1,sp(SN , BR2(0, 3)) and z ∈ Lsp(SN ), we have:

||zDσ,pw||Lp(SN ) ≤ C||z||Lsp(SN )||dw||
σ
Lsp(Λ1SN ).

b) For any w ∈W 1,sp(SN , BR2(0, 3)) and α ∈ Lsp(Λ1SN )∩W σ,p(Λ1SN ), we
have:

||wα||W σ,p(Λ1SN ) ≤ ||wα||Lp(Λ1SN ) + ||α||Lsp(Λ1SN )||Dσ,pw||Lsp/σ(SN )

+||wDσ,pα||Lp(SN )

≤ C||α||W σ,p(Λ1SN ) + C||α||Lsp(Λ1SN )||dw||
σ
Lsp(Λ1SN ).
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c) For any w ∈W s,p(SN , BR2(0, 3)) and α ∈ Lsp(Λ1SN ) ∩W σ,p(Λ1SN ), we
have:

||wα||W σ,p(Λ1SN ) ≤ C||α||W σ,p(Λ1SN ) + C||α||Lsp(Λ1SN )||w||
σ/s

W s,p(SN )
.

Proof: Part a) follows from Hölder’s inequality and the boundedness of M
on Ls:

||zDσ,pw||Lp(SN ) ≤ ||z||Lsp(SN )||Dσ,pw||Ls′p(SN ) , with s′ = s/(s− 1)

≤ C||z||Lsp(SN )||w||
1−σ
L∞(SN )

||M|dw|p||
σ/p

Ls(SN )

≤ C||z||Lsp(SN )||dw||
σ
Lsp(Λ1SN ).

We now prove part b).

||wα||W σ,p(Λ1SN ) ≤ ||wα||Lp(Λ1SN ) + ||Dσ,p(wα)||Lp(SN )

≤ ||wα||Lp(Λ1SN ) + |||α|Dσ,pw||Lp(SN ) + ||wDσ,pα||Lp(SN )

≤ ||wα||Lp(Λ1SN ) + ||α||Lsp(Λ1SN )||Dσ,pw||Ls′p(SN ) + ||wDσ,pα||Lp(SN )

≤ ||w||L∞(SN )||α||W σ,p(Λ1SN ) + C||α||Lsp(Λ1SN )||dw||
σ
Lsp(Λ1SN )

(this is the same calculation as in part a).
Part c) follows from part a) thanks to the inequality:

||u||W 1,sp(SN ) ≤ C||u||
1/s

W s,p(SN )
||u||

1−1/s

L∞(SN )
. (7)

(see [22], Theorem 2.2.5). This completes the proof of the corollary.
�

Let u = (u1, u2) ∈W s,p(SN , S1). Then du2 ∈W σ,p(Λ1SN )∩Lsp(Λ1SN ).
Corollary 1 c) shows that u1du2 ∈ Lsp(Λ1SN )∩W σ,p(Λ1SN ). Hence, j(u) lies
in this space so that finally, J(u) = dj(u) ∈W−1,sp(Λ2SN )∩W s−2,p(Λ2SN ).

If a sequence (un) converges in W s,p(SN , S1) to some u, let us prove that
J(un) converges to J(u) in W−1,sp(Λ2SN ) and in W s−2,p(Λ2SN ).

First, we show that u]
nω0 converges to u]ω0 in Lsp(Λ1SN ). This will imply

the convergence of J(un) to J(u) inW−1,sp(Λ2SN ) since d is continuous from
Lsp(Λ1SN ) into W−1,sp(Λ2SN ). Now,

||u1
ndu

2
n−u

1du2||Lsp(Λ1SN ) ≤ ||(u1
n−u

1)du2
n||Lsp(Λ1SN )+||du2

n−du
2||Lsp(Λ1SN )

since |u| = 1. The second term goes to 0 because of the continuous em-
bedding W s,p(Λ1SN , S1) ⊂ W 1,sp(Λ1SN , S1). Up to a subsequence, we can
assert the existence of a k ∈ L1(SN ) such that |dun|

sp ≤ k almost every-
where, and the convergence almost everywhere of u1

n to u1. The dominated
convergence theorem implies that for this subsequence, the first term in the
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right hand side goes to 0. Actually, this argument is valid for any subse-
quence of the original sequence un, that is, from any subsequence of the
sequence ||(u1

n −u
1)du2

n||Lsp(Λ1SN ), we can extract a subsequence which con-
verges to 0. This shows that the whole original sequence goes to 0. Similarly,
||u2

ndu
1
n − u2du1||Lsp(Λ1SN ) converges to 0. So J(un) converges to J(u) in

W−1,sp(Λ2SN ).

We have now to prove that u]
nω0 converges to u]ω0 in W σ,p(Λ1SN ) (this

will imply the convergence of J(un) to J(u) in W s−2,p(Λ2SN )). Thanks to
Corollary 1 a) and c), we have:

||u1
ndu

2
n − u1du2||W σ,p(Λ1SN ) ≤ ||(u1

n − u1)du2||W σ,p(Λ1SN )

+||u1
n(du2

n − du2)||W σ,p(Λ1SN )

≤ ||(u1
n − u1)Dσ,p(du

2)||Lp(SN ) + |||du2|Dσ,p(u
1
n − u1)||Lp(SN )

+||u1
n(du2

n − du2)||W σ,p(Λ1SN ) + ||(u1
n − u1)du2||Lp(Λ1SN )

≤ ||(u1
n − u1)Dσ,p(du

2)||Lp(SN ) + C||du2||Lsp(Λ1SN )||du
1
n − du1||σLsp(Λ1SN )

+C||du2
n − du2||W σ,p(Λ1SN ) +C||du2

n − du2||Lsp(Λ1SN )||u
1
n||

σ/s

W s,p(SN )

+||(u1
n − u1)du2||Lp(Λ1SN ).

The right hand side goes to 0 (use the dominated convergence theorem for
the terms ||(u1

n − u1)Dσ,p(du2)||Lp(SN ) and ||(u1
n − u1)du2||Lp(Λ1SN )).

This completes the proof of the continuity of J, which implies Theorem
1 a, in view of the calculation of J on R (at the beginning of this section)
and the density of R (see section 5).

�

4 Proof of Theorem 1, part 2

The second part of Theorem 1 is a consequence of the following lemma:

Lemma 3 Let Γ be a smooth oriented (N − 2) dimensional boundaryless
submanifold of SN , N ≥ 3. Let Γ1, ..,Γr be its connected components and
a1, .., ar be integers. We define the 2 current T as:

〈T, ω〉 :=
r

∑

i=1

ai

∫

Γi

?ω, ∀ω ∈ C∞(Λ2SN ). (8)

Then there exists u ∈ C∞(SN \ Γ, S1) ∩W s,p(SN , S1) such that

J(u) = πT.
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Moreover, we may choose u such that

||u||W s,p(SN ) ≤ C(||T ||sW−1,sp(Λ2SN ) + ||T ||W s−2,p(Λ2SN )) (9)

for some C > 0 independent of Γ and of the ai’s.

