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Abstract

Consider the Sobolev class W s,p(M,N) where M and N are com-
pact manifolds, and p ≥ 1, s ∈ (0, 1+1/p).We present a necessary and
sufficient condition for two maps u and v in W s,p(M,N) to be con-
tinuously connected in W s,p(M,N). We also discuss the problem of
connecting a map u ∈W s,p(M,N) to a smooth map f ∈ C∞(M,N).

Keywords Fractional Sobolev spaces between manifolds, homotopy.

1 Introduction

Let M and N be compact connected oriented smooth boundaryless Rieman-
nian manifolds. Throughout the paper we assume that M and N are iso-
metrically embedded into Ra and Rl respectively and that m := dimM ≥ 2.
Our functional framework is the Sobolev space

W s,p(M,N) = {u ∈W s,p(M,Rl) : u(x) ∈ N a.e. },

with 1 ≤ p <∞, 0 < s. The spaceW s,p(M,N) is equipped with the standard
metric d (u, v) = ||u−v||W s,p . The main purpose of this paper is to determine
whether or not W s,p(M,N) is path-connected and if not, when two elements
u and v in W s,p(M,N) can be continuously connected in W s,p(M,N); that
is, when there exists H ∈ C0([0, 1],W s,p(M,N)) such that H(0) = u and
H(1) = v. If this is the case, we say that ‘u and v are W s,p connected’ (or
W s,p homotopic).

Homotopy theory in the framework of Sobolev spaces is essential when
studying certain problems in the calculus of variations. This is the case
when the admissible functions are defined on a manifold M into a manifold
N. One may hope to find multiple minimizers to these problems, ideally one
in each homotopy class (see [15], [16] and also [3]).

The topology of W s,p(M,N) depends on two features of the problem,
namely the topology of M and N, and the value of s and p. When s = 1, the
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study of the topology of W 1,p(M,N) was initiated in [4] . The analysis of
homotopy classes (for s = 1) was subsequently tackled in [9] (see also [15],
[16] for related and earlier results). These results have been generalized to
W s,p(M,N) for non integer values of s and 1 < p <∞ when M is a smooth,
bounded, connected open set in an Euclidean space and when N = S1 (see
[5]). In this case, the proofs exploit in an essential way the fact that the
target manifold is S1. In contrast, our main concern is to determine to what
extent the methods of [9] and the tools of [4] can be adapted to the case
s 6= 1. Throughout the paper, we assume that 0 < s < 1+1/p or sp ≥ dimM.

Our first result gives some conditions which imply that W s,p(M,N) is
path-connected:

Theorem 1 Let 0 < s < 1 + 1/p. Then the space W s,p(M,N) is path-
connected when sp < 2.

When s = 1, this result was proved in [4], where the condition p < 2 (for
s = 1) is seen to be sharp. For instance, W 1,2(S1 × Λ, S1), where Λ is any
open connected set, is not path connnected.

In the case sp ≥ 2, we have:

Theorem 2 Assume that 0 < s < 1 + 1/p, 2 ≤ sp < dimM and that there
exists k ∈ N with k ≤ [sp]− 1 such that πi(M) = 0 for 1 ≤ i ≤ k, πi(N) = 0
for k + 1 ≤ i ≤ [sp] − 1. Then the space W s,p(M,N) is path-connected.

The case s = 1 of the above theorem is Corollary 1.1 in [9].
More generally, it is natural to compare the connected components of

W s,p(M,N) to those of C0(M,N). In certain cases, this is indeed possible:

Theorem 3 a) If sp ≥ dimM then W s,p(M,N) is path connected if and
only if C0(M,N) is path connected.
b) The W s,p homotopy classes are in bijection with the C0 homotopy classes
when 0 < s < 1+1/p, 2 ≤ sp < dimM and πi(N) = 0 for [sp] ≤ i ≤ dimM.

The statement a) is well-known and can be proved as in the appendix of [4].
Part b) for s = 1 was obtained in [9], Corollary 5.2.

When s = 1, Theorem 2 and Theorem 3 are particular cases of a more
general result in [9] which asserts that there is a one-to-one map from the
connected components of W 1,p(M,N) into the connected components of
C0(M [p]−1, N). Here, M [p]−1 denotes a [p]−1 skeleton of M. This may be re-
expressed as follows: two maps u and v in W 1,p(M,N) are W 1,p homotopic
if and only if u is [p]−1 homotopic to v. For an accurate definition of [p]−1
homotopy, one should refer to [9] or to section 6. Roughly speaking, this
means that for a generic [p] − 1 skeleton M [p]−1 of M,u|M [p]−1 and v|M [p]−1

are homotopic. This makes sense because for a generic [p]−1 skeleton, u and
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v are both W 1,p on these skeletons and hence continuous, by the Sobolev
embedding. There is a corresponding version of this result in which W 1,p is
replaced by W s,p :

Theorem 4 Assume that 0 < s < 1 + 1/p, 2 ≤ sp < dimM. Let u, v ∈
W s,p(M,N). Then u and v are W s,p connected if and only if u is [sp] − 1
homotopic to v.

The techniques in [9] can be adapted in order to prove not only Theorem
4 but also the more general result where the condition 2 ≤ sp < dimM is
replaced by: 0 < sp < dimM, and sp 6= 1. In turn, this last result implies
Theorem 1 when sp < 2, sp 6= 1. However, the case sp = 1 seems delicate
to handle via these techniques. This is the reason why we give a proof
of Theorem 1 based on the tools of [4]. Besides its independent interest,
it turns out that the technical core of the proof of Theorem 1 is also the
technical core of the proof of Theorem 4. Furthermore, the techniques in [4]
are more likely to allow some extensions to the case s > 1 + 1/p.

Another strategy to show that two elements in W s,p(M,N) are W s,p

connected is based on the property P (u) defined for any u ∈ W s,p(M,N)
by:

(P (u)) The map u is W s,p homotopic to some ũ ∈ C∞(M,N).
We proceed to explain the interest of this property. Assume that P (u)

and P (v) are true, where u, v ∈ W s,p(M,N), and that ũ and ṽ are C0

homotopic. So, there exists F ∈ C∞([0, 1] ×M,N) such that F (0, ·) = ũ
and F (1, ·) = ṽ, which implies that ũ and ṽ are W s,p homotopic. Finally, u
and v are W s,p homotopic. This shows the importance of the property P.

Theorem 5 Each u ∈W s,p(M,N) satisfies P (u) when
a) sp ≥ dimM,
b) 0 < sp < 2, 0 < s < 1 + 1/p,
c) dimM = 2, 0 < s < 1 + 1/p,
d) M = Sm, 0 < s < 1 + 1/p,
e) 0 < s < 1 + 1/p, 2 ≤ sp and M satisfies the [sp] − 1 extension property
with respect to N,
f) 0 < s < 1+1/p, 2 ≤ sp < dimM and πi(N) = 0 for [sp] ≤ i ≤ dimM−1.

The case sp ≥ dimM can be handled as in the appendix of [4]. If 0 < sp < 2,
then Theorem 1 shows that u can be connected to a constant map. The
case dimM = 2 is a consequence of a) and b). When M = Sm, we can even
show that W s,p(Sm, N) is path-connected if sp < m (see section 5). The
statement f) follows from e) (see [9], Remark 5.1). For the meaning of the
“[sp]−1 extension property with respect to N”, one should refer to [9] or to
section 9. Roughly speaking, this means that for any smooth triangulation
of M, and any continuous map f : M [sp] → N, we may find a continuous
extension of f |M [sp]−1 to the whole M. Unfortunately, it is not the case that
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for any M,N, s, p, each u ∈ W s,p(M,N) satisfies P (u), (see [9], Corollary
1.5.).

Remark 1 In the above results, we have often assumed that s < 1+1/p, 1 <
sp. This is closely linked to the strategy of our proofs because we glue several
maps in W s,p(M,N) together. Let u1 ∈W s,p(Ω1) and u2 ∈W s,p(Ω2), where
Ω1,Ω2 are two Lipschitz open subsets of Rd such that

Γ := Ω̄1 ∩ Ω̄2 ⊂ ∂Ω1 ∩ ∂Ω2,

and Ω := Ω1 ∪ Ω2 ∪ Γ is a Lipschitz open set. Since 1 < sp, we can define
the traces of u1, u2. Assume that tr u1|Γ = tru2|Γ. Then, the map u defined
by

u(x) =

{

u1(x) when x ∈ Ω1,
u2(x) when x ∈ Ω2

belongs to W s,p(Ω) when s < 1 + 1/p. In contrast, nothing can be said when
s ≥ 1 + 1/p.

Note that when sp = 1, we cannot glue maps in W s,p any more, since
traces are not defined. However, there is a way to overcome this difficulty
(see [4], Appendix B and also section 2.2). Finally, when sp < 1, maps can
be glued without any trace compatibility conditions.

Remark 2 To simplify the presentation, we have assumed that M is bound-
aryless. Nevertheless, all the results above can be generalized to the case
when M has a boundary (see [4], Remark 2.1 and [8], section 4).

Remark 3 Lemma 21 below and Theorem 4 show that there exists η > 0
such that for any f, g ∈ W s,p(M,N), if ||f − g||W s,p(M,N) < η, then f and
g are W s,p homotopic. Hence connected components coincide with path-
connected components.

The following section is the technical core of the article: it enumerates
some variations of the technique ‘filling a hole’, a phrase coined by Brezis
and Li [4]. Sections 3 and 4 present some consequences of this technique
which allow us to generalize in section 5 the results of [4] ; that is, Theorem
1 and Theorem 5 d). In section 6 and section 7 , we recall and adapt some
results of [9] which prepare the proof of Theorem 4 in section 8. In the final
section, the corollaries of this theorem, namely Theorem 2, Theorem 3 b)
and Theorem 5 e) are proved.

We now introduce some notations: In Rd, Bd (or B when no confu-
sion may arise) denotes the unit ball centered at 0, Sd (or S) its boundary,
Bd

r (x) := rB + x, Sd
r (x) := rS + x and Br = rB, Sr = rS. We will use the

convention that all the constants are denoted by the same letter C.
When X is a topological space and u, v ∈ X, we write u ∼X v to signify

the fact that there exists H ∈ C0([0, 1], X) such that H(0) = u and H(1) =
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v. We abbreviate this notation writing u ∼s,p v when u and v are W s,p

homotopic; similarly, u ∼ v means that u and v are C 0 homotopic.
Whenever s ∈ (1, 1 + 1/p), we denote σ := s− 1.
For any k dimensional Lipschitz manifold D embedded in Rn and any

measurable function f, we denote

[f ]W σ,p(D) :=

(
∫

D
dHk(x)

∫

D
dHk(y)

|f(x) − f(y)|p
|x− y|n+σp

)1/p

.

The set W s,p(M) denotes either W s,p(M,R) or W s,p(M,Rl). This will be
clear from the context.

2 Filling a hole

The technique ‘Filling a hole’ appears in [4], Proposition 1.3. We will first
generalize it to our context. This will be useful in adapting other tools
from [4], such as ‘Bridging a map’ (see Section 3) and ‘Opening a map’ (see
Section 4). This will allow us to avoid analytical proofs devised in [4] which
elude us in the context of fractional Sobolev spaces.

In this section, the underlying Euclidean space is Rn.

