Fractional Sobolev Spaces and Topology

Pierre Bousquet *

January 5, 2007

Abstract

Consider the Sobolev class $W^{s,p}(M, N)$ where M and N are compact manifolds, and $p \ge 1, s \in (0, 1+1/p)$. We present a necessary and sufficient condition for two maps u and v in $W^{s,p}(M, N)$ to be continuously connected in $W^{s,p}(M, N)$. We also discuss the problem of connecting a map $u \in W^{s,p}(M, N)$ to a smooth map $f \in C^{\infty}(M, N)$.

Keywords Fractional Sobolev spaces between manifolds, homotopy.

1 Introduction

Let M and N be compact connected oriented smooth boundaryless Riemannian manifolds. Throughout the paper we assume that M and N are isometrically embedded into \mathbb{R}^a and \mathbb{R}^l respectively and that $m := \dim M \ge 2$. Our functional framework is the Sobolev space

$$W^{s,p}(M,N) = \{ u \in W^{s,p}(M,\mathbb{R}^l) : u(x) \in N \text{ a.e. } \},\$$

with $1 \leq p < \infty, 0 < s$. The space $W^{s,p}(M, N)$ is equipped with the standard metric $d(u, v) = ||u-v||_{W^{s,p}}$. The main purpose of this paper is to determine whether or not $W^{s,p}(M, N)$ is path-connected and if not, when two elements u and v in $W^{s,p}(M, N)$ can be continuously connected in $W^{s,p}(M, N)$; that is, when there exists $H \in C^0([0, 1], W^{s,p}(M, N))$ such that H(0) = u and H(1) = v. If this is the case, we say that 'u and v are $W^{s,p}$ connected' (or $W^{s,p}$ homotopic).

Homotopy theory in the framework of Sobolev spaces is essential when studying certain problems in the calculus of variations. This is the case when the admissible functions are defined on a manifold M into a manifold N. One may hope to find multiple minimizers to these problems, ideally one in each homotopy class (see [15], [16] and also [3]).

The topology of $W^{s,p}(M, N)$ depends on two features of the problem, namely the topology of M and N, and the value of s and p. When s = 1, the

^{*}Université Claude Bernard Lyon 1, bousquet@igd.univ-lyon1.fr

study of the topology of $W^{1,p}(M, N)$ was initiated in [4]. The analysis of homotopy classes (for s = 1) was subsequently tackled in [9] (see also [15], [16] for related and earlier results). These results have been generalized to $W^{s,p}(M, N)$ for non integer values of s and 1 when <math>M is a smooth, bounded, connected open set in an Euclidean space and when $N = S^1$ (see [5]). In this case, the proofs exploit in an essential way the fact that the target manifold is S^1 . In contrast, our main concern is to determine to what extent the methods of [9] and the tools of [4] can be adapted to the case $s \neq 1$. Throughout the paper, we assume that 0 < s < 1+1/p or $sp \ge \dim M$.

Our first result gives some conditions which imply that $W^{s,p}(M,N)$ is path-connected:

Theorem 1 Let 0 < s < 1 + 1/p. Then the space $W^{s,p}(M,N)$ is pathconnected when sp < 2.

When s = 1, this result was proved in [4], where the condition p < 2 (for s = 1) is seen to be sharp. For instance, $W^{1,2}(S^1 \times \Lambda, S^1)$, where Λ is any open connected set, is not path connucted.

In the case $sp \ge 2$, we have:

Theorem 2 Assume that $0 < s < 1 + 1/p, 2 \le sp < \dim M$ and that there exists $k \in \mathbb{N}$ with $k \le [sp] - 1$ such that $\pi_i(M) = 0$ for $1 \le i \le k, \pi_i(N) = 0$ for $k + 1 \le i \le [sp] - 1$. Then the space $W^{s,p}(M, N)$ is path-connected.

The case s = 1 of the above theorem is Corollary 1.1 in [9].

More generally, it is natural to compare the connected components of $W^{s,p}(M,N)$ to those of $C^0(M,N)$. In certain cases, this is indeed possible:

Theorem 3 a) If $sp \ge \dim M$ then $W^{s,p}(M,N)$ is path connected if and only if $C^0(M,N)$ is path connected.

b) The $W^{s,p}$ homotopy classes are in bijection with the C^0 homotopy classes when $0 < s < 1 + 1/p, 2 \le sp < \dim M$ and $\pi_i(N) = 0$ for $[sp] \le i \le \dim M$.

The statement a) is well-known and can be proved as in the appendix of [4]. Part b) for s = 1 was obtained in [9], Corollary 5.2.

When s = 1, Theorem 2 and Theorem 3 are particular cases of a more general result in [9] which asserts that there is a one-to-one map from the connected components of $W^{1,p}(M,N)$ into the connected components of $C^0(M^{[p]-1}, N)$. Here, $M^{[p]-1}$ denotes a [p]-1 skeleton of M. This may be reexpressed as follows: two maps u and v in $W^{1,p}(M,N)$ are $W^{1,p}$ homotopic if and only if u is [p]-1 homotopic to v. For an accurate definition of [p]-1homotopy, one should refer to [9] or to section 6. Roughly speaking, this means that for a generic [p]-1 skeleton $M^{[p]-1}$ of $M, u|_{M^{[p]-1}}$ and $v|_{M^{[p]-1}}$ are homotopic. This makes sense because for a generic [p]-1 skeleton, u and v are both $W^{1,p}$ on these skeletons and hence continuous, by the Sobolev embedding. There is a corresponding version of this result in which $W^{1,p}$ is replaced by $W^{s,p}$:

Theorem 4 Assume that $0 < s < 1 + 1/p, 2 \leq sp < \dim M$. Let $u, v \in W^{s,p}(M,N)$. Then u and v are $W^{s,p}$ connected if and only if u is [sp] - 1 homotopic to v.

The techniques in [9] can be adapted in order to prove not only Theorem 4 but also the more general result where the condition $2 \leq sp < \dim M$ is replaced by: $0 < sp < \dim M$, and $sp \neq 1$. In turn, this last result implies Theorem 1 when $sp < 2, sp \neq 1$. However, the case sp = 1 seems delicate to handle via these techniques. This is the reason why we give a proof of Theorem 1 based on the tools of [4]. Besides its independent interest, it turns out that the technical core of the proof of Theorem 1 is also the technical core of the proof of Theorem 1 is also the technical core of the proof of Theorem 1 is [4] are more likely to allow some extensions to the case s > 1 + 1/p.

Another strategy to show that two elements in $W^{s,p}(M, N)$ are $W^{s,p}$ connected is based on the property P(u) defined for any $u \in W^{s,p}(M, N)$ by:

(P(u)) The map u is $W^{s,p}$ homotopic to some $\tilde{u} \in C^{\infty}(M, N)$.

We proceed to explain the interest of this property. Assume that P(u)and P(v) are true, where $u, v \in W^{s,p}(M, N)$, and that \tilde{u} and \tilde{v} are C^0 homotopic. So, there exists $F \in C^{\infty}([0,1] \times M, N)$ such that $F(0, \cdot) = \tilde{u}$ and $F(1, \cdot) = \tilde{v}$, which implies that \tilde{u} and \tilde{v} are $W^{s,p}$ homotopic. Finally, uand v are $W^{s,p}$ homotopic. This shows the importance of the property P.

Theorem 5 Each $u \in W^{s,p}(M, N)$ satisfies P(u) when

a) $sp \ge \dim M$, b) 0 < sp < 2, 0 < s < 1 + 1/p, c) $\dim M = 2, 0 < s < 1 + 1/p$, d) $M = S^m, 0 < s < 1 + 1/p$, e) $0 < s < 1 + 1/p, 2 \le sp$ and M satisfies the [sp] - 1 extension property with respect to N, f) $0 < s < 1 + 1/p, 2 \le sp < \dim M$ and $\pi_i(N) = 0$ for $[sp] \le i \le \dim M - 1$.

The case $sp \geq \dim M$ can be handled as in the appendix of [4]. If 0 < sp < 2, then Theorem 1 shows that u can be connected to a constant map. The case dim M = 2 is a consequence of a) and b). When $M = S^m$, we can even show that $W^{s,p}(S^m, N)$ is path-connected if sp < m (see section 5). The statement f) follows from e) (see [9], Remark 5.1). For the meaning of the "[sp] - 1 extension property with respect to N", one should refer to [9] or to section 9. Roughly speaking, this means that for any smooth triangulation of M, and any continuous map $f : M^{[sp]} \to N$, we may find a continuous extension of $f|_{M^{[sp]-1}}$ to the whole M. Unfortunately, it is not the case that for any M, N, s, p, each $u \in W^{s,p}(M, N)$ satisfies P(u), (see [9], Corollary 1.5.).

Remark 1 In the above results, we have often assumed that s < 1+1/p, 1 < sp. This is closely linked to the strategy of our proofs because we glue several maps in $W^{s,p}(M, N)$ together. Let $u_1 \in W^{s,p}(\Omega_1)$ and $u_2 \in W^{s,p}(\Omega_2)$, where Ω_1, Ω_2 are two Lipschitz open subsets of \mathbb{R}^d such that

$$\Gamma := \bar{\Omega}_1 \cap \bar{\Omega}_2 \subset \partial \Omega_1 \cap \partial \Omega_2,$$

and $\Omega := \Omega_1 \cup \Omega_2 \cup \Gamma$ is a Lipschitz open set. Since 1 < sp, we can define the traces of u_1, u_2 . Assume that $tru_1|_{\Gamma} = tru_2|_{\Gamma}$. Then, the map u defined by

$$u(x) = \begin{cases} u_1(x) & when \ x \in \Omega_1, \\ u_2(x) & when \ x \in \Omega_2 \end{cases}$$

belongs to $W^{s,p}(\Omega)$ when s < 1 + 1/p. In contrast, nothing can be said when $s \ge 1 + 1/p$.

Note that when sp = 1, we cannot glue maps in $W^{s,p}$ any more, since traces are not defined. However, there is a way to overcome this difficulty (see [4], Appendix B and also section 2.2). Finally, when sp < 1, maps can be glued without any trace compatibility conditions.

Remark 2 To simplify the presentation, we have assumed that M is boundaryless. Nevertheless, all the results above can be generalized to the case when M has a boundary (see [4], Remark 2.1 and [8], section 4).

Remark 3 Lemma 21 below and Theorem 4 show that there exists $\eta > 0$ such that for any $f, g \in W^{s,p}(M,N)$, if $||f - g||_{W^{s,p}(M,N)} < \eta$, then f and g are $W^{s,p}$ homotopic. Hence connected components coincide with path-connected components.

The following section is the technical core of the article: it enumerates some variations of the technique 'filling a hole', a phrase coined by Brezis and Li [4]. Sections 3 and 4 present some consequences of this technique which allow us to generalize in section 5 the results of [4]; that is, Theorem 1 and Theorem 5 d). In section 6 and section 7, we recall and adapt some results of [9] which prepare the proof of Theorem 4 in section 8. In the final section, the corollaries of this theorem, namely Theorem 2, Theorem 3 b) and Theorem 5 e) are proved.

We now introduce some notations: In \mathbb{R}^d , B^d (or B when no confusion may arise) denotes the unit ball centered at $0, S^d$ (or S) its boundary, $B_r^d(x) := rB + x, S_r^d(x) := rS + x$ and $B_r = rB, S_r = rS$. We will use the convention that all the constants are denoted by the same letter C.

When X is a topological space and $u, v \in X$, we write $u \sim_X v$ to signify the fact that there exists $H \in C^0([0, 1], X)$ such that H(0) = u and H(1) = v. We abbreviate this notation writing $u \sim_{s,p} v$ when u and v are $W^{s,p}$ homotopic; similarly, $u \sim v$ means that u and v are C^0 homotopic.

Whenever $s \in (1, 1 + 1/p)$, we denote $\sigma := s - 1$.

For any k dimensional Lipschitz manifold D embedded in \mathbb{R}^n and any measurable function f, we denote

$$[f]_{W^{\sigma,p}(D)} := \left(\int_D d\mathcal{H}^k(x) \int_D d\mathcal{H}^k(y) \frac{|f(x) - f(y)|^p}{|x - y|^{n + \sigma p}}\right)^{1/p}.$$

The set $W^{s,p}(M)$ denotes either $W^{s,p}(M,\mathbb{R})$ or $W^{s,p}(M,\mathbb{R}^l)$. This will be clear from the context.

2 Filling a hole

The technique 'Filling a hole' appears in [4], Proposition 1.3. We will first generalize it to our context. This will be useful in adapting other tools from [4], such as 'Bridging a map' (see Section 3) and 'Opening a map' (see Section 4). This will allow us to avoid analytical proofs devised in [4] which elude us in the context of fractional Sobolev spaces.

In this section, the underlying Euclidean space is \mathbb{R}^n .

2.1 The main result

In this subsection, we prove the following generalization of Lemma D.1 in [5]:

Lemma 1 Let 0 < s < 2, sp < n and $u \in W^{s,p}(S)$. Then, the map $\tilde{u}(x) := u(x/|x|)$ belongs to $W^{s,p}(B)$ and we have

$$||\tilde{u}||_{W^{s,p}(B)} \le C||u||_{W^{s,p}(S)}.$$
(1)

Proof: We first prove that $\tilde{u} \in L^p(S)$:

$$\int_{B} |\tilde{u}(x)|^{p} dx = \int_{S} |u(\theta)|^{p} d\theta \int_{0}^{1} r^{n-1} dr = 1/n ||u||_{L^{p}(S)}^{p}$$

We consider three cases: s = 1, s > 1 and s < 1. When s = 1, we have:

$$\int_{B} |D\tilde{u}(x)|^{p} dx \leq C \int_{S} |Du(\theta)|^{p} d\theta \int_{0}^{1} r^{n-1-p} dr \leq C ||Du||_{L^{p}(S)}^{p},$$

since p < n.

When $s \in (1, 2)$, we claim that

$$I := \int_B dx \int_B dy \frac{|D\tilde{u}(x) - D\tilde{u}(y)|^p}{|x - y|^{n + \sigma p}} < +\infty.$$

We denote f(x) := x/|x|. We have

$$Df(x) = \frac{1}{|x|}Id - \frac{x \otimes x}{|x|^3}$$
, where $x \otimes x = (x_i x_j)_{(i,j) \in [|1,n|]^2}$,

so that $|Df(x)| \leq C/|x|$ and

$$|Df(x) - Df(y)| \le C \frac{|x - y|}{|x||y|}.$$
 (2)

(Indeed, note that $Df(\lambda x) = x/\lambda$ and $Df(Rx) = R(Df(x))R^{-1}$ for any $\lambda > 0, R \in O(n)$. Hence, we can assume that x = (1, 0, ..0) and $y = (r \cos \theta, r \sin \theta, 0, .., 0)$. Then, (2) can be easily shown).

