Fractional Sobolev Spaces and Topology

Pierre Bousquet *

January 5, 2007

Abstract

Consider the Sobolev class $W^{s, p}(M, N)$ where M and N are compact manifolds, and $p \geq 1, s \in(0,1+1 / p)$. We present a necessary and sufficient condition for two maps u and v in $W^{s, p}(M, N)$ to be continuously connected in $W^{s, p}(M, N)$. We also discuss the problem of connecting a map $u \in W^{s, p}(M, N)$ to a smooth map $f \in C^{\infty}(M, N)$.

Keywords Fractional Sobolev spaces between manifolds, homotopy.

1 Introduction

Let M and N be compact connected oriented smooth boundaryless Riemannian manifolds. Throughout the paper we assume that M and N are isometrically embedded into \mathbb{R}^{a} and \mathbb{R}^{l} respectively and that $m:=\operatorname{dim} M \geq 2$. Our functional framework is the Sobolev space

$$
W^{s, p}(M, N)=\left\{u \in W^{s, p}\left(M, \mathbb{R}^{l}\right): u(x) \in N \text { a.e. }\right\},
$$

with $1 \leq p<\infty, 0<s$. The space $W^{s, p}(M, N)$ is equipped with the standard metric $\mathrm{d}(u, v)=\|u-v\|_{W^{s, p}}$. The main purpose of this paper is to determine whether or not $W^{s, p}(M, N)$ is path-connected and if not, when two elements u and v in $W^{s, p}(M, N)$ can be continuously connected in $W^{s, p}(M, N)$; that is, when there exists $H \in C^{0}\left([0,1], W^{s, p}(M, N)\right)$ such that $H(0)=u$ and $H(1)=v$. If this is the case, we say that ' u and v are $W^{s, p}$ connected' (or $W^{s, p}$ homotopic).

Homotopy theory in the framework of Sobolev spaces is essential when studying certain problems in the calculus of variations. This is the case when the admissible functions are defined on a manifold M into a manifold N. One may hope to find multiple minimizers to these problems, ideally one in each homotopy class (see [15], [16] and also [3]).

The topology of $W^{s, p}(M, N)$ depends on two features of the problem, namely the topology of M and N, and the value of s and p. When $s=1$, the

[^0]study of the topology of $W^{1, p}(M, N)$ was initiated in [4]. The analysis of homotopy classes (for $s=1$) was subsequently tackled in [9] (see also [15], [16] for related and earlier results). These results have been generalized to $W^{s, p}(M, N)$ for non integer values of s and $1<p<\infty$ when M is a smooth, bounded, connected open set in an Euclidean space and when $N=S^{1}$ (see [5]). In this case, the proofs exploit in an essential way the fact that the target manifold is S^{1}. In contrast, our main concern is to determine to what extent the methods of [9] and the tools of [4] can be adapted to the case $s \neq 1$. Throughout the paper, we assume that $0<s<1+1 / p$ or $s p \geq \operatorname{dim} M$.

Our first result gives some conditions which imply that $W^{s, p}(M, N)$ is path-connected:

Theorem 1 Let $0<s<1+1 / p$. Then the space $W^{s, p}(M, N)$ is pathconnected when $s p<2$.

When $s=1$, this result was proved in [4], where the condition $p<2$ (for $s=1)$ is seen to be sharp. For instance, $W^{1,2}\left(S^{1} \times \Lambda, S^{1}\right)$, where Λ is any open connected set, is not path connnected.

In the case $s p \geq 2$, we have:
Theorem 2 Assume that $0<s<1+1 / p, 2 \leq s p<\operatorname{dim} M$ and that there exists $k \in \mathbb{N}$ with $k \leq[s p]-1$ such that $\pi_{i}(M)=0$ for $1 \leq i \leq k, \pi_{i}(N)=0$ for $k+1 \leq i \leq[s p]-1$. Then the space $W^{s, p}(M, N)$ is path-connected.

The case $s=1$ of the above theorem is Corollary 1.1 in [9].
More generally, it is natural to compare the connected components of $W^{s, p}(M, N)$ to those of $C^{0}(M, N)$. In certain cases, this is indeed possible:

Theorem 3 a) If $s p \geq \operatorname{dim} M$ then $W^{s, p}(M, N)$ is path connected if and only if $C^{0}(M, N)$ is path connected.
b) The $W^{s, p}$ homotopy classes are in bijection with the C^{0} homotopy classes when $0<s<1+1 / p, 2 \leq s p<\operatorname{dim} M$ and $\pi_{i}(N)=0$ for $[s p] \leq i \leq \operatorname{dim} M$.

The statement a) is well-known and can be proved as in the appendix of [4]. Part b) for $s=1$ was obtained in [9], Corollary 5.2.

When $s=1$, Theorem 2 and Theorem 3 are particular cases of a more general result in [9] which asserts that there is a one-to-one map from the connected components of $W^{1, p}(M, N)$ into the connected components of $C^{0}\left(M^{[p]-1}, N\right)$. Here, $M^{[p]-1}$ denotes a $[p]-1$ skeleton of M. This may be reexpressed as follows: two maps u and v in $W^{1, p}(M, N)$ are $W^{1, p}$ homotopic if and only if u is $[p]-1$ homotopic to v. For an accurate definition of $[p]-1$ homotopy, one should refer to [9] or to section 6. Roughly speaking, this means that for a generic $[p]-1$ skeleton $M^{[p]-1}$ of $M,\left.u\right|_{M^{[p]-1}}$ and $\left.v\right|_{M^{[p]-1}}$ are homotopic. This makes sense because for a generic $[p]-1$ skeleton, u and
v are both $W^{1, p}$ on these skeletons and hence continuous, by the Sobolev embedding. There is a corresponding version of this result in which $W^{1, p}$ is replaced by $W^{s, p}$:

Theorem 4 Assume that $0<s<1+1 / p, 2 \leq s p<\operatorname{dim} M$. Let $u, v \in$ $W^{s, p}(M, N)$. Then u and v are $W^{s, p}$ connected if and only if u is $[s p]-1$ homotopic to v.

The techniques in [9] can be adapted in order to prove not only Theorem 4 but also the more general result where the condition $2 \leq s p<\operatorname{dim} M$ is replaced by: $0<s p<\operatorname{dim} M$, and $s p \neq 1$. In turn, this last result implies Theorem 1 when $s p<2, s p \neq 1$. However, the case $s p=1$ seems delicate to handle via these techniques. This is the reason why we give a proof of Theorem 1 based on the tools of [4]. Besides its independent interest, it turns out that the technical core of the proof of Theorem 1 is also the technical core of the proof of Theorem 4. Furthermore, the techniques in [4] are more likely to allow some extensions to the case $s>1+1 / p$.

Another strategy to show that two elements in $W^{s, p}(M, N)$ are $W^{s, p}$ connected is based on the property $P(u)$ defined for any $u \in W^{s, p}(M, N)$ by:
$(P(u)) \quad$ The map u is $W^{s, p}$ homotopic to some $\tilde{u} \in C^{\infty}(M, N)$.
We proceed to explain the interest of this property. Assume that $P(u)$ and $P(v)$ are true, where $u, v \in W^{s, p}(M, N)$, and that \tilde{u} and \tilde{v} are C^{0} homotopic. So, there exists $F \in C^{\infty}([0,1] \times M, N)$ such that $F(0, \cdot)=\tilde{u}$ and $F(1, \cdot)=\tilde{v}$, which implies that \tilde{u} and \tilde{v} are $W^{s, p}$ homotopic. Finally, u and v are $W^{s, p}$ homotopic. This shows the importance of the property P.

Theorem 5 Each $u \in W^{s, p}(M, N)$ satisfies $P(u)$ when
a) $s p \geq \operatorname{dim} M$,
b) $0<s p<2,0<s<1+1 / p$,
c) $\operatorname{dim} M=2,0<s<1+1 / p$,
d) $M=S^{m}, 0<s<1+1 / p$,
e) $0<s<1+1 / p, 2 \leq s p$ and M satisfies the $[s p]-1$ extension property with respect to N,
f) $0<s<1+1 / p, 2 \leq s p<\operatorname{dim} M$ and $\pi_{i}(N)=0$ for $[s p] \leq i \leq \operatorname{dim} M-1$.

The case $s p \geq \operatorname{dim} M$ can be handled as in the appendix of [4]. If $0<s p<2$, then Theorem 1 shows that u can be connected to a constant map. The case $\operatorname{dim} M=2$ is a consequence of a) and b). When $M=S^{m}$, we can even show that $W^{s, p}\left(S^{m}, N\right)$ is path-connected if $s p<m$ (see section 5). The statement f) follows from e) (see [9], Remark 5.1). For the meaning of the " $[s p]-1$ extension property with respect to N ", one should refer to [9] or to section 9. Roughly speaking, this means that for any smooth triangulation of M, and any continuous map $f: M^{[s p]} \rightarrow N$, we may find a continuous extension of $\left.f\right|_{M^{[s p]-1}}$ to the whole M. Unfortunately, it is not the case that
for any M, N, s, p, each $u \in W^{s, p}(M, N)$ satisfies $P(u)$, (see [9], Corollary 1.5.).