Remark 1 We have stated the lemma for the case N ≥ 3. A similar state-
ment holds for N = 2, with Γ := {A1, .., Ar} ⊂ SN , a1, .., ar ∈ Z such that

r
∑

i=1

ai = 0 and 〈T, ω〉 :=
∑r

i=1 ai ? ω(Ai). With minor modifications, our

proof applies also to the case N = 2. We treat below only the case N ≥ 3.

Note that (9) is meaningful, since T belongs to both W −1,sp(Λ2SN ) and
W s−2,p(Λ2SN ). Indeed, for any α ∈ W 1,q(Λ2SN ) ∩ W 2−s,p′(Λ2SN ) (with
q = sp/(sp− 1) and p′ = p/(p− 1)), we have (as a consequence of the trace
theory and the fact that q > 2 and 2 − s− 2/p′ > 0):

|

∫

Γ
?α| ≤ C|| ? α||L1(ΛN−2Γ) ≤ C|| ? α||W 1−2/q,q(ΛN−2Γ) ≤ C||α||W 1,q(Λ2SN )

and |

∫

Γ
?α| ≤ C|| ? α||L1(ΛN−2Γ) ≤ C|| ? α||W 2−s−2/p′ ,p′(ΛN−2Γ)

≤ C||α||W 2−s,p′ (Λ2SN ).

We admit Lemma 3 for an instant and we prove Theorem 1 b). Let T
be in the closure of the set of 2 currents ?E associated to a smooth con-
nected N − 2 dimensional boundaryless submanifold as in (8). Then, there
exists a sequence (Tn)n∈N satisfying the hypotheses of the lemma, converg-
ing in W−1,sp(Λ2SN ) ∩W s−2,p(Λ2SN ) to T. The above lemma implies the
existence of a sequence (un)n∈N, such that J(un) = Tn and satisfying (9)
with T replaced by Tn. The sequence (un) is bounded in W s,p(SN , S1) ⊂
W 1,sp(SN , S1). Then, up to a subsequence, we can assume that (un) con-
verges a.e. to some u ∈ W 1,sp(SN , S1), and since |un| ≤ 1 a.e., the dom-
inated convergence theorem shows that (un)n∈N converges to u in Lq. We
can also assume that (dun)n∈N weakly converges to du in Lsp(Λ1SN ). Thus
(J(un))n∈N converges in D′(Λ2SN ) to J(u). Hence J(u) = πT and u satisfies
(9).

Proof of Lemma 3: Let M := SN \ Γ. Then M is a smooth open subset
of SN .

step 1: We first introduce v ∈W 1,sp(ΛN−2SN )∩W s,p(ΛN−2SN ) such that
δdv = ?T = γ where γ denotes the N − 2 current

〈γ, α〉 =
∑

i

ai

∫

Γi

α , ∀α ∈ C∞(ΛN−2SN ).
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Such a v exists. Indeed, Γ has no boundary, so that in the sense of
distributions δγ = 0. This implies that γ vanishes on closed forms and thus
on harmonic fields. Hence, denoting by v := G(γ), (where G is the Green
operator, see section 6), we have γ = δdv + dδv = δdv since 0 = G(δγ) =
δG(γ) = δv. Moreover, as a consequence of the properties of the Green
operator, the following estimates hold: there exists C ≥ 0 such that:

||v||W s,p(ΛN−2SN ) ≤ C||γ||W s−2,p(ΛN−2SN ) ≤ C||T ||W s−2,p(Λ2SN )

||v||W 1,sp(ΛN−2SN ) ≤ C||γ||W−1,sp(ΛN−2SN ) ≤ C||T ||W−1,sp(Λ2SN ).

Note that v is a measurable function, which is harmonic on M, and in
particular smooth.

step 2: There exists an N − 1 current A such that δA = γ; moreover, we
may assume that for each i, there exists an N −1 dimensional rectifiable set
Ai and a measurable N − 1 form τi satisfying |τi| = 1 a.e. such that

〈A,ω〉 :=
∑

i

ai

∫

Ai

(ω|τi) dH
N−1 , ∀ω ∈ C∞(ΛN−1SN ).

Here, we use the fact that every rectifiable current in R
N with finite mass,

bounded support and no boundary is the boundary of an integrable current
with finite mass (see [1], Remark 2.6.).

We consider the 1 current ?A defined by

〈?A, α〉 := (−1)N−1〈A, ?α〉, ∀α ∈ C∞(Λ1SN )

and set
C := ?dv − ?A.

We note that dC := d ? (dv − A) = (−1)N−2 ? δ(dv − A) = ?(γ − γ) = 0.
Then, thanks to a BV version of the Poincaré Lemma on manifolds (see
Lemma 4 below), there exists some φ ∈ BV (SN ) such that (in the sense of
distributions)

dφ = C.

Lemma 4 Let C be a 1 current on SN such that dC = 0. We suppose that
C is associated to a Radon measure on SN , which means that

sup〈C,α〉 < +∞

where the supremum is taken over all α ∈ C∞(Λ1SN ) satisfying

||α||L∞(Λ1SN ) ≤ 1.

Then there exists φ ∈ BV (SN ) such that dφ = C (in the sense of distribu-
tions).
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Proof: As usual, we regularize C, we apply the classical Poincaré Lemma to
this smooth C and we then pass to the limit. We recall the following

Lemma 5 ([25]) For any p current D associated to a Radon measure on
SN and any ε > 0, there exists ωε ∈ C∞(ΛN−pSN ) such that Rε(D) defined
by

〈Rε(D), α〉 =

∫

SN

ωε ∧ α , ∀α ∈ C∞(ΛpSN )

satisfies:
i) M(Rε(D)) ≤ (1 + ε)M(D) where M(D) := sup〈D,α〉 over the α ∈
C∞(ΛpSN ) satisfying ||α||L∞(ΛpSN ) ≤ 1,
ii) if δD = 0 then δRε(D) = 0,
iii) Rε(D) → D in D′(ΛpSN ) when ε→ 0.

Let βε ∈ C∞(ΛN−1SN ) be such that

〈Rε(?C), α〉 =

∫

SN

(βε|α)dHN , ∀α ∈ C∞(ΛN−1SN ).

Put it otherwise, βε is defined by (−1)N−1 ? βε := ωε where ωε is the 1 form
appearing in the statement of Lemma 5 for D := ?C. Since dC = 0, we have
δβε = 0. Hence, by the classical version of the Poincaré Lemma, there exists a

smooth function φε : SN → R such that

∫

SN

φε = 0 and dφε = (−1)N−1 ?βε.

Then, using the Poincaré Sobolev inequality for W 1,1 functions,

||φε||L1(SN ) ≤ c ||dφε||L1(Λ1SN )

≤ c sup
||h||

L∞(Λ1SN )
≤1
〈dφε, h〉 ≤ c sup

||α||
L∞(ΛN−1SN )

≤1
〈βε, α〉

≤ c(1 + ε) sup
||h||

L∞(Λ1SN )
≤1
〈C, h〉.