2.1 The main result

In this subsection, we prove the following generalization of Lemma D.1 in
[5]:

Lemma 1 Let 0 < s < 2, sp < n and u ∈ W s,p(S). Then, the map ũ(x) :=
u(x/|x|) belongs to W s,p(B) and we have

||ũ||W s,p(B) ≤ C||u||W s,p(S). (1)

Proof: We first prove that ũ ∈ Lp(S) :

∫

B
|ũ(x)|p dx =

∫

S
|u(θ)|pdθ

∫ 1

0
rn−1 dr = 1/n||u||pLp(S).

We consider three cases: s = 1, s > 1 and s < 1. When s = 1, we have:

∫

B
|Dũ(x)|p dx ≤ C

∫

S
|Du(θ)|pdθ

∫ 1

0
rn−1−p dr ≤ C||Du||pLp(S),

since p < n.
When s ∈ (1, 2), we claim that

I :=

∫

B
dx

∫

B
dy

|Dũ(x) −Dũ(y)|p
|x− y|n+σp

< +∞.

5



We denote f(x) := x/|x|. We have

Df(x) =
1

|x|Id−
x⊗ x

|x|3 ,where x⊗ x = (xixj)(i,j)∈[|1,n|]2,

so that |Df(x)| ≤ C/|x| and

|Df(x) −Df(y)| ≤ C
|x− y|
|x||y| . (2)

(Indeed, note that Df(λx) = x/λ and Df(Rx) = R(Df(x))R−1 for any
λ > 0, R ∈ O(n). Hence, we can assume that x = (1, 0, ..0) and y =
(r cos θ, r sin θ, 0, .., 0). Then, (2) can be easily shown).

Writing

|Dũ(x) −Dũ(y)| ≤ |Du(x/|x|) −Du(y/|y|)||Df(x)|

+|Du(y/|y|)||Df(x) −Df(y)|, (3)

we find I ≤ C(I1 + I2) with

I1 :=

∫

S
dθ

∫

S
dτ |Du(θ) −Du(τ)|p

∫ 1

r=0
dr

∫ 1

t=0

rn−1−ptn−1

|rθ − tτ |n+σp
dt,

I2 :=

∫

B
dx

∫

B
dy|Du(y/|y|)|p |x− y|p

|x|p|y|p|x− y|n+σp
.

We claim that whenever θ 6= τ,

J :=

∫ 1

r=0
dr

∫ 1

t=0

rn−1−ptn−1

|rθ − tτ |n+σp
dt ≤ C

|θ − τ |n−1+σp
. (4)

Indeed, after making the change of variable t→ λ := t/r, we get

J ≤
∫ 1

r=0
rn−1−sp dr

∫ ∞

λ=0

λn−1

|θ − λτ |n+σp
dλ

≤ C

∫ ∞

λ=0

λn−1

|θ − λτ |n+σp
dλ (since sp < n)

≤ C(

∫ 2

λ=0

dλ

|θ − λτ |n+σp
+

∫ ∞

2

λn−1

λn+σp
) ≤ C(

∫ 2

λ=0

dλ

|θ − λτ |n+σp
+ 1).

Now, consider the 2 plane generated by θ and τ. In this plane, θ and τ
belong to S1, so that they can be written θ = eiα, τ = eiβ, α, β ∈ (−π, π].
Hence, with γ := β − α,

|θ − λτ |2 = |λ− eiγ |2 = (λ− cos γ)2 + sin2 γ.
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The change of variable µ := (λ− cos γ)/ sin γ, (when sin γ 6= 0) yields

∫ 2

λ=0

dλ

|θ − λτ |n+σp
≤ 1

(sin γ)n−1+σp

∫

R

dµ

(1 + µ2)(n+σp)/2
≤ C

(sin γ)n−1+σp
.

Moreover,
|θ − τ |2 = 2(1 − cos γ) = 4 sin2(γ/2)

and the map γ → sin(γ/2)

sinγ
is bounded near 0, say for |γ| ≤ π/4. This shows

that
∫ 2

λ=0

dλ

|θ − λτ |n+σp
≤ C

|θ − τ |n−1+σp

when |β−α| ≤ π/4. On the other hand, this inequality is trivially true when
|β − α| ≥ π/4 (by increasing C if necessary). This proves (4) and implies
that

I1 ≤ C

∫

S
dθ

∫

S
dτ

|Du(θ) −Du(τ)|p
|θ − τ |n−1+σp

= C[Du]pW σ,p(S).

We proceed to estimate I2. We have

I2 ≤
∫

B
|Du(y/|y|)|p dy

∫

Rn

dx

|x|p|y|p|y − x|n+(σ−1)p

=:

∫

B
|Du(y/|y|)|pK(y) dy.

Clearly, for any y 6= 0, K(y) < ∞ (since p < n), K(y) depends only on
|y| and K(λy) = K(y)/λsp. Thus, K(y) = C/|y|sp. This shows that I2 ≤
C||Du||pLp(S). Moreover, we have established (1) when s ∈ (1, 2).

When s ∈ (0, 1), the calculation is easier, and is very similar to the
treatment of I1. The lemma is proved.

�

The same proof yields:

Corollary 1 Let 0 < s < 2, sp < n and u ∈ W s,p(S). Then, ũ(x) :=
u(x/|x|) belongs to W s,p

loc
(Rn).

2.2 Filling a hole continuously

Consider a smooth bounded open set Ω in Rn and denote by Γ its boundary.
There exists ε > 0 such that the ε tubular neighborhood of Γ :

Uε := {x ∈ Ω : dist (x,Γ) < ε}

can be parametrized by:

Φ : (x′, r) ∈ Γ × (0, ε) 7→ x′ + rν(x′),
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where ν(x′) denotes the inner unit normal to Γ at x′. We also introduce
the nearest point projection π : Uε → Γ. Hence, for any x ∈ Uε, we have
Φ−1(x) = (π(x),dist (x,Γ)). Finally, we denote Γr := Φ(Γ × {r}).

Note that for any measurable function u : Rn → R, defined almost
everywhere, it makes sense to define its restriction u|Γr to Γr, for almost
every r ∈ (0, ε). When u ∈ W s,p(Rn) with sp > 1, this restriction is equal
to the trace of u : tr u|Γr for a.e. r. In the special case sp = 1, we need a
substitute for the trace theory: the good restrictions, introduced in [5]. We
proceed to present the definition of good restrictions for a map u ∈W s,p(Ω),
when s ∈ (0, 1), sp = 1. For a proof of the statements below, see [5].

For each r ∈ (0, ε), there is at most one function v defined on Γr such
that the map

wr
1(x) =

{

u(x) in Ω \ Ur,
v(Φ(π(x), r)) in Ω ∩ Ur

or equivalently, the map

wr
2(x) =

{

u(x) − v(Φ(π(x), r)) in Ω \ Ur,
0 in Ω ∩ Ur

belongs to W s,p(Ω). Moreover, for a.e. r ∈ (0, ε), the function v := u|Γr

has the property that wr
1, w

r
2 ∈ W s,p(Ω). In fact, a necessary and sufficient

condition for this property to hold is that v ∈W s,p(Γr) and
∫

Γ
dHn−1(x′)

∫ ε

r
dt
|v(Φ(x′, r)) − u(Φ(x′, t))|p

(t− r)
<∞.

For these values of r, we say that v is the inner good restriction of u to
Γr. Similarly, we may define an outer good restriction. If v is both an inner
and an outer good restriction, we call it a good restriction.

In particular, u|Γr is a good restriction if and only if

i) u|Γr ∈W s,p(Γr),

ii)

∫

Γ
dHn−1(x′)

∫ ε

0
dt
|u(Φ(x′, r)) − u(Φ(x′, t))|p

|t− r| <∞.

Assume that Γ can be written as a finite union of subsets Γi which are
open in Γ and such that i), ii) are true for each Γi instead of Γ. Then i), ii)
are true for Γ. This shows that ‘being a good restriction’ is a local condition.

We will often use the following well-known consequence of the Fubini’s
Theorem:

Lemma 2 Let s ∈ (0, 2) and u ∈W s,p(Ω). Then for a.e. r ∈ (0, ε),
i) when sp > 1, the trace tru|Γr coincides with u|Γr and belongs to W s,p(Γr),
ii) when sp = 1, u|Γr is a good restriction of u to Γr, (in particular, u|Γr ∈
W s,p(Γr)),
iii) when sp < 1, the restriction of u to Γr belongs to W s,p(Γr).
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Such an r will be called ‘good ’. We will also say that Γr is ‘good for u’.
In the following lemma, the set Ω is B2, so that Γr is the sphere of radius

2 − r.

Lemma 3 Let 0 < s < 1 + 1/p, 0 < sp < n. Let u ∈ W s,p(B2, N) and
assume that S is good for u. For any t ∈ [0, 1), let

ut(x) =







u(x/(1 − t)) when |x| ≤ 1 − t,
u(x/|x|) when 1 − t ≤ |x| ≤ 1,
u(x) when 1 ≤ |x| ≤ 2

and

u1(x) =

{

u(x/|x|) when |x| ≤ 1,
u(x) when 1 ≤ |x| ≤ 2.

Then,
t ∈ [0, 1] → ut ∈W s,p(B2, N)

is continuous and ut(x) = u(x) for any t ∈ [0, 1] and any 1 ≤ |x| ≤ 2.

Proof: Consider the maps

vt(x) =

{

u(x/(1 − t)) when |x| ≤ 1 − t,
u(x/|x|) when 1 − t ≤ |x| ≤ 2

and v1(x) = u(x/|x|). To prove Lemma 3, it is enough to show that vt ∈
C0([0, 1],W s,p(B2, N)) since ut = vt + z where z is defined by:

z(x) =

{

0 when |x| ≤ 1,
u(x) − u(x/|x|) when 1 ≤ |x| ≤ 2.

(The map z belongs to W s,p since S is good for u.)
Consider first the case sp > 1. Then, Lemma 3 is essentially Lemma D.2

in [5] : condition s < 1 is replaced by s < 1 + 1/p in our case.
Let

ṽ(x) :=

{

u(x) when |x| ≤ 1,
u(x/|x|) when 1 ≤ |x|.

Then ṽ belongs to W s,p

loc
(Rn). We have vt(x) = ṽ(x/(1 − t)). This shows

that t ∈ [0, 1) 7→ vt ∈ W s,p(B2, N) is continuous. Thus, there remains to
show that vt converges to v1 when t→ 1−. By Corollary 1, v1 ∈W s,p

loc
(Rn).

Let g := ṽ − v1. Then, g ∈ W s,p(Rn) because g(x) = 0 when |x| ≥ 1.
Moreover, vt(x) − v1(x) = g(x/(1 − t)). We easily have

[g(·/(1 − t))]W s,p(Rn) = (1 − t)(n−sp)/p[g]W s,p(Rn).

This shows the continuity at t = 1.
It remains to consider the case sp ≤ 1. Though we cannot define the

trace anymore, the fact that r = 1 is good implies that ṽ ∈ W s,p

loc
(Rn), g ∈

W s,p(Rn). As above, we find that vt → v1 in W s,p(B2).
This completes the proof of the lemma.

�
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2.3 Filling an annulus continuously

As a corollary of Lemma 3, we get the following:

Lemma 4 Let s ∈ (0, 1 + 1/p) and u ∈W s,p(B2) such that S is good for u.
Then, the map ut defined by

ut(x) =







u(x/(1 − t/2)) when |x| ≤ 1 − t/2,
u(x/|x|) when 1 − t/2 ≤ |x| ≤ 1,
u(x) when 1 ≤ |x| ≤ 2

belongs to C0([0, 1],W s,p(B2)).

Lemma 4 can be immediately generalized to the case when B2 is replaced
by a smooth bounded open convex set Ω containing the origin, with the
Euclidean norm replaced by the norm

j(x) := inf{t > 0 : x/t ∈ Ω}.