Writing

$$|D\tilde{u}(x) - D\tilde{u}(y)| \le |Du(x/|x|) - Du(y/|y|)||Df(x)| + |Du(y/|y|)||Df(x) - Df(y)|,$$
(3)

we find $I \leq C(I_1 + I_2)$ with

$$I_{1} := \int_{S} d\theta \int_{S} d\tau |Du(\theta) - Du(\tau)|^{p} \int_{r=0}^{1} dr \int_{t=0}^{1} \frac{r^{n-1-p}t^{n-1}}{|r\theta - t\tau|^{n+\sigma p}} dt,$$
$$I_{2} := \int_{B} dx \int_{B} dy |Du(y/|y|)|^{p} \frac{|x - y|^{p}}{|x|^{p}|y|^{p}|x - y|^{n+\sigma p}}.$$

We claim that whenever $\theta \neq \tau$,

$$J := \int_{r=0}^{1} dr \int_{t=0}^{1} \frac{r^{n-1-p} t^{n-1}}{|r\theta - t\tau|^{n+\sigma p}} dt \le \frac{C}{|\theta - \tau|^{n-1+\sigma p}}.$$
 (4)

Indeed, after making the change of variable $t \to \lambda := t/r$, we get

$$J \leq \int_{r=0}^{1} r^{n-1-sp} dr \int_{\lambda=0}^{\infty} \frac{\lambda^{n-1}}{|\theta - \lambda\tau|^{n+\sigma p}} d\lambda$$
$$\leq C \int_{\lambda=0}^{\infty} \frac{\lambda^{n-1}}{|\theta - \lambda\tau|^{n+\sigma p}} d\lambda \qquad (\text{since } sp < n)$$
$$\leq C (\int_{\lambda=0}^{2} \frac{d\lambda}{|\theta - \lambda\tau|^{n+\sigma p}} + \int_{2}^{\infty} \frac{\lambda^{n-1}}{\lambda^{n+\sigma p}}) \leq C (\int_{\lambda=0}^{2} \frac{d\lambda}{|\theta - \lambda\tau|^{n+\sigma p}} + 1).$$

Now, consider the 2 plane generated by θ and τ . In this plane, θ and τ belong to S^1 , so that they can be written $\theta = e^{i\alpha}, \tau = e^{i\beta}, \alpha, \beta \in (-\pi, \pi]$. Hence, with $\gamma := \beta - \alpha$,

$$|\theta - \lambda \tau|^2 = |\lambda - e^{i\gamma}|^2 = (\lambda - \cos \gamma)^2 + \sin^2 \gamma.$$

The change of variable $\mu := (\lambda - \cos \gamma) / \sin \gamma$, (when $\sin \gamma \neq 0$) yields

$$\int_{\lambda=0}^{2} \frac{d\lambda}{|\theta - \lambda \tau|^{n+\sigma p}} \le \frac{1}{(\sin \gamma)^{n-1+\sigma p}} \int_{\mathbb{R}} \frac{d\mu}{(1+\mu^2)^{(n+\sigma p)/2}} \le \frac{C}{(\sin \gamma)^{n-1+\sigma p}}.$$

Moreover,

$$|\theta - \tau|^2 = 2(1 - \cos \gamma) = 4\sin^2(\gamma/2)$$

and the map $\gamma \to \frac{\sin(\gamma/2)}{\sin \gamma}$ is bounded near 0, say for $|\gamma| \le \pi/4$. This shows that

$$\int_{\lambda=0}^{2} \frac{d\lambda}{|\theta - \lambda \tau|^{n+\sigma p}} \le \frac{C}{|\theta - \tau|^{n-1+\sigma p}}$$

when $|\beta - \alpha| \le \pi/4$. On the other hand, this inequality is trivially true when $|\beta - \alpha| \ge \pi/4$ (by increasing *C* if necessary). This proves (4) and implies that

$$I_1 \le C \int_S d\theta \int_S d\tau \frac{|Du(\theta) - Du(\tau)|^p}{|\theta - \tau|^{n-1+\sigma p}} = C[Du]^p_{W^{\sigma,p}(S)}.$$

We proceed to estimate I_2 . We have

$$I_{2} \leq \int_{B} |Du(y/|y|)|^{p} dy \int_{\mathbb{R}^{n}} \frac{dx}{|x|^{p}|y|^{p}|y-x|^{n+(\sigma-1)p}}$$

=: $\int_{B} |Du(y/|y|)|^{p} K(y) dy.$

Clearly, for any $y \neq 0$, $K(y) < \infty$ (since p < n), K(y) depends only on |y| and $K(\lambda y) = K(y)/\lambda^{sp}$. Thus, $K(y) = C/|y|^{sp}$. This shows that $I_2 \leq C||Du||_{L^p(S)}^p$. Moreover, we have established (1) when $s \in (1, 2)$.

When $s \in (0,1)$, the calculation is easier, and is very similar to the treatment of I_1 . The lemma is proved.

The same proof yields:

Corollary 1 Let 0 < s < 2, sp < n and $u \in W^{s,p}(S)$. Then, $\tilde{u}(x) := u(x/|x|)$ belongs to $W^{s,p}_{loc}(\mathbb{R}^n)$.

2.2 Filling a hole continuously

Consider a smooth bounded open set Ω in \mathbb{R}^n and denote by Γ its boundary. There exists $\epsilon > 0$ such that the ϵ tubular neighborhood of Γ :

$$U_{\epsilon} := \{ x \in \Omega : \operatorname{dist} (x, \Gamma) < \epsilon \}$$

can be parametrized by:

$$\Phi: (x', r) \in \Gamma \times (0, \epsilon) \mapsto x' + r\nu(x'),$$

where $\nu(x')$ denotes the inner unit normal to Γ at x'. We also introduce the nearest point projection $\pi : U_{\epsilon} \to \Gamma$. Hence, for any $x \in U_{\epsilon}$, we have $\Phi^{-1}(x) = (\pi(x), \operatorname{dist}(x, \Gamma))$. Finally, we denote $\Gamma_r := \Phi(\Gamma \times \{r\})$.

Note that for any measurable function $u : \mathbb{R}^n \to \mathbb{R}$, defined almost everywhere, it makes sense to define its restriction $u|_{\Gamma_r}$ to Γ_r , for almost every $r \in (0, \epsilon)$. When $u \in W^{s,p}(\mathbb{R}^n)$ with sp > 1, this restriction is equal to the trace of $u : \operatorname{tr} u|_{\Gamma_r}$ for a.e. r. In the special case sp = 1, we need a substitute for the trace theory: the good restrictions, introduced in [5]. We proceed to present the definition of good restrictions for a map $u \in W^{s,p}(\Omega)$, when $s \in (0, 1), sp = 1$. For a proof of the statements below, see [5].

For each $r \in (0, \epsilon)$, there is at most one function v defined on Γ_r such that the map

$$w_1^r(x) = \begin{cases} u(x) & \text{in } \Omega \setminus U_r, \\ v(\Phi(\pi(x), r)) & \text{in } \Omega \cap U_r \end{cases}$$

or equivalently, the map

$$w_2^r(x) = \begin{cases} u(x) - v(\Phi(\pi(x), r)) & \text{in } \Omega \setminus U_r \\ 0 & \text{in } \Omega \cap U_r \end{cases}$$

belongs to $W^{s,p}(\Omega)$. Moreover, for a.e. $r \in (0,\epsilon)$, the function $v := u|_{\Gamma_r}$ has the property that $w_1^r, w_2^r \in W^{s,p}(\Omega)$. In fact, a necessary and sufficient condition for this property to hold is that $v \in W^{s,p}(\Gamma_r)$ and

$$\int_{\Gamma} d\mathcal{H}^{n-1}(x') \int_{r}^{\epsilon} dt \frac{|v(\Phi(x',r)) - u(\Phi(x',t))|^{p}}{(t-r)} < \infty.$$

For these values of r, we say that v is the inner good restriction of u to Γ_r . Similarly, we may define an outer good restriction. If v is both an inner and an outer good restriction, we call it a good restriction.

In particular, $u|_{\Gamma_r}$ is a good restriction if and only if

$$i) \quad u|_{\Gamma_r} \in W^{s,p}(\Gamma_r),$$

$$ii) \quad \int_{\Gamma} d\mathcal{H}^{n-1}(x') \int_0^{\epsilon} dt \frac{|u(\Phi(x',r)) - u(\Phi(x',t))|^p}{|t-r|} < \infty$$

Assume that Γ can be written as a finite union of subsets Γ^i which are open in Γ and such that i), ii) are true for each Γ^i instead of Γ . Then i), ii) are true for Γ . This shows that 'being a good restriction' is a *local* condition.

We will often use the following well-known consequence of the Fubini's Theorem:

Lemma 2 Let $s \in (0,2)$ and $u \in W^{s,p}(\Omega)$. Then for a.e. $r \in (0,\epsilon)$, i) when sp > 1, the trace $tru|_{\Gamma_r}$ coincides with $u|_{\Gamma_r}$ and belongs to $W^{s,p}(\Gamma_r)$, ii) when sp = 1, $u|_{\Gamma_r}$ is a good restriction of u to Γ_r , (in particular, $u|_{\Gamma_r} \in W^{s,p}(\Gamma_r)$),

iii) when sp < 1, the restriction of u to Γ_r belongs to $W^{s,p}(\Gamma_r)$.

Such an r will be called 'good'. We will also say that Γ_r is 'good for u'.

In the following lemma, the set Ω is B_2 , so that Γ_r is the sphere of radius 2 - r.

Lemma 3 Let 0 < s < 1 + 1/p, 0 < sp < n. Let $u \in W^{s,p}(B_2, N)$ and assume that S is good for u. For any $t \in [0, 1)$, let

$$u^{t}(x) = \begin{cases} u(x/(1-t)) & when \ |x| \le 1-t, \\ u(x/|x|) & when \ 1-t \le |x| \le 1, \\ u(x) & when \ 1 \le |x| \le 2 \end{cases}$$

and

$$u^{1}(x) = \begin{cases} u(x/|x|) & when \ |x| \le 1, \\ u(x) & when \ 1 \le |x| \le 2. \end{cases}$$

Then,

$$t \in [0,1] \to u^t \in W^{s,p}(B_2,N)$$

is continuous and $u^t(x) = u(x)$ for any $t \in [0, 1]$ and any $1 \le |x| \le 2$.

Proof: Consider the maps

$$v^{t}(x) = \begin{cases} u(x/(1-t)) & \text{when } |x| \le 1-t, \\ u(x/|x|) & \text{when } 1-t \le |x| \le 2 \end{cases}$$

and $v^1(x) = u(x/|x|)$. To prove Lemma 3, it is enough to show that $v^t \in C^0([0,1], W^{s,p}(B_2, N))$ since $u^t = v^t + z$ where z is defined by:

$$z(x) = \begin{cases} 0 \text{ when } |x| \le 1, \\ u(x) - u(x/|x|) \text{ when } 1 \le |x| \le 2. \end{cases}$$

(The map z belongs to $W^{s,p}$ since S is good for u.)

Consider first the case sp > 1. Then, Lemma 3 is essentially Lemma D.2 in [5] : condition s < 1 is replaced by s < 1 + 1/p in our case.

Let

$$\tilde{v}(x) := \begin{cases} u(x) \text{ when } |x| \leq 1, \\ u(x/|x|) \text{ when } 1 \leq |x|. \end{cases}$$

Then \tilde{v} belongs to $W^{s,p}_{\text{loc}}(\mathbb{R}^n)$. We have $v^t(x) = \tilde{v}(x/(1-t))$. This shows that $t \in [0,1) \mapsto v^t \in W^{s,p}(B_2, N)$ is continuous. Thus, there remains to show that v^t converges to v^1 when $t \to 1^-$. By Corollary 1, $v^1 \in W^{s,p}_{\text{loc}}(\mathbb{R}^n)$. Let $g := \tilde{v} - v^1$. Then, $g \in W^{s,p}(\mathbb{R}^n)$ because g(x) = 0 when $|x| \ge 1$. Moreover, $v^t(x) - v^1(x) = g(x/(1-t))$. We easily have

$$[g(\cdot/(1-t))]_{W^{s,p}(\mathbb{R}^n)} = (1-t)^{(n-sp)/p}[g]_{W^{s,p}(\mathbb{R}^n)}.$$

This shows the continuity at t = 1.

It remains to consider the case $sp \leq 1$. Though we cannot define the trace anymore, the fact that r = 1 is good implies that $\tilde{v} \in W^{s,p}_{\text{loc}}(\mathbb{R}^n), g \in W^{s,p}(\mathbb{R}^n)$. As above, we find that $v^t \to v^1$ in $W^{s,p}(B_2)$.

This completes the proof of the lemma.

2.3 Filling an annulus continuously

As a corollary of Lemma 3, we get the following:

Lemma 4 Let $s \in (0, 1 + 1/p)$ and $u \in W^{s,p}(B_2)$ such that S is good for u. Then, the map u^t defined by

$$u^{t}(x) = \begin{cases} u(x/(1-t/2)) & when \ |x| \le 1-t/2, \\ u(x/|x|) & when \ 1-t/2 \le |x| \le 1, \\ u(x) & when \ 1 \le |x| \le 2 \end{cases}$$

belongs to $C^0([0,1], W^{s,p}(B_2))$.

Lemma 4 can be immediately generalized to the case when B_2 is replaced by a smooth bounded open convex set Ω containing the origin, with the Euclidean norm replaced by the norm

$$j(x) := \inf\{t > 0 : x/t \in \Omega\}.$$

2.4 Filling a cylinder

In this subsection, we pick some $2 \leq k \leq n-1$ and we decompose $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$. We also denote $x \in \mathbb{R}^n$ as $(x', x'') \in \mathbb{R}^k \times \mathbb{R}^{n-k}$.

Let T be the open set in \mathbb{R}^n defined by:

$$T := \{ (x', x'') \in \mathbb{R}^k \times \mathbb{R}^{n-k} : |x'| < 1 \}$$

and $2T := \{2x : x \in T\}$. Then we have:

Lemma 5 Let 0 < s < 2, sp < k and $u \in W^{s,p}(\partial T)$. Then, the map \tilde{u} defined by:

$$\tilde{u}(x', x'') := u(x'/|x'|, x'')$$

belongs to $W^{s,p}(T)$.