Remark 1 In the above results, we have often assumed that $s<1+1 / p, 1<$ $s p$. This is closely linked to the strategy of our proofs because we glue several maps in $W^{s, p}(M, N)$ together. Let $u_{1} \in W^{s, p}\left(\Omega_{1}\right)$ and $u_{2} \in W^{s, p}\left(\Omega_{2}\right)$, where Ω_{1}, Ω_{2} are two Lipschitz open subsets of \mathbb{R}^{d} such that

$$
\Gamma:=\bar{\Omega}_{1} \cap \bar{\Omega}_{2} \subset \partial \Omega_{1} \cap \partial \Omega_{2},
$$

and $\Omega:=\Omega_{1} \cup \Omega_{2} \cup \Gamma$ is a Lipschitz open set. Since $1<s p$, we can define the traces of u_{1}, u_{2}. Assume that $\left.\operatorname{tr} u_{1}\right|_{\Gamma}=\left.\operatorname{tr} u_{2}\right|_{\Gamma}$. Then, the map u defined by

$$
u(x)= \begin{cases}u_{1}(x) & \text { when } x \in \Omega_{1}, \\ u_{2}(x) & \text { when } x \in \Omega_{2}\end{cases}
$$

belongs to $W^{s, p}(\Omega)$ when $s<1+1 / p$. In contrast, nothing can be said when $s \geq 1+1 / p$.

Note that when $s p=1$, we cannot glue maps in $W^{s, p}$ any more, since traces are not defined. However, there is a way to overcome this difficulty (see [4], Appendix B and also section 2.2). Finally, when sp <1, maps can be glued without any trace compatibility conditions.

Remark 2 To simplify the presentation, we have assumed that M is boundaryless. Nevertheless, all the results above can be generalized to the case when M has a boundary (see [4], Remark 2.1 and [8], section 4).

Remark 3 Lemma 21 below and Theorem 4 show that there exists $\eta>0$ such that for any $f, g \in W^{s, p}(M, N)$, if $\|f-g\|_{W^{s, p}(M, N)}<\eta$, then f and g are $W^{s, p}$ homotopic. Hence connected components coincide with pathconnected components.

The following section is the technical core of the article: it enumerates some variations of the technique 'filling a hole', a phrase coined by Brezis and $\mathrm{Li}[4]$. Sections 3 and 4 present some consequences of this technique which allow us to generalize in section 5 the results of [4] ; that is, Theorem 1 and Theorem 5 d). In section 6 and section 7 , we recall and adapt some results of [9] which prepare the proof of Theorem 4 in section 8. In the final section, the corollaries of this theorem, namely Theorem 2, Theorem 3 b) and Theorem 5 e) are proved.

We now introduce some notations: In \mathbb{R}^{d}, B^{d} (or B when no confusion may arise) denotes the unit ball centered at $0, S^{d}$ (or S) its boundary, $B_{r}^{d}(x):=r B+x, S_{r}^{d}(x):=r S+x$ and $B_{r}=r B, S_{r}=r S$. We will use the convention that all the constants are denoted by the same letter C.

When X is a topological space and $u, v \in X$, we write $u \sim_{X} v$ to signify the fact that there exists $H \in C^{0}([0,1], X)$ such that $H(0)=u$ and $H(1)=$
v. We abbreviate this notation writing $u \sim_{s, p} v$ when u and v are $W^{s, p}$ homotopic; similarly, $u \sim v$ means that u and v are C^{0} homotopic.

Whenever $s \in(1,1+1 / p)$, we denote $\sigma:=s-1$.
For any k dimensional Lipschitz manifold D embedded in \mathbb{R}^{n} and any measurable function f, we denote

$$
[f]_{W^{\sigma, p}(D)}:=\left(\int_{D} d \mathcal{H}^{k}(x) \int_{D} d \mathcal{H}^{k}(y) \frac{|f(x)-f(y)|^{p}}{|x-y|^{n+\sigma p}}\right)^{1 / p}
$$

The set $W^{s, p}(M)$ denotes either $W^{s, p}(M, \mathbb{R})$ or $W^{s, p}\left(M, \mathbb{R}^{l}\right)$. This will be clear from the context.

2 Filling a hole

The technique 'Filling a hole' appears in [4], Proposition 1.3. We will first generalize it to our context. This will be useful in adapting other tools from [4], such as 'Bridging a map' (see Section 3) and 'Opening a map' (see Section 4). This will allow us to avoid analytical proofs devised in [4] which elude us in the context of fractional Sobolev spaces.

In this section, the underlying Euclidean space is \mathbb{R}^{n}.

2.1 The main result

In this subsection, we prove the following generalization of Lemma D. 1 in [5]:

Lemma 1 Let $0<s<2, s p<n$ and $u \in W^{s, p}(S)$. Then, the map $\tilde{u}(x):=$ $u(x /|x|)$ belongs to $W^{s, p}(B)$ and we have

$$
\begin{equation*}
\|\tilde{u}\|_{W^{s, p}(B)} \leq C\|u\|_{W^{s, p}(S)} \tag{1}
\end{equation*}
$$

Proof: We first prove that $\tilde{u} \in L^{p}(S)$:

$$
\int_{B}|\tilde{u}(x)|^{p} d x=\int_{S}|u(\theta)|^{p} d \theta \int_{0}^{1} r^{n-1} d r=1 / n\|u\|_{L^{p}(S)}^{p}
$$

We consider three cases: $s=1, s>1$ and $s<1$. When $s=1$, we have:

$$
\int_{B}|D \tilde{u}(x)|^{p} d x \leq C \int_{S}|D u(\theta)|^{p} d \theta \int_{0}^{1} r^{n-1-p} d r \leq C\|D u\|_{L^{p}(S)}^{p}
$$

since $p<n$.
When $s \in(1,2)$, we claim that

$$
I:=\int_{B} d x \int_{B} d y \frac{|D \tilde{u}(x)-D \tilde{u}(y)|^{p}}{|x-y|^{n+\sigma p}}<+\infty
$$

We denote $f(x):=x /|x|$. We have

$$
D f(x)=\frac{1}{|x|} I d-\frac{x \otimes x}{|x|^{3}} \quad, \text { where } x \otimes x=\left(x_{i} x_{j}\right)_{(i, j) \in[|1, n|]^{2}}
$$

so that $|D f(x)| \leq C /|x|$ and

$$
\begin{equation*}
|D f(x)-D f(y)| \leq C \frac{|x-y|}{|x||y|} \tag{2}
\end{equation*}
$$

(Indeed, note that $D f(\lambda x)=x / \lambda$ and $D f(R x)=R(D f(x)) R^{-1}$ for any $\lambda>0, R \in O(n)$. Hence, we can assume that $x=(1,0, . .0)$ and $y=$ $(r \cos \theta, r \sin \theta, 0, . ., 0)$. Then, (2) can be easily shown).

Writing

$$
\begin{align*}
\mid D \tilde{u}(x)- & D \tilde{u}(y)|\leq|D u(x /|x|)-D u(y /|y|)|| D f(x) \mid \\
& +|D u(y /|y|)||D f(x)-D f(y)| \tag{3}
\end{align*}
$$

we find $I \leq C\left(I_{1}+I_{2}\right)$ with

$$
\begin{gathered}
I_{1}:=\int_{S} d \theta \int_{S} d \tau|D u(\theta)-D u(\tau)|^{p} \int_{r=0}^{1} d r \int_{t=0}^{1} \frac{r^{n-1-p} t^{n-1}}{|r \theta-t \tau|^{n+\sigma p}} d t \\
I_{2}:=\int_{B} d x \int_{B} d y|D u(y /|y|)|^{p} \frac{|x-y|^{p}}{|x|^{p}|y|^{p}|x-y|^{n+\sigma p}} .
\end{gathered}
$$

We claim that whenever $\theta \neq \tau$,

$$
\begin{equation*}
J:=\int_{r=0}^{1} d r \int_{t=0}^{1} \frac{r^{n-1-p} t^{n-1}}{|r \theta-t \tau|^{n+\sigma p}} d t \leq \frac{C}{|\theta-\tau|^{n-1+\sigma p}} \tag{4}
\end{equation*}
$$

Indeed, after making the change of variable $t \rightarrow \lambda:=t / r$, we get

$$
\begin{gathered}
J \leq \int_{r=0}^{1} r^{n-1-s p} d r \int_{\lambda=0}^{\infty} \frac{\lambda^{n-1}}{|\theta-\lambda \tau|^{n+\sigma p}} d \lambda \\
\leq C \int_{\lambda=0}^{\infty} \frac{\lambda^{n-1}}{|\theta-\lambda \tau|^{n+\sigma p}} d \lambda \quad(\text { since } s p<n) \\
\leq C\left(\int_{\lambda=0}^{2} \frac{d \lambda}{|\theta-\lambda \tau|^{n+\sigma p}}+\int_{2}^{\infty} \frac{\lambda^{n-1}}{\lambda^{n+\sigma p}}\right) \leq C\left(\int_{\lambda=0}^{2} \frac{d \lambda}{|\theta-\lambda \tau|^{n+\sigma p}}+1\right)
\end{gathered}
$$

Now, consider the 2 plane generated by θ and τ. In this plane, θ and τ belong to S^{1}, so that they can be written $\theta=e^{i \alpha}, \tau=e^{i \beta}, \alpha, \beta \in(-\pi, \pi]$. Hence, with $\gamma:=\beta-\alpha$,

$$
|\theta-\lambda \tau|^{2}=\left|\lambda-e^{i \gamma}\right|^{2}=(\lambda-\cos \gamma)^{2}+\sin ^{2} \gamma
$$