2.4 Filling a cylinder

In this subsection, we pick some 2 ≤ k ≤ n − 1 and we decompose Rn =
Rk × Rn−k. We also denote x ∈ Rn as (x′, x′′) ∈ Rk × Rn−k.

Let T be the open set in Rn defined by:

T := {(x′, x′′) ∈ Rk × Rn−k : |x′| < 1}

and 2T := {2x : x ∈ T}. Then we have:

Lemma 5 Let 0 < s < 2, sp < k and u ∈ W s,p(∂T ). Then, the map ũ
defined by:

ũ(x′, x′′) := u(x′/|x′|, x′′)
belongs to W s,p(T ).

Proof: An easy computation shows that

||ũ||W 1,p(T ) ≤ C||u||W 1,p(∂T ) ;

this settles the case s = 1. When s ∈ (1, 2), it remains to show that

I :=

∫

T
dx

∫

T
dy

|Dũ(x) −Dũ(y)|p
|x− y|n+σp

< +∞.

We have I ≤ C(I ′ + I ′′), where

I ′ :=

∫

Rn−k

dx′′
∫

x′∈Rk,|x′|<1
dx′

∫

y′∈Rk,|y′|<1
dy′

|Dũ(x′, x′′) −Dũ(y′, x′′)|p
|x′ − y′|k+σp

,

10



I ′′ :=

∫

Rk,|y′|<1
dy′

∫

x′′∈Rn−k

dx′′
∫

y′′∈Rn−k

dy′′
|Dũ(y′, x′′) −Dũ(y′, y′′)|p

|x′′ − y′′|n−k+σp
.

This is a Besov’s type inequality (see [1] or [2]).
We first prove that I ′′ ≤ C||Du||pW σ,p(∂T ). Using the fact that p < n, we

have

I ′′ ≤
∫

|y′|<1
dy′

1

|y′|p
∫

Rn−k

dx′′
∫

Rn−k

dy′′
|Du(y′/|y′|, x′′) −Du(y′/|y′|, y′′)|p

|x′′ − y′′|n−k+σp

≤ C

∫

Sk−1

dθ

∫

Rn−k

dx′′
∫

Rn−k

dy′′
|Du(θ, x′′) −Du(θ, y′′)|p

|x′′ − y′′|n−k+σp
,

which implies that I ′′ ≤ C||u||pW s,p(∂T ).

We denote f(x′, x′′) := (x′/|x′|, x′′). We proceed to estimate I ′ by writing
I ′ ≤ C(I ′1 + I ′2) with

I ′1 :=

∫

Rn−k

dx′′
∫

|x′|<1
dx′

∫

|y′|<1

|Du(x′/|x′|, x′′) −Du(y′/|y′|, x′′)|p
|x′|p|x′ − y′|k+σp

dy′

I ′2 :=

∫

Rn−k

dx′′
∫

|x′|,|y′|<1
dx′ dy′

|Du(y′/|y′|, x′′)|p|Df(x′, x′′) −Df(y′, x′′)|p
|x′ − y′|k+σp

;

this follows from (3).
We can prove that I ′2 ≤ C||Du||pLp(∂T ) exactly as we estimated I2 in the

proof of Lemma 1.
On the other hand, we find that

I ′1 =

∫

Rn−k

dx′′
∫

|x′|<1
dx′

∫

|y′|<1
dy′

|Du(x′/|x′|, x′′) −Du(y′/|y′|, x′′)|p
|x′|p|x′ − y′|k+σp

=

∫

Rn−k

dx′′
∫

Sk−1

dθ

∫

Sk−1

dτ |Du(θ, x′′)−Du(τ, x′′)|p
∫ 1

0

∫ 1

0

rn−1tn−1

rp|rθ − tτ |k+σp

≤ C

∫

Rn−k

dx′′
∫

Sk−1

dθ

∫

Sk−1

dτ
|Du(θ, x′′) −Du(τ, x′′)|p

|θ − τ |k−1+σp
,

(here, we use

∫ 1

r=0
dr

∫ 1

t=0
dt

rn−1−ptn−1

|rθ − tτ |k+σp
≤ C

|θ − τ |k−1+σp
, see the proof of

(4)).
From the last inequality, we easily obtain I ′1 ≤ C||u||pW s,p(∂T ), which gives

the required result when s ∈ (1, 2). When s ∈ (0, 1), the calculation is easier
and we omit it. Lemma 5 is proved.

�

Lemma 5 implies the following (exactly as Lemma 1 implied Lemma 3):

11



Lemma 6 Let 0 < s < 1 + 1/p, sp < k and u ∈ W s,p(2T ) such that ∂T is
good for u. Then the map ut defined by

ut(x) :=







u(x′/(1 − t), x′′) when |x′| ≤ 1 − t,
u(x′/|x′|, x′′) when 1 − t ≤ |x′| ≤ 1,
u(x′, x′′) when 1 ≤ |x′| ≤ 2

belongs to C0([0, 1],W s,p(2T )).

3 ‘Bridging’ of maps

3.1 The case n = 2

Consider the square

Ω := {x = (x1, x2) : |x1| < 20, |x2| < 20}

and let u ∈W s,p(Ω, N).
We assume that u is constant, say Y0, in the region Q+ ∪Q− where

Q+ = {x = (x1, x2) : |x1| < 20, 1 < x2 < 20}

and
Q− = {x = (x1, x2) : |x1| < 20, −20 < x2 < −1}.

The following lemma corresponds to [4], Proposition 1.2.

Lemma 7 If 0 < s < 1 + 1/p, sp < 2, then there exists ut ∈ C0([0, 1],
W s,p(Ω, N)) such that

u0 = u,

ut(x) = u(x) ∀t ∈ [0, 1], ∀x /∈ (−5, 5) × (−1, 1),

u1(x) = Y0 ∀x ∈ (1, 3/2) × (−20, 20).

Proof: First, choose two circles C1, C2 with the same radius larger than
2/
√

3, centered on the line {x = (x1, x2) : x2 = 0} such that the center of C1

belongs to C2. This implies that C1 and C2 intersects at two points which
belongs to Q+ and Q−. Moreover, we require that C1 and C2 are good for u.
Without loss of generality, we may assume that C1 is centered at (0, 0) and
that C2 is centered at (2, 0), their common radius being 2. Now, by filling
the hole inside C1 (see Lemma 3), we can link u to some u1 which is equal to
u outside C1 and which is equal to Y0 on the set {(x1, x2) : |x2| ≥ |x1|/

√
3}.

We claim that C2 is still good for u1. In fact, in the subset of C2 where
u has been changed, u1 is equal to Y0 and when sp > 1, the trace of u on
C2 ∩ {x : x1 ≤ 2} is equal to Y0. This settles the cases sp > 1. The case
sp < 1 is obvious. When sp = 1, it remains to prove that the constant map
equal to Y0 is a good restriction for u to C2∩{x : x1 ≤ 2} (since the concept
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of good restrictions is local). But this is a mere consequence of Lemma 8
below. The claim is proved.

Finally, by filling the hole inside C2, we can connect u1 to some u2 which
is equal to u1 outside C2 while inside C2, u2 is equal to Y0 except on the
domain {(x1, x2) : x1 > 2 +

√
3|x2|}. In particular, u2 is equal to u on

{(x1, x2) : |x1| > 4} and is equal to Y0 on

Q+ ∪Q− ∪ {(x1, x2) : 0 < x1 < 2}.

This completes the proof of the lemma.
�

Lemma 8 Let sp = 1 and u ∈ W s,p((−1, 1)2) such that u = Y0 on {x :
|x1| < |x2|}. Then the constant map equal to Y0 on the line D := {x1 = 0}
is a good restriction of u to D.

Proof: It is sufficient to prove that

I :=

∫ 1

−1
dx2

∫ 1

−1

|u(x1, x2) − Y0|p
|x1|

dx1 <∞.

Since N is compact, there exists C > 0 such that |u(x1, x2) − Y0|p ≤ C
for any (x1, x2). Then the lemma follows from the fact that:

I =

∫ 1

−1
dx2

∫

|x2|≤|x1|≤1

|u(x1, x2) − Y0|p
|x1|

dx1

≤ C

∫ 1

−1
dx2

∫ 1

|x2|

dx1

|x1|
≤ C.

�

3.2 The case n ≥ 2

We work in Rn, n ≥ 2 and we distinguish some special variables. For 0 ≤
l ≤ n− 2, we write

x = (x′1, x
′′, x′2)

where x′1 = x1, x
′
2 = (xn−l, .., xn) and x′′ = (x2, .., xn−l−1) (when l = n− 2,

we omit x′′). We also write x′ = (x′1, x
′
2). Let

Ω := {(x′1, x′′, x′2) : |x′1| < 20, |x′′| < 20, |x′2| < 20}.

Set k := l + 2.

Lemma 9 Assume that 0 < s < 1 + 1/p, sp < k and u ∈ W s,p(Ω, N)
with u(x) = Y0 for any x ∈ Ω such that 1 < |x′2|, for some Y0 ∈ N. Then
there exists ut ∈ C0([0, 1],W s,p(Ω, N)) such that u0 = u, ut(x) = u(x) for
any 0 ≤ t ≤ 1 and any x outside {x : |x| < 15} and u1(x) = Y0 for any
x, |(x′1, x′′)| < 1/8.
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Proof: If k = n, then the proof is exactly the same as in the previous
subsection (except that circles are replaced by n dimensional balls). Hence,
we may assume that k < n. Let δ : Rn−k → Rk be a smooth function to be
chosen later. We define the cylinder C1 by

C1 := {x = (x′1, x
′′, x′2) : |x′ − δ(x′′)| = a}

and the tube T1 by

T1 := {x = (x′1, x
′′, x′2) : |x′ − δ(x′′)| < a},

for some a > 1 to be determined below. We may choose a and δ such that:
i) when |x′′| < 2, we have δ(x′′) = 0,
ii) when |x′′| ≥ 4, we have x ∈ T1 ⇒ |x′2| > 1,
iii) C1 is good for u.

Note that C1 can be chosen as a smooth deformation of a straight cylinder
as defined in subsection 2.4. Note also that even if C1∩Ω is a finite cylinder
(contrary to those of subsection 2.4), the ends of this cylinder are contained
in a domain where u is equal to the constant Y0, where ‘nothing happens’.
Hence, we can apply Lemma 6 to C1 : u can be connected to some ū which
equals Y0 on {x ∈ Ω : |x′′| < 2, |x′2| ≥ |x′1|/

√
a2 − 1}.

The computation in the proof of Lemma 8 yields easily that ū has a good
restriction (equal to Y0 ) on the set {|x′′| < 2, x′1 = 0}. This implies that the
map:

w(x′1, x
′′, x′2) :=

{

0 when x′1 ≤ 0,
ū(x′1, x

′′, x′2) − Y0 when x′1 ≥ 0

belongs to W s,p(Ω0), where Ω0 := {x ∈ Ω : |x′′| < 2}.
Let ρ : R → [0, 1] be a smooth function which vanishes on {t : |t| ≥ 2},

which is equal to 1 on {t : |t| ≤ 1} and such that |ρ′| ≤ 2. Then we define

Ξt(x
′
1, x

′′, x′2) := (x′1 −
tρ(2|x′′|2)ρ(2x′1)

8
, x′′, x′2).

The map Ξt is a smooth diffeomorphism of Rn which maps Ω0 onto Ω0.
By the diffeomorphism property in W s,p (see [14]), there exists C > 0

such that for any t ∈ [0, 1], and any g ∈W s,p(Ω0), we have

||g ◦ Ξt||W s,p(Ω0) ≤ C||g||W s,p(Ω0).