Proof: An easy computation shows that

$$||\tilde{u}||_{W^{1,p}(T)} \le C||u||_{W^{1,p}(\partial T)}$$
;

this settles the case s = 1. When $s \in (1, 2)$, it remains to show that

$$I := \int_T dx \int_T dy \frac{|D\tilde{u}(x) - D\tilde{u}(y)|^p}{|x - y|^{n + \sigma p}} < +\infty.$$

We have $I \leq C(I' + I'')$, where

$$I' := \int_{\mathbb{R}^{n-k}} dx'' \int_{x' \in \mathbb{R}^k, |x'| < 1} dx' \int_{y' \in \mathbb{R}^k, |y'| < 1} dy' \frac{|D\tilde{u}(x', x'') - D\tilde{u}(y', x'')|^p}{|x' - y'|^{k + \sigma p}},$$

$$I'' := \int_{\mathbb{R}^k, |y'| < 1} dy' \int_{x'' \in \mathbb{R}^{n-k}} dx'' \int_{y'' \in \mathbb{R}^{n-k}} dy'' \frac{|D\tilde{u}(y', x'') - D\tilde{u}(y', y'')|^p}{|x'' - y''|^{n-k+\sigma p}}$$

This is a Besov's type inequality (see [1] or [2]).

We first prove that $I'' \leq C ||Du||_{W^{\sigma,p}(\partial T)}^p$. Using the fact that p < n, we have

$$\begin{split} I'' &\leq \int_{|y'|<1} dy' \frac{1}{|y'|^p} \int_{\mathbb{R}^{n-k}} dx'' \int_{\mathbb{R}^{n-k}} dy'' \frac{|Du(y'/|y'|, x'') - Du(y'/|y'|, y'')|^p}{|x'' - y''|^{n-k+\sigma p}} \\ &\leq C \int_{S^{k-1}} d\theta \int_{\mathbb{R}^{n-k}} dx'' \int_{\mathbb{R}^{n-k}} dy'' \frac{|Du(\theta, x'') - Du(\theta, y'')|^p}{|x'' - y''|^{n-k+\sigma p}}, \end{split}$$

which implies that $I'' \leq C ||u||_{W^{s,p}(\partial T)}^p$.

We denote f(x', x'') := (x'/|x'|, x''). We proceed to estimate I' by writing $I' \leq C(I'_1 + I'_2)$ with

$$\begin{split} I_1' &:= \int_{\mathbb{R}^{n-k}} dx'' \int_{|x'|<1} dx' \int_{|y'|<1} \frac{|Du(x'/|x'|, x'') - Du(y'/|y'|, x'')|^p}{|x'|^p |x' - y'|^{k+\sigma p}} dy' \\ I_2' &:= \int_{\mathbb{R}^{n-k}} dx'' \int_{|x'|, |y'|<1} dx' \, dy' \frac{|Du(y'/|y'|, x'')|^p |Df(x', x'') - Df(y', x'')|^p}{|x' - y'|^{k+\sigma p}}; \end{split}$$

this follows from (3).

We can prove that $I'_2 \leq C ||Du||^p_{L^p(\partial T)}$ exactly as we estimated I_2 in the proof of Lemma 1.

On the other hand, we find that

$$I_{1}' = \int_{\mathbb{R}^{n-k}} dx'' \int_{|x'|<1} dx' \int_{|y'|<1} dy' \frac{|Du(x'/|x'|, x'') - Du(y'/|y'|, x'')|^{p}}{|x'|^{p}|x' - y'|^{k+\sigma p}}$$

$$= \int_{\mathbb{R}^{n-k}} dx'' \int_{S^{k-1}} d\theta \int_{S^{k-1}} d\tau |Du(\theta, x'') - Du(\tau, x'')|^{p} \int_{0}^{1} \int_{0}^{1} \frac{r^{n-1}t^{n-1}}{r^{p}|r\theta - t\tau|^{k+\sigma p}}$$

$$\leq C \int_{\mathbb{R}^{n-k}} dx'' \int_{S^{k-1}} d\theta \int_{S^{k-1}} d\tau \frac{|Du(\theta, x'') - Du(\tau, x'')|^{p}}{|\theta - \tau|^{k-1+\sigma p}},$$

(here, we use $\int_{r=0}^{1} dr \int_{t=0}^{1} dt \frac{r^{n-1-p}t^{n-1}}{|r\theta - t\tau|^{k+\sigma p}} \le \frac{C}{|\theta - \tau|^{k-1+\sigma p}}$, see the proof of (4)).

From the last inequality, we easily obtain $I'_1 \leq C||u||^p_{W^{s,p}(\partial T)}$, which gives the required result when $s \in (1, 2)$. When $s \in (0, 1)$, the calculation is easier and we omit it. Lemma 5 is proved.

Lemma 5 implies the following (exactly as Lemma 1 implied Lemma 3):

Lemma 6 Let 0 < s < 1 + 1/p, sp < k and $u \in W^{s,p}(2T)$ such that ∂T is good for u. Then the map u^t defined by

$$u^{t}(x) := \begin{cases} u(x'/(1-t), x'') & when \ |x'| \le 1-t, \\ u(x'/|x'|, x'') & when \ 1-t \le |x'| \le 1, \\ u(x', x'') & when \ 1 \le |x'| \le 2 \end{cases}$$

belongs to $C^0([0,1], W^{s,p}(2T)).$

3 'Bridging' of maps

3.1 The case n = 2

Consider the square

$$\Omega := \{ x = (x_1, x_2) : |x_1| < 20, \ |x_2| < 20 \}$$

and let $u \in W^{s,p}(\Omega, N)$.

We assume that u is constant, say Y_0 , in the region $Q^+ \cup Q^-$ where

$$Q^+ = \{x = (x_1, x_2) : |x_1| < 20, \ 1 < x_2 < 20\}$$

and

$$Q^- = \{x = (x_1, x_2) : |x_1| < 20, -20 < x_2 < -1\}.$$

The following lemma corresponds to [4], Proposition 1.2.

Lemma 7 If 0 < s < 1 + 1/p, sp < 2, then there exists $u^t \in C^0([0,1], W^{s,p}(\Omega, N))$ such that

$$u^{0} = u,$$

 $u^{t}(x) = u(x) \ \forall t \in [0,1], \ \forall x \notin (-5,5) \times (-1,1),$
 $u^{1}(x) = Y_{0} \ \forall x \in (1,3/2) \times (-20,20).$

Proof: First, choose two circles C_1, C_2 with the same radius larger than $2/\sqrt{3}$, centered on the line $\{x = (x_1, x_2) : x_2 = 0\}$ such that the center of C_1 belongs to C_2 . This implies that C_1 and C_2 intersects at two points which belongs to Q^+ and Q^- . Moreover, we require that C_1 and C_2 are good for u. Without loss of generality, we may assume that C_1 is centered at (0,0) and that C_2 is centered at (2,0), their common radius being 2. Now, by filling the hole inside C_1 (see Lemma 3), we can link u to some u_1 which is equal to u outside C_1 and which is equal to Y_0 on the set $\{(x_1, x_2) : |x_2| \ge |x_1|/\sqrt{3}\}$.

We claim that C_2 is still good for u_1 . In fact, in the subset of C_2 where u has been changed, u_1 is equal to Y_0 and when sp > 1, the trace of u on $C_2 \cap \{x : x_1 \leq 2\}$ is equal to Y_0 . This settles the cases sp > 1. The case sp < 1 is obvious. When sp = 1, it remains to prove that the constant map equal to Y_0 is a good restriction for u to $C_2 \cap \{x : x_1 \leq 2\}$ (since the concept

of good restrictions is local). But this is a mere consequence of Lemma 8 below. The claim is proved.

Finally, by filling the hole inside C_2 , we can connect u_1 to some u_2 which is equal to u_1 outside C_2 while inside C_2, u_2 is equal to Y_0 except on the domain $\{(x_1, x_2) : x_1 > 2 + \sqrt{3}|x_2|\}$. In particular, u_2 is equal to u on $\{(x_1, x_2) : |x_1| > 4\}$ and is equal to Y_0 on

$$Q^+ \cup Q^- \cup \{(x_1, x_2) : 0 < x_1 < 2\}.$$

This completes the proof of the lemma.

Lemma 8 Let sp = 1 and $u \in W^{s,p}((-1,1)^2)$ such that $u = Y_0$ on $\{x : |x_1| < |x_2|\}$. Then the constant map equal to Y_0 on the line $D := \{x_1 = 0\}$ is a good restriction of u to D.

Proof: It is sufficient to prove that

$$I := \int_{-1}^{1} dx_2 \int_{-1}^{1} \frac{|u(x_1, x_2) - Y_0|^p}{|x_1|} dx_1 < \infty.$$

Since N is compact, there exists C > 0 such that $|u(x_1, x_2) - Y_0|^p \leq C$ for any (x_1, x_2) . Then the lemma follows from the fact that:

$$I = \int_{-1}^{1} dx_2 \int_{|x_2| \le |x_1| \le 1} \frac{|u(x_1, x_2) - Y_0|^p}{|x_1|} dx_1$$
$$\le C \int_{-1}^{1} dx_2 \int_{|x_2|}^{1} \frac{dx_1}{|x_1|} \le C.$$

_

3.2 The case $n \ge 2$

We work in $\mathbb{R}^n, n \geq 2$ and we distinguish some special variables. For $0 \leq l \leq n-2$, we write

$$x = (x_1', x'', x_2')$$

where $x'_1 = x_1, x'_2 = (x_{n-l}, ..., x_n)$ and $x'' = (x_2, ..., x_{n-l-1})$ (when l = n-2, we omit x''). We also write $x' = (x'_1, x'_2)$. Let

$$\Omega := \{ (x'_1, x'', x'_2) : |x'_1| < 20, |x''| < 20, |x'_2| < 20 \}.$$

Set k := l + 2.

Lemma 9 Assume that 0 < s < 1 + 1/p, sp < k and $u \in W^{s,p}(\Omega, N)$ with $u(x) = Y_0$ for any $x \in \Omega$ such that $1 < |x'_2|$, for some $Y_0 \in N$. Then there exists $u^t \in C^0([0,1], W^{s,p}(\Omega, N))$ such that $u^0 = u, u^t(x) = u(x)$ for any $0 \le t \le 1$ and any x outside $\{x : |x| < 15\}$ and $u^1(x) = Y_0$ for any $x, |(x'_1, x'')| < 1/8$. Proof: If k = n, then the proof is exactly the same as in the previous subsection (except that circles are replaced by n dimensional balls). Hence, we may assume that k < n. Let $\delta : \mathbb{R}^{n-k} \to \mathbb{R}^k$ be a smooth function to be chosen later. We define the cylinder C_1 by

$$C_1 := \{ x = (x'_1, x'', x'_2) : |x' - \delta(x'')| = a \}$$

and the tube T_1 by

$$T_1 := \{ x = (x'_1, x'', x'_2) : |x' - \delta(x'')| < a \},\$$

for some a > 1 to be determined below. We may choose a and δ such that: i) when |x''| < 2, we have $\delta(x'') = 0$, ii) |x''| < 2, we have $\delta(x'') = 0$,

ii) when $|x''| \ge 4$, we have $x \in T_1 \Rightarrow |x'_2| > 1$,

iii) C_1 is good for u.

Note that C_1 can be chosen as a smooth deformation of a *straight* cylinder as defined in subsection 2.4. Note also that even if $C_1 \cap \Omega$ is a *finite* cylinder (contrary to those of subsection 2.4), the *ends* of this cylinder are contained in a domain where u is equal to the constant Y_0 , where 'nothing happens'. Hence, we can apply Lemma 6 to $C_1 : u$ can be connected to some \bar{u} which equals Y_0 on $\{x \in \Omega : |x''| < 2, |x'_2| \ge |x'_1|/\sqrt{a^2 - 1}\}$.

The computation in the proof of Lemma 8 yields easily that \bar{u} has a good restriction (equal to Y_0) on the set $\{|x''| < 2, x'_1 = 0\}$. This implies that the map:

$$w(x'_1, x'', x'_2) := \begin{cases} 0 \text{ when } x'_1 \le 0, \\ \bar{u}(x'_1, x'', x'_2) - Y_0 \text{ when } x'_1 \ge 0 \end{cases}$$

belongs to $W^{s,p}(\Omega_0)$, where $\Omega_0 := \{x \in \Omega : |x''| < 2\}.$

Let $\rho : \mathbb{R} \to [0, 1]$ be a smooth function which vanishes on $\{t : |t| \ge 2\}$, which is equal to 1 on $\{t : |t| \le 1\}$ and such that $|\rho'| \le 2$. Then we define

$$\Xi_t(x_1', x'', x_2') := (x_1' - \frac{t\rho(2|x''|^2)\rho(2x_1')}{8}, x'', x_2').$$

The map Ξ_t is a smooth diffeomorphism of \mathbb{R}^n which maps Ω_0 onto Ω_0 .

By the diffeomorphism property in $W^{s,p}$ (see [14]), there exists C > 0such that for any $t \in [0, 1]$, and any $g \in W^{s,p}(\Omega_0)$, we have

$$||g \circ \Xi_t||_{W^{s,p}(\Omega_0)} \le C||g||_{W^{s,p}(\Omega_0)}.$$

Let $\epsilon > 0$. Then there exists $z \in C^{\infty}(\overline{\Omega}_0)$ such that $||z - w||_{W^{s,p}(\Omega_0)} < \epsilon$. Hence, for any $t, s \in [0, 1]$,

$$\begin{aligned} ||w \circ \Xi_t - w \circ \Xi_s||_{W^{s,p}(\Omega_0)} &\leq ||w \circ \Xi_t - z \circ \Xi_t||_{W^{s,p}(\Omega_0)} + ||z \circ \Xi_t - z \circ \Xi_s||_{W^{s,p}(\Omega_0)} \\ + ||z \circ \Xi_s - w \circ \Xi_s||_{W^{s,p}(\Omega_0)} &\leq C||z - w||_{W^{s,p}(\Omega_0)} + ||z \circ \Xi_t - z \circ \Xi_s||_{W^{s,p}(\Omega_0)} \\ &\leq C\epsilon + ||z \circ \Xi_t - z \circ \Xi_s||_{W^{s,p}(\Omega_0)}. \end{aligned}$$

Since the last term goes to 0 when $|s-t| \to 0$, the map $t \to w \circ \Xi_t$ belongs to $C^0([0,1], W^{s,p}(\Omega_0))$.