Hence, the sequence (φε) is bounded in W 1,1(SN ). Then, up to a subse-
quence, φε converges in BV (SN ) to a function of bounded variations φ. In
particular, we have in the sense of distributions,

dφ = lim
ε→0

dφε = lim
ε→0

(−1)N−1 ? βε = C.

step 3: Recall that, for any f ∈ BV (SN ), df is the sum of three 1 currents
of measure type: the absolutely continuous part dafxHN , the Cantor part
dCf which is singular with respect to the Lebesgue measure and does not
charge any HN−1-finite set and the jump part djf which is concentrated
on a rectifiable set of codimension 1. Furthermore, djf can be written as
[f ]νfH

N−1
xSf, where the N − 1 rectifiable set Sf is the set of point of
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approximate discontinuity of f, νf is an N − 1 form defining the orientation
of Sf a.e. and the jump [f ] is the difference between the trace f+ and f−

of f on the two sides of Sf (see [12] for details).
Here, we have

dφ = daφ+ dCφ+ djφ = ?dv − ?A,

so that dCφ = 0, daφ = ?dv and djφ = − ? A.
Since djφ = (φ+ − φ−)νφH

N−1
xSφ, we see that Sφ = ∪iAi HN−1 a.e.

and that φ+ − φ− is an integer HN−1 a.e. x ∈ Sφ.

step 4: Let us consider: u := (−1)Nexp(2iπφ).
Hence, thanks to the chain rule for BV functions (see [12]), u is a BV

function with

dau = (−1)N2πiudaφ = (−1)N2πiu ? dv , dCu = 0

and Su ⊂ Sφ, with (−1)N (u+ −u−) = exp(2iπφ+)− exp(2iπφ−) = 0 HN−1

a.e. x ∈ Su. Hence, dju = 0.
Thus du = dau is absolutely continuous with respect to the Lebesgue

measure.

step 5: Up to now, u is a smooth function on M. Moreover, since u is
S1 valued, |du| ≤ C|dv| so that ||du||Lsp(Λ1SN ) ≤ C||dv||Lsp(ΛN−2SN ) ≤
C||T ||W−1,sp(Λ2SN ).

Let us now prove that

||du||W σ,p(Λ1SN ) ≤ C(||T ||W σ−1,p(Λ2SN ) + ||T ||sW−1,sp(Λ2SN )).

Thanks to Corollary 1 b), we have (taking into account the fact that |u| ≤ 1),

||du||W σ,p(Λ1SN ) ≤ C||u ? dv||W σ,p(Λ1SN )

≤ C(||dv||W σ,p(ΛN−1SN ) + ||du||s−1
Lsp(Λ1SN )

||dv||Lsp(ΛN−1SN ))

≤ C(||dv||W σ,p(ΛN−1SN ) + ||dv||s−1
Lsp(ΛN−1SN )

||dv||Lsp(ΛN−1SN ))

≤ C(||T ||W σ−1,p(Λ2SN ) + ||T ||sW−1,sp(Λ2SN )).

Hence, u ∈W s,p(Λ1SN ).
This ends the proof of Lemma 3, in view of the fact that:

J(u) = 1/2du]ω0 = (−1)Nπd ? dv = π ? δdv = π ? γ = πT.

�
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Proof of Theorem 3. If u ∈ C∞(SN , S1)
W s,p(SN ,S1)

, then there exists a
sequence of smooth maps un converging to u inW s,p(SN , S1). Using the con-
tinuity of J from W s,p(SN , S1) into D′(Λ2SN ) and the fact that J vanishes
on C∞(SN , S1), we get J(u) = 0.

Conversely, if J(u) = 0 for some u ∈W s,p(SN , S1), then there exists φ ∈
W s,p(SN )∩W 1,sp(SN ) such that j(u) = dφ. Indeed, there exists k ∈ N such
that Gk(j(u)) (the kth iterate of the Green operator) is C1 on SN (thanks
to the Sobolev embeddings and in view of the regularization properties of
the Green operator, see section 6). Moreover, dGk(j(u)) = Gk(dj(u)) = 0.
Then, by the smooth version of the Poincaré Lemma, there exists some
ψ ∈ C1(SN ) such that Gk(j(u)) = dψ. Then

j(u) = ∆kGk(j(u)) = ∆kdψ = d∆kψ.

Then, we set φ := ∆kψ. By construction and thanks to the regularization
properties of the Green operator, φ is in W s,p(SN ) ∩W 1,sp(SN ).

So,

d(ue−iφ) = e−iφ(du− iudφ) = ue−iφ(ūdu− iu]ω0)

= ue−iφ(u1du1 + u2du2) = 1/2ue−iφd(u2
1 + u2

2)

= 1/2ue−iφd1 = 0.

Hence, there exists C ∈ R (since |ue−iφ| = 1) such that u = ei(φ+C). More-
over, there exists a sequence of smooth functions (φn) ⊂ C∞(SN ) converg-
ing to φ in W 1,sp(SN ) ∩ W s,p(SN ). Then, un := eiφn converges to u in

W s,p(SN , S1), see [9] and [17]. Finally, u ∈ C∞(SN , S1)
W s,p(SN ,S1)

.
�

5 The set R is dense in W s,p(SN , S1)

The aim of this section is to prove Theorem 2. Let s ≥ 1, p ≥ 1 such that
1 ≤ sp < 2. The case s = 1, p < 2 of Theorem 2 has been proved in [2].
Then, we limit ourselves to the case s ∈]1, 2[, p ≥ 1, following the strategy
of the proof of Lemma 23 in [4]. Recall that

R := {u ∈
⋂

1≤r<2

W 1,r(SN , S1) ∩W s,p(SN , S1) : u is smooth outside

a smooth oriented N − 2 dimensional boundaryless submanifold}.

When N = 2, u is assumed to be smooth outside a finite set of points A in
S2.

We first introduce some notations. Let fa : R
2 − {a} → S1, be the

function defined by:

fa(X) :=
X − a

|X − a|
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and ja : S1 → S1 the inverse of fa when restricted to S1.
For any a ∈ BR2(0, 1/10) and any w : SN → R

2 we denote by wa the
map

wa(x) :=
w(x) − a

|w(x) − a|

which is defined on {x ∈ SN : w(x) 6= a}. We have

dfa(X) =
Id

|X − a|
−

(X − a) ⊗ (X − a)

|X − a|3

where (X−a)⊗(X−a) denotes the 2×2 tensor [(X−a)⊗(X−a)]ij = (X−
a)i(X − a)j , and for any smooth w : SN → R

2 (or any w ∈W 1,p(SN , S1)),

Dwa(X) :=
Dw(X)

|w(X) − a|
+

(w(X) − a) ⊗ (w(X) − a)

|w(X) − a|3
·Dw(X)

for almost every X ∈ {X ′ ∈ SN : w(X ′) 6= a}. Besides the fact that

|dfa(X)| ≤
C

|X − a|
, (10)

we will also use the following Lipschitz property of dfa :

Lemma 6 There exists C ≥ 0 such that for any X,Y ∈ R
2 − {a},

|dfa(X) − dfa(Y )| ≤ C
|X − Y |

|X − a||Y − a|
. (11)

Proof: First, remark that dfa(X) = df0(X−a) so that we can assume a = 0.
Second, df0(λX) = (1/λ)df0(X) so that we can suppose |X| = 1. Finally,
df0(RθX) = Rθdf0(X)R−1

θ where Rθ is the rotation of angle θ. Hence, we
may assume that X = (1, 0), Y = (r cos θ, r sin θ). Then,

|dfa(X) − dfa(Y )| ≤ C
max(| sin θ|, |r − cos2 θ|)

r
.