Let ε > 0. Then there exists z ∈ C∞(Ω̄0) such that ||z −w||W s,p(Ω0) < ε.
Hence, for any t, s ∈ [0, 1],

||w◦Ξt−w◦Ξs||W s,p(Ω0) ≤ ||w◦Ξt−z ◦Ξt||W s,p(Ω0) + ||z ◦Ξt−z ◦Ξs||W s,p(Ω0)

+||z ◦ Ξs − w ◦ Ξs||W s,p(Ω0) ≤ C||z − w||W s,p(Ω0) + ||z ◦ Ξt − z ◦ Ξs||W s,p(Ω0)

≤ Cε+ ||z ◦ Ξt − z ◦ Ξs||W s,p(Ω0).
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Since the last term goes to 0 when |s− t| → 0, the map t→ w ◦ Ξt belongs
to C0([0, 1],W s,p(Ω0)).

Similarly we may define

w̃(x′1, x
′′, x′2) :=

{

ū(x′1, x
′′, x′2) − Y0 when x′1 ≤ 0,

0 when x′1 ≥ 0

and

Ξ̃t(x
′
1, x

′′, x′2) := (x′1 +
tρ(2|x′′|2)ρ(2x′1)

8
, x′′, x′2).

As above, w̃ ◦ Ξ̃t ∈ C0([0, 1],W s,p(Ω0)). This yields

w ◦ Ξt + w̃ ◦ Ξ̃t ∈ C0([0, 1],W s,p(Ω0)).

If we denote by vt the map w ◦ Ξt + w̃ ◦ Ξ̃t + Y0, we have vt =






















ū(x′1 + tρ(2|x′′|2)ρ(2x′1)/8, x′′, x′2) when x′1 ≤ −tρ(2|x′′|2)ρ(2x′1)/8,

Y0 when − tρ(2|x′′|2)ρ(2x′1)/8 ≤ x′1 ≤ tρ(2|x′′|2)ρ(2x′1)/8,

ū(x′1 − tρ(2|x′′|2)ρ(2x′1)/8, x′′, x′2) when tρ(2|x′′|2)ρ(2x′1)/8 ≤ x′1.

Note in particular that vt = ū when |x′′| > 1 or |x′1| > 1. Hence we can
extend vt by ū on Ω and we still have vt ∈ C0([0, 1],W s,p(Ω)). Finally,
vt = Y0 when |x′′| < 1/

√
2 and |x′1| ≤ t/8. This completes the proof of the

lemma.
�

4 Opening of Maps

Lemma 10 Let 0 < s < 1 + 1/p and u ∈ W s,p(B10, N). Then, there exists
ut ∈ C0([0, 1],W s,p(B10, N)) such that u0 = u, u1 = Y0 on an open subset of
B5 for some Y0 ∈ N and ut = u on B10 \ B9, 0 ≤ t ≤ 1.

Proof: We first introduce the concept of smooth cubes. A smooth cube is
simply a cube with smooth corners, or equivalently, a sphere with faces.
Formally, a smooth open set G of Rn will be called a smooth cube of side R
if it is a smooth convex set G which satisfies:

∪n
i=1{(x1, .., xn) : |xi| < R, |xj | < 4R/5 ∀j 6= i} ⊂ G ⊂ (−R,R)n.

For such a set G, we define the ith face:

Fi := {(x1, ..xn) : xi = R, |xj| < 4R/5}.

For any i = 1, ..n, let

Gi := {tx : x ∈ Fi, t ∈ (1/5, 1)}.

15



The set G is a smooth convex set, so that the technique of ‘filling an annulus’
(see Lemma 4) applies. More precisely, consider some v ∈ W s,p(Rn) such
that ∂G is good for v. Then v can be connected to a map w ∈ W s,p(Rn)
which is equal to v on Rn \G and which satisfies

w(tx) = v(x) ∀tx ∈ Gi.

Returning to the proof of Lemma 10, let v ∈ W s,p(B10) and G be a
smooth cube of side R such that G ⊂ B5 and ∂G is good for v. Assume that
v|Fi(x1, .., xn) does not depend on x1, .., xi−1. By this, we mean that for
Hn−i+1 a.e. xi, .., xn ∈ Rn−i+1, the map (x1, ..xi−1) ∈ Ri−1 → χFi(x)v(x) is
Hi−1 a.e. constant. Then on Gi, w(tx) = v(x) (with x ∈ Fi, t ∈ (1/5, 1)),
does not depend neither on x1, .., xi−1 nor on t.

Consider the map

φi : tx ∈ Gi 7→
∑

j 6=i

5xj

4R
ej +

5t− 3

2
ei ∈ (−1, 1)n.

Here (ek) denotes the canonical basis of Rn. Observe that φ−1
i is a smooth

diffeomorphism from [−1, 1]n onto Ḡi. Then, w ◦ φ−1
i ∈ W s,p((−1, 1)n) and

does not depend on x1, .., xi.
We now prove the lemma by induction: We claim that for each 1 ≤ k ≤

n, u can be connected to some uk ∈W s,p(B10) such that uk = u outside B9

and such that there exists a smooth diffeomorphism ψk from [−1, 1]n into
B5 such that uk ◦ ψk does not depend on x1, .., xk on (−1, 1)n.

For k = 1, select a smooth cube G ⊂ B5 such that ∂G is good for u.
Then as explained above, we can connect u to some u1 which is equal to
u on B10 \ G and such that u1(tx) = u(x) for any x ∈ F1, t ∈ (1/5, 1).
Then u1 ◦ φ−1

1 belongs to W s,p((−1, 1)n) and does not depend on x1. We
can choose ψ1 = φ−1

1 .
Assume the claim is true up to k. We can select a smooth cube G inside

(−1, 1)n, such that ∂G is good for uk ◦ ψk and uk ◦ ψk does not depend
on x1, .., xk on G. Then, as explained previously, we can connect uk ◦ ψk

to some w ∈ W s,p((−1, 1)n) such that w = uk ◦ ψk on (−1, 1)n \ G and
w(tx) = uk ◦ ψk(x) for any x ∈ Fk+1, Fk+1 being the (k + 1)th face relative
to G. Then w ◦ φ−1

k+1 (φk+1 being defined for G) belongs to W s,p((−1, 1)n)

and does not depend on x1, .., xk+1. We can choose ψk+1 = ψk ◦ φ−1
k+1 and

define

uk+1(x) :=

{

uk(x) when x ∈ B10 \ ψk(G),

w ◦ ψ−1
k (x) when x ∈ ψk(G).

The claim is proved for k + 1. Finally, we have connected u to a map
un ∈ W s,p(B10) which is a.e. constant on ψn((−1, 1)n), namely an open
subset of B5.

�
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5 Proof of Theorem 1 and Theorem 5 c)

The tools ‘Connecting constants’ and ‘Propagation of constants’ in [4] can
be readily generalized to the case W s,p.

Then, the same proof as in [4], Theorem 0.2 shows that W s,p(M,N) is
path connected when sp < 2; that is, Theorem 1. The fact that W s,p(Sm, N)
is path-connected when s ∈ (0, 1 + 1/p) can be proved as in [4], Proposition
0.1. This shows Theorem 5 c).

In the sections below, we assume that s ∈ (0, 1+1/p), p ∈ [1,∞), 1 <
sp.

We denote by ΠM the nearest point projection onto M, which is defined
and smooth on an εM tubular neighborhood of M :

MεM
:= {x ∈ Ra : dist (x,M) < εM}.

Similarly, we introduce ΠN : NεN
⊂ Rl → N.

6 Definition of [sp − 1] homotopy

6.1 Triangulations and homotopy

We define a rectilinear cell, its dimension, its faces and a rectilinear cell
complex as in [12], Chapter 7. In particular, the p skeleton of a rectilinear
cell complex K, denoted by Kp, is the collection of all cells having dimension
at most p. Any complex considered below is finite. The polytope |K| of a
complex K is the union of the cells of K. We will use the fact that the
boundary ∂∆ of a simplex ∆ can be identified with a complex in an obvious
way.

We also introduce some notation. Let ∆ be a rectilinear cell, y ∈ Int ∆.
Then, for any x ∈ ∆, we set

|x|y,∆ := inf{t > 0 : x ∈ y + t(∆ − y)}.

This is the usual Minkowski functional of ∆ with respect to y. When it is
clear what y and ∆ are, we simply write |x| instead of |x|y,∆.

The concepts of smooth maps and immersions on a complex K are de-
fined as in [12], Chapter 8. A smooth immersion which is a homeomorphism
onto M is called a triangulation of M. Actually, the word ‘triangulation’ is
mostly used for the case when K is simplicial. In the general case, we will
also use the phrase ‘rectilinear cell decomposition’. Each smooth bound-
aryless manifold M has a triangulation ([12], Theorem 10.6). The proof
of this result shows that we can choose a simplicial m dimensional com-
plex K (where m is the dimension of M) such that the polytope |K| is the
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union of its m simplices. Consider such a simplicial complex and denote by
f : K → M a triangulation. The set f(∆) is a Lipschitz domain in M for
each cell ∆.

Assume that u ∈ W s,p(M). Then u ◦ f |∆ belongs to W s,p(∆) for each
m cell ∆ ∈ K, because f |∆ is a smooth diffeomorphism onto f(∆) ⊂ M.
Conversely, assume that u ∈ Lp(M) is such that u belongs to W s,p(f(∆))
for each m cell ∆ ∈ K. Since sp > 1, we can define the trace of u on
∂f(∆). Assume that for any m cells ∆1,∆2 ∈ K satisfying ∆1∩∆2 6= ∅, the
maps u|f(∆1) and u|f(∆2) have the same trace on f(∆1 ∩∆2). This certainly
implies that u belongs to W s,p(f(∆1 ∪ ∆2)) when s ≤ 1. But this holds
true even when s ∈ (1, 1 + 1/p), because in that case the derivatives of
u|f(∆1) and u|f(∆2) belong to W σ,p(f(∆1)) and W σ,p(f(∆2)) respectively,
with now σp = (s − 1)p < 1. This implies that the derivatives of u belong
to W σ,p(f(∆1 ∪ ∆2)). Hence, u ∈W s,p(f(∆1 ∪ ∆2)).

The following lemma shows that we can glue homotopies together:

Lemma 11 Let f : K → M be a smooth triangulation, with m being the
common dimension of K and M . Assume that ∆1 and ∆2 are two m sim-
plices in K such that ∆1 ∩ ∆2 = Σ, where Σ is m − 1 dimensional. Let
F1 ∈ C0([0, 1],W s,p(f(∆1))), F2 ∈ C0([0, 1],W s,p(f(∆2))) and ∀t ∈ [0, 1],

trF1(t)|f(Σ) = trF2(t)|f(Σ).

Then F ∈ C0([0, 1],W s,p(f(∆1 ∪ ∆2))) where

F (t)(x) =

{

F1(t)(x) when x ∈ ∆1,
F2(t)(x) when x ∈ ∆2.