Similarly we may define

$$\tilde{w}(x'_1, x'', x'_2) := \begin{cases} \bar{u}(x'_1, x'', x'_2) - Y_0 & \text{when } x'_1 \le 0, \\ 0 & \text{when } x'_1 \ge 0 \end{cases}$$

and

$$\tilde{\Xi}_t(x_1', x'', x_2') := (x_1' + \frac{t\rho(2|x''|^2)\rho(2x_1')}{8}, x'', x_2').$$

As above, $\tilde{w} \circ \tilde{\Xi}_t \in C^0([0,1], W^{s,p}(\Omega_0))$. This yields

$$w \circ \Xi_t + \tilde{w} \circ \tilde{\Xi}_t \in C^0([0,1], W^{s,p}(\Omega_0)).$$

If we denote by v^t the map $w \circ \Xi_t + \tilde{w} \circ \tilde{\Xi}_t + Y_0$, we have $v^t =$

$$\begin{aligned} \bar{u}(x_1' + t\rho(2|x''|^2)\rho(2x_1')/8, x'', x_2') & \text{when } x_1' \leq -t\rho(2|x''|^2)\rho(2x_1')/8, \\ Y_0 & \text{when } -t\rho(2|x''|^2)\rho(2x_1')/8 \leq x_1' \leq t\rho(2|x''|^2)\rho(2x_1')/8, \\ \bar{u}(x_1' - t\rho(2|x''|^2)\rho(2x_1')/8, x'', x_2') & \text{when } t\rho(2|x''|^2)\rho(2x_1')/8 \leq x_1'. \end{aligned}$$

Note in particular that $v^t = \bar{u}$ when |x''| > 1 or $|x'_1| > 1$. Hence we can extend v^t by \bar{u} on Ω and we still have $v^t \in C^0([0,1], W^{s,p}(\Omega))$. Finally, $v^t = Y_0$ when $|x''| < 1/\sqrt{2}$ and $|x'_1| \le t/8$. This completes the proof of the lemma.

4 Opening of Maps

Lemma 10 Let 0 < s < 1 + 1/p and $u \in W^{s,p}(B_{10}, N)$. Then, there exists $u^t \in C^0([0,1], W^{s,p}(B_{10}, N))$ such that $u^0 = u, u^1 = Y_0$ on an open subset of B_5 for some $Y_0 \in N$ and $u^t = u$ on $B_{10} \setminus B_9, 0 \le t \le 1$.

Proof: We first introduce the concept of *smooth cubes*. A smooth cube is simply a cube with smooth corners, or equivalently, a sphere with faces. Formally, a smooth open set G of \mathbb{R}^n will be called a smooth cube of side Rif it is a smooth convex set G which satisfies:

$$\bigcup_{i=1}^{n} \{ (x_1, .., x_n) : |x_i| < R, |x_j| < 4R/5 \quad \forall j \neq i \} \subset G \subset (-R, R)^n.$$

For such a set G, we define the i^{th} face:

$$F_i := \{ (x_1, \dots x_n) : x_i = R, |x_j| < 4R/5 \}.$$

For any i = 1, ..n, let

$$G_i := \{ tx : x \in F_i, t \in (1/5, 1) \}.$$

The set G is a smooth convex set, so that the technique of 'filling an annulus' (see Lemma 4) applies. More precisely, consider some $v \in W^{s,p}(\mathbb{R}^n)$ such that ∂G is good for v. Then v can be connected to a map $w \in W^{s,p}(\mathbb{R}^n)$ which is equal to v on $\mathbb{R}^n \setminus G$ and which satisfies

$$w(tx) = v(x) \quad \forall tx \in G_i.$$

Returning to the proof of Lemma 10, let $v \in W^{s,p}(B_{10})$ and G be a smooth cube of side R such that $G \subset B_5$ and ∂G is good for v. Assume that $v|_{F_i}(x_1, ..., x_n)$ does not depend on $x_1, ..., x_{i-1}$. By this, we mean that for \mathcal{H}^{n-i+1} a.e. $x_i, ..., x_n \in \mathbb{R}^{n-i+1}$, the map $(x_1, ..., x_{i-1}) \in \mathbb{R}^{i-1} \to \chi_{F_i}(x)v(x)$ is \mathcal{H}^{i-1} a.e. constant. Then on $G_i, w(tx) = v(x)$ (with $x \in F_i, t \in (1/5, 1)$), does not depend neither on $x_1, ..., x_{i-1}$ nor on t.

Consider the map

$$\phi_i : tx \in G_i \mapsto \sum_{j \neq i} \frac{5x_j}{4R} e_j + \frac{5t-3}{2} e_i \in (-1,1)^n.$$

Here (e_k) denotes the canonical basis of \mathbb{R}^n . Observe that ϕ_i^{-1} is a smooth diffeomorphism from $[-1,1]^n$ onto \overline{G}_i . Then, $w \circ \phi_i^{-1} \in W^{s,p}((-1,1)^n)$ and does not depend on $x_1, ..., x_i$.

We now prove the lemma by induction: We claim that for each $1 \le k \le n, u$ can be connected to some $u_k \in W^{s,p}(B_{10})$ such that $u_k = u$ outside B_9 and such that there exists a smooth diffeomorphism ψ_k from $[-1,1]^n$ into B_5 such that $u_k \circ \psi_k$ does not depend on $x_1, ..., x_k$ on $(-1,1)^n$.

For k = 1, select a smooth cube $G \subset B_5$ such that ∂G is good for u. Then as explained above, we can connect u to some u_1 which is equal to u on $B_{10} \setminus G$ and such that $u_1(tx) = u(x)$ for any $x \in F_1, t \in (1/5, 1)$. Then $u_1 \circ \phi_1^{-1}$ belongs to $W^{s,p}((-1,1)^n)$ and does not depend on x_1 . We can choose $\psi_1 = \phi_1^{-1}$.

Assume the claim is true up to k. We can select a smooth cube G inside $(-1,1)^n$, such that ∂G is good for $u_k \circ \psi_k$ and $u_k \circ \psi_k$ does not depend on $x_1, ..., x_k$ on G. Then, as explained previously, we can connect $u_k \circ \psi_k$ to some $w \in W^{s,p}((-1,1)^n)$ such that $w = u_k \circ \psi_k$ on $(-1,1)^n \setminus G$ and $w(tx) = u_k \circ \psi_k(x)$ for any $x \in F_{k+1}, F_{k+1}$ being the $(k+1)^{th}$ face relative to G. Then $w \circ \phi_{k+1}^{-1}$ (ϕ_{k+1} being defined for G) belongs to $W^{s,p}((-1,1)^n)$ and does not depend on $x_1, ..., x_{k+1}$. We can choose $\psi_{k+1} = \psi_k \circ \phi_{k+1}^{-1}$ and define

$$u_{k+1}(x) := \begin{cases} u_k(x) \text{ when } x \in B_{10} \setminus \psi_k(G), \\ w \circ \psi_k^{-1}(x) \text{ when } x \in \psi_k(G). \end{cases}$$

The claim is proved for k + 1. Finally, we have connected u to a map $u_n \in W^{s,p}(B_{10})$ which is a.e. constant on $\psi_n((-1,1)^n)$, namely an open subset of B_5 .

5 Proof of Theorem 1 and Theorem 5 c)

The tools 'Connecting constants' and 'Propagation of constants' in [4] can be readily generalized to the case $W^{s,p}$.

Then, the same proof as in [4], Theorem 0.2 shows that $W^{s,p}(M, N)$ is path connected when sp < 2; that is, Theorem 1. The fact that $W^{s,p}(S^m, N)$ is path-connected when $s \in (0, 1 + 1/p)$ can be proved as in [4], Proposition 0.1. This shows Theorem 5 c).

In the sections below, we assume that $s \in (0, 1+1/p), p \in [1, \infty), 1 < sp$.

We denote by Π_M the nearest point projection onto M, which is defined and smooth on an ϵ_M tubular neighborhood of M:

$$M_{\epsilon_M} := \{ x \in \mathbb{R}^a : \operatorname{dist} (x, M) < \epsilon_M \}.$$

Similarly, we introduce $\Pi_N : N_{\epsilon_N} \subset \mathbb{R}^l \to N$.

6 Definition of [sp-1] homotopy

6.1 Triangulations and homotopy

We define a rectilinear cell, its dimension, its faces and a rectilinear cell complex as in [12], Chapter 7. In particular, the p skeleton of a rectilinear cell complex K, denoted by K^p , is the collection of all cells having dimension at most p. Any complex considered below is finite. The *polytope* |K| of a complex K is the union of the cells of K. We will use the fact that the boundary $\partial \Delta$ of a simplex Δ can be identified with a complex in an obvious way.

We also introduce some notation. Let Δ be a rectilinear cell, $y \in \text{Int } \Delta$. Then, for any $x \in \Delta$, we set

$$|x|_{y,\Delta} := \inf\{t > 0 : x \in y + t(\Delta - y)\}.$$

This is the usual Minkowski functional of Δ with respect to y. When it is clear what y and Δ are, we simply write |x| instead of $|x|_{y,\Delta}$.

The concepts of smooth maps and immersions on a complex K are defined as in [12], Chapter 8. A smooth immersion which is a homeomorphism onto M is called a triangulation of M. Actually, the word 'triangulation' is mostly used for the case when K is simplicial. In the general case, we will also use the phrase 'rectilinear cell decomposition'. Each smooth bound-aryless manifold M has a triangulation ([12], Theorem 10.6). The proof of this result shows that we can choose a simplicial m dimensional complex K (where m is the dimension of M) such that the polytope |K| is the

union of its *m* simplices. Consider such a simplicial complex and denote by $f: K \to M$ a triangulation. The set $f(\Delta)$ is a Lipschitz domain in *M* for each cell Δ .

Assume that $u \in W^{s,p}(M)$. Then $u \circ f|_{\Delta}$ belongs to $W^{s,p}(\Delta)$ for each $m \text{ cell } \Delta \in K$, because $f|_{\Delta}$ is a smooth diffeomorphism onto $f(\Delta) \subset M$. Conversely, assume that $u \in L^p(M)$ is such that u belongs to $W^{s,p}(f(\Delta))$ for each $m \text{ cell } \Delta \in K$. Since sp > 1, we can define the trace of u on $\partial f(\Delta)$. Assume that for any $m \text{ cells } \Delta_1, \Delta_2 \in K$ satisfying $\Delta_1 \cap \Delta_2 \neq \emptyset$, the maps $u|_{f(\Delta_1)}$ and $u|_{f(\Delta_2)}$ have the same trace on $f(\Delta_1 \cap \Delta_2)$. This certainly implies that u belongs to $W^{s,p}(f(\Delta_1 \cup \Delta_2))$ when $s \leq 1$. But this holds true even when $s \in (1, 1 + 1/p)$, because in that case the derivatives of $u|_{f(\Delta_1)}$ and $u|_{f(\Delta_2)}$ belong to $W^{\sigma,p}(f(\Delta_1))$ and $W^{\sigma,p}(f(\Delta_2))$ respectively, with now $\sigma p = (s - 1)p < 1$. This implies that the derivatives of u belong to $W^{\sigma,p}(f(\Delta_1 \cup \Delta_2))$.

The following lemma shows that we can glue homotopies together:

Lemma 11 Let $f : K \to M$ be a smooth triangulation, with m being the common dimension of K and M. Assume that Δ_1 and Δ_2 are two m simplices in K such that $\Delta_1 \cap \Delta_2 = \Sigma$, where Σ is m - 1 dimensional. Let $F_1 \in C^0([0,1], W^{s,p}(f(\Delta_1))), F_2 \in C^0([0,1], W^{s,p}(f(\Delta_2)))$ and $\forall t \in [0,1]$,

$$trF_1(t)|_{f(\Sigma)} = trF_2(t)|_{f(\Sigma)}.$$

Then $F \in C^0([0,1], W^{s,p}(f(\Delta_1 \cup \Delta_2)))$ where

$$F(t)(x) = \begin{cases} F_1(t)(x) & when \ x \in \Delta_1, \\ F_2(t)(x) & when \ x \in \Delta_2. \end{cases}$$

Proof: Let us define the closed subset of $W^{s,p}(f(\Delta_1)) \times W^{s,p}(f(\Delta_2))$:

$$\mathcal{F} := \{ (u_1, u_2) \in W^{s, p}(f(\Delta_1)) \times W^{s, p}(f(\Delta_2)) : \operatorname{tr} u_1|_{f(\Sigma)} = \operatorname{tr} u_2|_{f(\Sigma)} \}.$$

Then the remarks above show that the map: $(u_1, u_2) \in \mathcal{F} \to u \in W^{s,p}(f(\Delta_1 \cup \Delta_2))$ where

$$u(x) = \begin{cases} u_1(x) & \text{when } x \in f(\Delta_1), \\ u_2(x) & \text{when } x \in f(\Delta_2) \end{cases}$$

is well defined.

The Closed Graph Theorem shows that this map is continuous into $W^{s,p}(f(\Delta_1 \cup \Delta_2))$. In particular, there exists C > 0 such that for any $(u_1, u_2) \in \mathcal{F}$,

$$||u||_{W^{s,p}(f(\Delta_1 \cup \Delta_2))} \le C[||u_1||_{W^{s,p}(f(\Delta_1))} + ||u_2||_{W^{s,p}(f(\Delta_2))}].$$
(5)

Whence

$$||F(t) - F(t')||_{W^{s,p}(f(\Delta_1 \cup \Delta_2))} \le C[||F_1(t) - F_1(t')||_{W^{s,p}(f(\Delta_1))} + ||F_2(t) - F_2(t')||_{W^{s,p}(f(\Delta_2))}].$$

The lemma follows.

6.2 Definition of $\mathcal{W}^{s,p}(K)$

Let K be a finite rectilinear cell complex. Recall that N is smoothly embedded in \mathbb{R}^l . Let $f, g: |K| \to \mathbb{R}^l$ be two everywhere defined Borel measurable functions. We say that f and g are equivalent if for any $\Delta \in K$, $f|_{\Delta} = g|_{\Delta} \mathcal{H}^d$ a.e. on Δ , where $d = \dim \Delta$. From now on, we identify two such functions and an equivalence class is called a *Borel function*.

Following [9], we introduce the space $\mathcal{W}^{s,p}(K)$ of those Borel functions $f: |K| \to \mathbb{R}^l$ such that for any cell Δ , the restriction $f|_{\Delta}$ belongs to $W^{s,p}(\Delta)$ and its trace tr $f|_{\partial\Delta}$ is equal to $f|_{\partial\Delta}, \mathcal{H}^{d-1}a.e. x \in \partial\Delta$.

We write $||f||_{\mathcal{W}^{s,p}(K)} := \sum_{\Delta \in K} ||f|_{\Delta} ||_{W^{s,p}(\Delta)}.$

As in [9], we also define a similar function space as follows. Let K be a finite rectilinear cell complex of dimension m. Assume that

$$|K| = \cup_{\Delta \in K, \dim \Delta = m} \Delta$$

We define $\tilde{\mathcal{W}}^{s,p}(K)$ as the set of those Borel functions $f: |K| \to \mathbb{R}^l$ such that

i) the map $f|_{\Delta} \in W^{s,p}(\Delta)$ for any $\Delta \in K$ with dim $\Delta = m$, ii) for any $\Sigma \in K$ with dim $\Sigma = m - 1, \Sigma \subset \partial \Delta_i$, dim $\Delta_i = m$ for i = 1, 2, we have

$$\operatorname{tr}(f|_{\Delta_1})|_{\Sigma} = \operatorname{tr}(f|_{\Delta_2})|_{\Sigma}.$$

We also write:

$$||f||_{\tilde{\mathcal{W}}^{s,p}(K)} = \sum_{\Delta \in K, \dim \Delta = m} ||f|_{\Delta}||_{W^{s,p}(\Delta)}.$$

Finally, we define

$$\mathcal{W}^{s,p}(K,N) := \{ u \in \mathcal{W}^{s,p}(K) : \forall \Delta \in K, u(x) \in N \ \mathcal{H}^{\dim \Delta} \ a.e. \}$$

٦.

and similarly for $\tilde{\mathcal{W}}^{s,p}(K,N)$.