The change of variable $\mu:=(\lambda-\cos \gamma) / \sin \gamma,($ when $\sin \gamma \neq 0)$ yields

$$
\int_{\lambda=0}^{2} \frac{d \lambda}{|\theta-\lambda \tau|^{n+\sigma p}} \leq \frac{1}{(\sin \gamma)^{n-1+\sigma p}} \int_{\mathbb{R}} \frac{d \mu}{\left(1+\mu^{2}\right)^{(n+\sigma p) / 2}} \leq \frac{C}{(\sin \gamma)^{n-1+\sigma p}}
$$

Moreover,

$$
|\theta-\tau|^{2}=2(1-\cos \gamma)=4 \sin ^{2}(\gamma / 2)
$$

and the $\operatorname{map} \gamma \rightarrow \frac{\sin (\gamma / 2)}{\sin \gamma}$ is bounded near 0 , say for $|\gamma| \leq \pi / 4$. This shows that

$$
\int_{\lambda=0}^{2} \frac{d \lambda}{|\theta-\lambda \tau|^{n+\sigma p}} \leq \frac{C}{|\theta-\tau|^{n-1+\sigma p}}
$$

when $|\beta-\alpha| \leq \pi / 4$. On the other hand, this inequality is trivially true when $|\beta-\alpha| \geq \pi / 4$ (by increasing C if necessary). This proves (4) and implies that

$$
I_{1} \leq C \int_{S} d \theta \int_{S} d \tau \frac{|D u(\theta)-D u(\tau)|^{p}}{|\theta-\tau|^{n-1+\sigma p}}=C[D u]_{W^{\sigma, p}(S)}^{p}
$$

We proceed to estimate I_{2}. We have

$$
\begin{gathered}
I_{2} \leq \int_{B}|D u(y /|y|)|^{p} d y \int_{\mathbb{R}^{n}} \frac{d x}{|x|^{p}|y|^{p}|y-x|^{n+(\sigma-1) p}} \\
=\int_{B}|D u(y /|y|)|^{p} K(y) d y
\end{gathered}
$$

Clearly, for any $y \neq 0, K(y)<\infty($ since $p<n), K(y)$ depends only on $|y|$ and $K(\lambda y)=K(y) / \lambda^{s p}$. Thus, $K(y)=C /|y|^{s p}$. This shows that $I_{2} \leq$ $C\|D u\|_{L^{p}(S)}^{p}$. Moreover, we have established (1) when $s \in(1,2)$.

When $s \in(0,1)$, the calculation is easier, and is very similar to the treatment of I_{1}. The lemma is proved.

The same proof yields:
Corollary 1 Let $0<s<2, s p<n$ and $u \in W^{s, p}(S)$. Then, $\tilde{u}(x):=$ $u(x /|x|)$ belongs to $W_{\text {loc }}^{s, p}\left(\mathbb{R}^{n}\right)$.

2.2 Filling a hole continuously

Consider a smooth bounded open set Ω in \mathbb{R}^{n} and denote by Γ its boundary. There exists $\epsilon>0$ such that the ϵ tubular neighborhood of Γ :

$$
U_{\epsilon}:=\{x \in \Omega: \operatorname{dist}(x, \Gamma)<\epsilon\}
$$

can be parametrized by:

$$
\Phi:\left(x^{\prime}, r\right) \in \Gamma \times(0, \epsilon) \mapsto x^{\prime}+r \nu\left(x^{\prime}\right)
$$

where $\nu\left(x^{\prime}\right)$ denotes the inner unit normal to Γ at x^{\prime}. We also introduce the nearest point projection $\pi: U_{\epsilon} \rightarrow \Gamma$. Hence, for any $x \in U_{\epsilon}$, we have $\Phi^{-1}(x)=(\pi(x)$, dist $(x, \Gamma))$. Finally, we denote $\Gamma_{r}:=\Phi(\Gamma \times\{r\})$.

Note that for any measurable function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$, defined almost everywhere, it makes sense to define its restriction $\left.u\right|_{\Gamma_{r}}$ to Γ_{r}, for almost every $r \in(0, \epsilon)$. When $u \in W^{s, p}\left(\mathbb{R}^{n}\right)$ with $s p>1$, this restriction is equal to the trace of $u:\left.\operatorname{tr} u\right|_{\Gamma_{r}}$ for a.e. r. In the special case $s p=1$, we need a substitute for the trace theory: the good restrictions, introduced in [5]. We proceed to present the definition of good restrictions for a map $u \in W^{s, p}(\Omega)$, when $s \in(0,1), s p=1$. For a proof of the statements below, see [5].

For each $r \in(0, \epsilon)$, there is at most one function v defined on Γ_{r} such that the map

$$
w_{1}^{r}(x)=\left\{\begin{array}{l}
u(x) \text { in } \Omega \backslash U_{r}, \\
v(\Phi(\pi(x), r)) \text { in } \Omega \cap U_{r}
\end{array}\right.
$$

or equivalently, the map

$$
w_{2}^{r}(x)=\left\{\begin{array}{l}
u(x)-v(\Phi(\pi(x), r)) \text { in } \Omega \backslash U_{r}, \\
0 \text { in } \Omega \cap U_{r}
\end{array}\right.
$$

belongs to $W^{s, p}(\Omega)$. Moreover, for a.e. $r \in(0, \epsilon)$, the function $v:=\left.u\right|_{\Gamma_{r}}$ has the property that $w_{1}^{r}, w_{2}^{r} \in W^{s, p}(\Omega)$. In fact, a necessary and sufficient condition for this property to hold is that $v \in W^{s, p}\left(\Gamma_{r}\right)$ and

$$
\int_{\Gamma} d \mathcal{H}^{n-1}\left(x^{\prime}\right) \int_{r}^{\epsilon} d t \frac{\mid v\left(\Phi\left(x^{\prime}, r\right)\right)-u\left(\Phi\left(x^{\prime}, t\right)\right)^{p}}{(t-r)}<\infty .
$$

For these values of r, we say that v is the inner good restriction of u to Γ_{r}. Similarly, we may define an outer good restriction. If v is both an inner and an outer good restriction, we call it a good restriction.

In particular, $\left.u\right|_{\Gamma_{r}}$ is a good restriction if and only if

$$
\text { i) }\left.u\right|_{\Gamma_{r}} \in W^{s, p}\left(\Gamma_{r}\right) \text {, }
$$

ii) $\int_{\Gamma} d \mathcal{H}^{n-1}\left(x^{\prime}\right) \int_{0}^{\epsilon} d t \frac{\left|u\left(\Phi\left(x^{\prime}, r\right)\right)-u\left(\Phi\left(x^{\prime}, t\right)\right)\right|^{p}}{|t-r|}<\infty$.

Assume that Γ can be written as a finite union of subsets Γ^{i} which are open in Γ and such that i), ii) are true for each Γ^{i} instead of Γ. Then i), ii) are true for Γ. This shows that 'being a good restriction' is a local condition.

We will often use the following well-known consequence of the Fubini's Theorem:

Lemma 2 Let $s \in(0,2)$ and $u \in W^{s, p}(\Omega)$. Then for a.e. $r \in(0, \epsilon)$, i) when $s p>1$, the trace tru $\left.\right|_{\Gamma_{r}}$ coincides with $\left.u\right|_{\Gamma_{r}}$ and belongs to $W^{s, p}\left(\Gamma_{r}\right)$, ii) when $s p=1,\left.u\right|_{\Gamma_{r}}$ is a good restriction of u to Γ_{r}, (in particular, $\left.u\right|_{\Gamma_{r}} \in$ $\left.W^{s, p}\left(\Gamma_{r}\right)\right)$,
iii) when $s p<1$, the restriction of u to Γ_{r} belongs to $W^{s, p}\left(\Gamma_{r}\right)$.

Such an r will be called 'good'. We will also say that Γ_{r} is 'good for u '.
In the following lemma, the set Ω is B_{2}, so that Γ_{r} is the sphere of radius $2-r$.

Lemma 3 Let $0<s<1+1 / p, 0<s p<n$. Let $u \in W^{s, p}\left(B_{2}, N\right)$ and assume that S is good for u. For any $t \in[0,1)$, let

$$
u^{t}(x)=\left\{\begin{array}{l}
u(x /(1-t)) \text { when }|x| \leq 1-t, \\
u(x /|x|) \text { when } 1-t \leq|x| \leq 1, \\
u(x) \text { when } 1 \leq|x| \leq 2
\end{array}\right.
$$

and

$$
u^{1}(x)=\left\{\begin{array}{l}
u(x /|x|) \text { when }|x| \leq 1 \\
u(x) \text { when } 1 \leq|x| \leq 2
\end{array}\right.
$$

Then,

$$
t \in[0,1] \rightarrow u^{t} \in W^{s, p}\left(B_{2}, N\right)
$$

is continuous and $u^{t}(x)=u(x)$ for any $t \in[0,1]$ and any $1 \leq|x| \leq 2$.
Proof: Consider the maps

$$
v^{t}(x)=\left\{\begin{array}{l}
u(x /(1-t)) \text { when }|x| \leq 1-t, \\
u(x /|x|) \text { when } 1-t \leq|x| \leq 2
\end{array}\right.
$$

and $v^{1}(x)=u(x /|x|)$. To prove Lemma 3, it is enough to show that $v^{t} \in$ $C^{0}\left([0,1], W^{s, p}\left(B_{2}, N\right)\right)$ since $u^{t}=v^{t}+z$ where z is defined by:

$$
z(x)=\left\{\begin{array}{l}
0 \text { when }|x| \leq 1, \\
u(x)-u(x /|x|) \text { when } 1 \leq|x| \leq 2 .
\end{array}\right.
$$

(The map z belongs to $W^{s, p}$ since S is good for u.)
Consider first the case $s p>1$. Then, Lemma 3 is essentially Lemma D. 2 in [5]: condition $s<1$ is replaced by $s<1+1 / p$ in our case.