We estimate the ratio | sin θ|/|1 − reiθ|; the ratio |r − cos2 θ|/|1 − reiθ| is
easier to handle. We have:

|1 − reiθ| =
√

(1 − r)2 + 2r(1 − cos θ) = |1 − r|

√

1 + 2r
2 sin2(θ/2)

(1 − r)2
.

Then
| sin θ|

|1 − reiθ|
≤

µ
√

1 + rµ2
with µ =

2| sin(θ/2)|

|1 − r|
.

We have µ ≤ 4 if r ≤ 1/2 and

µ
√

1 + rµ2
≤

µ
√

1 + µ2/2
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if r > 1/2. In any case | sin θ|/|1 − reiθ| is bounded independently of θ, r.
The proof of Lemma 6 is complete.

�

The proof of Lemma 22 in [4] shows that

Claim 1 For any smooth function v : SN → BR2(0, 1), for a.e. a ∈
BR2(0, 1/10), the function va is smooth on SN \ v−1(a) and belongs to W 1,r

for any r < 2.

On W s,p(SN , S1), we choose the norm:

||u||W s,p(SN ) = ||u||Lp(SN ) + ||du||Lp(Λ1SN ) + ||Dσ,pdu||Lp(SN ),

with σ = s− 1.
We will use the fact that

|d(u1 + u2)x − d(u1 + u2)y| ≤ |du1x − du1y| + |du2x − du2y|,

(this is an easy consequence of the definition of | · |, see section 2).
Let u ∈ W s,p(SN , S1). There exists a sequence of smooth functions vε :

SN → BR2(0, 1) which converges to u in W s,p(SN ,R2). We can suppose
further that vε converges to u HN a.e. and that dvε converges to du HN

a.e. Using the continuous embedding W s,p(SN )∩L∞(SN ) ⊂W 1,sp(SN ) (see
(7)), we may also assume that the sequence (vε) converges to u inW 1,sp(SN ).
Note also that ja(u

a) = u. We then set

ua
ε := ja(v

a
ε ).

The proof of Lemma 22 in [4] shows that

Claim 2 The quantity

∫

B
R2 (0,1/10)

||ua
ε − u||p

W 1,p(SN )
da converges to 0 when

ε goes to 0.

One of the main tool of the proof (that we omit here) is that when p < 2,
there exists some C ≥ 0 such that

∫

B
R2 (0,1/10)

da

|X − a|p
≤ C, ∀ |X| ≤ 1.

The new result, which enables us to generalise the density theorem to the
case s > 1 is the following claim.

Claim 3 The quantity

∫

B
R2 (0,1/10)

||Dσ,p(du
a
ε − du)||p

Lp(SN )
da converges to

0 when ε goes to 0.
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We admit Claim 3 for an instant and we complete the proof of Theorem 2.

Let lε(a) := ||ua
ε − u||p

W s,p(SN )
. We know that lε :=

∫

B
R2 (0,1/10)

lε(a) da tends

to 0 when ε goes to 0 thanks to Claim 2 and Claim 3. Since (Chebychev’s
inequality)

|{a ∈ BR2(0, 1/10) : lε(a) ≥
√

lε}| ≤
√

lε (if lε 6= 0),

we see that for each ε > 0, there exists a regular value of vε, say aε, such
that

lε(aε) ≤
√

lε. (12)

(By Sard’s Theorem, almost every a is a regular value of vε.) For such an
aε, u

aε
ε belongs to W s,p(SN , S1) and is smooth except on the smooth oriented

N − 2 dimensional boundaryless submanifold v−1
ε (aε) (respectively, a finite

set of points when N = 2). Hence, uaε
ε belongs to R and converges to u in

W s,p(SN ).
We now prove Claim 3. We will denote ga := ja◦fa : R

2−{a} → S1 ⊂ R
2.

Note that |dga(u(x)) − dga(u(y))| is well defined for almost every x, y ∈ SN

via any norm on the set of linear maps from R
2 into R

2. Moreover,

Dσ,p(α+ β) ≤ Dσ,p(α) +Dσ,p(β) , ∀α, β ∈ Lp(Λ1SN ,R2).

We find that for any regular value a of vε:

||Dσ,p(d(ga◦u)−d(ga◦vε))||Lp(SN ) = ||Dσ,p(dga(u)◦du−dga(vε)◦dvε)||Lp(SN )

= ||Dσ,p{(dga(u) − dga(vε)) ◦ dvε + dga(u) ◦ (du− dvε)}||Lp(SN )

≤ ||Dσ,p{(dga(u)−dga(vε))◦dvε}||Lp(SN )+ ||Dσ,p{dga(u)◦(du−dvε)}||Lp(SN )

≤ |||dvε|Dσ,p(dga(u)−dga(vε))||Lp(SN ) + |||dga(u)−dga(vε)|Dσ,p(dvε)||Lp(SN )

+|||du− dvε|Dσ,p(dga(u))||Lp(SN ) + |||dga(u)|Dσ,p(du− dvε)||Lp(SN ).

The fourth term is lower than ||dga(u)||∞||Dσ,p(du− dvε)||Lp which goes to
0 (recall that u is S1 valued so that ||dga(u)||∞ is lower than a constant
independent from a). Let us denote by A1, A2, A3 the three terms still to be
estimated. We have

Ap
2 ≤ C

∫

|vε|<1/2
|Dσ,p(dvε)|

p(
1

|u− a|p
+

1

|vε − a|p
)

+C

∫

|vε|≥1/2
|Dσ,p(dvε)|

p|dga(u) − dga(vε)|
p =: C(Bp

1 +Bp
2).

Since dvε converges to du inW σ,p(Λ1SN ), we find that ||Dσ,p(dvε−du)||Lp(SN )

goes to 0. Thus, there exists some k0 ∈ Lp(SN ) such that (up to a subse-
quence) |Dσ,p(dvε−du)| ≤ k0. Hence, Dσ,p(dvε) ≤ Dσ,p(dvε−du)+Dσ,p(du) is
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lower than the Lp function k := k0+Dσ,p(du). On the set where |vε| ≥ 1/2, u
and vε remain far from BR2(0, 1/10), so that |dga(u) − dga(vε)| remains
bounded. Since dga(vε) → dga(u) a.e., the dominated convergence theorem

implies that

∫

B
R2 (0,1/10)

Bp
2 da→ 0 when ε→ 0.