6.3 Interpolation

We consider X_0, X_1 two Banach spaces such that X_1 is continuously embedded in X_0 . We denote by $|| \cdot ||_{X_i}$ the norm in $X_i, i = 0, 1$ and for each fixed t > 0, we define

$$K(t; u) := \inf\{||u_0||_{X_0} + t||u_1||_{X_1} : u = u_0 + u_1, u_0 \in X_0, u_1 \in X_1\}.$$

Let $1 \le q < \infty$ and $0 < \theta < 1$. Then we define:

$$(X_0, X_1)_{\theta, q} := \{ u \in X_0 : (2^{-i\theta} K(2^i; u))_{i \in \mathbb{Z}} \in l^q(\mathbb{Z}) \},\$$

which is a Banach space with the norm

$$||u||_{(X_0,X_1)_{\theta,q}} := ||(2^{-i\theta}K(2^i;u))_{i\in\mathbb{Z}}||_{l^q(\mathbb{Z})}.$$

Theorem 6 ([1], Theorem 7.48) Let Ω be a rectilinear cell or a smooth bounded open set in \mathbb{R}^n . Then we have:

When
$$s \in (0,1)$$
, $W^{s,p}(\Omega) = (L^p(\Omega), W^{1,p}(\Omega))_{s,p}$.
When $s \in (1,2)$, $W^{s,p}(\Omega) = (W^{1,p}(\Omega), W^{2,p}(\Omega))_{s-1,p}$.

6.4 Perturbation

In this section, we follow [9] to explain how we choose *generic* skeletons of a given triangulation of a manifold. Nevertheless, it seems difficult to rewrite exactly the proof of [9] for the case $W^{s,p}$. This is the reason why we use the interpolation method.

Recall that M is an m dimensional Riemannian manifold without boundary. Assume that the parameter space P is a k dimensional Riemannian manifold, Q is a d dimensional Riemannian manifold without boundary, $D \subset Q$ is a domain with compact closure and Lipschitz boundary, and the dimensions satisfy $d + k \ge m$.

In the following, we will need

Lemma 12 Assume $s \in (0,1)$. Let $X_0 := L^p(P, L^p(D))$, $X_1 := L^p(P, W^{1,p}(D))$, and $Z_0 := L^p(D)$, $Z_1 := W^{1,p}(D)$. Then we have:

$$(X_0, X_1)_{s,p} \subset L^p(P, (Z_0, Z_1)_{s,p}) = L^p(P, W^{s,p}(D)).$$

Proof: Let $u \in (X_0, X_1)_{s,p}$ and $\epsilon > 0$. Then, for each $i \in \mathbb{Z}$, there exists $u_0^i \in X_0, u_1^i \in X_1$ such that $u = u_0^i + u_1^i$ and

$$||u_0^i||_{X_0} + 2^i ||u_1^i||_{X_1} < K_i(u) + \epsilon/(1+|i|)!$$

where

$$K_i(u) := \inf\{||u_0||_{X_0} + 2^i ||u_1||_{X_1} : u = u_0 + u_1, u_0 \in X_0, u_1 \in X_1\}.$$

Then, for \mathcal{H}^k a.e. $\xi \in P, u(\xi) = u_0^i(\xi) + u_1^i(\xi), u_0^i(\xi) \in Z_0, u_1^i(\xi) \in Z_1$. Hence,

$$\inf\{||v_0||_{Z_0} + 2^i||v_1||_{Z_1} : u(\xi) = v_0 + v_1, v_0 \in Z_0, v_1 \in Z_1\} \le$$

$$||u_0^i(\xi)||_{Z_0} + 2^i ||u_1^i(\xi)||_{Z_1}$$

so that

$$||u(\xi)||_{(Z_0,Z_1)_{s,p}} \le ||(2^{-is}(||u_0^i(\xi)||_{Z_0} + 2^i||u_1^i(\xi)||_{Z_1}))_{i\in\mathbb{Z}}||_{l^p(\mathbb{Z})}$$

Finally,

$$||u||_{L^{p}(P,(Z_{0},Z_{1})_{s,p})} \leq || ||(2^{-is}(||u_{0}^{i}(\cdot)||_{Z_{0}} + 2^{i}||u_{1}^{i}(\cdot)||_{Z_{1}}))_{i\in\mathbb{Z}}||_{L^{p}(\mathbb{Z})}||_{L^{p}(P)}$$

$$= ||(2^{-is}|| ||u_{0}^{i}(\cdot)||_{Z_{0}} + 2^{i}||u_{1}^{i}(\cdot)||_{Z_{1}}||_{L^{p}(P)})_{i\in\mathbb{Z}}||_{l^{p}(\mathbb{Z})}$$

$$\leq ||(2^{-is}(||u_{0}^{i}||_{X_{0}} + 2^{i}||u_{1}^{i}||_{X_{1}}))_{i\in\mathbb{Z}}||_{l^{p}(\mathbb{Z})}$$

$$\leq ||(2^{-is}(K_{i}(u) + \epsilon/(1+|i|!)))_{i\in\mathbb{Z}}||_{l^{p}(\mathbb{Z})}$$

$$\leq ||(2^{-is}K_{i}(u))_{i\in\mathbb{Z}}||_{l^{p}(\mathbb{Z})} + \epsilon ||(2^{-is}/(1+|i|)!)_{i\in\mathbb{Z}}||_{l^{p}(\mathbb{Z})}$$

$$= ||u||_{(X_{0},X_{1})_{s,p}} + C\epsilon.$$

This shows the required inclusion when $\epsilon \to 0$.

Similarly, when $s \in (1, 2)$, we have:

$$(L^{p}(P, W^{1,p}(D)), L^{p}(P, W^{2,p}(D)))_{s-1,p} \subset L^{p}(P, W^{s,p}(D)).$$
(6)

Given a map $H : \overline{D} \times P \to M$, we assume that H satisfies: (H1) $H \in C^2(\overline{D} \times P)$ and $[H(\cdot,\xi)]_{\operatorname{Lip}(\overline{D})} \leq c_0$ for any $\xi \in P$. (H2) There exists a positive number c_1 such that the m dimensional Jacobian $J_H(x,\xi) \geq c_1, \mathcal{H}^{d+k}$ a.e $(x,\xi) \in \overline{D} \times P$. (H3) There exists a positive number c_2 such that $\mathcal{H}^{d+k-m}(H^{-1}(y)) \leq c_2$ for \mathcal{H}^m a.e. $y \in M$.

We will denote $H(\cdot,\xi)$ by H_{ξ} or h_{ξ} . Then, we have:

Lemma 13 ([9], Lemma 3.3) For any Borel function $\chi : M \to \mathbb{R}^+ \cup \{+\infty\}$, we have:

$$\int_{P} d\mathcal{H}^{k}(\xi) \int_{D} \chi(H_{\xi}(x)) \, d\mathcal{H}^{d}(x) \leq c_{1}^{-1} c_{2} \int_{M} \chi(y) \, d\mathcal{H}^{m}(y).$$

In particular, for any Borel subset $E \subset M$, we have

$$\int_P \mathcal{H}^d(H_{\xi}^{-1}(E)) \, d\mathcal{H}^k(\xi) \le c_1^{-1} c_2 \mathcal{H}^m(E).$$

If in addition $\mathcal{H}^m(E) = 0$, then $\mathcal{H}^d(H_{\xi}^{-1}(E)) = 0$ for \mathcal{H}^k a.e. $\xi \in P$.

The following lemma will allow us to give the definition of $\left[sp\right]-1$ homotopy.

Lemma 14 i) Let $f \in W^{s,p}(M)$. Then, there exists a Borel set $E \subset P$ such that $\mathcal{H}^k(E) = 0$ and for any $\xi \in P \setminus E$, $f \circ H_{\xi} \in W^{s,p}(D)$.

ii) If we define \tilde{f} by $\tilde{f}(\xi) = f \circ H_{\xi}$ for any $\xi \in P$, then $\tilde{f} \in L^p(P, W^{s,p}(D))$. In addition,

 $||\tilde{f}||_{L^{p}(P,W^{s,p}(D))} \le c||f||_{W^{s,p}(M)},$

where c depends only on p, c_0, c_1 and c_2 .

iii) If $f_i \in C^2(M)$ converges to f in $W^{s,p}(M)$, then \tilde{f}_i converges to \tilde{f} in $L^p(P, W^{s,p}(D))$. Moreover, there exists a subsequence $f_{i'}$ and a Borel set $E \subset P$ such that $\mathcal{H}^k(E) = 0$, and for any $\xi \in P \setminus E$, $f_{i'} \circ H_{\xi} \to f \circ H_{\xi}$ in $W^{s,p}(D)$.

Proof: This lemma corresponds to Lemma 3.4 in [9], the proof of which shows that the map $f \to \tilde{f}$ is continuous from $L^p(M)$ into $L^p(P, L^p(D))$ and from $W^{1,p}(M)$ into $L^p(P, W^{1,p}(D))$. In light of Lemma 12, we deduce that this map is continuous from $W^{s,p}(M)$ into $L^p(P, W^{s,p}(D))$ in the case $s \in (0,1)$. This proves ii) when $s \leq 1$. To complete the proof of ii), it remains to consider the case $s \in (1, 1 + 1/p)$. To this end, we claim that the map $f \to \tilde{f}$ is continuous from $W^{2,p}(M)$ into $L^p(P, W^{2,p}(D))$. This will prove the required result by interpolation as before (using (6) instead of Lemma 12).

The proof of the claim is similar to the proof of [9] Lemma 3.4., except that $||f||_{W^{1,p}(M)} = ||f||_{L^p(M)} + ||df||_{L^p(M)}$ is replaced by (see [13]):

$$||f||_{W^{2,p}(M)} = ||f||_{L^{p}(M)} + ||df||_{L^{p}(M)} + ||d^{*}df||_{L^{p}(M)}$$

where d^* is the formal adjoint of the differential operator d on differential forms on M. (The notations df, d^*df have to be understood in a distributional sense).

The rest of the proof is the same and we omit it.

Lemma 14 implies the following corollary exactly as Lemma 3.4 implies Corollary 3.1 in [9].

Corollary 2 Let $f \in W^{s,p}(M)$, K be a finite rectilinear cell complex, H: $|K| \times P \to M$ be a map such that $H|_{\Delta \times P}$ satisfies (H1), (H2) and (H3) for any $\Delta \in K$. Then, there exists a Borel set $E \subset P$ such that $\mathcal{H}^k(E) = 0$ and for any $\xi \in P \setminus E$, we have $f \circ H_{\xi} \in W^{s,p}(K)$; in addition, the map $\tilde{f} = f \circ H_{\xi}$ for $\xi \in P$ belongs to $L^p(P, W^{s,p}(K))$.

6.5 Filling a hole (bis)

Lemma 3 is valid for any hole diffeomorphic to a ball. When $s \in (1, 1+1/p)$, we have a similar result when the 'hole' is a rectilinear cell.

Proposition 1 Let Δ be a rectilinear cell and $y_{\Delta} \in Int \Delta$. Let $u \in W^{s,p}(\Delta)$ be such that $tru|_{\partial \Delta} = f \in \tilde{W}^{s,p}(\partial \Delta)$. Then the map u^t defined by

$$u^{t}(x) := \begin{cases} u(x/(1-t)) & when \ |x|_{\Delta} \le 1-t, \\ f(x/|x|_{\Delta}) & when \ |x|_{\Delta} \ge 1-t \end{cases}$$

belongs to $C^0([0,1), W^{s,p}(\Delta))$.

Moreover, when $sp < dim \Delta$, the map u^t is continuous on [0, 1].

We will say that u^1 is the homogeneous degree-zero extension of f.

Proof: We denote by d the dimension of Δ . Let $\Sigma_1, ..., \Sigma_r$ be the d-1 faces of Δ and $\Delta_1, ..., \Delta_r$ be the rectilinear cells defined by

$$\Delta_i := \{ \lambda y_\Delta + (1 - \lambda) x : x \in \Sigma_i, 0 \le \lambda \le 1 \}.$$

Since

$$\operatorname{tr}(u^t|_{\Delta_i})|_{\Delta_i \cap \Delta_i} = \operatorname{tr}(u^t|_{\Delta_i})|_{\Delta_i \cap \Delta_i},$$

in light of Lemma 11, it suffices to show that $u^t|_{\Delta_i}$ is continuous into $W^{s,p}(\Delta_i)$.

There exists a C^2 diffeomorphism Φ_i between each Δ_i and a subset of B_1^d of the form $\{\lambda x : \lambda \in [0, 1], x \in U_i\}$ where U_i is a connected compact subset of S_1^d , which is isometric in the sense that $|\Phi_i(x)| = |x|_{\Delta_i}, x \in \Delta_i$.

Hence, the continuity of $u^t|_{\Delta_i}$ is a mere consequence of Lemma 3. The proposition is proved.

6.6 The final step for the definition of [sp] - 1 homotopy

Let X, Y be topological spaces. Then [X, Y] denotes the set of all homotopy classes of continuous maps from X to Y. Given any $f \in C^0(X, Y)$, we use $[f]_{X,Y}$ (or simply [f]) to denote the homotopy class corresponding to f as a map from X to Y. If K is a complex, then for any $f \in \mathcal{W}^{s,p}(K, N)$ and $0 \leq k < sp$, there exists a unique $g \in C^0(K^k, N)$ such that for any $\Delta \in K^k$, we have $f|_{\Delta} = g|_{\Delta} \mathcal{H}^d$ a.e. on Δ with $d = \dim \Delta$. Hence, we may define the homotopy class $[f|_{K^k}]$ of f as the homotopy class [g] of g (in $C^0(K^k, N)$).

Lemma 15 (Lemma 4.4 in [9]) Assume that $d \in \mathbb{N}, 1 < d, sp = d, \Delta$ is a rectilinear cell of dimension d and $u \in W^{s,p}(\Delta, N)$ is such that the trace $tru|_{\partial\Delta} = f \in \tilde{\mathcal{W}}^{s,p}(\partial\Delta, N) \subset C^0(\partial\Delta, N)$. Then, there exists $v \in C^0(\Delta, N) \cap W^{s,p}(\Delta, N)$ such that $v|_{\partial\Delta} = f$ and $v \sim_{W^{s,p}(\Delta, N)} u$.