Proof: Let us define the closed subset of W s,p(f(∆1)) ×W s,p(f(∆2)) :

F := {(u1, u2) ∈W s,p(f(∆1)) ×W s,p(f(∆2)) : tru1|f(Σ) = tru2|f(Σ)}.
Then the remarks above show that the map: (u1, u2) ∈ F → u ∈W s,p(f(∆1∪
∆2)) where

u(x) =

{

u1(x) when x ∈ f(∆1),
u2(x) when x ∈ f(∆2)

is well defined.
The Closed Graph Theorem shows that this map is continuous into

W s,p(f(∆1 ∪ ∆2)). In particular, there exists C > 0 such that for any
(u1, u2) ∈ F ,

||u||W s,p(f(∆1∪∆2)) ≤ C[||u1||W s,p(f(∆1)) + ||u2||W s,p(f(∆2))]. (5)

Whence

||F (t) − F (t′)||W s,p(f(∆1∪∆2)) ≤ C[||F1(t) − F1(t
′)||W s,p(f(∆1))

+||F2(t) − F2(t
′)||W s,p(f(∆2))].

The lemma follows.
�
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6.2 Definition of Ws,p(K)

Let K be a finite rectilinear cell complex. Recall that N is smoothly embed-
ded in Rl. Let f, g : |K| → Rl be two everywhere defined Borel measurable
functions. We say that f and g are equivalent if for any ∆ ∈ K, f |∆ = g|∆ Hd

a.e. on ∆, where d = dim∆. From now on, we identify two such functions
and an equivalence class is called a Borel function.

Following [9], we introduce the space W s,p(K) of those Borel functions
f : |K| → Rl such that for any cell ∆, the restriction f |∆ belongs to W s,p(∆)
and its trace tr f |∂∆ is equal to f |∂∆,Hd−1a.e. x ∈ ∂∆.

We write ||f ||Ws,p(K) :=
∑

∆∈K ||f |∆||W s,p(∆).
As in [9], we also define a similar function space as follows. Let K be a

finite rectilinear cell complex of dimension m. Assume that

|K| = ∪∆∈K,dim∆=m∆.

We define W̃s,p(K) as the set of those Borel functions f : |K| → Rl such
that
i) the map f |∆ ∈W s,p(∆) for any ∆ ∈ K with dim∆ = m,
ii) for any Σ ∈ K with dimΣ = m− 1,Σ ⊂ ∂∆i,dim∆i = m for i = 1, 2, we
have

tr (f |∆1)|Σ = tr (f |∆2)|Σ.
We also write:

||f ||W̃s,p(K) =
∑

∆∈K,dim∆=m

||f |∆||W s,p(∆).

Finally, we define

Ws,p(K,N) := {u ∈ Ws,p(K) : ∀∆ ∈ K,u(x) ∈ N Hdim∆ a.e.}

and similarly for W̃s,p(K,N).

6.3 Interpolation

We consider X0, X1 two Banach spaces such that X1 is continuously embed-
ded in X0. We denote by || · ||Xi the norm in Xi, i = 0, 1 and for each fixed
t > 0, we define

K(t;u) := inf{||u0||X0 + t||u1||X1 : u = u0 + u1, u0 ∈ X0, u1 ∈ X1}.

Let 1 ≤ q <∞ and 0 < θ < 1. Then we define:

(X0, X1)θ,q := {u ∈ X0 : (2−iθK(2i;u))i∈Z ∈ lq(Z)},

which is a Banach space with the norm

||u||(X0 ,X1)θ,q
:= ||(2−iθK(2i;u))i∈Z||lq(Z).
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Theorem 6 ([1], Theorem 7.48) Let Ω be a rectilinear cell or a smooth
bounded open set in Rn. Then we have:

When s ∈ (0, 1), W s,p(Ω) = (Lp(Ω),W 1,p(Ω))s,p.

When s ∈ (1, 2), W s,p(Ω) = (W 1,p(Ω),W 2,p(Ω))s−1,p.

6.4 Perturbation

In this section, we follow [9] to explain how we choose generic skeletons of a
given triangulation of a manifold. Nevertheless, it seems difficult to rewrite
exactly the proof of [9] for the case W s,p. This is the reason why we use the
interpolation method.

Recall that M is anm dimensional Riemannian manifold without bound-
ary. Assume that the parameter space P is a k dimensional Riemannian
manifold, Q is a d dimensional Riemannian manifold without boundary,
D ⊂ Q is a domain with compact closure and Lipschitz boundary, and the
dimensions satisfy d+ k ≥ m.

In the following, we will need

Lemma 12 Assume s ∈ (0, 1). Let X0 := Lp(P,Lp(D)), X1 := Lp(P,
W 1,p(D)), and Z0 := Lp(D), Z1 := W 1,p(D). Then we have:

(X0, X1)s,p ⊂ Lp(P, (Z0, Z1)s,p) = Lp(P,W s,p(D)).

Proof: Let u ∈ (X0, X1)s,p and ε > 0. Then, for each i ∈ Z, there exists
ui

0 ∈ X0, u
i
1 ∈ X1 such that u = ui

0 + ui
1 and

||ui
0||X0 + 2i||ui

1||X1 < Ki(u) + ε/(1 + |i|)!

where

Ki(u) := inf{||u0||X0 + 2i||u1||X1 : u = u0 + u1, u0 ∈ X0, u1 ∈ X1}.

Then, for Hk a.e. ξ ∈ P, u(ξ) = ui
0(ξ)+u

i
1(ξ), u

i
0(ξ) ∈ Z0, u

i
1(ξ) ∈ Z1. Hence,

inf{||v0||Z0 + 2i||v1||Z1 : u(ξ) = v0 + v1, v0 ∈ Z0, v1 ∈ Z1} ≤

||ui
0(ξ)||Z0 + 2i||ui

1(ξ)||Z1

so that

||u(ξ)||(Z0 ,Z1)s,p
≤ ||(2−is(||ui

0(ξ)||Z0 + 2i||ui
1(ξ)||Z1))i∈Z||lp(Z).

Finally,

||u||Lp(P,(Z0,Z1)s,p) ≤ || ||(2−is(||ui
0(·)||Z0 + 2i||ui

1(·)||Z1))i∈Z||lp(Z)||Lp(P )
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= ||(2−is|| ||ui
0(·)||Z0 + 2i||ui

1(·)||Z1 ||Lp(P ))i∈Z||lp(Z)

≤ ||(2−is(||ui
0||X0 + 2i||ui

1||X1))i∈Z||lp(Z)

≤ ||(2−is(Ki(u) + ε/(1 + |i|!)))i∈Z||lp(Z)

≤ ||(2−isKi(u))i∈Z||lp(Z) + ε||(2−is/(1 + |i|)!)i∈Z||lp(Z)

= ||u||(X0 ,X1)s,p
+ Cε.

This shows the required inclusion when ε→ 0.
�

Similarly, when s ∈ (1, 2), we have:

(Lp(P,W 1,p(D)), Lp(P,W 2,p(D)))s−1,p ⊂ Lp(P,W s,p(D)). (6)

Given a map H : D̄ × P →M, we assume that H satisfies:
(H1) H ∈ C2(D̄ × P ) and [H(·, ξ)]Lip(D̄) ≤ c0 for any ξ ∈ P.

(H2) There exists a positive number c1 such that them dimensional Jacobian
JH(x, ξ) ≥ c1,Hd+k a.e (x, ξ) ∈ D̄ × P.
(H3) There exists a positive number c2 such that Hd+k−m(H−1(y)) ≤ c2 for
Hm a.e. y ∈M.

We will denote H(·, ξ) by Hξ or hξ. Then, we have:

Lemma 13 ([9], Lemma 3.3) For any Borel function χ : M → R+∪{+∞},
we have:

∫

P
dHk(ξ)

∫

D
χ(Hξ(x)) dHd(x) ≤ c−1

1 c2

∫

M
χ(y) dHm(y).

In particular, for any Borel subset E ⊂M, we have
∫

P
Hd(H−1

ξ (E)) dHk(ξ) ≤ c−1
1 c2Hm(E).

If in addition Hm(E) = 0, then Hd(H−1
ξ (E)) = 0 for Hk a.e. ξ ∈ P.

The following lemma will allow us to give the definition of [sp] − 1 ho-
motopy.

Lemma 14 i) Let f ∈W s,p(M). Then, there exists a Borel set E ⊂ P such
that Hk(E) = 0 and for any ξ ∈ P \E, f ◦Hξ ∈W s,p(D).

ii) If we define f̃ by f̃(ξ) = f◦Hξ for any ξ ∈ P, then f̃ ∈ Lp(P,W s,p(D)).
In addition,

||f̃ ||Lp(P,W s,p(D)) ≤ c||f ||W s,p(M),

where c depends only on p, c0, c1 and c2.
iii) If fi ∈ C2(M) converges to f in W s,p(M), then f̃i converges to f̃

in Lp(P,W s,p(D)). Moreover, there exists a subsequence fi′ and a Borel set
E ⊂ P such that Hk(E) = 0, and for any ξ ∈ P \ E, fi′ ◦ Hξ → f ◦ Hξ in
W s,p(D).
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Proof: This lemma corresponds to Lemma 3.4 in [9], the proof of which
shows that the map f → f̃ is continuous from Lp(M) into Lp(P,Lp(D))
and from W 1,p(M) into Lp(P,W 1,p(D)). In light of Lemma 12, we deduce
that this map is continuous from W s,p(M) into Lp(P,W s,p(D)) in the case
s ∈ (0, 1). This proves ii) when s ≤ 1. To complete the proof of ii), it remains
to consider the case s ∈ (1, 1 + 1/p). To this end, we claim that the map
f → f̃ is continuous from W 2,p(M) into Lp(P,W 2,p(D)). This will prove the
required result by interpolation as before (using (6) instead of Lemma 12).

The proof of the claim is similar to the proof of [9] Lemma 3.4., except
that ||f ||W 1,p(M) = ||f ||Lp(M) + ||df ||Lp(M) is replaced by (see [13]):

||f ||W 2,p(M) = ||f ||Lp(M) + ||df ||Lp(M) + ||d∗df ||Lp(M)

where d∗ is the formal adjoint of the differential operator d on differential
forms on M. (The notations df, d∗df have to be understood in a distribu-
tional sense).

The rest of the proof is the same and we omit it.
�

Lemma 14 implies the following corollary exactly as Lemma 3.4 implies
Corollary 3.1 in [9].

Corollary 2 Let f ∈ W s,p(M),K be a finite rectilinear cell complex, H :
|K| ×P →M be a map such that H|∆×P satisfies (H1), (H2) and (H3) for
any ∆ ∈ K. Then, there exists a Borel set E ⊂ P such that Hk(E) = 0
and for any ξ ∈ P \ E, we have f ◦ Hξ ∈ Ws,p(K); in addition, the map
f̃ = f ◦Hξ for ξ ∈ P belongs to Lp(P,Ws,p(K)).

6.5 Filling a hole (bis)

Lemma 3 is valid for any hole diffeomorphic to a ball. When s ∈ (1, 1+1/p),
we have a similar result when the ‘hole’ is a rectilinear cell.

Proposition 1 Let ∆ be a rectilinear cell and y∆ ∈ Int∆. Let u ∈W s,p(∆)
be such that tr u|∂∆ = f ∈ W̃s,p(∂∆). Then the map ut defined by

ut(x) :=

{

u(x/(1 − t)) when |x|∆ ≤ 1 − t,
f(x/|x|∆) when |x|∆ ≥ 1 − t

belongs to C0([0, 1),W s,p(∆)).
Moreover, when sp < dim∆, the map ut is continuous on [0, 1].

We will say that u1 is the homogeneous degree-zero extension of f.
Proof: We denote by d the dimension of ∆. Let Σ1, ..,Σr be the d − 1

faces of ∆ and ∆1, ..,∆r be the rectilinear cells defined by

∆i := {λy∆ + (1 − λ)x : x ∈ Σi, 0 ≤ λ ≤ 1}.
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Since
tr (ut|∆i)|∆i∩∆j = tr (ut|∆j )|∆i∩∆j ,

in light of Lemma 11, it suffices to show that ut|∆i is continuous into
W s,p(∆i).