Let

$$
\tilde{v}(x):=\left\{\begin{array}{l}
u(x) \text { when }|x| \leq 1, \\
u(x /|x|) \text { when } 1 \leq|x| .
\end{array}\right.
$$

Then \tilde{v} belongs to $W_{\text {loc }}^{s, p}\left(\mathbb{R}^{n}\right)$. We have $v^{t}(x)=\tilde{v}(x /(1-t))$. This shows that $t \in[0,1) \mapsto v^{t} \in W^{s, p}\left(B_{2}, N\right)$ is continuous. Thus, there remains to show that v^{t} converges to v^{1} when $t \rightarrow 1^{-}$. By Corollary $1, v^{1} \in W_{\text {loc }}^{s, p}\left(\mathbb{R}^{n}\right)$. Let $g:=\tilde{v}-v^{1}$. Then, $g \in W^{s, p}\left(\mathbb{R}^{n}\right)$ because $g(x)=0$ when $|x| \geq 1$. Moreover, $v^{t}(x)-v^{1}(x)=g(x /(1-t))$. We easily have

$$
[g(\cdot /(1-t))]_{W^{s, p}\left(\mathbb{R}^{n}\right)}=(1-t)^{(n-s p) / p}[g]_{W^{s, p}\left(\mathbb{R}^{n}\right)} .
$$

This shows the continuity at $t=1$.
It remains to consider the case $s p \leq 1$. Though we cannot define the trace anymore, the fact that $r=1$ is good implies that $\tilde{v} \in W_{\operatorname{loc}}^{s, p}\left(\mathbb{R}^{n}\right), g \in$ $W^{s, p}\left(\mathbb{R}^{n}\right)$. As above, we find that $v^{t} \rightarrow v^{1}$ in $W^{s, p}\left(B_{2}\right)$.

This completes the proof of the lemma.

2.3 Filling an annulus continuously

As a corollary of Lemma 3, we get the following:
Lemma 4 Let $s \in(0,1+1 / p)$ and $u \in W^{s, p}\left(B_{2}\right)$ such that S is good for u. Then, the map u^{t} defined by

$$
u^{t}(x)=\left\{\begin{array}{l}
u(x /(1-t / 2)) \text { when }|x| \leq 1-t / 2, \\
u(x /|x|) \text { when } 1-t / 2 \leq|x| \leq 1, \\
u(x) \text { when } 1 \leq|x| \leq 2
\end{array}\right.
$$

belongs to $C^{0}\left([0,1], W^{s, p}\left(B_{2}\right)\right)$.
Lemma 4 can be immediately generalized to the case when B_{2} is replaced by a smooth bounded open convex set Ω containing the origin, with the Euclidean norm replaced by the norm

$$
j(x):=\inf \{t>0: x / t \in \Omega\} .
$$

2.4 Filling a cylinder

In this subsection, we pick some $2 \leq k \leq n-1$ and we decompose $\mathbb{R}^{n}=$ $\mathbb{R}^{k} \times \mathbb{R}^{n-k}$. We also denote $x \in \mathbb{R}^{n}$ as $\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{k} \times \mathbb{R}^{n-k}$.

Let T be the open set in \mathbb{R}^{n} defined by:

$$
T:=\left\{\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{k} \times \mathbb{R}^{n-k}:\left|x^{\prime}\right|<1\right\}
$$

and $2 T:=\{2 x: x \in T\}$. Then we have:
Lemma 5 Let $0<s<2, s p<k$ and $u \in W^{s, p}(\partial T)$. Then, the map \tilde{u} defined by:

$$
\tilde{u}\left(x^{\prime}, x^{\prime \prime}\right):=u\left(x^{\prime} /\left|x^{\prime}\right|, x^{\prime \prime}\right)
$$

belongs to $W^{s, p}(T)$.
Proof: An easy computation shows that

$$
\|\tilde{u}\|_{W^{1, p}(T)} \leq C\|u\|_{W^{1, p}(\partial T)} ;
$$

this settles the case $s=1$. When $s \in(1,2)$, it remains to show that

$$
I:=\int_{T} d x \int_{T} d y \frac{|D \tilde{u}(x)-D \tilde{u}(y)|^{p}}{|x-y|^{n+\sigma p}}<+\infty .
$$

We have $I \leq C\left(I^{\prime}+I^{\prime \prime}\right)$, where

$$
I^{\prime}:=\int_{\mathbb{R}^{n-k}} d x^{\prime \prime} \int_{x^{\prime} \in \mathbb{R}^{k},\left|x^{\prime}\right|<1} d x^{\prime} \int_{y^{\prime} \in \mathbb{R}^{k},\left|y^{\prime}\right|<1} d y^{\prime} \frac{\left|D \tilde{u}\left(x^{\prime}, x^{\prime \prime}\right)-D \tilde{u}\left(y^{\prime}, x^{\prime \prime}\right)\right|^{p}}{\left|x^{\prime}-y^{\prime}\right|^{k+\sigma p}}
$$

$$
I^{\prime \prime}:=\int_{\mathbb{R}^{k},\left|y^{\prime}\right|<1} d y^{\prime} \int_{x^{\prime \prime} \in \mathbb{R}^{n-k}} d x^{\prime \prime} \int_{y^{\prime \prime} \in \mathbb{R}^{n-k}} d y^{\prime \prime} \frac{\left|D \tilde{u}\left(y^{\prime}, x^{\prime \prime}\right)-D \tilde{u}\left(y^{\prime}, y^{\prime \prime}\right)\right|^{p}}{\left|x^{\prime \prime}-y^{\prime \prime}\right|^{n-k+\sigma p}} .
$$

This is a Besov's type inequality (see [1] or [2]).
We first prove that $I^{\prime \prime} \leq C\|D u\|_{W^{\sigma, p}(\partial T)}^{p}$. Using the fact that $p<n$, we have

$$
\begin{gathered}
I^{\prime \prime} \leq \int_{\left|y^{\prime}\right|<1} d y^{\prime} \frac{1}{\left|y^{\prime}\right|^{p}} \int_{\mathbb{R}^{n-k}} d x^{\prime \prime} \int_{\mathbb{R}^{n-k}} d y^{\prime \prime} \frac{\left|D u\left(y^{\prime} /\left|y^{\prime}\right|, x^{\prime \prime}\right)-D u\left(y^{\prime} /\left|y^{\prime}\right|, y^{\prime \prime}\right)\right|^{p}}{\left|x^{\prime \prime}-y^{\prime \prime}\right|^{n-k+\sigma p}} \\
\leq C \int_{S^{k-1}} d \theta \int_{\mathbb{R}^{n-k}} d x^{\prime \prime} \int_{\mathbb{R}^{n-k}} d y^{\prime \prime} \frac{\left|D u\left(\theta, x^{\prime \prime}\right)-D u\left(\theta, y^{\prime \prime}\right)\right|^{p}}{\left|x^{\prime \prime}-y^{\prime \prime}\right|^{n-k+\sigma p}}
\end{gathered}
$$

which implies that $I^{\prime \prime} \leq C\|u\|_{W^{s, p}(\partial T)}^{p}$.
We denote $f\left(x^{\prime}, x^{\prime \prime}\right):=\left(x^{\prime} /\left|x^{\prime}\right|, x^{\prime \prime}\right)$. We proceed to estimate I^{\prime} by writing $I^{\prime} \leq C\left(I_{1}^{\prime}+I_{2}^{\prime}\right)$ with

$$
\begin{gathered}
I_{1}^{\prime}:=\int_{\mathbb{R}^{n-k}} d x^{\prime \prime} \int_{\left|x^{\prime}\right|<1} d x^{\prime} \int_{\left|y^{\prime}\right|<1} \frac{\left|D u\left(x^{\prime} /\left|x^{\prime}\right|, x^{\prime \prime}\right)-D u\left(y^{\prime} /\left|y^{\prime}\right|, x^{\prime \prime}\right)\right|^{p}}{\left|x^{\prime}\right|^{p}\left|x^{\prime}-y^{\prime}\right|^{k+\sigma p}} d y^{\prime} \\
I_{2}^{\prime}:=\int_{\mathbb{R}^{n-k}} d x^{\prime \prime} \int_{\left|x^{\prime}\right|,\left|y^{\prime}\right|<1} d x^{\prime} d y^{\prime} \frac{\left|D u\left(y^{\prime} /\left|y^{\prime}\right|, x^{\prime \prime}\right)\right|^{p}\left|D f\left(x^{\prime}, x^{\prime \prime}\right)-D f\left(y^{\prime}, x^{\prime \prime}\right)\right|^{p}}{\left|x^{\prime}-y^{\prime}\right|^{k+\sigma p}}
\end{gathered}
$$

this follows from (3).
We can prove that $I_{2}^{\prime} \leq C\|D u\|_{L^{p}(\partial T)}^{p}$ exactly as we estimated I_{2} in the proof of Lemma 1.