Proof: For any $\delta \in (0,1)$, we define $u_{\delta}(x) = u(x/(1-\delta))$ for $|x|_{\Delta} \leq 1-\delta$ and $u_{\delta}(x) = f(x/|x|_{\Delta})$ for $1-\delta \leq |x|_{\Delta} \leq 1$. Then $u_{\delta} \in W^{s,p}(\Delta)$ and $u_{\delta} \to u$ in $W^{s,p}(\Delta)$ as $\delta \to 0^+$ (here, we use Proposition 1).

Choose an $\eta \in C_c^{\infty}(\Delta, \mathbb{R})$ such that $0 \leq \eta \leq 1, \eta|_{\Delta_{1-\delta/2}} = 1$ and $\eta|_{\Delta\setminus\Delta_{1-\delta/3}} = 0$. The notation Δ_r signifies the set $\{x \in \Delta : |x|_{\Delta} < r\}$. For $\epsilon > 0$ small enough, we set $v_{\epsilon}(x) = \int_{B_{\epsilon}(x)} u_{\delta}$ for $x \in \Delta_{1-\delta/4}$. Then, we define:

$$w_{\epsilon}(x) = (1 - \eta(x))u_{\delta}(x) + \eta(x)v_{\epsilon}(x) \quad \forall x \in \Delta.$$

Clearly, $w_{\epsilon} \in C^{0}(\bar{\Delta})$. Since u_{δ} is VMO, we have dist $(v_{\epsilon}(x), N) \to 0$ uniformly for $x \in \Delta_{1-\delta/2}$, when $\epsilon \to 0^{+}$ (see [7], section I.2, Example 2). This implies that the same is true for w_{ϵ} on $\Delta_{1-\delta/2}$ because $v_{\epsilon}|_{\Delta_{1-\delta/2}} = w_{\epsilon}|_{\Delta_{1-\delta/2}}$. Moreover, from the uniform continuity of f, we know that $w_{\epsilon}(x) - u_{\delta}(x) \to 0$ uniformly for $x \in \Delta \setminus \Delta_{1-\delta/2}$ as $\epsilon \to 0^{+}$. Hence, dist $(w_{\epsilon}(x), N) \to 0$ uniformly for $x \in \Delta$ as $\epsilon \to 0^{+}$, from which we deduce that $\Pi_{N} \circ w_{\epsilon}$ is well defined for ϵ sufficiently small. We have $v_{\epsilon} \to u_{\delta}$ when $\epsilon \to 0^{+}$ in $W^{s,p}(\Delta)$ (this can be shown as in the case of a regularization by a smooth kernel, see [11], Proposition 4.1.). Then w_{ϵ} converges to u_{δ} in $W^{s,p}(\Delta)$ when $\epsilon \to 0^{+}$. We extend Π_N to the whole \mathbb{R}^l and we may assume that Π_N vanishes outside a large ball. Since Π_N is smooth and N is bounded, by the *composition* property (see [6] and [10]), the map

$$z \in W^{s,p}(\Delta, \mathbb{R}^l) \mapsto \Pi_N \circ z W^{s,p}(\Delta, \mathbb{R}^l)$$

is continuous. Hence $\Pi_N \circ w_{\epsilon} \to u_{\delta}$ in $W^{s,p}(\Delta, N)$ when $\epsilon \to 0^+$ and $\Pi_N \circ w_{t\epsilon} \in C^0([0,1], W^{s,p}(\Delta, N))$. Since $u_{\delta} \sim_{W^{s,p}(\Delta,N)} u$ (by Proposition 1), we have $\Pi_N \circ w_{\epsilon} \sim_{W^{s,p}(\Delta,N)} u$. The map $v := \Pi_N \circ w_{\epsilon}$ satisfies the requirements of Lemma 15.

Lemma 16 (Lemma 4.7 in [9]) Let $u \in W^{s,p}(M, N)$, K be a rectilinear cell complex. Assume that the parameter space P is a k dimensional connected Riemannian manifold, and that $H : |K| \times P \to M$ is a map such that $H|_{\Delta \times P}$ satisfies $(H_1), (H_2)$ and (H_3) for any $\Delta \in K$. Then

i) there exists a Borel set $E \subset P$ such that $\mathcal{H}^k(E) = 0$ and $u \circ H_{\xi} \in \mathcal{W}^{s,p}(K,N)$ for any $\xi \in P \setminus E$.

ii) Let $0 \leq d \leq [sp] - 1$. We can define $\chi = \chi_{d,H,u} : P \to [|K^d|, N]$ by setting $\chi(\xi) = [u \circ H_{\xi}|_{|K^d|}]$. Then χ is a constant \mathcal{H}^k a.e. on P.

Proof: From Corollary 2 we know that there exists a Borel set $E_0 \subset P$ such that $\mathcal{H}^k(E_0) = 0$ and $u \circ H_{\xi} \in \mathcal{W}^{s,p}(K, \mathbb{R}^l)$ for any $\xi \in P \setminus E_0$. Since $u(x) \in N$ for almost every $x \in M$, Lemma 13 shows that there exists a Borel set $E \subset P$ such that $\mathcal{H}^k(E) = 0$ and $u \circ H_{\xi} \in \mathcal{W}^{s,p}(K, N)$ for any $\xi \in P \setminus E$; that is, the first assertion of the lemma.

The second assertion can be proved exactly as in [9] Lemma 4.7 except that in the proof, [9] Lemma 4.3 has to be replaced by i) and [9] Lemma 4.4 has to be replaced by our Lemma 15.

Finally, we give the definition of [sp] - 1 homotopy (when $s \ge 1$, this definition is the same as in [9]).

Let K be a finite rectilinear cell complex and $h: K \to M$ be a triangulation of M. We define $H: |K| \times B^a_{\epsilon_M} \to M$ as $H(x,\xi) = \prod_M (h(x) + \xi)$. Then H satisfies (H1), (H2) and (H3) for each $\Delta \in K$ with $P := B^a_{\epsilon_M}$ (see [9], page 72) so that $\chi_{[sp-1],H,u}$ is a constant a.e. on $B^a_{\epsilon_M}$. We denote this constant by $u_{\sharp,s,p}(h)$. When $s \in (1, 1 + 1/p), W^{s,p}(M, N) \subset W^{1,sp}(M, N)$ (because N is a bounded subset of \mathbb{R}^l) and $u_{\sharp,s,p}(h)$ is exactly the constant $u_{\sharp,sp}(h)$ defined in [9] (for s = 1).

We also remark that for ϵ_M sufficiently small, $H(\cdot, \xi)$ is a triangulation of M (see [12]). We will denote $H(\cdot, \xi)$ by H_{ξ} or h_{ξ} .

Lemma 4.8 and Lemma 4.9 in [9] show that if $u, v \in W^{s,p}(M, N)$ and $h_i : K_i \to M$ are triangulations for i = 1, 2 (K_i being a rectilinear cell complex) and $u_{\sharp,s,p}(h_1) = v_{\sharp,s,p}(h_1)$, then $u_{\sharp,s,p}(h_2) = v_{\sharp,s,p}(h_2)$. In fact, when $s \in (0, 1)$, the same proof as in the case s = 1 is valid. When $s \in (1, 1+1/p)$,

one can use the inclusion $W^{s,p}(M,N) \subset W^{1,sp}(M,N)$ and apply directly the results in [9] with sp instead of p. Hence, we can define:

Definition 1 Let $u, v \in W^{s,p}(M, N)$. If for any Lipschitz rectilinear cell decomposition $h: K \to M$, we have $u_{\sharp,s,p}(h) = v_{\sharp,s,p}(h)$, then we say that u is [sp] - 1 homotopic to v.

Clearly, this is an equivalence relation on $W^{s,p}(M,N)$.

7 A preliminary to the proof of Theorem 4

In [9], the fact that $\operatorname{Lip}(\Delta) \subset W^{1,p}(\Delta)$ for any simplex Δ is widely used. In contrast, $\operatorname{Lip}(\Delta) \not\subset W^{s,p}(\Delta)$ when s > 1. To overcome this difficulty, we have to substantially modify some parts of the proofs of [9]. This is the aim of this section.

Throughout this section, X denotes a rectilinear cell complex of dimension k + 1 with $0 \le k \le sp - 1$ and X^k its subcomplex of dimension k. We also define $[0, 1] \times X^k \cup \{0\} \times X$ as the complex:

$$\{[0,1] \times \Delta : \Delta \in X^k\} \cup \{\{0\} \times \Delta : \Delta \in X\} \cup \{\{1\} \times \Delta : \Delta \in X^k\}.$$

If X is embedded in some \mathbb{R}^S and $\Delta \in X^k$, then $[0,1] \times \Delta$ is a rectilinear cell in $\mathbb{R} \times \mathbb{R}^S$ and its boundary is

$$\{0\} \times \Delta \cup \{1\} \times \Delta \cup [0,1] \times \partial \Delta \subset [0,1] \times X^k \cup \{0\} \times X.$$

The proof of [9], Lemma 3.2 (with obvious modifications) shows the following

Lemma 17 The set $C^0(X) \cap \mathcal{W}^{s,p}(X)$ is dense in the set $C^0(X)$.

A consequence of Lemma 17 is given by

Lemma 18 Let $H_0 \in C^0([0,1] \times X^k, N)$ be such that $H_0(0, \cdot)$ and $H_0(1, \cdot)$ belong to $\mathcal{W}^{s,p}(X^k, N)$. Then there exists

$$H_1 \in \mathcal{W}^{s,p}([0,1] \times X^k, N) \cap C^0([0,1] \times X^k, N)$$

such that $H_0(0, \cdot) = H_1(0, \cdot)$ and $H_0(1, \cdot) = H_1(1, \cdot)$.

Proof: First, we may assume that $H_0(t, \cdot) = H_0(0, \cdot), t \in [0, \delta]$ and $H_0(t, \cdot) = H_0(1, \cdot), t \in [1-\delta, 1]$, for some $\delta \in (0, 1/4)$. Moreover, using Lemma 17, there exists G in $\mathcal{W}^{s,p}([0, 1] \times X^k) \cap C^0([0, 1] \times X^k)$ such that $|G(t, x) - H_0(t, x)| \leq \epsilon_N$ for $(t, x) \in [0, 1] \times |X^k|$.

Finally, let $\theta \in C^{\infty}(\mathbb{R}, [0, 1])$ such that $\theta \equiv 1$ on $[\delta/2, 1 - \delta/2]$ and $\theta \equiv 0$ on $[0, \delta/4] \cup [1 - \delta/4, 1]$. Then we define

$$H(t, x) := \theta(t)G(t, x) + (1 - \theta(t))H_0(t, x).$$

The map H belongs to $\mathcal{W}^{s,p}([0,1]\times X^k,\mathbb{R}^l)\cap C^0([0,1]\times X^k,\mathbb{R}^l)$ and

$$|H(t,x) - H_0(t,x)| \le \epsilon_N.$$

Thus, we can define $H_1(t,x) := \prod_N \circ H(t,x)$. By the composition property, $H_1 \in \mathcal{W}^{s,p}([0,1] \times X^k, N) \cap C^0([0,1] \times X^k, N)$. We have $H_1(0, \cdot) = H_0(0, \cdot)$ and $H_1(1, \cdot) = H_0(1, \cdot)$. This completes the proof of the lemma.

Lemma 19 Let $H_1 \in \mathcal{W}^{s,p}([0,1] \times X^k \cup \{0\} \times X, N) \cap C^0([0,1] \times X^k \cup \{0\} \times X, N)$. Then H_1 may be extended to a map

$$H_2 \in \mathcal{W}^{s,p}([0,1] \times X, N) \cap C^0([0,1] \times X, N).$$

Proof: For each $\Delta \in X \setminus X^k$, consider its barycenter y_{Δ} and define $\bar{y}_{\Delta} := (2, y_{\Delta}) \in \bar{\Delta} := [0, 4] \times \Delta$. Let ρ be the map defined on $[0, 1] \times \Delta$ by

$$x \mapsto \bar{y}_{\Delta} + (x - \bar{y}_{\Delta})/|x|_{\bar{\Delta}}.$$

Then

$$\rho(x) \in [0,1] \times \partial \Delta \cup \{0\} \times \Delta, \quad x \in [0,1] \times \Delta$$

and $\rho(x) = x$ for any $x \in [0, 1] \times \partial \Delta \cup \{0\} \times \Delta$. Define ρ on each such $[0, 1] \times \Delta$ for $\Delta \in X \setminus X^k$ and extend it to $[0, 1] \times |X|$ by setting $\rho(x) = x$ on $[0, 1] \times |X^k|$. Then ρ is a Lipschitz map from $[0, 1] \times |X|$ into $[0, 1] \times |X^k| \cup \{0\} \times |X|$, so that the map $H_2 := H_1 \circ \rho$ belongs to $C^0([0, 1] \times X, N)$. Moreover, H_2 is an extension of H_1 . To see that $H_2 \in \mathcal{W}^{s,p}([0, 1] \times X, N)$, remark that on each cell $[0, 1] \times \Delta$, with $\Delta \in X \setminus X^k$, H_2 is defined as the homogeneous degree-zero extension of H_1 (except that the center of the homogeneous degree-zero extension 1 shows). Hence, $H_2|_{[0,1] \times \Delta} \in W^{s,p}$. That $H_2|_{\{1\} \times \Delta} \in W^{s,p}$ is an easy consequence of the fact that $H_1 \in \mathcal{W}^{s,p}([0, 1] \times \partial \Delta \cup \{0\} \times \Delta)$ and that ρ^{-1} defined on the complex $[0, 1] \times \partial \Delta \cup \{0\} \times \Delta$ is a triangulation of $\{1\} \times \Delta$ (see the remarks before Lemma 11). The lemma is proved.

Lemma 20 Let $H_2 \in C^0([0,1] \times X, N)$ be such that $H_2(0, \cdot)$ and $H_2(1, \cdot)$ belong to $\mathcal{W}^{s,p}(X, N)$. Then there exists $H_3 \in C^0([0,1], \mathcal{W}^{s,p}(X, N))$ such that $H_3(0) = H_2(0, \cdot)$ and $H_3(1) = H_2(1, \cdot)$.