Furthermore,
∫

B
R2 (0,1/10)

Bp
1 ≤ C

∫

|vε|<1/2
kp

∫

B
R2(0,1/10)

(
1

|u− a|p
+

1

|vε − a|p
) da

≤ C

∫

|vε|<1/2
kp

which goes to 0 since |{|vε| < 1/2}| goes to 0 as ε→ 0. Using Corollary 1 a
(with z := |du− dvε| and w := dga(u)), we see that

A3 ≤ C||d2ga(u)||
σ
L∞(SN ,L(R2×R2,R2))||du||

σ
Lsp(Λ1SN )||du− dvε||Lsp(Λ1SN ).

Thus, A3 → 0 as ε→ 0.
The term A1 involves the most tricky computations. Let us introduce a

smooth function ψ : [0,∞[→ [0, 1] such that

ψ(t) =

{

0 if t ≤ 1/4,
1 if t ≥ 1/2.

We decompose dga(vε) as

dga(vε) := dga(vε)ψ(|vε|) + dga(vε)(1 − ψ(|vε|)).

This decomposition yields

A1 = |||dvε|Dσ,p(dga(u) − dga(vε))||Lp(SN )

= |||dvε|Dσ,p{dga(u) − dga(vε)ψ(|vε|) − dga(vε)(1 − ψ(|vε|))}||Lp(SN )

≤ |||dvε|Dσ,p{dga(u) − dga(vε)ψ(|vε|)}||Lp(SN )

+|||dvε|Dσ,p{dga(vε)(1 − ψ(|vε|))}||Lp(SN )

=: K1 +K2.

Using Corollary 1 a) with z = |dvε| and w = dga(u)−dga(vε)ψ(|vε|), and
the fact that dga is bounded near S1, we obtain

K1 ≤ C||dvε||Lsp(Λ1SN )||d{dga(u) − dga(vε)ψ(|vε|)}||
σ
Lsp(SN )

≤ C||dvε||Lsp(Λ1SN ){||d
2ga(u) ◦ du− d2ga(vε) ◦ dvεψ(|vε|)||

σ
Lsp(SN )

+|||dga(vε)||d(ψ ◦ |vε|)|||
σ
Lsp(SN )}.

The dominated convergence theorem shows that this quantity goes to 0 when
ε goes to 0.
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Next, we turn our attention to K2.

Kp
2 := |||dvε|Dσ,p{dga(vε)(1 − ψ(|vε|))}||

p
Lp(SN )

≤

∫

|vε(x)|<1/2
|dvε(x)|

p(Dσ,p{dga(vε)(1 − ψ(|vε|))})
p dx

+

∫ ∫

|vε(y)|<1/2
|dvε(x)|

p |D|p

|d(x, y)|N+σp
dy dx

with

D := dga(vε(x))(1 − ψ(|vε(x)|)) − dga(vε(y))(1 − ψ(|vε(y)|)).

Writing |dvε(x)|
p ≤ 2p(|dvε(x) − dvε(y)|

p + |dvε(y)|
p), we get that

∫

|vε(y)|<1/2

∫

|dvε(x)|
p |D|p

|d(x, y)|N+σp
dx dy

is lower than C(ξ + ζ), where

ξ :=

∫

|vε(y)|<1/2

∫

|dvε(x) − dvε(y)|
p |D|p

|d(x, y)|N+σp
,

ζ :=

∫

|vε(y)|<1/2

∫

|dvε(y)|
p |D|p

|d(x, y)|N+σp
.

Recalling that

|D| ≤ C(
1

|vε(x) − a|p
+

1

|vε(y) − a|p
),

we obtain
∫

B
R2 (0,1/10)

ξ(a) da ≤ C

∫

|vε(y)|<1/2
|Dσ,pdvε(y)|

p dy

which is lower than

∫

|vε(y)|<1/2
kp(y) dy. This last quantity converges to 0.

Concerning ζ, we have:

ζ = ζ(a) =

∫

|vε(x)|<1/2
|dvε(x)|

p(Dσ,p{dga(vε)(1 − ψ(|vε|))})
p dx.

It remains to show that

∫

B
R2 (0,1/10)

ζ(a) da→ 0.

For any X,Y ∈ BR2(0, 1) \ {a}, we have:

dga(X) − dga(Y ) = (dja(fa(X)) − dja(fa(Y ))) ◦ dfa(X)

+(dja(fa(Y ))) ◦ (dfa(X) − dfa(Y )).
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Using Lemma 6 combined with the inequality

|fa(X) − fa(Y )| = |
X − a

|X − a|
−

Y − a

|Y − a|
| ≤ 2

|X − a||Y −X|

|X − a||Y − a|
= 2

|X − Y |

|Y − a|
,

we find that

|dga(X) − dga(Y )| ≤ C
|fa(X) − fa(Y )|

|X − a|
+ C

|X − Y |

|X − a||Y − a|

≤ C
|X − Y |

|X − a||Y − a|
. (13)

Moreover,

|(1 − ψ(|vε(x)|))dga(vε(x)) − (1 − ψ(|vε(y)|))dga(vε(y))| ≤

2|dga(vε(x)) − dga(vε(y))| + |dga(vε(y))||ψ(|vε(x)|) − ψ(|vε(y)|)|.

Thanks to the mean value inequality applied to ψ, we have:

|ψ(|vε(x)|) − ψ(|vε(y)|)| ≤ C||vε(x)| − |vε(y)|| ≤ C|vε(x) − vε(y)|,

so that:

|dga(vε(y))||ψ(|vε(x)|) − ψ(|vε(y)|)| ≤ C
|vε(x) − vε(y)|

|vε(y) − a|

≤ C
|vε(x) − vε(y)|

|vε(x) − a||vε(y) − a|
.

Thanks to (13) with X := vε(x), Y := vε(y), we have:

|dga(vε(x)) − dga(vε(y))| ≤ C
|vε(x) − vε(y)|

|vε(x) − a||vε(y) − a|
.

Finally,

|(1 − ψ(|vε(x)|))dga(vε(x)) − (1 − ψ(|vε(y)|))dga(vε(y))| ≤

C
|vε(x) − vε(y)|

|vε(x) − a||vε(y) − a|
.

Hence,
Dσ,p{dga(vε)(1 − ψ(|vε|))}(x)

p

≤ C

∫

SN

|vε(y) − vε(x)|
p

d(x, y)N+σp|vε(x) − a|p|vε(y) − a|p
dy.

So,

ζ(a) ≤ C

∫

|vε(x)|<1/2

∫

SN

dx dy|dvε(x)|
p |vε(y) − vε(x)|

p

d(x, y)N+σp|vε(x) − a|p|vε(y) − a|p
.