On the other hand, we find that

$$
\begin{gathered}
I_{1}^{\prime}=\int_{\mathbb{R}^{n-k}} d x^{\prime \prime} \int_{\left|x^{\prime}\right|<1} d x^{\prime} \int_{\left|y^{\prime}\right|<1} d y^{\prime} \frac{\left|D u\left(x^{\prime} /\left|x^{\prime}\right|, x^{\prime \prime}\right)-D u\left(y^{\prime} /\left|y^{\prime}\right|, x^{\prime \prime}\right)\right|^{p}}{\left|x^{\prime}\right|^{p}\left|x^{\prime}-y^{\prime}\right|^{k+\sigma p}} \\
=\int_{\mathbb{R}^{n-k}} d x^{\prime \prime} \int_{S^{k-1}} d \theta \int_{S^{k-1}} d \tau\left|D u\left(\theta, x^{\prime \prime}\right)-D u\left(\tau, x^{\prime \prime}\right)\right|^{p} \int_{0}^{1} \int_{0}^{1} \frac{r^{n-1} t^{n-1}}{r^{p}|r \theta-t \tau|^{k+\sigma p}} \\
\leq C \int_{\mathbb{R}^{n-k}} d x^{\prime \prime} \int_{S^{k-1}} d \theta \int_{S^{k-1}} d \tau \frac{\left|D u\left(\theta, x^{\prime \prime}\right)-D u\left(\tau, x^{\prime \prime}\right)\right|^{p}}{|\theta-\tau|^{k-1+\sigma p}}
\end{gathered}
$$

(here, we use $\int_{r=0}^{1} d r \int_{t=0}^{1} d t \frac{r^{n-1-p} t^{n-1}}{|r \theta-t \tau|^{k+\sigma p}} \leq \frac{C}{|\theta-\tau|^{k-1+\sigma p}}$, see the proof of (4)).

From the last inequality, we easily obtain $I_{1}^{\prime} \leq C\|u\|_{W^{s, p}(\partial T)}^{p}$, which gives the required result when $s \in(1,2)$. When $s \in(0,1)$, the calculation is easier and we omit it. Lemma 5 is proved.

Lemma 5 implies the following (exactly as Lemma 1 implied Lemma 3):

Lemma 6 Let $0<s<1+1 / p, s p<k$ and $u \in W^{s, p}(2 T)$ such that ∂T is good for u. Then the map u^{t} defined by

$$
u^{t}(x):=\left\{\begin{array}{l}
u\left(x^{\prime} /(1-t), x^{\prime \prime}\right) \text { when }\left|x^{\prime}\right| \leq 1-t \\
u\left(x^{\prime} /\left|x^{\prime}\right|, x^{\prime \prime}\right) \text { when } 1-t \leq\left|x^{\prime}\right| \leq 1 \\
u\left(x^{\prime}, x^{\prime \prime}\right) \text { when } 1 \leq\left|x^{\prime}\right| \leq 2
\end{array}\right.
$$

belongs to $C^{0}\left([0,1], W^{s, p}(2 T)\right)$.

3 'Bridging' of maps

3.1 The case $n=2$

Consider the square

$$
\Omega:=\left\{x=\left(x_{1}, x_{2}\right):\left|x_{1}\right|<20, \quad\left|x_{2}\right|<20\right\}
$$

and let $u \in W^{s, p}(\Omega, N)$.
We assume that u is constant, say Y_{0}, in the region $Q^{+} \cup Q^{-}$where

$$
Q^{+}=\left\{x=\left(x_{1}, x_{2}\right):\left|x_{1}\right|<20, \quad 1<x_{2}<20\right\}
$$

and

$$
Q^{-}=\left\{x=\left(x_{1}, x_{2}\right):\left|x_{1}\right|<20, \quad-20<x_{2}<-1\right\} .
$$

The following lemma corresponds to [4], Proposition 1.2.
Lemma 7 If $0<s<1+1 / p, s p<2$, then there exists $u^{t} \in C^{0}([0,1]$, $\left.W^{s, p}(\Omega, N)\right)$ such that

$$
\begin{gathered}
u^{0}=u \\
u^{t}(x)=u(x) \forall t \in[0,1], \quad \forall x \notin(-5,5) \times(-1,1), \\
u^{1}(x)=Y_{0} \forall x \in(1,3 / 2) \times(-20,20)
\end{gathered}
$$

Proof: First, choose two circles C_{1}, C_{2} with the same radius larger than $2 / \sqrt{3}$, centered on the line $\left\{x=\left(x_{1}, x_{2}\right): x_{2}=0\right\}$ such that the center of C_{1} belongs to C_{2}. This implies that C_{1} and C_{2} intersects at two points which belongs to Q^{+}and Q^{-}. Moreover, we require that C_{1} and C_{2} are good for u. Without loss of generality, we may assume that C_{1} is centered at $(0,0)$ and that C_{2} is centered at $(2,0)$, their common radius being 2 . Now, by filling the hole inside C_{1} (see Lemma 3), we can link u to some u_{1} which is equal to u outside C_{1} and which is equal to Y_{0} on the set $\left\{\left(x_{1}, x_{2}\right):\left|x_{2}\right| \geq\left|x_{1}\right| / \sqrt{3}\right\}$.

We claim that C_{2} is still good for u_{1}. In fact, in the subset of C_{2} where u has been changed, u_{1} is equal to Y_{0} and when $s p>1$, the trace of u on $C_{2} \cap\left\{x: x_{1} \leq 2\right\}$ is equal to Y_{0}. This settles the cases $s p>1$. The case $s p<1$ is obvious. When $s p=1$, it remains to prove that the constant map equal to Y_{0} is a good restriction for u to $C_{2} \cap\left\{x: x_{1} \leq 2\right\}$ (since the concept
of good restrictions is local). But this is a mere consequence of Lemma 8 below. The claim is proved.

Finally, by filling the hole inside C_{2}, we can connect u_{1} to some u_{2} which is equal to u_{1} outside C_{2} while inside C_{2}, u_{2} is equal to Y_{0} except on the domain $\left\{\left(x_{1}, x_{2}\right): x_{1}>2+\sqrt{3}\left|x_{2}\right|\right\}$. In particular, u_{2} is equal to u on $\left\{\left(x_{1}, x_{2}\right):\left|x_{1}\right|>4\right\}$ and is equal to Y_{0} on

$$
Q^{+} \cup Q^{-} \cup\left\{\left(x_{1}, x_{2}\right): 0<x_{1}<2\right\} .
$$

This completes the proof of the lemma.

Lemma 8 Let $s p=1$ and $u \in W^{s, p}\left((-1,1)^{2}\right)$ such that $u=Y_{0}$ on $\{x$: $\left.\left|x_{1}\right|<\left|x_{2}\right|\right\}$. Then the constant map equal to Y_{0} on the line $D:=\left\{x_{1}=0\right\}$ is a good restriction of u to D.

Proof: It is sufficient to prove that

$$
I:=\int_{-1}^{1} d x_{2} \int_{-1}^{1} \frac{\left|u\left(x_{1}, x_{2}\right)-Y_{0}\right|^{p}}{\left|x_{1}\right|} d x_{1}<\infty .
$$

Since N is compact, there exists $C>0$ such that $\left|u\left(x_{1}, x_{2}\right)-Y_{0}\right|^{p} \leq C$ for any (x_{1}, x_{2}). Then the lemma follows from the fact that:

$$
\begin{gathered}
I=\int_{-1}^{1} d x_{2} \int_{\left|x_{2}\right| \leq\left|x_{1}\right| \leq 1} \frac{\left|u\left(x_{1}, x_{2}\right)-Y_{0}\right|^{p}}{\left|x_{1}\right|} d x_{1} \\
\quad \leq C \int_{-1}^{1} d x_{2} \int_{\left|x_{2}\right|}^{1} \frac{d x_{1}}{\left|x_{1}\right|} \leq C .
\end{gathered}
$$

3.2 The case $n \geq 2$

We work in $\mathbb{R}^{n}, n \geq 2$ and we distinguish some special variables. For $0 \leq$ $l \leq n-2$, we write

$$
x=\left(x_{1}^{\prime}, x^{\prime \prime}, x_{2}^{\prime}\right)
$$

where $x_{1}^{\prime}=x_{1}, x_{2}^{\prime}=\left(x_{n-l}, . ., x_{n}\right)$ and $x^{\prime \prime}=\left(x_{2}, . ., x_{n-l-1}\right)($ when $l=n-2$, we omit $\left.x^{\prime \prime}\right)$. We also write $x^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$. Let

$$
\Omega:=\left\{\left(x_{1}^{\prime}, x^{\prime \prime}, x_{2}^{\prime}\right):\left|x_{1}^{\prime}\right|<20,\left|x^{\prime \prime}\right|<20,\left|x_{2}^{\prime}\right|<20\right\} .
$$

Set $k:=l+2$.
Lemma 9 Assume that $0<s<1+1 / p, s p<k$ and $u \in W^{s, p}(\Omega, N)$ with $u(x)=Y_{0}$ for any $x \in \Omega$ such that $1<\left|x_{2}^{\prime}\right|$, for some $Y_{0} \in N$. Then there exists $u^{t} \in C^{0}\left([0,1], W^{s, p}(\Omega, N)\right)$ such that $u^{0}=u, u^{t}(x)=u(x)$ for any $0 \leq t \leq 1$ and any x outside $\{x:|x|<15\}$ and $u^{1}(x)=Y_{0}$ for any $x,\left|\left(x_{1}^{\prime}, x^{\prime \prime}\right)\right|<1 / 8$.