Proof: There exists $\delta > 0$ such that $|H_2(t_1, x_1) - H_2(t_2, x_2)| \leq \epsilon_N/8$ for any $|x_1 - x_2| + |t_1 - t_2| \leq \delta$. Pick some $m \in \mathbb{N}$ such that $1/m < \delta$. For any $1 \leq k \leq m-1$, there exists $L_{k/m} \in C^0(X) \cap \mathcal{W}^{s,p}(X)$ such that $|L_{k/m}(x) - H_2(k/m, x)| \leq \epsilon_N/8$ for $x \in |X|$. (Here, we use Lemma 17). We also define $L_0 := H_2(0, \cdot)$ and $L_1 := H_2(1, \cdot)$. For any $0 \leq k \leq m-1$, $t \in [k/m, (k+1)/m]$ and $x \in X$, we define

$$L(t)(x) = (k+1-mt)L_{k/m}(x) + (mt-k)L_{(k+1)/m}(x).$$

It is easy to see that

$$L \in C^{0}([0,1], \mathcal{W}^{s,p}(X, \mathbb{R}^{l})) \cap C^{0}([0,1] \times X, \mathbb{R}^{l})$$

and dist $(L(t)(x), N) < \epsilon_N, t \in [0, 1], x \in |X|.$

We define $H_3(t)(x) := \Pi_N(L(t)(x))$. The composition property shows that the map $t \in [0,1] \mapsto \Pi_N \circ L(t) \in W^{s,p}(\Delta, N)$ is continuous for each $\Delta \in X$. This implies that $H_3 \in C^0([0,1], \mathcal{W}^{s,p}(X,N))$.

The proof of Theorem 4 is mainly based on the following proposition:

Proposition 2 Let $u, v \in W^{s,p}(X, N)$. Then $u|_{|X^k|}$ and $v|_{|X^k|}$ can be identified to elements in $C^0(X^k, N)$. Assume that $u|_{|X^k|} \sim_{C^0(X^k, N)} v|_{|X^k|}$. Then there exists $f \in W^{s,p}(X, N) \cap C^0(X, N)$ such that $u \sim_{W^{s,p}(X, N)} f$ and $f|_{|X^k|} = v|_{|X^k|}$.

Proof: First, we claim that we may assume that $u \in C^0(X, N)$. Indeed, if sp > k + 1, then this is a consequence of Sobolev's embeddings. If sp = k + 1, then Lemma 15 applied to each $\Delta \in X \setminus X^k$ shows that there exists $u_1 \in \mathcal{W}^{s,p}(X,N) \cap C^0(X,N)$ such that $u_1|_{|X^k|} = u|_{|X^k|}$ and $u_1 \sim_{\mathcal{W}^{s,p}(X,N)} u$.

There exists $H_0 \in C^0([0,1] \times X^k, N)$ such that $H_0(0, \cdot) = u|_{|X^k|}$ and $H_0(1, \cdot) = v|_{|X^k|}$. Using Lemma 18, there exists

$$H_1 \in \mathcal{W}^{s,p}([0,1] \times X^k, N) \cap C^0([0,1] \times X^k, N)$$

such that $H_1(0, \cdot) = H_0(0, \cdot)$ and $H_1(1, \cdot) = H_0(1, \cdot)$.

Then extend H_1 to a map still denoted by H_1 , defined on $[0,1] \times X^k \cup \{0\} \times X$ by setting $H_1(0,x) = u(x)$ for $x \in X$. It is clear that H_1 now belongs to the space

$$\mathcal{W}^{s,p}([0,1] \times X^k \cup \{0\} \times X, N) \cap C^0([0,1] \times X^k \cup \{0\} \times X, N).$$

In light of Lemma 19, we may extend H_1 to a map

$$H_2 \in \mathcal{W}^{s,p}([0,1] \times X, N) \cap C^0([0,1] \times X, N).$$

Finally, using Lemma 20, there exists $H_3 \in C^0([0,1], \mathcal{W}^{s,p}(X,N))$ such that $H_3(0) = H_2(0,\cdot) = u$ and $H_3(1) = H_2(1,\cdot)$. We have $H_2(1,\cdot)|_{|X^k|} = v|_{|X^k|}$. We can set $f := H_3(1)$.

8 Proof of Theorem 4

Lemma 21 There exists $\eta > 0$ such that for any $u, v \in W^{s,p}(M, N)$ satisfying $||u - v||_{W^{s,p}(M,\mathbb{R}^l)} < \eta$, we have

$$u \text{ is } [sp] - 1 \text{ homotopic to } v.$$

Proof: Fix a smooth triangulation of M, say $h: K \to M$. We may find a Borel set $E_1 \subset B^a_{\epsilon_M}$ such that $\mathcal{H}^a(E_1) = 0$ and for any $\xi \in B^a_{\epsilon_M} \setminus E_1$, we have $u \circ h_{\xi}, v \circ h_{\xi} \in \mathcal{W}^{s,p}(K, N)$ and

$$[u \circ h_{\xi}|_{|K^{[sp]}-1|}] = u_{\sharp,s,p}(h) \ , \ [v \circ h_{\xi}|_{|K^{[sp]}-1|}] = v_{\sharp,s,p}(h).$$

For any $\Delta \in K$, we have (see Lemma 14)

$$\int_{B^a_{\epsilon_M}} d\mathcal{H}^a(\xi) ||u \circ h_{\xi} - v \circ h_{\xi}||^p_{W^{s,p}(\Delta,\mathbb{R}^l)} \le C||u - v||^p_{W^{s,p}(M,\mathbb{R}^l)}$$

This implies:

$$\mathcal{H}^a(\{\xi \in B^a_{\epsilon_M} : ||u \circ h_{\xi} - v \circ h_{\xi}||^p_{W^{s,p}(\Delta,\mathbb{R}^l)} \ge r\}) \le C \frac{\epsilon^a_M ||u - v||^p_{W^{s,p}(M,\mathbb{R}^l)}}{r}.$$

Hence, we may find a Borel set $E_2 \subset B^a_{\epsilon_M}$ such that $\mathcal{H}^a(E_2) > 0$ and for any $\xi \in E_2$, we have:

- (i) $u \circ h_{\xi}, v \circ h_{\xi} \in \mathcal{W}^{s,p}(K, N)$
- (ii) For any $\Delta \in K$, we have

$$||u \circ h_{\xi} - v \circ h_{\xi}||_{W^{s,p}(\Delta,\mathbb{R}^{l})}^{p} \leq C||u - v||_{W^{s,p}(M,\mathbb{R}^{l})}^{p}.$$

Hence, for any $\Delta \in K^{[sp-1]}$, we have:

$$\begin{aligned} ||u \circ h_{\xi} - v \circ h_{\xi}||_{L^{\infty}(\Delta)} &\leq C ||u \circ h_{\xi} - v \circ h_{\xi}||_{W^{s,p}(\Delta,\mathbb{R}^{l})} \\ &\leq C ||u - v||_{W^{s,p}(M,\mathbb{R}^{l})}. \end{aligned}$$

If $||u-v||_{W^{s,p}(M,\mathbb{R}^l)} \leq \eta := \epsilon_N/C$, then the continuous map

$$H(t,x) := \Pi_N((1-t)u \circ h_{\xi}(x) + tv \circ h_{\xi}(x))$$

is well defined. This shows that u is [sp] - 1 homotopic to v.

Lemma 21 will allow us to prove one implication of Theorem 2. For the converse of this implication, we will need the two following propositions.

Proposition 3 Assume that 1 < sp < d and that f is a continuous path in $\tilde{\mathcal{W}}^{s,p}(\partial \Delta, N)$, where Δ is a d dimensional rectilinear cell containing 0. Define $\tilde{f}(t)(x) = f(t)(x/|x|)$ for $0 \le t \le 1$ and $x \in \Delta$. (Here, $|\cdot|$ denotes the Minkowski functional of Δ with respect to 0). Then \tilde{f} is a continuous path in $W^{s,p}(\Delta, N)$.

Proof: In light of the proof of Proposition 1, Lemma 1 and (5), the proposition follows from

$$\|\tilde{f}(t) - \tilde{f}(s)\|_{W^{s,p}(\Delta)} = \|f(t) - f(s)\|_{W^{s,p}(\Delta)} \le C \|f(t) - f(s)\|_{\tilde{\mathcal{W}}^{s,p}(\partial\Delta)}.$$

Proposition 4 Consider a d dimensional rectilinear cell Δ containing 0. Assume that 1 < sp < d. Let $u, v \in W^{s,p}(\Delta, N)$ be such that $tru|_{\partial\Delta}, trv|_{\partial\Delta} \in \tilde{W}^{s,p}(\partial\Delta, N)$ and $tru|_{\partial\Delta} \sim_{\tilde{W}^{s,p}(\partial\Delta, N)} trv|_{\partial\Delta}$. Then $u \sim_{W^{s,p}(\Delta, N)} v$.

Proof: There exists $f \in C^0([0,1], \tilde{\mathcal{W}}^{s,p}(\partial \Delta, N))$ such that $\operatorname{tr} u = f(0), \operatorname{tr} v = f(1)$. Then, Proposition 3 implies the existence of some

$$\tilde{f} \in C^0([0,1], W^{s,p}(\Delta, N))$$

satisfying $\tilde{f}(0) = \tilde{u}, \tilde{f}(1) = \tilde{v}$ with $\tilde{u}(x) = \operatorname{tr} u|_{\partial\Delta}(x/|x|)$ and similarly for \tilde{v} . Moreover, Proposition 1 shows that $\tilde{u} \sim_{W^{s,p}(\Delta)} u, \tilde{v} \sim_{W^{s,p}(\Delta)} v$. Finally, $u \sim_{W^{s,p}(\Delta)} v$.

We proceed to prove Theorem 4; that is,

Theorem 7 Let $u, v \in W^{s,p}(M, N)$. Then $u \sim_{s,p} v$ if and only if u is [sp]-1 homotopic to v in $W^{s,p}(M, N)$.

Proof: Let $u, v \in W^{s,p}(M, N)$. Assume that $u \sim_{s,p} v$. Then there exists a continuous map $H \in C^0([0,1], W^{s,p}(M, N))$ such that $H(0, \cdot) = u$ and $H(1, \cdot) = v$.

Let η be the number in Lemma 21. There exists $m \in \mathbb{N}$ such that for any $s, t \in [0, 1]$ satisfying $|s - t| \leq 1/m$, we have:

$$||H(s) - H(t)||_{W^{s,p}(M,\mathbb{R}^l)} < \eta.$$

Then, for i = 0, ..., m - 1, we have H(i/m) is [sp] - 1 homotopic to H((i + 1)/m). This proves that u is [sp] - 1 homotopic to v.

The converse is very close to [9]. Suppose that we are given two maps $u, v \in W^{s,p}(M, N)$ which are [sp] - 1 homotopic. For convenience, we note k = [sp] - 1. Let $h: K \to M$ be a smooth triangulation of M.

By definition of [sp] - 1 homotopy, we may find a $\xi \in B^a_{\epsilon_M}$ such that $u \circ h_{\xi}, v \circ h_{\xi} \in \mathcal{W}^{s,p}(K,N)$ and $u \circ h_{\xi}|_{|K^k|} \sim v \circ h_{\xi}|_{|K^k|}$ as maps from $|K^k|$ to N. We remark that it is enough to prove that $u \circ h_{\xi}$ and $v \circ h_{\xi}$ are $\tilde{W}^{s,p}(K,N)$ homotopic. Indeed, if this is the case, u and v will be $W^{s,p}(h_{\xi}(\Delta),N)$ homotopic for each $\Delta \in K$ of dimension m (recall that h_{ξ} is a smooth diffeomorphism from Δ onto $h_{\xi}(\Delta)$). Then, Lemma 11 implies that $u \sim_{W^{s,p}(M,N)} v$.

Step 1: a reduction. We claim that we can assume that $u \circ h_{\xi}|_{|K^k|} = v \circ h_{\xi}|_{|K^k|}$. Indeed, since $u \circ h_{\xi}|_{|K^k|} \sim v \circ h_{\xi}|_{|K^k|}$ as maps from $|K^k|$ to N, we may apply Proposition 2 which shows that $u \circ h_{\xi}|_{K^{k+1}}$ is $\mathcal{W}^{s,p}(K^{k+1}, N)$ homotopic to a map $f \in \mathcal{W}^{s,p}(K^{k+1}, N) \cap C^0(K^{k+1}, N)$ which coincides with v on $|K^k|$. For each (k+2) simplex Δ , f and tr $u \circ h_{\xi}|_{\partial\Delta} = u \circ h_{\xi}|_{\partial\Delta}$ belongs to $\mathcal{W}^{s,p}(\partial\Delta)$. We choose the barycenter of Δ as origin and do homogeneous

degree-zero extension from f to get $f_{\Delta} \in W^{s,p}(\Delta, N)$ on Δ . Define f_{Δ} on each such Δ to get $f_{k+2} \in \mathcal{W}^{s,p}(K^{k+2}, N)$. Proposition 4 shows that $u \circ h_{\xi}|_{K^{k+2}}$ is homotopic to f_{k+2} in $\mathcal{W}^{s,p}(K^{k+2}, N)$. Simply by induction we finish after working with n simplices.

Then, $u \circ h_{\xi}$ is $\mathcal{W}^{s,p}(K, N)$ homotopic to f. This completes the proof of step 1.

Step 2: completion of the proof. We now show that f can be connected to $v \circ h_{\xi}$ by a continuous path in $\tilde{\mathcal{W}}^{s,p}(K, N)$.

Applying Proposition 1 to each k + 1 simplex $\Delta \in K$, we may assume that $f|_{\Delta \setminus B_{\delta}(c_{\Delta})} = v \circ h_{\xi}|_{\Delta \setminus B_{\delta}(c_{\Delta})}$. Here c_{Δ} is the barycenter of Δ and δ is a small number. Note that f is continuous on Δ and that v is continuous on $\Delta \setminus B_{\delta}(c_{\Delta})$.

Doing homogeneous degree-zero extension from $v \circ h_{\xi}|_{K^{k+1}}$ and $f|_{K^{k+1}}$ as we have done above, we may assume that $v \circ h_{\xi}$ and f are homogeneous of degree zero on $\Sigma \in K$ with dim $\Sigma \geq k+2$. Then, on any k+2 simplex $\Sigma \in K$, f is continuous on $\Sigma \setminus \{c_{\Sigma}\}$ and $v \circ h_{\xi}$ is continuous on $\Sigma \setminus \{tz + (1-t)c_{\Sigma} : z \in \bar{B}_{\delta}(c_{\Delta}), t \in [0, 1]\}$ (here, c_{Σ} is the barycenter of Σ and the center of the homogeneous degree-zero extension on Σ).