(14)
In the sequel, we will use the following lemma:
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Lemma 7 For any X,Y ∈ BR2(0, 1), we have
∫

B
R2 (0,1/10)

da

|X − a||Y − a|
≤ C(1 + | ln |X − Y ||)

and

∫

B
R2 (0,1/10)

da

|X − a|p|Y − a|p
≤

C

|X − Y |2p−2
when p > 1.

Proof: Suppose first that p > 1. Using the change of variables a′ = −X + a
and then a′′ = a′/|Z| with Z := Y −X, we have

∫

B
R2 (0,1/10)

da

|X − a|p|Y − a|p
=

∫

B
R2 (−X,1/10)

da′

|a′|p|Z − a′|p

=
1

|Z|2(p−1)

∫

B
R2 (−X/|Z|,1/(10|Z|))

da′′

|a′′|p|Z/|Z| − a′′|p

≤
1

|Z|2(p−1)

∫

R2

da′′

|a′′|p|(1, 0) − a′′|p

which completes the proof of the case p > 1 in view of the fact that
∫

R2

da′′

|a′′|p|(1, 0) − a′′|p
≤ c(

∫

B
R2(0,1/2)

da

|a|p
+

∫

B
R2 (0,2)−B

R2 (0,1/2)

da

|a− (1, 0)|p

+

∫

B
R2 (0,2)c

da

|a|2p
) <∞.

When p = 1, the proof is the same apart from the last estimate:
∫

B
R2 (− X

|Z|
, 1
10|Z|

)

da′′

|a′′||Z/|Z| − a′′|
≤ C + C

∫

B
R2 (− X

|Z|
, 1
10|Z|

)\B
R2 (0,2)

da′′

|a′′|2

and

∫

B
R2 (− X

|Z|
, 1
10|Z|

)\B
R2 (0,2)

da′′

|a′′|2
≤

∫

B
R2 (0, 2

|Z|
)\B

R2 (0,2)

da′′

|a′′|2

≤ C(| ln |Z|| + 1).

�

Using Lemma 7 in (14) for X = vε(x) and Y = vε(y), we get that
∫

B
R2 (0,1/10)

ζ(a) da is not greater than

C

∫

|vε(x)|<1/2

∫

SN

dx dy|dvε(x)|
p |vε(x) − vε(y)|

2−p

d(x, y)N+σp

when p > 1 and

C

∫

|vε(x)|<1/2

∫

SN

dx dy|dvε(x)|
|vε(x) − vε(y)|

d(x, y)N+σ
(1 + | ln |vε(x) − vε(y)||)
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when p = 1. In the latter case, the term

∫

|vε(x)|<1/2

∫

SN

dx dy|dvε(x)|
|vε(x) − vε(y)|

d(x, y)N+σ

can be easily handled using Corollary 1a) while the term

∫

|vε(x)|<1/2

∫

SN

dx dy|dvε(x)|
|vε(x) − vε(y)|

d(x, y)N+σ
| ln |vε(x) − vε(y)||

is not greater than

C

∫

|vε(x)|<1/2

∫

SN

dx dy|dvε(x)|
|vε(x) − vε(y)|

1−α

d(x, y)N+σ

for any α ∈]0, 1 − σ[ and some C = C(α).
In any case, a variation on Lemma 2 implies that for any α ∈]0, 1 − σp[,

∫

SN

|vε(x) − vε(y)|
1−α

d(x, y)N+σp
dy ≤ c([M(|dvε|)(x)]

σp + 1). (15)

To prove (15), we adapt an idea of Hedberg (see [14], see also [17]). There
exists δ0 > 0 (independent of x) such that the exponential map expx is a
smooth diffeomorphism from BTxSN (0, δ0) onto BSN (x, δ0). Fix δ ∈ (0, δ0).
First,

∫

SN\B
SN (x,δ)

|vε(x) − vε(y)|
1−α

d(x, y)N+σp
dy ≤

∞
∑

k=0

∫

δ≤ d(x,y)

2k <2δ

|vε(x) − vε(y)|
1−α

(2kδ)N+σp
dy

≤ C
∞

∑

k=0

(2k+1δ)N

(2kδ)N+σp−

∫

B
SN (x,2k+1δ)

|vε − vε(x)|
1−α

≤ Cδ−σp(
∞

∑

k=0

2−kσp)M|vε − vε(x)|
1−α(x).

Furthermore, using the change of variable y 7→ k = (expx)−1(y), we get:

∫

B
SN (x,δ)

|vε(x) − vε(y)|
1−α

d(x, y)N+σp
dy ≤ C

∫

B
TxSN (0,δ)

|vε(x) − vε(expx(k))|1−α

||k||N+σp
dk

≤ C

∫

B
TxSN (0,δ)

dk

||k||N+σp
(

∫ 1

0
|dvε(exp(tk)| dt)1−α||k||1−α

≤ C

∞
∑

k=0

(δ2−k)1−α−N−σp(δ2−k)N−

∫

B
TxSN (0,δ2−k)

dk(

∫ 1

0
|dvε(exp(tk))| dt)1−α
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≤ Cδ1−α−σp sup
r>0

−

∫

B
TxSN (0,r)

dk(

∫ 1

0
|dvε(exp(tk))| dt)1−α

≤ Cδ1−α−σp(sup
r>0

∫ 1

0
dt−

∫

B
TxSN (0,tr)

dk|dvε(exp k)|)1−α

≤ Cδ1−α−σp(M|dvε(x)|)
1−α

Thus,
∫

SN

|vε(x) − vε(y)|
1−α

d(x, y)N+σp
dy

≤ C(δ1−α−σp(M|dvε|(x))
1−α + δ−σpM|vε − vε(x)|

1−α(x)).

Minimizing on δ ≤ δ0, we get:

∫

SN

|vε(x) − vε(y)|
1−α

d(x, y)N+σp
dy

≤ C(M|dvε|(x))
σp(M|vε − vε(x)|

1−α(x))(1−α−σp)/(1−α)

+Cδ−σp
0 (M|vε − vε(x)|

1−α(x)).

Using the fact that vε is uniformly bounded by 1, we get the expected result
(15).

We now use (15) in the estimate of

∫

B
R2 (0,1/10)

ζ(a) da. When p > 1, we

take α := p− 1. The map M being bounded on Lsp,

∫

B
R2 (0,1/10)

ζ(a) da ≤ C||dvε||
p
Lsp(|vε|<1/2)(||M|dvε|||

p(s−1)

Lsp(SN )
+ 1)

≤ C||dvε||
p
Lsp(|vε|<1/2)(||dvε||

p(s−1)

Lsp(Λ1SN )
+ 1)

which converges to 0 when ε goes to 0, thanks to the dominated convergence
theorem. When p = 1, a similar estimate holds for any α ∈]0, 1 − σ[. This
completes the proof of Claim 3 and Theorem 2.