Proof: If $k=n$, then the proof is exactly the same as in the previous subsection (except that circles are replaced by n dimensional balls). Hence, we may assume that $k<n$. Let $\delta: \mathbb{R}^{n-k} \rightarrow \mathbb{R}^{k}$ be a smooth function to be chosen later. We define the cylinder C_{1} by

$$
C_{1}:=\left\{x=\left(x_{1}^{\prime}, x^{\prime \prime}, x_{2}^{\prime}\right):\left|x^{\prime}-\delta\left(x^{\prime \prime}\right)\right|=a\right\}
$$

and the tube T_{1} by

$$
T_{1}:=\left\{x=\left(x_{1}^{\prime}, x^{\prime \prime}, x_{2}^{\prime}\right):\left|x^{\prime}-\delta\left(x^{\prime \prime}\right)\right|<a\right\}
$$

for some $a>1$ to be determined below. We may choose a and δ such that: i) when $\left|x^{\prime \prime}\right|<2$, we have $\delta\left(x^{\prime \prime}\right)=0$,
ii) when $\left|x^{\prime \prime}\right| \geq 4$, we have $x \in T_{1} \Rightarrow\left|x_{2}^{\prime}\right|>1$,
iii) C_{1} is good for u.

Note that C_{1} can be chosen as a smooth deformation of a straight cylinder as defined in subsection 2.4. Note also that even if $C_{1} \cap \Omega$ is a finite cylinder (contrary to those of subsection 2.4), the ends of this cylinder are contained in a domain where u is equal to the constant Y_{0}, where 'nothing happens'. Hence, we can apply Lemma 6 to $C_{1}: u$ can be connected to some \bar{u} which equals Y_{0} on $\left\{x \in \Omega:\left|x^{\prime \prime}\right|<2,\left|x_{2}^{\prime}\right| \geq\left|x_{1}^{\prime}\right| / \sqrt{a^{2}-1}\right\}$.

The computation in the proof of Lemma 8 yields easily that \bar{u} has a good restriction (equal to Y_{0}) on the set $\left\{\left|x^{\prime \prime}\right|<2, x_{1}^{\prime}=0\right\}$. This implies that the map:

$$
w\left(x_{1}^{\prime}, x^{\prime \prime}, x_{2}^{\prime}\right):=\left\{\begin{array}{l}
0 \text { when } x_{1}^{\prime} \leq 0 \\
\bar{u}\left(x_{1}^{\prime}, x^{\prime \prime}, x_{2}^{\prime}\right)-Y_{0} \quad \text { when } x_{1}^{\prime} \geq 0
\end{array}\right.
$$

belongs to $W^{s, p}\left(\Omega_{0}\right)$, where $\Omega_{0}:=\left\{x \in \Omega:\left|x^{\prime \prime}\right|<2\right\}$.
Let $\rho: \mathbb{R} \rightarrow[0,1]$ be a smooth function which vanishes on $\{t:|t| \geq 2\}$, which is equal to 1 on $\{t:|t| \leq 1\}$ and such that $\left|\rho^{\prime}\right| \leq 2$. Then we define

$$
\Xi_{t}\left(x_{1}^{\prime}, x^{\prime \prime}, x_{2}^{\prime}\right):=\left(x_{1}^{\prime}-\frac{t \rho\left(2\left|x^{\prime \prime}\right|^{2}\right) \rho\left(2 x_{1}^{\prime}\right)}{8}, x^{\prime \prime}, x_{2}^{\prime}\right)
$$

The map Ξ_{t} is a smooth diffeomorphism of \mathbb{R}^{n} which maps Ω_{0} onto Ω_{0}.
By the diffeomorphism property in $W^{s, p}$ (see [14]), there exists $C>0$ such that for any $t \in[0,1]$, and any $g \in W^{s, p}\left(\Omega_{0}\right)$, we have

$$
\left\|g \circ \Xi_{t}\right\|_{W^{s, p}\left(\Omega_{0}\right)} \leq C\|g\|_{W^{s, p}\left(\Omega_{0}\right)}
$$

Let $\epsilon>0$. Then there exists $z \in C^{\infty}\left(\bar{\Omega}_{0}\right)$ such that $\|z-w\|_{W^{s, p}\left(\Omega_{0}\right)}<\epsilon$. Hence, for any $t, s \in[0,1]$,

$$
\begin{gathered}
\left\|w \circ \Xi_{t}-w \circ \Xi_{s}\right\|_{W^{s, p}\left(\Omega_{0}\right)} \leq\left\|w \circ \Xi_{t}-z \circ \Xi_{t}\right\|_{W^{s, p}\left(\Omega_{0}\right)}+\left\|z \circ \Xi_{t}-z \circ \Xi_{s}\right\|_{W^{s, p}\left(\Omega_{0}\right)} \\
+\left\|z \circ \Xi_{s}-w \circ \Xi_{s}\right\|_{W^{s, p}\left(\Omega_{0}\right)} \leq C\|z-w\|_{W^{s, p}\left(\Omega_{0}\right)}+\left\|z \circ \Xi_{t}-z \circ \Xi_{s}\right\|_{W^{s, p}\left(\Omega_{0}\right)} \\
\leq C \epsilon+\left\|z \circ \Xi_{t}-z \circ \Xi_{s}\right\|_{W^{s, p}\left(\Omega_{0}\right)}
\end{gathered}
$$

Since the last term goes to 0 when $|s-t| \rightarrow 0$, the map $t \rightarrow w \circ \Xi_{t}$ belongs to $C^{0}\left([0,1], W^{s, p}\left(\Omega_{0}\right)\right)$.

Similarly we may define

$$
\tilde{w}\left(x_{1}^{\prime}, x^{\prime \prime}, x_{2}^{\prime}\right):=\left\{\begin{array}{l}
\bar{u}\left(x_{1}^{\prime}, x^{\prime \prime}, x_{2}^{\prime}\right)-Y_{0} \text { when } x_{1}^{\prime} \leq 0 \\
0 \text { when } x_{1}^{\prime} \geq 0
\end{array}\right.
$$

and

$$
\tilde{\Xi}_{t}\left(x_{1}^{\prime}, x^{\prime \prime}, x_{2}^{\prime}\right):=\left(x_{1}^{\prime}+\frac{t \rho\left(2\left|x^{\prime \prime}\right|^{2}\right) \rho\left(2 x_{1}^{\prime}\right)}{8}, x^{\prime \prime}, x_{2}^{\prime}\right)
$$

As above, $\tilde{w} \circ \tilde{\Xi}_{t} \in C^{0}\left([0,1], W^{s, p}\left(\Omega_{0}\right)\right)$. This yields

$$
w \circ \Xi_{t}+\tilde{w} \circ \tilde{\Xi}_{t} \in C^{0}\left([0,1], W^{s, p}\left(\Omega_{0}\right)\right)
$$

If we denote by v^{t} the map $w \circ \Xi_{t}+\tilde{w} \circ \tilde{\Xi}_{t}+Y_{0}$, we have $v^{t}=$

$$
\left\{\begin{array}{l}
\bar{u}\left(x_{1}^{\prime}+t \rho\left(2\left|x^{\prime \prime}\right|^{2}\right) \rho\left(2 x_{1}^{\prime}\right) / 8, x^{\prime \prime}, x_{2}^{\prime}\right) \quad \text { when } x_{1}^{\prime} \leq-t \rho\left(2\left|x^{\prime \prime}\right|^{2}\right) \rho\left(2 x_{1}^{\prime}\right) / 8 \\
Y_{0} \quad \text { when }-t \rho\left(2\left|x^{\prime \prime}\right|^{2}\right) \rho\left(2 x_{1}^{\prime}\right) / 8 \leq x_{1}^{\prime} \leq t \rho\left(2\left|x^{\prime \prime}\right|^{2}\right) \rho\left(2 x_{1}^{\prime}\right) / 8 \\
\bar{u}\left(x_{1}^{\prime}-t \rho\left(2\left|x^{\prime \prime}\right|^{2}\right) \rho\left(2 x_{1}^{\prime}\right) / 8, x^{\prime \prime}, x_{2}^{\prime}\right) \quad \text { when } t \rho\left(2\left|x^{\prime \prime}\right|^{2}\right) \rho\left(2 x_{1}^{\prime}\right) / 8 \leq x_{1}^{\prime}
\end{array}\right.
$$

Note in particular that $v^{t}=\bar{u}$ when $\left|x^{\prime \prime}\right|>1$ or $\left|x_{1}^{\prime}\right|>1$. Hence we can extend v^{t} by \bar{u} on Ω and we still have $v^{t} \in C^{0}\left([0,1], W^{s, p}(\Omega)\right)$. Finally, $v^{t}=Y_{0}$ when $\left|x^{\prime \prime}\right|<1 / \sqrt{2}$ and $\left|x_{1}^{\prime}\right| \leq t / 8$. This completes the proof of the lemma.

4 Opening of Maps

Lemma 10 Let $0<s<1+1 / p$ and $u \in W^{s, p}\left(B_{10}, N\right)$. Then, there exists $u^{t} \in C^{0}\left([0,1], W^{s, p}\left(B_{10}, N\right)\right)$ such that $u^{0}=u, u^{1}=Y_{0}$ on an open subset of B_{5} for some $Y_{0} \in N$ and $u^{t}=u$ on $B_{10} \backslash B_{9}, 0 \leq t \leq 1$.