There exists a C2 diffeomorphism Φi between each ∆i and a subset of
Bd

1 of the form {λx : λ ∈ [0, 1], x ∈ Ui} where Ui is a connected compact
subset of Sd

1 , which is isometric in the sense that |Φi(x)| = |x|∆i , x ∈ ∆i.
Hence, the continuity of ut|∆i is a mere consequence of Lemma 3. The

proposition is proved.
�

6.6 The final step for the definition of [sp] − 1 homotopy

Let X,Y be topological spaces. Then [X,Y ] denotes the set of all homotopy
classes of continuous maps from X to Y. Given any f ∈ C 0(X,Y ), we use
[f ]X,Y (or simply [f ]) to denote the homotopy class corresponding to f as
a map from X to Y. If K is a complex, then for any f ∈ W s,p(K,N) and
0 ≤ k < sp, there exists a unique g ∈ C0(Kk, N) such that for any ∆ ∈ Kk,
we have f |∆ = g|∆ Hd a.e. on ∆ with d = dim∆. Hence, we may define the
homotopy class [f |Kk ] of f as the homotopy class [g] of g (in C0(Kk, N)).

Lemma 15 (Lemma 4.4 in [9]) Assume that d ∈ N, 1 < d, sp = d,∆ is
a rectilinear cell of dimension d and u ∈ W s,p(∆, N) is such that the trace
tr u|∂∆ = f ∈ W̃s,p(∂∆, N) ⊂ C0(∂∆, N). Then, there exists v ∈ C0(∆, N)∩
W s,p(∆, N) such that v|∂∆ = f and v ∼W s,p(∆,N) u.

Proof: For any δ ∈ (0, 1), we define uδ(x) = u(x/(1 − δ)) for |x|∆ ≤ 1 − δ
and uδ(x) = f(x/|x|∆) for 1−δ ≤ |x|∆ ≤ 1. Then uδ ∈W s,p(∆) and uδ → u
in W s,p(∆) as δ → 0+ (here, we use Proposition 1).

Choose an η ∈ C∞
c (∆,R) such that 0 ≤ η ≤ 1, η|∆1−δ/2

= 1 and
η|∆\∆1−δ/3

= 0. The notation ∆r signifies the set {x ∈ ∆ : |x|∆ < r}.
For ε > 0 small enough, we set vε(x) = −

∫

Bε(x) uδ for x ∈ ∆1−δ/4. Then, we
define:

wε(x) = (1 − η(x))uδ(x) + η(x)vε(x) ∀x ∈ ∆.

Clearly, wε ∈ C0(∆̄). Since uδ is VMO, we have dist (vε(x), N) → 0 uni-
formly for x ∈ ∆1−δ/2, when ε → 0+ (see [7], section I.2, Example 2). This
implies that the same is true for wε on ∆1−δ/2 because vε|∆1−δ/2

= wε|∆1−δ/2
.

Moreover, from the uniform continuity of f, we know that wε(x)−uδ(x) → 0
uniformly for x ∈ ∆ \ ∆1−δ/2 as ε → 0+. Hence, dist (wε(x), N) → 0 uni-
formly for x ∈ ∆ as ε → 0+, from which we deduce that ΠN ◦ wε is well
defined for ε sufficiently small. We have vε → uδ when ε → 0+ in W s,p(∆)
(this can be shown as in the case of a regularization by a smooth kernel, see
[11], Proposition 4.1.). Then wε converges to uδ in W s,p(∆) when ε → 0+.
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We extend ΠN to the whole Rl and we may assume that ΠN vanishes out-
side a large ball. Since ΠN is smooth and N is bounded, by the composition
property (see [6] and [10]), the map

z ∈W s,p(∆,Rl) 7→ ΠN ◦ zW s,p(∆,Rl)

is continuous. Hence ΠN ◦ wε → uδ in W s,p(∆, N) when ε → 0+ and
ΠN ◦ wtε ∈ C0([0, 1],W s,p(∆, N)). Since uδ ∼W s,p(∆,N) u (by Proposition
1), we have ΠN ◦ wε ∼W s,p(∆,N) u. The map v := ΠN ◦ wε satisfies the
requirements of Lemma 15.

�

Lemma 16 (Lemma 4.7 in [9]) Let u ∈W s,p(M,N),K be a rectilinear cell
complex. Assume that the parameter space P is a k dimensional connected
Riemannian manifold, and that H : |K|×P →M is a map such that H|∆×P

satisfies (H1), (H2) and (H3) for any ∆ ∈ K. Then
i) there exists a Borel set E ⊂ P such that Hk(E) = 0 and u ◦ Hξ ∈
Ws,p(K,N) for any ξ ∈ P \ E.
ii) Let 0 ≤ d ≤ [sp]−1. We can define χ = χd,H,u : P → [|Kd|, N ] by setting
χ(ξ) = [u ◦Hξ||Kd|]. Then χ is a constant Hk a.e. on P.

Proof: From Corollary 2 we know that there exists a Borel set E0 ⊂ P
such that Hk(E0) = 0 and u ◦Hξ ∈ Ws,p(K,Rl) for any ξ ∈ P \ E0. Since
u(x) ∈ N for almost every x ∈M, Lemma 13 shows that there exists a Borel
set E ⊂ P such that Hk(E) = 0 and u◦Hξ ∈ Ws,p(K,N) for any ξ ∈ P \E;
that is, the first assertion of the lemma.

The second assertion can be proved exactly as in [9] Lemma 4.7 except
that in the proof, [9] Lemma 4.3 has to be replaced by i) and [9] Lemma 4.4
has to be replaced by our Lemma 15.

�

Finally, we give the definition of [sp] − 1 homotopy (when s ≥ 1, this
definition is the same as in [9]).

Let K be a finite rectilinear cell complex and h : K → M be a triangu-
lation of M . We define H : |K| × Ba

εM
→ M as H(x, ξ) = ΠM (h(x) + ξ).

Then H satisfies (H1), (H2) and (H3) for each ∆ ∈ K with P := Ba
εM

(see
[9], page 72) so that χ[sp−1],H,u is a constant a.e. on Ba

εM
. We denote this

constant by u],s,p(h). When s ∈ (1, 1 + 1/p),W s,p(M,N) ⊂ W 1,sp(M,N)
(because N is a bounded subset of Rl) and u],s,p(h) is exactly the constant
u],sp(h) defined in [9] (for s = 1).

We also remark that for εM sufficiently small, H(·, ξ) is a triangulation
of M (see [12]). We will denote H(·, ξ) by Hξ or hξ.

Lemma 4.8 and Lemma 4.9 in [9] show that if u, v ∈ W s,p(M,N) and
hi : Ki → M are triangulations for i = 1, 2 (Ki being a rectilinear cell
complex) and u],s,p(h1) = v],s,p(h1), then u],s,p(h2) = v],s,p(h2). In fact, when
s ∈ (0, 1), the same proof as in the case s = 1 is valid. When s ∈ (1, 1+1/p),
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one can use the inclusion W s,p(M,N) ⊂W 1,sp(M,N) and apply directly the
results in [9] with sp instead of p. Hence, we can define:

Definition 1 Let u, v ∈ W s,p(M,N). If for any Lipschitz rectilinear cell
decomposition h : K → M, we have u],s,p(h) = v],s,p(h), then we say that u
is [sp] − 1 homotopic to v.

Clearly, this is an equivalence relation on W s,p(M,N).

7 A preliminary to the proof of Theorem 4

In [9], the fact that Lip(∆) ⊂ W 1,p(∆) for any simplex ∆ is widely used.
In contrast, Lip(∆) 6⊂ W s,p(∆) when s > 1. To overcome this difficulty, we
have to substantially modify some parts of the proofs of [9]. This is the aim
of this section.

Throughout this section, X denotes a rectilinear cell complex of dimen-
sion k + 1 with 0 ≤ k ≤ sp− 1 and Xk its subcomplex of dimension k. We
also define [0, 1] ×Xk ∪ {0} ×X as the complex:

{[0, 1] × ∆ : ∆ ∈ Xk} ∪ {{0} × ∆ : ∆ ∈ X} ∪ {{1} × ∆ : ∆ ∈ Xk}.

If X is embedded in some RS and ∆ ∈ Xk, then [0, 1] × ∆ is a rectilinear
cell in R × RS and its boundary is

{0} × ∆ ∪ {1} × ∆ ∪ [0, 1] × ∂∆ ⊂ [0, 1] ×Xk ∪ {0} ×X.

The proof of [9], Lemma 3.2 (with obvious modifications) shows the
following

Lemma 17 The set C0(X) ∩Ws,p(X) is dense in the set C0(X).

A consequence of Lemma 17 is given by

Lemma 18 Let H0 ∈ C0([0, 1] ×Xk, N) be such that H0(0, ·) and H0(1, ·)
belong to Ws,p(Xk, N). Then there exists

H1 ∈ Ws,p([0, 1] ×Xk, N) ∩ C0([0, 1] ×Xk, N)

such that H0(0, ·) = H1(0, ·) and H0(1, ·) = H1(1, ·).
Proof: First, we may assume that H0(t, ·) = H0(0, ·), t ∈ [0, δ] and H0(t, ·) =
H0(1, ·), t ∈ [1−δ, 1], for some δ ∈ (0, 1/4). Moreover, using Lemma 17, there
exists G in Ws,p([0, 1]×Xk)∩C0([0, 1]×Xk) such that |G(t, x)−H0(t, x)| ≤
εN for (t, x) ∈ [0, 1] × |Xk|.

Finally, let θ ∈ C∞(R, [0, 1]) such that θ ≡ 1 on [δ/2, 1 − δ/2] and θ ≡ 0
on [0, δ/4] ∪ [1 − δ/4, 1]. Then we define

H(t, x) := θ(t)G(t, x) + (1 − θ(t))H0(t, x).
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The map H belongs to Ws,p([0, 1] ×Xk,Rl) ∩C0([0, 1] ×Xk,Rl) and

|H(t, x) −H0(t, x)| ≤ εN .

Thus, we can define H1(t, x) := ΠN ◦H(t, x). By the composition prop-
erty, H1 ∈ Ws,p([0, 1] ×Xk, N) ∩ C0([0, 1] ×Xk, N). We have H1(0, ·) =
H0(0, ·) and H1(1, ·) = H0(1, ·). This completes the proof of the lemma.

�

Lemma 19 Let H1 ∈ Ws,p([0, 1]×Xk ∪{0}×X,N)∩C0([0, 1]×Xk ∪{0}×
X,N). Then H1 may be extended to a map

H2 ∈ Ws,p([0, 1] ×X,N) ∩C0([0, 1] ×X,N).

Proof: For each ∆ ∈ X \ Xk, consider its barycenter y∆ and define ȳ∆ :=
(2, y∆) ∈ ∆̄ := [0, 4] × ∆. Let ρ be the map defined on [0, 1] × ∆ by

x 7→ ȳ∆ + (x− ȳ∆)/|x|∆̄.