�

6 The Laplacian on SN

In this final section, we describe and prove some results concerning the
regularity of the solutions of:

∆v = T (16)

to be solved in fractional Sobolev spaces W s,p(ΛlSN , S1), with s, p ≥ 1, sp >
1.
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We recall here the main results, following Scott [24]. We will also prove
few results, presumably well-known to experts, but that we could not find
in the literature.

First, we define the harmonic l fields by

H(ΛlSN ) := {h ∈ C∞(ΛlSN ) : dh = δh = 0}.

This is a finite dimensional vector space, whose orthogonal space (with re-
spect to the inner product on l forms) will be denoted by H(ΛlSN )⊥. Then,
we denote by H(ω) the harmonic projection into H(ΛlSN ) of an l form ω,
that is:

〈ω −H(ω), h〉 = 0

for any h ∈ H(ΛlSN ). (In fact, H(ΛlSN ) = {0} if 0 < l < N. We have
introduced these notations for the sake of generality, since all the results
of this article can be generalized to the case when SN is replaced by more
general manifolds).

Now, (Definition 5.23 and Proposition 6.1 in [24]) for any ω ∈ Lp(ΛlSN ),
where 1 < p <∞, there exists some G(ω) ∈ W 2,p(ΛlSN ) ∩H(ΛlSN )⊥ such
that

∆G(ω) = ω −H(ω)

and G is a bounded linear operator from Lp(ΛlSN ) into W 2,p(ΛlSN ). More-
over, G is selfadjoint and commutes with the Laplacian, the differential and
the codifferential.

The Green operator G and the harmonic projection H can be extended
to D′(ΛlSN ), by duality, setting 〈G(ω), α〉 = 〈ω,G(α)〉 and the same for H.
We still have ∆G(ω) = ω −H(ω) for any ω ∈ D ′(ΛlSN ).

By duality, G is also continuous from W−2,p(ΛlSN ) into Lp(ΛlSN ), 1 <
p <∞. Furthermore, if T ∈W−1,p(ΛlSN ) and v := G(T ), we already know
that v is in Lp(ΛlSN ), since T ∈W−2,p(ΛlSN ), and for any α ∈ Lp′(ΛlSN ),
we have δα = δ∆G(α) = ∆δG(α), so that

〈dv, α〉 = −〈v, δα〉

= −〈v,∆(δG(α))〉

= −〈T, δG(α)〉

≤ ||T ||W−1,p ||δG(α)||W 1,p′

≤ C||T ||W−1,p(||dδG(α)||Lp′ + ||δG(α)||Lp′ ) (see [24], Cor 4.12)

≤ C||T ||W−1,p ||α||Lp′ (see [24], Prop 5.15, Prop 5.17).

This shows that dv ∈ Lp(Λl+1SN ) and ||dv||Lp(Λl+1SN ) ≤ C||T ||W−1,p(ΛlSN ).
We have a similar estimate for ||δv||Lp(Λl−1SN ). Hence (see [24], Cor 4.12),

G is a bounded linear operator from W−1,p(ΛlSN ) into W 1,p(ΛlSN ).
When s /∈ Z, 1 < p < ∞, the fractional Sobolev spaces W s,p can be

defined by interpolation (see [22]). If we combine this with the previous
remarks, we have:
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Proposition 3 The Green operator G is a bounded linear operator from
W s−2,p(ΛlSN ) into W s,p(ΛlSN ), when 0 ≤ s ≤ 2, 1 < p <∞.

The case p = 1, 1 < s < 2 is also needed and not covered by the previous
proposition. This is the object of the remaining part of this section:

Theorem 4 Fix l ∈ [|0, N |] and 1 < s < 2. There exists C > 0 such that for
any T ∈ W s−2,1(ΛlSN ) satisfying H(T ) = 0, there is an ω ∈ W s,1(ΛlSN )
such that ∆ω = T and

||ω||W s,1(ΛlSN ) ≤ C||T ||W s−2,1(ΛlSN ).

It is well-known that this statement is false for s = 1. To prove the theorem,
we use the Besov’s spaces and the fact that they coincide with Sobolev’s
spaces for noninteger values of s. Actually, the proof of Theorem 4 is true
whenW s,1 is replaced by W s,p for any 1 ≤ p <∞, s ≥ 1 and (s, p) /∈ N×{1}.
This fact was used in the proof of Theorem 3.

The proof of Theorem 4 rests on the following lemma:

Lemma 8 There exists C > 0 such that for any ω ∈ C∞(ΛlSN ), with
H(ω) = 0, we have:

||ω||W s,1(ΛlSN ) ≤ C||∆ω||W s−2,1(ΛlSN ).

Indeed, if this lemma is true, let T ∈ W s−2,1(ΛlSN ) satisfying H(T ) = 0.
Then, there is a sequence of smooth Tn ∈ C∞(ΛlSN ) converging to T in
W s−2,1(ΛlSN ). Since H is continuous on W s−2,1 (into a finite dimensional
space), the sequence H(Tn) converges to 0. Hence, we can assume that
H(Tn) = 0 (by replacing Tn with Tn −H(Tn)).

For each n, there exists ωn ∈ C∞(ΛlSN ) such that ∆ωn = Tn and
H(ωn) = 0 for every n. From Lemma 8 and the fact that ∆(ωp − ωq) =
Tp − Tq, it follows that

||ωp − ωq||W s,1(ΛlSN ) ≤ C||Tp − Tq||W s−2,1(ΛlSN ).

This shows that (ωn) is a Cauchy sequence in W s,1(ΛlSN ). So, it con-
verges to some ω ∈ W s,1(ΛlSN ) which satisfies ∆ω = T and the estimate
||ω||W s,1(ΛlSN ) ≤ C||T ||W s−2,1(ΛlSN ) follows.

So it remains to prove Lemma 8. The proof relies on the following three
lemmas:

Lemma 9 There exists C0 > 0 such that for any w ∈ C∞
c (RN ), we have:

||w||W s,1(RN ) ≤ C0(||w||W s−2,1(RN ) + ||∆w||W s−2,1(RN )).
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Proof: Thanks to the lifting property (see [22], Proposition 2.1.4.1), we have:

||w||W s,1(RN ) ≤ C||F−1(1 + |y|2)Fw||W s−2,1(RN )

= C||(−∆ + I)w||W s−2,1(RN )

≤ C(||∆w||W s−2,1(RN ) + ||w||W s−2,1(RN )).

�

We proceed with the slightly more elaborate lemma, where we use the
notation I(l, N) := {(i1 < .. < il) : 1 ≤ i1 < .. < in ≤ N}.