Proof: We first introduce the concept of smooth cubes. A smooth cube is simply a cube with smooth corners, or equivalently, a sphere with faces. Formally, a smooth open set G of \mathbb{R}^{n} will be called a smooth cube of side R if it is a smooth convex set G which satisfies:

$$
\cup_{i=1}^{n}\left\{\left(x_{1}, . ., x_{n}\right):\left|x_{i}\right|<R,\left|x_{j}\right|<4 R / 5 \quad \forall j \neq i\right\} \subset G \subset(-R, R)^{n}
$$

For such a set G, we define the $i^{t h}$ face:

$$
F_{i}:=\left\{\left(x_{1}, . . x_{n}\right): x_{i}=R,\left|x_{j}\right|<4 R / 5\right\}
$$

For any $i=1, . . n$, let

$$
G_{i}:=\left\{t x: x \in F_{i}, t \in(1 / 5,1)\right\} .
$$

The set G is a smooth convex set, so that the technique of 'filling an annulus' (see Lemma 4) applies. More precisely, consider some $v \in W^{s, p}\left(\mathbb{R}^{n}\right)$ such that ∂G is good for v. Then v can be connected to a map $w \in W^{s, p}\left(\mathbb{R}^{n}\right)$ which is equal to v on $\mathbb{R}^{n} \backslash G$ and which satisfies

$$
w(t x)=v(x) \quad \forall t x \in G_{i}
$$

Returning to the proof of Lemma 10, let $v \in W^{s, p}\left(B_{10}\right)$ and G be a smooth cube of side R such that $G \subset B_{5}$ and ∂G is good for v. Assume that $\left.v\right|_{F_{i}}\left(x_{1}, . ., x_{n}\right)$ does not depend on $x_{1}, . ., x_{i-1}$. By this, we mean that for \mathcal{H}^{n-i+1} a.e. $x_{i}, . ., x_{n} \in \mathbb{R}^{n-i+1}$, the $\operatorname{map}\left(x_{1}, . . x_{i-1}\right) \in \mathbb{R}^{i-1} \rightarrow \chi_{F_{i}}(x) v(x)$ is \mathcal{H}^{i-1} a.e. constant. Then on $G_{i}, w(t x)=v(x)\left(\right.$ with $\left.x \in F_{i}, t \in(1 / 5,1)\right)$, does not depend neither on $x_{1}, . ., x_{i-1}$ nor on t.

Consider the map

$$
\phi_{i}: t x \in G_{i} \mapsto \sum_{j \neq i} \frac{5 x_{j}}{4 R} e_{j}+\frac{5 t-3}{2} e_{i} \in(-1,1)^{n}
$$

Here $\left(e_{k}\right)$ denotes the canonical basis of \mathbb{R}^{n}. Observe that ϕ_{i}^{-1} is a smooth diffeomorphism from $[-1,1]^{n}$ onto \bar{G}_{i}. Then, $w \circ \phi_{i}^{-1} \in W^{s, p}\left((-1,1)^{n}\right)$ and does not depend on $x_{1}, . ., x_{i}$.

We now prove the lemma by induction: We claim that for each $1 \leq k \leq$ n, u can be connected to some $u_{k} \in W^{s, p}\left(B_{10}\right)$ such that $u_{k}=u$ outside B_{9} and such that there exists a smooth diffeomorphism ψ_{k} from $[-1,1]^{n}$ into B_{5} such that $u_{k} \circ \psi_{k}$ does not depend on $x_{1}, . ., x_{k}$ on $(-1,1)^{n}$.

For $k=1$, select a smooth cube $G \subset B_{5}$ such that ∂G is good for u. Then as explained above, we can connect u to some u_{1} which is equal to u on $B_{10} \backslash G$ and such that $u_{1}(t x)=u(x)$ for any $x \in F_{1}, t \in(1 / 5,1)$. Then $u_{1} \circ \phi_{1}^{-1}$ belongs to $W^{s, p}\left((-1,1)^{n}\right)$ and does not depend on x_{1}. We can choose $\psi_{1}=\phi_{1}^{-1}$.

Assume the claim is true up to k. We can select a smooth cube G inside $(-1,1)^{n}$, such that ∂G is good for $u_{k} \circ \psi_{k}$ and $u_{k} \circ \psi_{k}$ does not depend on $x_{1}, . ., x_{k}$ on G. Then, as explained previously, we can connect $u_{k} \circ \psi_{k}$ to some $w \in W^{s, p}\left((-1,1)^{n}\right)$ such that $w=u_{k} \circ \psi_{k}$ on $(-1,1)^{n} \backslash G$ and $w(t x)=u_{k} \circ \psi_{k}(x)$ for any $x \in F_{k+1}, F_{k+1}$ being the $(k+1)^{t h}$ face relative to G. Then $w \circ \phi_{k+1}^{-1}\left(\phi_{k+1}\right.$ being defined for $\left.G\right)$ belongs to $W^{s, p}\left((-1,1)^{n}\right)$ and does not depend on $x_{1}, . ., x_{k+1}$. We can choose $\psi_{k+1}=\psi_{k} \circ \phi_{k+1}^{-1}$ and define

$$
u_{k+1}(x):=\left\{\begin{array}{l}
u_{k}(x) \text { when } x \in B_{10} \backslash \psi_{k}(G) \\
w \circ \psi_{k}^{-1}(x) \text { when } x \in \psi_{k}(G)
\end{array}\right.
$$

The claim is proved for $k+1$. Finally, we have connected u to a map $u_{n} \in W^{s, p}\left(B_{10}\right)$ which is a.e. constant on $\psi_{n}\left((-1,1)^{n}\right)$, namely an open subset of B_{5}.

5 Proof of Theorem 1 and Theorem 5 c)

The tools 'Connecting constants' and 'Propagation of constants' in [4] can be readily generalized to the case $W^{s, p}$.

Then, the same proof as in [4], Theorem 0.2 shows that $W^{s, p}(M, N)$ is path connected when $s p<2$; that is, Theorem 1 . The fact that $W^{s, p}\left(S^{m}, N\right)$ is path-connected when $s \in(0,1+1 / p)$ can be proved as in [4], Proposition 0.1. This shows Theorem 5 c$)$.

In the sections below, we assume that $s \in(0,1+1 / p), p \in[1, \infty), 1<$ sp.

We denote by Π_{M} the nearest point projection onto M, which is defined and smooth on an ϵ_{M} tubular neighborhood of M :

$$
M_{\epsilon_{M}}:=\left\{x \in \mathbb{R}^{a}: \operatorname{dist}(x, M)<\epsilon_{M}\right\}
$$

Similarly, we introduce $\Pi_{N}: N_{\epsilon_{N}} \subset \mathbb{R}^{l} \rightarrow N$.

6 Definition of [$s p-1$] homotopy

6.1 Triangulations and homotopy

We define a rectilinear cell, its dimension, its faces and a rectilinear cell complex as in [12], Chapter 7. In particular, the p skeleton of a rectilinear cell complex K, denoted by K^{p}, is the collection of all cells having dimension at most p. Any complex considered below is finite. The polytope $|K|$ of a complex K is the union of the cells of K. We will use the fact that the boundary $\partial \Delta$ of a simplex Δ can be identified with a complex in an obvious way.

We also introduce some notation. Let Δ be a rectilinear cell, $y \in \operatorname{Int} \Delta$. Then, for any $x \in \Delta$, we set

$$
|x|_{y, \Delta}:=\inf \{t>0: x \in y+t(\Delta-y)\} .
$$

This is the usual Minkowski functional of Δ with respect to y. When it is clear what y and Δ are, we simply write $|x|$ instead of $|x|_{y, \Delta}$.

The concepts of smooth maps and immersions on a complex K are defined as in [12], Chapter 8. A smooth immersion which is a homeomorphism onto M is called a triangulation of M. Actually, the word 'triangulation' is mostly used for the case when K is simplicial. In the general case, we will also use the phrase 'rectilinear cell decomposition'. Each smooth boundaryless manifold M has a triangulation ([12], Theorem 10.6). The proof of this result shows that we can choose a simplicial m dimensional complex K (where m is the dimension of M) such that the polytope $|K|$ is the
union of its m simplices. Consider such a simplicial complex and denote by $f: K \rightarrow M$ a triangulation. The set $f(\Delta)$ is a Lipschitz domain in M for each cell Δ.

Assume that $u \in W^{s, p}(M)$. Then $\left.u \circ f\right|_{\Delta}$ belongs to $W^{s, p}(\Delta)$ for each m cell $\Delta \in K$, because $\left.f\right|_{\Delta}$ is a smooth diffeomorphism onto $f(\Delta) \subset M$. Conversely, assume that $u \in L^{p}(M)$ is such that u belongs to $W^{s, p}(f(\Delta))$ for each m cell $\Delta \in K$. Since $s p>1$, we can define the trace of u on $\partial f(\Delta)$. Assume that for any m cells $\Delta_{1}, \Delta_{2} \in K$ satisfying $\Delta_{1} \cap \Delta_{2} \neq \emptyset$, the maps $\left.u\right|_{f\left(\Delta_{1}\right)}$ and $\left.u\right|_{f\left(\Delta_{2}\right)}$ have the same trace on $f\left(\Delta_{1} \cap \Delta_{2}\right)$. This certainly implies that u belongs to $W^{s, p}\left(f\left(\Delta_{1} \cup \Delta_{2}\right)\right)$ when $s \leq 1$. But this holds true even when $s \in(1,1+1 / p)$, because in that case the derivatives of $\left.u\right|_{f\left(\Delta_{1}\right)}$ and $\left.u\right|_{f\left(\Delta_{2}\right)}$ belong to $W^{\sigma, p}\left(f\left(\Delta_{1}\right)\right)$ and $W^{\sigma, p}\left(f\left(\Delta_{2}\right)\right)$ respectively, with now $\sigma p=(s-1) p<1$. This implies that the derivatives of u belong to $W^{\sigma, p}\left(f\left(\Delta_{1} \cup \Delta_{2}\right)\right)$. Hence, $u \in W^{s, p}\left(f\left(\Delta_{1} \cup \Delta_{2}\right)\right)$.