Then
ρ(x) ∈ [0, 1] × ∂∆ ∪ {0} × ∆, x ∈ [0, 1] × ∆

and ρ(x) = x for any x ∈ [0, 1]×∂∆∪{0}×∆. Define ρ on each such [0, 1]×∆
for ∆ ∈ X\Xk and extend it to [0, 1]×|X| by setting ρ(x) = x on [0, 1]×|X k |.
Then ρ is a Lipschitz map from [0, 1] × |X| into [0, 1] × |Xk| ∪ {0} × |X|, so
that the map H2 := H1 ◦ ρ belongs to C0([0, 1] ×X,N). Moreover, H2 is an
extension of H1. To see that H2 ∈ Ws,p([0, 1] ×X,N), remark that on each
cell [0, 1] × ∆, with ∆ ∈ X \Xk, H2 is defined as the homogeneous degree-
zero extension of H1 (except that the center of the homogeneous degree-zero
extension ȳ∆ does not belong to the cell, which makes no trouble as the proof
of Proposition 1 shows). Hence, H2|[0,1]×∆ ∈ W s,p. That H2|{1}×∆ ∈ W s,p

is an easy consequence of the fact that H1 ∈ Ws,p([0, 1]×∂∆ ∪{0}×∆) and
that ρ−1 defined on the complex [0, 1] × ∂∆ ∪{0} × ∆ is a triangulation of
{1} × ∆ (see the remarks before Lemma 11). The lemma is proved.

�

Lemma 20 Let H2 ∈ C0([0, 1] × X,N) be such that H2(0, ·) and H2(1, ·)
belong to Ws,p(X,N). Then there exists H3 ∈ C0([0, 1],Ws,p(X,N)) such
that H3(0) = H2(0, ·) and H3(1) = H2(1, ·).
Proof: There exists δ > 0 such that |H2(t1, x1) − H2(t2, x2)| ≤ εN/8 for
any |x1 − x2| + |t1 − t2| ≤ δ. Pick some m ∈ N such that 1/m < δ. For
any 1 ≤ k ≤ m − 1, there exists Lk/m ∈ C0(X) ∩ Ws,p(X) such that
|Lk/m(x) − H2(k/m, x)| ≤ εN/8 for x ∈ |X|. (Here, we use Lemma 17).
We also define L0 := H2(0, ·) and L1 := H2(1, ·). For any 0 ≤ k ≤ m − 1,
t ∈ [k/m, (k + 1)/m] and x ∈ X, we define

L(t)(x) = (k + 1 −mt)Lk/m(x) + (mt− k)L(k+1)/m(x).
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It is easy to see that

L ∈ C0([0, 1],Ws,p(X,Rl)) ∩ C0([0, 1] ×X,Rl)

and dist (L(t)(x), N) < εN , t ∈ [0, 1], x ∈ |X|.
We define H3(t)(x) := ΠN (L(t)(x)). The composition property shows

that the map t ∈ [0, 1] 7→ ΠN ◦ L(t) ∈W s,p(∆, N) is continuous for each
∆ ∈ X. This implies that H3 ∈ C0([0, 1],Ws,p(X,N)).

�

The proof of Theorem 4 is mainly based on the following proposition:

Proposition 2 Let u, v ∈ Ws,p(X,N). Then u||Xk| and v||Xk | can be iden-

tified to elements in C0(Xk, N). Assume that u||Xk| ∼C0(Xk ,N) v||Xk |. Then

there exists f ∈ Ws,p(X,N) ∩ C0(X,N) such that u ∼Ws,p(X,N) f and
f ||Xk| = v||Xk |.

Proof: First, we claim that we may assume that u ∈ C 0(X,N). Indeed, if
sp > k + 1, then this is a consequence of Sobolev’s embeddings. If sp =
k + 1, then Lemma 15 applied to each ∆ ∈ X \Xk shows that there exists
u1 ∈ Ws,p(X,N)∩C0(X,N) such that u1||Xk | = u||Xk| and u1 ∼Ws,p(X,N) u.

There exists H0 ∈ C0([0, 1] × Xk, N) such that H0(0, ·) = u||Xk| and
H0(1, ·) = v||Xk|. Using Lemma 18, there exists

H1 ∈ Ws,p([0, 1] ×Xk, N) ∩ C0([0, 1] ×Xk, N)

such that H1(0, ·) = H0(0, ·) and H1(1, ·) = H0(1, ·).
Then extend H1 to a map still denoted by H1, defined on [0, 1] ×Xk ∪

{0}×X by setting H1(0, x) = u(x) for x ∈ X. It is clear that H1 now belongs
to the space

Ws,p([0, 1] ×Xk ∪ {0} ×X,N) ∩C0([0, 1] ×Xk ∪ {0} ×X,N).

In light of Lemma 19, we may extend H1 to a map

H2 ∈ Ws,p([0, 1] ×X,N) ∩C0([0, 1] ×X,N).

Finally, using Lemma 20, there exists H3 ∈ C0([0, 1],Ws,p(X,N)) such that
H3(0) = H2(0, ·) = u and H3(1) = H2(1, ·). We have H2(1, ·)||Xk | = v||Xk |.
We can set f := H3(1).

�

8 Proof of Theorem 4

Lemma 21 There exists η > 0 such that for any u, v ∈ W s,p(M,N) satis-
fying ||u− v||W s,p(M,Rl) < η, we have

u is [sp] − 1 homotopic to v.
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Proof: Fix a smooth triangulation of M, say h : K → M. We may find a
Borel set E1 ⊂ Ba

εM
such that Ha(E1) = 0 and for any ξ ∈ Ba

εM
\ E1, we

have u ◦ hξ , v ◦ hξ ∈ Ws,p(K,N) and

[u ◦ hξ||K[sp]−1|] = u],s,p(h) , [v ◦ hξ||K[sp]−1|] = v],s,p(h).

For any ∆ ∈ K, we have (see Lemma 14)

−
∫

Ba
εM

dHa(ξ)||u ◦ hξ − v ◦ hξ ||pW s,p(∆,Rl)
≤ C||u− v||p

W s,p(M,Rl)
.

This implies:

Ha({ξ ∈ Ba
εM

: ||u ◦ hξ − v ◦ hξ||pW s,p(∆,Rl)
≥ r}) ≤ C

εaM ||u− v||p
W s,p(M,Rl)

r
.

Hence, we may find a Borel set E2 ⊂ Ba
εM

such that Ha(E2) > 0 and for
any ξ ∈ E2, we have:
(i) u ◦ hξ, v ◦ hξ ∈ Ws,p(K,N)
(ii) For any ∆ ∈ K, we have

||u ◦ hξ − v ◦ hξ ||pW s,p(∆,Rl)
≤ C||u− v||p

W s,p(M,Rl)
.

Hence, for any ∆ ∈ K [sp−1], we have:

||u ◦ hξ − v ◦ hξ||L∞(∆) ≤ C||u ◦ hξ − v ◦ hξ||W s,p(∆,Rl)

≤ C||u− v||W s,p(M,Rl).

If ||u− v||W s,p(M,Rl) ≤ η := εN/C, then the continuous map

H(t, x) := ΠN ((1 − t)u ◦ hξ(x) + tv ◦ hξ(x))

is well defined. This shows that u is [sp] − 1 homotopic to v.
�

Lemma 21 will allow us to prove one implication of Theorem 2. For the
converse of this implication, we will need the two following propositions.

Proposition 3 Assume that 1 < sp < d and that f is a continuous path
in W̃s,p(∂∆, N), where ∆ is a d dimensional rectilinear cell containing 0.
Define f̃(t)(x) = f(t)(x/|x|) for 0 ≤ t ≤ 1 and x ∈ ∆. (Here, | · | denotes
the Minkowski functional of ∆ with respect to 0). Then f̃ is a continuous
path in W s,p(∆, N).

Proof: In light of the proof of Proposition 1, Lemma 1 and (5), the propo-
sition follows from

||f̃(t) − f̃(s)||W s,p(∆) = || ˜f(t) − f(s)||W s,p(∆) ≤ C||f(t) − f(s)||W̃s,p(∂∆).

�
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Proposition 4 Consider a d dimensional rectilinear cell ∆ containing 0.
Assume that 1 < sp < d. Let u, v ∈W s,p(∆, N) be such that tr u|∂∆, tr v|∂∆ ∈
W̃s,p(∂∆, N) and tr u|∂∆ ∼W̃s,p(∂∆,N) tr v|∂∆. Then u ∼W s,p(∆,N) v.

Proof: There exists f ∈ C0([0, 1], W̃s,p(∂∆, N)) such that tru = f(0), tr v =
f(1). Then, Proposition 3 implies the existence of some

f̃ ∈ C0([0, 1],W s,p(∆, N))

satisfying f̃(0) = ũ, f̃(1) = ṽ with ũ(x) = tru|∂∆(x/|x|) and similarly for
ṽ. Moreover, Proposition 1 shows that ũ ∼W s,p(∆) u, ṽ ∼W s,p(∆) v. Finally,
u ∼W s,p(∆) v.

�

We proceed to prove Theorem 4; that is,

Theorem 7 Let u, v ∈W s,p(M,N). Then u ∼s,p v if and only if u is [sp]−1
homotopic to v in W s,p(M,N).

Proof: Let u, v ∈ W s,p(M,N). Assume that u ∼s,p v. Then there exists
a continuous map H ∈ C0([0, 1],W s,p(M,N)) such that H(0, ·) = u and
H(1, ·) = v.

Let η be the number in Lemma 21. There exists m ∈ N such that for
any s, t ∈ [0, 1] satisfying |s− t| ≤ 1/m, we have:

||H(s) −H(t)||W s,p(M,Rl) < η.

Then, for i = 0, ..,m − 1, we have H(i/m) is [sp] − 1 homotopic to H((i +
1)/m). This proves that u is [sp] − 1 homotopic to v.

The converse is very close to [9]. Suppose that we are given two maps
u, v ∈ W s,p(M,N) which are [sp] − 1 homotopic. For convenience, we note
k = [sp] − 1. Let h : K →M be a smooth triangulation of M.

By definition of [sp] − 1 homotopy, we may find a ξ ∈ Ba
εM

such that
u ◦ hξ , v ◦ hξ ∈ Ws,p(K,N) and u ◦ hξ ||Kk| ∼ v ◦ hξ||Kk| as maps from

|Kk| to N. We remark that it is enough to prove that u ◦ hξ and v ◦ hξ

are W̃ s,p(K,N) homotopic. Indeed, if this is the case, u and v will be
W s,p(hξ(∆), N) homotopic for each ∆ ∈ K of dimension m (recall that hξ

is a smooth diffeomorphism from ∆ onto hξ(∆)). Then, Lemma 11 implies
that u ∼W s,p(M,N) v.

Step 1: a reduction. We claim that we can assume that u ◦ hξ||Kk| =

v ◦ hξ||Kk|. Indeed, since u ◦ hξ||Kk| ∼ v ◦ hξ||Kk| as maps from |Kk| to N,

we may apply Proposition 2 which shows that u ◦ hξ|Kk+1 is Ws,p(Kk+1, N)
homotopic to a map f ∈ Ws,p(Kk+1, N) ∩C0(Kk+1, N) which coincides with
v on |Kk|. For each (k+2) simplex ∆, f and tru◦hξ |∂∆ = u◦hξ|∂∆ belongs
to Ws,p(∂∆). We choose the barycenter of ∆ as origin and do homogeneous
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degree-zero extension from f to get f∆ ∈ W s,p(∆, N) on ∆. Define f∆

on each such ∆ to get fk+2 ∈ Ws,p(Kk+2, N). Proposition 4 shows that
u ◦ hξ|Kk+2 is homotopic to fk+2 in Ws,p(Kk+2, N). Simply by induction we
finish after working with n simplices.

Then, u ◦ hξ is Ws,p(K,N) homotopic to f . This completes the proof of
step 1.

Step 2: completion of the proof. We now show that f can be connected
to v ◦ hξ by a continuous path in W̃s,p(K,N).