Lemma 10 Let V be an open neighborhood of 0 ∈ R
N . Let aIJαβ ∈ C∞(V̄ )

for any I ∈ I(l, N), J ∈ I(l, N) and any α ∈ [|1, N |], β ∈ [|1, N |]. We assume
that aIJαβ(0) = δIJδαβ . Then, there exists ρ > 0, C > 0 such that for any
ωJ ∈ C∞

c (B(0, ρ)), J ∈ I(l, N), we have:

||(ωJ )||W s,1(ΛlRN ) ≤ C(||(TJ)||W s−2,1(ΛlRN ) + ||(ωJ )||W s−1,1(ΛlRN ))

where TI denotes:

TI :=
∑

J

∑

α,β

aIJαβ ∂2ωJ

∂xα∂xβ
, I ∈ I(l, N).

Here, the norm ||(ωJ )||W s,1(RN ) means (for instance)

||(ωJ)||W s,1(ΛlRN ) :=
∑

J

||ωJ ||W s,1(RN ).

Proof of Lemma 10: Let us pick some ρ > 0 which will be subsequently sub-
ject to some restrictions (independent from the ωJ ’s). Let ωJ ∈ C∞

c (B(0, ρ)),
J ∈ I(l, N). For any I, we have:

||
∑

α

∂xα∂xαωI ||W s−2,1(RN ) = ||
∑

J,α,β

aIJαβ(0)∂xα∂xβ
ωJ ||W s−2,1(RN )

≤ ||
∑

J,α,β

∂xα∂xβ
((aIJαβ(0) − aIJαβ)ωJ)||W s−2,1(RN )

+||
∑

J,α,β

∂xα∂xβ
(aIJαβωJ)||W s−2,1(RN )

≤ ||
∑

J,α,β

(aIJαβ(0) − aIJαβ)ωJ ||W s,1(RN ) + ||
∑

J,α,β

aIJαβ∂xα∂xβ
ωJ ||W s−2,1(RN )

+c||(ωJ)||W s−1,1(ΛlRN ) =: a1 + a2 + a3.

where c depends only on the aIJαβ’s.
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To estimate the term a1, we use Lemma 4.6.2.2 in [22] with φ being a
function in C∞

c (RN ) equal to 1 on a neighborhood of B̄(0, 1) and σ := s−1 :

||[aIJαβ(.) − aIJαβ(0)]ωJ ||W s,1(RN ) ≤ c(ρ||ωJ ||W s,1(RN ) + Cρ||ωJ ||W σ,1(RN ))

where c depends only on the aIJαβ’s. This implies that a1 is not greater
than

N2cρ||(ωJ )||W s,1(ΛlRN ) +N2cCρ||(ωJ)||W σ,1(ΛlRN ).

The term a2 is exactly ||TI ||W s−2,1(RN ). Finally, we have shown that:

||∆ωI ||W s−2,1(RN ) ≤ C||(TJ)||W s−2,1(ΛlRN ) +C||(ωJ)||W s−1,1(ΛlRN )

+N2cρ||(ωJ )||W s,1(ΛlRN ).

This implies (thanks to Lemma 9 ) that:

||(ωJ)||W s,1(ΛlRN ) ≤ C||(TJ )||W s−2,1(ΛlRN ) + C||(ωJ)||W s−1,1(ΛlRN )

+N3cρ||(ωJ)||W s,1(ΛlRN )

and finally if we choose ρ < 1/(2N 3c) (which depends only on the aIJαβ’s),

||(ωJ )||W s,1(ΛlRN ) ≤ C||(TJ)||W s−2,1(ΛlRN ) + C||(ωJ)||W s−1,1(ΛlRN ).

Lemma 10 is proved.
�

Lemma 11 Let x0 ∈ SN . Then, there exists an open neighborhood U of
x0 and some constant C > 0 such that for any ω ∈ C∞(ΛlSN ) compactly
supported in U we have

||ω||W s,1(ΛlSN ) ≤ C(||∆ω||W s−2,1(ΛlSN ) + ||ω||W s−1,1(ΛlSN )).

Proof of Lemma 11: The point x0 belongs to the domain U0 of a chart φ0

such that φ0(x0) = 0 and gij(x0) = δij . Let V0 := φ(U0). Let ω ∈ C∞
c (ΛlU0)

and T := ∆ω. Then, for any η ∈ C∞
c (ΛlU0), we have:

〈dω, dη〉 + 〈δω, δη〉 = −〈T, η〉

Let µ := φ0]ω =:
∑

I µIe
∗
I (where e∗I = e∗i1 ∧ .. ∧ e∗il and (e∗i ) is the dual

basis of the canonical basis (ei) of R
N ). Then, for each I, the µJ ’s satisfy

an equation of the form (see [19], chapter 7):

∑

J,α,β

aIJαβ∂xα∂xβ
µJ = TI
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on V0, where TI is a sum of terms involving φ0]T, µJ and the first derivatives
of the µJ ’s. Hence, the following estimate holds:

||TI ||W s−2,1(RN ) ≤ C(||T ||W s−2,1(ΛlSN ) + ||ω||W s−1,1(ΛlSN )).

Thanks to Lemma 10 for these aIJαβ , (which satisfy aIJαβ(0) = δIJδαβ , see
[19], page 296), there exists ρ > 0 such that

||(µI)||W s,1(ΛlRN ) ≤ C(||(TI)||W s−2,1(ΛlRN ) + ||(µI)||W s−1,1(ΛlRN ))

if ω is compactly supported in U := φ−1
0 (B(0, ρ)). This shows that

||ω||W s,1(ΛlSN ) ≤ C(||∆ω||W s−2,1(ΛlSN ) + ||ω||W s−1,1(ΛlSN )),

as required. Lemma 11 is proved.
�

We now complete the proof of Lemma 8. There exists a finite covering
U1, .., Ur around some points x1, ..., xr such that the previous lemma is true
on each of these Ui. We introduce a partition of unity (ζi) corresponding to
this covering. Now, let ω ∈ C∞(ΛlSN ) and ωj := ζjω. Thanks to Lemma
11, we have for every j :

||ωj ||W s,1(ΛlSN ) ≤ C(||∆ωj ||W s−2,1(ΛlSN ) + ||ωj ||W s−1,1(ΛlSN ))

≤ C(||∆ω||W s−2,1(ΛlSN ) + ||ω||W s−1,1(ΛlSN )), (17)

thanks to the multiplication property. Furthermore, the Green operator
is continuous from W s−2,1(ΛlSN ) into W s−1,1(ΛlSN ). Indeed, the space
W s−2,1(ΛlSN ) is continuously embedded into W−1,1+ε(ΛlSN ) (say for ε :=
(s − 1)/(N + 1 − s), see [22], Theorem 2.2.3). The Green operator is con-
tinuous from W−1,1+ε(ΛlSN ) into W 1,1+ε(ΛlSN ) (thanks to Proposition 3),
which is continuously embedded in W s−1,1(ΛlSN ). This implies that for
some constant C, we have:

||ω||W s−1,1(ΛlSN ) ≤ C||∆ω||W s−2,1(ΛlSN )

(since, by hypothesis, H(ω) = 0). Then, (17) implies

||ωj ||W s,1(ΛlSN ) ≤ C||∆ω||W s−2,1(ΛlSN ).

This completes the proof of Lemma 8.
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