Fix a k + 1 simplex Δ . It must be the face of several k + 2 simplices, say $\Sigma_1, ..., \Sigma_r, r \ge 2$. Now, for two small numbers $\delta' > \delta$ and $\epsilon > 0$, consider $\Omega := \bigcup_{i=1}^r \Omega_i$ where $\Omega_i \subset \Sigma_i$ is formally equal to $(\bar{B}_{2\delta'}(c_{\Delta}) \cap \Delta) \times [0, \epsilon]$, for which the product means that we go in the Σ_i in the normal direction by length ϵ . Define

$$\Omega_i' := (\bar{B}_{2\delta'}(c_\Delta) \cap \Delta) \times [0, \frac{1}{2}\epsilon], \Omega_i'' := (\bar{B}_{2\delta'}(c_\Delta) \cap \Delta) \times [\epsilon/2, \epsilon],$$
$$\Omega' = \bigcup_{i=1}^r \Omega_i', \Omega'' = \bigcup_{i=1}^r \Omega_i''.$$

We may choose δ' and ϵ such that $f|_{\partial\Omega_i\cup\partial\Omega''_i} \in \tilde{\mathcal{W}}^{s,p}(\partial\Omega_i\cup\partial\Omega''_i)$ and $v \circ h_{\xi} \in \tilde{\mathcal{W}}^{s,p}(\partial\Omega'_i)$ (this amounts to Lemma 2 i); note also that the trace compatibility conditions are automatically satisfied for $\delta' > \delta$ and $\epsilon > 0$ sufficiently small: this follows from the continuity properties of f and $v \circ h_{\xi}$ stated above). This implies that $f|_{\partial\Omega} \in \tilde{\mathcal{W}}^{s,p}(\partial\Omega)$ (once again, the trace compatibility conditions are satisfied). If ϵ is taken sufficiently small (this depends only on the geometry of the k + 2 simplices), we can assume that $v \circ h_{\xi} = f$ on a neighborhood of $\partial\Omega' \cap \partial\Omega$ (recall that on K^{k+2} , f and $v \circ h_{\xi}$ are now homogeneous of degree zero).

Now consider a w defined on $|K^{k+2}|$ by setting

$$w|_{\Omega'} = v \circ h_{\xi}|_{\Omega'}, w|_{|K^{k+2}|\setminus\Omega} = f|_{|K^{k+2}|\setminus\Omega}.$$

On each Ω''_i , we simply do homogeneous degree-zero extension with respect to a point in Ω''_i (here, we use the fact that the map equal to f on

 $\partial \Omega_i'' \setminus \partial \Omega_i'$ and equal to $v \circ h_{\xi}$ on $\partial \Omega_i'' \cap \partial \Omega_i' = (\bar{B}_{2\delta}(c_{\Delta}) \cap \Delta) \times \{\epsilon/2\}$ belongs to $\tilde{\mathcal{W}}^{s,p}(\partial \Omega_i'')$). Clearly, $w \in \tilde{\mathcal{W}}^{s,p}(K^{k+2}, N)$.

We may connect w to $f|_{|K^{k+2}|}$ by a continuous path in $\tilde{\mathcal{W}}^{s,p}(K^{k+2}, N)$ since for any $1 \leq i \neq j \leq r$, $\Omega_i \cup \Omega_j$ is star-shaped with respect to c_{Δ} and we may apply Proposition 1 to w on this set (here, we use the fact that $w|_{\partial(\Omega_i\cup\Omega_j)} = f|_{\partial(\Omega_i\cup\Omega_j)}$ belongs to $\tilde{\mathcal{W}}^{s,p}(\partial(\Omega_i\cup\Omega_j))$).

Define \tilde{w} inductively to be the homogeneous degree-zero extension of w on each higher-dimensional simplex Δ with dim $\Delta \geq k+3$, from its value on $\partial \Delta$ as described above. Then, one has $\tilde{w} \sim_{\tilde{W}^{s,p}(K,N)} f$.

Since $\tilde{w}|_{|K^{k+1}|} = v \circ h_{\xi}|_{|K^{k+1}|}$, we have $\tilde{w} \sim_{\tilde{\mathcal{W}}^{s,p}(K,N)} v \circ h_{\xi}$ (by Proposition 4 and Lemma 11). Finally, $v \circ h_{\xi} \sim_{\tilde{\mathcal{W}}^{s,p}(K,N)} u \circ h_{\xi}$. This completes the proof of the theorem.

9 Consequences of Theorem 4

As in [9], Theorem 4 reduces certain problems about Sobolev mappings, which are analytical problems, to pure topology problems. In this section, we enumerate some of these results, which correspond to similar results in [9] (for $W^{1,p}$). We omit their proofs when they are similar to those of [9].

Proposition 5 ([9], Proposition 5.1) Assume that $1 \leq p, s \in (0, 1 + 1/p)$, 1 < sp < m. For any triangulation of M, say $h : K \to M$, we set $M^j = h(|K^j|)$ for any j. There is a bijection between the sets $W^{s,p}(M,N)/\sim_{s,p}$ and $C^0(M^{[sp]},N)/\sim_{M^{[sp]-1}}$. Here for $f,g \in C^0(M^{[sp]},N), f \sim_{M^{[sp]-1}} g$ means that $f|_{M^{[sp]-1}}$ and $g|_{M^{[sp]-1}}$ are homotopic in $C^0(M^{[sp]-1},N)$.

Proof: A way to show this proposition is to introduce the space

$$X := (C^0(M^{[sp]}, N) \cap \mathcal{W}^{s, p}(M^{[sp]}, N)) / \sim_{M^{[sp]-1}} .$$

The definition of $\mathcal{W}^{s,p}(M^{[sp]}, N)$ follows exactly the definition of $\mathcal{W}^{s,p}(K, N)$.

The natural map $G: X \to C^0(M^{[sp]}, N) / \sim_{M^{[sp]-1}}$ is one-to-one. The surjectivity of G is an easy consequence of Lemma 17. Indeed, let $u \in C^0(M^{[sp]}, N)$. Then Lemma 17 shows that there exists $v \in C^0(M^{[sp]}) \cap \mathcal{W}^{s,p}(M^{[sp]})$ such that $||u-v||_{L^{\infty}(M^{[sp]})} < \epsilon_N$ and $||\Pi_N(v)-u||_{L^{\infty}(M^{[sp]})} < \epsilon_N$. Hence u is continuously connected to $\Pi_N(v) \in C^0(M^{[sp]}, N) \cap \mathcal{W}^{s,p}(M^{[sp]}, N)$ by the map $H(t) := \Pi_N(t\Pi_N(v) + (1-t)u)$, so that $G(\Pi_N(v)) = u$.

Thus, there is a bijection between $C^0(M^{[sp]}, N) / \sim_{M^{[sp]-1}}$ and X. It remains to show that there is a bijection between X and $W^{s,p}(M, N) / \sim_{s,p}$.

We define a map from X into $W^{s,p}(M,N)/\sim_{s,p}$ as follows: For any $w \in C^0(M^{[sp]}, N) \cap \mathcal{W}^{s,p}(M^{[sp]}, N)$, using h to pull w to $K^{[sp]}$, after doing homogeneous degree-zero extension on higher-dimensional cells, we pull it to M by h and get \tilde{w} . Then we send the equivalence class corresponding to

w to the equivalence class corresponding to \tilde{w} . This map is well defined by the proof of Theorem 4.

We proceed to prove that this map is one-to-one. Let $u, v \in C^0(M^{[sp]}, N) \cap \mathcal{W}^{s,p}(M^{[sp]}, N)$ and \tilde{u}, \tilde{v} their homogeneous degree-zero extension. Assume that $\tilde{u} \sim_{s,p} \tilde{v}$. Then by Theorem 4, $\tilde{u}_{\sharp,s,p}(h) = \tilde{v}_{\sharp,s,p}(h)$. It is easy to see that $\tilde{u}_{\sharp,s,p}(h) = [u \circ h|_{K^{[sp]-1}}]$ and similarly for v. Hence $u \sim_{M^{[sp]-1}} v$; that is, the map is one-to-one.

To prove the surjectivity, let $u \in W^{s,p}(M, N)$. There exists $\xi \in B^a_{\epsilon_M}$ such that $u \circ h_{\xi} \in W^{s,p}(K, N)$. By the Sobolev embeddings or Lemma 15, there exists $f \in C^0(K^{sp}, N) \cap W^{s,p}(K^{\lceil sp \rceil}, N)$ such that $f|_{|K^{\lceil sp \rceil-1}|} = u \circ h_{\xi}|_{|K^{\lceil sp \rceil-1}|}$. We extend f by degree-zero homogeneity. We denote by \tilde{f} this extension. The proof of Theorem 4 (in fact, this is exactly 'step 2') shows that $u \circ h_{\xi} \sim_{\tilde{W}^{s,p}(K,N)} \tilde{f}$. Hence, $u \circ h_{\xi} \circ h^{-1} \sim_{W^{s,p}(M,N)} \tilde{f} \circ h^{-1}$. Since $u \circ h_{\xi} \circ h^{-1} \sim_{W^{s,p}(M,N)} u$, the equivalence class corresponding to $f \circ h^{-1}|_{M^{\lceil sp \rceil}}$ is mapped to the equivalence class corresponding to u. That is, the map is onto.

For any $0 < s_1, s_2 \le 1, 1 \le p_1, p_2$, such that $W^{s_2, p_2} \subset W^{s_1, p_1}$, we have a map:

$$i: W^{s_2,p_2} / \sim_{s_2,p_2} \to W^{s_1,p_1} / \sim_{s_1,p_1}$$

defined in an obvious way. An immediate consequence of the above proposition is the following

Corollary 3 ([9], Corollary 5.1) Assume that $[s_1p_1] = [s_2p_2]$. Then i is a bijection.

The following corollary implies Theorem 3 b).

Corollary 4 ([9], Corollary 5.2) Assume that $1 \le p, s \in (0, 1 + 1/p), 1 < sp < dim M$, and $\pi_i(N) = 0$ for $[sp] \le i \le dim M$. Then there is a bijection between $C^0(M, N) / \sim$ and $W^{s,p}(M, N) / \sim_{s,p}$.

Corollary 5 ([9], Corollary 5.3) Assume that $1 \le p, s \in (0, 1 + 1/p), 1 < sp < m$. If there exists some $k \in \mathbb{Z}, k \le [sp] - 1$ such that $\pi_i(M) = 0$ for $1 \le i \le k$, and $\pi_i(N) = 0$ for $k + 1 \le i \le [sp] - 1$, then $W^{s,p}(M,N)$ is path-connected.

This is Theorem 2.

We now turn to the question whether a given Sobolev map in $W^{s,p}(M, N)$ can be connected to a smooth map by a continuous path in $W^{s,p}(M, N)$. It turns out that there is a necessary and sufficient topological condition for this to be true.

Proposition 6 ([9], Proposition 5.2) Assume that $1 \le p, s \in (0, 1 + 1/p)$, $1 < sp < m, u \in W^{s,p}(M, N)$, and that $h : K \to M$ is a triangulation. Then,

u can be connected to a smooth map by a continuous path in $W^{s,p}(M, N)$ if and only if $u_{\sharp,s,p}(h)$ is extendible to M with respect to N, that is: for any $f \in C^0(K^{[sp]-1}, N)$ such that $f \in u_{\sharp,s,p}(h)$, f is the restriction of a map in $C^0(K, N)$.

Corollary 6 ([9], Corollary 5.4) Assume that $1 \leq p, s \in (0, 1 + 1/p), 1 < sp < m$. Then every map in $W^{s,p}(M, N)$ can be connected by a continuous path in $W^{s,p}(M, N)$ to a smooth map if and only if M satisfies the [sp] - 1 extension property with respect to N, that is: there exists a CW complex structure $(M^j)_{j\in\mathbb{Z}}$ of M such that every $f \in C^0(M^{[sp]}, N), f|_{M^{[sp]-1}}$ has a continuous extension to M.

This is Theorem 5 e).

Proof: Fix a smooth triangulation of M, say $h : K \to M$. Assume that every map in $W^{s,p}(M,N)$ can be connected continuously to a smooth map. Let $f \in C^0(M^{[sp]}, N)$. Then using Lemma 17, there exists $f_1 \in C^0(K^{[sp]}, N) \cap \mathcal{W}^{s,p}(K^{[sp]}, N)$ such that $f_1 \sim_{C^0(K^{[sp]},N)} f \circ h$. Let g be the homogeneous degree-zero extension of f_1 to K. Then $u = g \circ h^{-1} \in W^{s,p}(M,N)$ and $u_{\sharp,s,p}(h) = [g|_{K^{[sp]-1}}]$. Since u can be connected continuously to a smooth map, from Proposition 6 we know that $f_1|_{|K^{[sp]-1}|}$ has a continuous extension to K with respect to N. Hence, $f|_{M^{[sp]-1}}$ has a continuous extension to M.

Conversely, assume that M satisfies the ([sp] - 1) extension property with respect to N. Given any $u \in W^{s,p}(M, N)$, there exists $\xi \in B^a_{\epsilon_M}$ such that $u \circ h_{\xi} \in \mathcal{W}^{s,p}(K, N)$ and $u_{\sharp,s,p}(h) = [u \circ h_{\xi}|_{|K^{[sp]-1}|}]$. Using the Sobolev embeddings or Lemma 15, we may assume that $u \circ h_{\xi} \in C^0(K^{[sp]}, N)$. Hence, by Proposition 6, u may be connected continuously to a smooth map.

Acknowledgment The author thanks Petru Mironescu for having introduced him to the subject of this paper and for many helpful remarks.

References

- R. A. Adams. Sobolev spaces. Academic Press, New-York-London, 1975. Pure and Applied Mathematics, Vol. 65.
- [2] F. Bethuel and F. Demengel. Extensions for Sobolev mappings between manifolds. Calc. Var. Partial Differential Equations, 3(4):475–491, 1995.
- [3] H. Brezis. The interplay between analysis and topology in some nonlinear PDE problems. Bull. Amer. Math. Soc. (N.S.), 40(2):179–201, 2003.
- [4] H. Brezis and Y. Li. Topology and Sobolev spaces. J. Funct. Anal., 183(2):321–369, 2001.

- [5] H. Brezis and P. Mironescu. On some questions of topology for S¹- valued fractional Sobolev spaces. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 95(1):121–143, 2001.
- [6] H. Brezis and P. Mironescu. Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ., 1(4):387–404, 2001.
- [7] H. Brezis and L. Nirenberg. Degree theory and BMO. I. Compact manifolds without boundaries. *Selecta Math.* (N.S.), 1(2):197–263, 1995.
- [8] F. Hang and F. Lin. Topology of Sobolev mappings. Math. Res. Lett., 8(3):321–330, 2001.
- [9] F. Hang and F. Lin. Topology of Sobolev mappings. II. Acta Math., 191(1):55–107, 2003.
- [10] V. Maz'ya and T. Shaposhnikova. An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces. J. Evol. Equ., 2(1):113–125, 2002.
- [11] P. Mironescu. *Equations elliptiques linéaires et semilinéaires*. Lectures available on the web page of the author, 2005.
- [12] J. R. Munkres. Elementary differential topology, volume 1961 of Lectures given at Massachussetts Institute of Technology, Fall. Princeton University Press, Princeton, N.J., 1966.
- [13] C. Scott. L^p theory of differential forms on manifolds. Trans. Amer. Math. Soc., 347(6):2075-2096, 1995.
- [14] H. Triebel. Theory of function spaces, volume 78 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1983.
- [15] B. White. Mappings that minimize area in their homotopy classes. J. Differential Geometry, 20(2):433–446, 1984.
- [16] B. White. Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta Math., 160(1-2):1–17, 1988.