Applying Proposition 1 to each k + 1 simplex ∆ ∈ K, we may assume
that f |∆\Bδ(c∆) = v ◦ hξ|∆\Bδ(c∆). Here c∆ is the barycenter of ∆ and δ is a
small number. Note that f is continuous on ∆ and that v is continuous on
∆ \ Bδ(c∆).

Doing homogeneous degree-zero extension from v ◦ hξ|Kk+1 and f |Kk+1

as we have done above, we may assume that v◦hξ and f are homogeneous of
degree zero on Σ ∈ K with dimΣ ≥ k+2. Then, on any k+2 simplex Σ ∈ K,
f is continuous on Σ \ {cΣ} and v ◦ hξ is continuous on Σ \ {tz + (1 − t)cΣ :
z ∈ B̄δ(c∆), t ∈ [0, 1]} (here, cΣ is the barycenter of Σ and the center of the
homogeneous degree-zero extension on Σ).

Fix a k + 1 simplex ∆. It must be the face of several k + 2 simplices,
say Σ1, ..,Σr, r ≥ 2. Now, for two small numbers δ′ > δ and ε > 0, consider
Ω := ∪r

i=1Ωi where Ωi ⊂ Σi is formally equal to (B̄2δ′(c∆) ∩ ∆) × [0, ε], for
which the product means that we go in the Σi in the normal direction by
length ε. Define

Ω′
i := (B̄2δ′(c∆) ∩ ∆) × [0,

1

2
ε],Ω′′

i := (B̄2δ′(c∆) ∩ ∆) × [ε/2, ε],

Ω′ = ∪r
i=1Ω

′
i,Ω

′′ = ∪r
i=1Ω

′′
i .

We may choose δ′ and ε such that f |∂Ωi∪∂Ω′′

i
∈ W̃s,p(∂Ωi ∪ ∂Ω′′

i ) and v ◦
hξ ∈ W̃s,p(∂Ω′

i) (this amounts to Lemma 2 i); note also that the trace
compatibility conditions are automatically satisfied for δ ′ > δ and ε > 0
sufficiently small: this follows from the continuity properties of f and v ◦ hξ

stated above). This implies that f |∂Ω ∈ W̃s,p(∂Ω) (once again, the trace
compatibility conditions are satisfied). If ε is taken sufficiently small (this
depends only on the geometry of the k + 2 simplices), we can assume that
v ◦ hξ = f on a neighborhood of ∂Ω′ ∩ ∂Ω (recall that on Kk+2, f and v ◦ hξ

are now homogeneous of degree zero).
Now consider a w defined on |Kk+2| by setting

w|Ω′ = v ◦ hξ|Ω′ , w||Kk+2|\Ω = f ||Kk+2|\Ω.

On each Ω′′
i , we simply do homogeneous degree-zero extension with respect

to a point in intΩ′′
i (here, we use the fact that the map equal to f on
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∂Ω′′
i \ ∂Ω′

i and equal to v◦hξ on ∂Ω′′
i ∩ ∂Ω′

i = (B̄2δ(c∆) ∩ ∆) × {ε/2} belongs
to W̃s,p(∂Ω′′

i )). Clearly, w ∈ W̃s,p(Kk+2, N).
We may connect w to f ||Kk+2| by a continuous path in W̃s,p(Kk+2, N)

since for any 1 ≤ i 6= j ≤ r, Ωi ∪ Ωj is star-shaped with respect to c∆ and
we may apply Proposition 1 to w on this set (here, we use the fact that
w|∂(Ωi∪Ωj) = f |∂(Ωi∪Ωj) belongs to W̃s,p(∂(Ωi ∪ Ωj))).

Define w̃ inductively to be the homogeneous degree-zero extension of w
on each higher-dimensional simplex ∆ with dim∆ ≥ k + 3, from its value
on ∂∆ as described above. Then, one has w̃ ∼W̃s,p(K,N) f.

Since w̃||Kk+1| = v◦hξ ||Kk+1|, we have w̃ ∼W̃s,p(K,N) v◦hξ (by Proposition

4 and Lemma 11). Finally, v◦hξ ∼W̃s,p(K,N) u◦hξ . This completes the proof
of the theorem.

�

9 Consequences of Theorem 4

As in [9], Theorem 4 reduces certain problems about Sobolev mappings,
which are analytical problems, to pure topology problems. In this section,
we enumerate some of these results, which correspond to similar results in
[9] (for W 1,p ). We omit their proofs when they are similar to those of [9].

Proposition 5 ([9], Proposition 5.1) Assume that 1 ≤ p, s ∈ (0, 1 + 1/p),
1 < sp < m. For any triangulation of M, say h : K → M, we set M j =
h(|Kj |) for any j. There is a bijection between the sets W s,p(M,N)/ ∼s,p and

C0(M [sp], N)/ ∼M [sp]−1 . Here for f, g ∈ C0(M [sp], N), f ∼M [sp]−1 g means
that f |M [sp]−1 and g|M [sp]−1 are homotopic in C0(M [sp]−1, N).

Proof: A way to show this proposition is to introduce the space

X := (C0(M [sp], N) ∩Ws,p(M [sp], N))/ ∼M [sp]−1 .

The definition of Ws,p(M [sp], N) follows exactly the definition of W s,p(K,N).
The natural map G : X → C0(M [sp], N)/ ∼M [sp]−1 is one-to-one. The

surjectivity of G is an easy consequence of Lemma 17. Indeed, let u ∈
C0(M [sp], N). Then Lemma 17 shows that there exists v ∈ C0(M [sp]) ∩
Ws,p(M [sp]) such that ||u−v||L∞(M [sp]) < εN and ||ΠN (v)−u||L∞(M [sp]) < εN .

Hence u is continuously connected to ΠN (v) ∈ C0(M [sp], N) ∩Ws,p(M [sp], N)
by the map H(t) := ΠN (tΠN (v) +(1 − t)u), so that G(ΠN (v)) = u.

Thus, there is a bijection between C0(M [sp], N)/ ∼M [sp]−1 and X. It
remains to show that there is a bijection between X and W s,p(M,N)/ ∼s,p .

We define a map from X into W s,p(M,N)/ ∼s,p as follows: For any
w ∈ C0(M [sp], N) ∩Ws,p(M [sp], N), using h to pull w to K [sp], after doing
homogeneous degree-zero extension on higher-dimensional cells, we pull it
to M by h and get w̃. Then we send the equivalence class corresponding to
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w to the equivalence class corresponding to w̃. This map is well defined by
the proof of Theorem 4.

We proceed to prove that this map is one-to-one. Let u, v ∈ C 0(M [sp], N)
∩Ws,p(M [sp], N) and ũ, ṽ their homogeneous degree-zero extension. Assume
that ũ ∼s,p ṽ. Then by Theorem 4, ũ],s,p(h) = ṽ],s,p(h). It is easy to see that
ũ],s,p(h) = [u ◦ h|K[sp]−1 ] and similarly for v. Hence u ∼M [sp]−1 v ; that is,
the map is one-to-one.

To prove the surjectivity, let u ∈ W s,p(M,N). There exists ξ ∈ Ba
εM

such that u ◦ hξ ∈ Ws,p(K,N). By the Sobolev embeddings or Lemma 15,
there exists f ∈ C0(Ksp, N) ∩Ws,p(K [sp], N) such that f ||K[sp]−1| = u ◦
hξ||K[sp]−1|. We extend f by degree-zero homogeneity. We denote by f̃ this
extension. The proof of Theorem 4 (in fact, this is exactly ‘step 2’) shows
that u ◦ hξ ∼W̃s,p(K,N) f̃ . Hence, u ◦ hξ ◦ h−1 ∼W s,p(M,N) f̃ ◦ h−1. Since

u◦hξ ◦h−1 ∼W s,p(M,N) u, the equivalence class corresponding to f ◦h−1|M [sp]

is mapped to the equivalence class corresponding to u. That is, the map is
onto.

�

For any 0 < s1, s2 ≤ 1, 1 ≤ p1, p2, such that W s2,p2 ⊂ W s1,p1 , we have a
map:

i : W s2,p2/ ∼s2,p2→W s1,p1/ ∼s1,p1

defined in an obvious way. An immediate consequence of the above propo-
sition is the following

Corollary 3 ([9], Corollary 5.1) Assume that [s1p1] = [s2p2]. Then i is a
bijection.

The following corollary implies Theorem 3 b).

Corollary 4 ([9], Corollary 5.2) Assume that 1 ≤ p, s ∈ (0, 1 + 1/p), 1 <
sp < dimM, and πi(N) = 0 for [sp] ≤ i ≤ dimM. Then there is a bijection
between C0(M,N)/ ∼ and W s,p(M,N)/ ∼s,p .

Corollary 5 ([9], Corollary 5.3) Assume that 1 ≤ p, s ∈ (0, 1 + 1/p), 1 <
sp < m. If there exists some k ∈ Z, k ≤ [sp] − 1 such that πi(M) = 0 for
1 ≤ i ≤ k, and πi(N) = 0 for k + 1 ≤ i ≤ [sp] − 1, then W s,p(M,N) is
path-connected.

This is Theorem 2.
We now turn to the question whether a given Sobolev map inW s,p(M,N)

can be connected to a smooth map by a continuous path in W s,p(M,N). It
turns out that there is a necessary and sufficient topological condition for
this to be true.

Proposition 6 ([9], Proposition 5.2) Assume that 1 ≤ p, s ∈ (0, 1 + 1/p),
1 < sp < m, u ∈W s,p(M,N), and that h : K →M is a triangulation. Then,
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u can be connected to a smooth map by a continuous path in W s,p(M,N) if
and only if u],s,p(h) is extendible to M with respect to N, that is: for any
f ∈ C0(K [sp]−1, N) such that f ∈ u],s,p(h), f is the restriction of a map in
C0(K,N).

Corollary 6 ([9], Corollary 5.4) Assume that 1 ≤ p, s ∈ (0, 1 + 1/p), 1 <
sp < m. Then every map in W s,p(M,N) can be connected by a continuous
path in W s,p(M,N) to a smooth map if and only if M satisfies the [sp] − 1
extension property with respect to N, that is: there exists a CW complex
structure (M j)j∈Z of M such that every f ∈ C0(M [sp], N), f |M [sp]−1 has a
continuous extension to M.

This is Theorem 5 e).
Proof: Fix a smooth triangulation of M, say h : K → M. Assume

that every map in W s,p(M,N) can be connected continuously to a smooth
map. Let f ∈ C0(M [sp], N). Then using Lemma 17, there exists f1 ∈
C0(K [sp], N)∩Ws,p(K [sp], N) such that f1 ∼C0(K[sp],N) f ◦h. Let g be the ho-

mogeneous degree-zero extension of f1 to K. Then u = g◦h−1 ∈W s,p(M,N)
and u],s,p(h) = [g|K[sp]−1 ]. Since u can be connected continuously to a smooth
map, from Proposition 6 we know that f1||K[sp]−1| has a continuous extension
to K with respect to N. Hence, f |M [sp]−1 has a continuous extension to M.

Conversely, assume that M satisfies the ([sp] − 1) extension property
with respect to N. Given any u ∈ W s,p(M,N), there exists ξ ∈ Ba

εM
such

that u ◦ hξ ∈ Ws,p(K,N) and u],s,p(h) = [u ◦ hξ||K[sp]−1|]. Using the Sobolev

embeddings or Lemma 15, we may assume that u◦hξ ∈ C0(K [sp], N). Hence,
by Proposition 6, u may be connected continuously to a smooth map.

�
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