The following lemma shows that we can glue homotopies together:
Lemma 11 Let $f: K \rightarrow M$ be a smooth triangulation, with m being the common dimension of K and M. Assume that Δ_{1} and Δ_{2} are two m simplices in K such that $\Delta_{1} \cap \Delta_{2}=\Sigma$, where Σ is $m-1$ dimensional. Let $F_{1} \in C^{0}\left([0,1], W^{s, p}\left(f\left(\Delta_{1}\right)\right)\right), F_{2} \in C^{0}\left([0,1], W^{s, p}\left(f\left(\Delta_{2}\right)\right)\right)$ and $\forall t \in[0,1]$,

$$
\left.\operatorname{tr} F_{1}(t)\right|_{f(\Sigma)}=\left.\operatorname{tr} F_{2}(t)\right|_{f(\Sigma)} .
$$

Then $F \in C^{0}\left([0,1], W^{s, p}\left(f\left(\Delta_{1} \cup \Delta_{2}\right)\right)\right)$ where

$$
F(t)(x)= \begin{cases}F_{1}(t)(x) & \text { when } x \in \Delta_{1}, \\ F_{2}(t)(x) & \text { when } x \in \Delta_{2} .\end{cases}
$$

Proof: Let us define the closed subset of $W^{s, p}\left(f\left(\Delta_{1}\right)\right) \times W^{s, p}\left(f\left(\Delta_{2}\right)\right)$:

$$
\mathcal{F}:=\left\{\left(u_{1}, u_{2}\right) \in W^{s, p}\left(f\left(\Delta_{1}\right)\right) \times W^{s, p}\left(f\left(\Delta_{2}\right)\right):\left.\operatorname{tr} u_{1}\right|_{f(\Sigma)}=\left.\operatorname{tr} u_{2}\right|_{f(\Sigma)}\right\} .
$$

Then the remarks above show that the map: $\left(u_{1}, u_{2}\right) \in \mathcal{F} \rightarrow u \in W^{s, p}\left(f\left(\Delta_{1} \cup\right.\right.$ Δ_{2})) where

$$
u(x)=\left\{\begin{array}{l}
u_{1}(x) \text { when } x \in f\left(\Delta_{1}\right), \\
u_{2}(x) \text { when } x \in f\left(\Delta_{2}\right)
\end{array}\right.
$$

is well defined.
The Closed Graph Theorem shows that this map is continuous into $W^{s, p}\left(f\left(\Delta_{1} \cup \Delta_{2}\right)\right)$. In particular, there exists $C>0$ such that for any $\left(u_{1}, u_{2}\right) \in \mathcal{F}$,

$$
\begin{equation*}
\|u\|_{W^{s, p}\left(f\left(\Delta_{1} \cup \Delta_{2}\right)\right)} \leq C\left[\left\|u_{1}\right\|_{W^{s, p}\left(f\left(\Delta_{1}\right)\right)}+\left\|u_{2}\right\|_{W^{s, p}\left(f\left(\Delta_{2}\right)\right)}\right] . \tag{5}
\end{equation*}
$$

Whence

$$
\begin{gathered}
\left\|F(t)-F\left(t^{\prime}\right)\right\|_{W^{s, p}\left(f\left(\Delta_{1} \cup \Delta_{2}\right)\right)} \leq C\left[\left\|F_{1}(t)-F_{1}\left(t^{\prime}\right)\right\|_{W^{s, p}\left(f\left(\Delta_{1}\right)\right)}\right. \\
+\left\|F_{2}(t)-F_{2}\left(t^{\prime}\right)\right\|_{\left.W^{s, p}\left(f\left(\Delta_{2}\right)\right)\right]} .
\end{gathered}
$$

The lemma follows.

6.2 Definition of $\mathcal{W}^{s, p}(K)$

Let K be a finite rectilinear cell complex. Recall that N is smoothly embedded in \mathbb{R}^{l}. Let $f, g:|K| \rightarrow \mathbb{R}^{l}$ be two everywhere defined Borel measurable functions. We say that f and g are equivalent if for any $\Delta \in K,\left.f\right|_{\Delta}=\left.g\right|_{\Delta} \mathcal{H}^{d}$ a.e. on Δ, where $d=\operatorname{dim} \Delta$. From now on, we identify two such functions and an equivalence class is called a Borel function.

Following [9], we introduce the space $\mathcal{W}^{s, p}(K)$ of those Borel functions $f:|K| \rightarrow \mathbb{R}^{l}$ such that for any cell Δ, the restriction $\left.f\right|_{\Delta}$ belongs to $W^{s, p}(\Delta)$ and its trace $\left.\operatorname{tr} f\right|_{\partial \Delta}$ is equal to $\left.f\right|_{\partial \Delta}, \mathcal{H}^{d-1}$ a.e. $x \in \partial \Delta$.

We write $\|f\|_{\mathcal{W}^{s, p}(K)}:=\sum_{\Delta \in K}\left\|\left.f\right|_{\Delta}\right\|_{W^{s, p}(\Delta)}$.
As in [9], we also define a similar function space as follows. Let K be a finite rectilinear cell complex of dimension m. Assume that

$$
|K|=\cup_{\Delta \in K, \operatorname{dim} \Delta=m} \Delta .
$$

We define $\tilde{\mathcal{W}}^{s, p}(K)$ as the set of those Borel functions $f:|K| \rightarrow \mathbb{R}^{l}$ such that
i) the map $\left.f\right|_{\Delta} \in W^{s, p}(\Delta)$ for any $\Delta \in K$ with $\operatorname{dim} \Delta=m$,
ii) for any $\Sigma \in K$ with $\operatorname{dim} \Sigma=m-1, \Sigma \subset \partial \Delta_{i}, \operatorname{dim} \Delta_{i}=m$ for $i=1,2$, we have

$$
\left.\operatorname{tr}\left(\left.f\right|_{\Delta_{1}}\right)\right|_{\Sigma}=\left.\operatorname{tr}\left(\left.f\right|_{\Delta_{2}}\right)\right|_{\Sigma} .
$$

We also write:

$$
\|f\|_{\tilde{\mathcal{W}}^{s, p}(K)}=\sum_{\Delta \in K, \operatorname{dim} \Delta=m}\left\|\left.f\right|_{\Delta}\right\|_{W^{s, p}(\Delta)} .
$$

Finally, we define

$$
\mathcal{W}^{s, p}(K, N):=\left\{u \in \mathcal{W}^{s, p}(K): \forall \Delta \in K, u(x) \in N \quad \mathcal{H}^{\operatorname{dim} \Delta} \text { a.e. }\right\}
$$

and similarly for $\tilde{\mathcal{W}}^{s, p}(K, N)$.

6.3 Interpolation

We consider X_{0}, X_{1} two Banach spaces such that X_{1} is continuously embedded in X_{0}. We denote by $\|\cdot\|_{X_{i}}$ the norm in $X_{i}, i=0,1$ and for each fixed $t>0$, we define

$$
K(t ; u):=\inf \left\{\left\|u_{0}\right\|_{X_{0}}+t \mid\left\|u_{1}\right\|_{X_{1}}: u=u_{0}+u_{1}, u_{0} \in X_{0}, u_{1} \in X_{1}\right\} .
$$

Let $1 \leq q<\infty$ and $0<\theta<1$. Then we define:

$$
\left(X_{0}, X_{1}\right)_{\theta, q}:=\left\{u \in X_{0}:\left(2^{-i \theta} K\left(2^{i} ; u\right)\right)_{i \in \mathbb{Z}} \in l^{q}(\mathbb{Z})\right\},
$$

which is a Banach space with the norm

$$
\|u\|_{\left(X_{0}, X_{1}\right)_{\theta, q}}:=\left\|\left(2^{-i \theta} K\left(2^{i} ; u\right)\right)_{i \in \mathbb{Z}}\right\|_{l^{q}(\mathbb{Z})} .
$$

Theorem 6 ([1], Theorem 7.48) Let Ω be a rectilinear cell or a smooth bounded open set in \mathbb{R}^{n}. Then we have:

$$
\begin{gathered}
\text { When } s \in(0,1), \quad W^{s, p}(\Omega)=\left(L^{p}(\Omega), W^{1, p}(\Omega)\right)_{s, p} \\
\text { When } s \in(1,2), \quad W^{s, p}(\Omega)=\left(W^{1, p}(\Omega), W^{2, p}(\Omega)\right)_{s-1, p}
\end{gathered}
$$

6.4 Perturbation

In this section, we follow [9] to explain how we choose generic skeletons of a given triangulation of a manifold. Nevertheless, it seems difficult to rewrite exactly the proof of $[9]$ for the case $W^{s, p}$. This is the reason why we use the interpolation method.

Recall that M is an m dimensional Riemannian manifold without boundary. Assume that the parameter space P is a k dimensional Riemannian manifold, Q is a d dimensional Riemannian manifold without boundary, $D \subset Q$ is a domain with compact closure and Lipschitz boundary, and the dimensions satisfy $d+k \geq m$.

In the following, we will need
Lemma 12 Assume $s \in(0,1)$. Let $X_{0}:=L^{p}\left(P, L^{p}(D)\right), X_{1}:=L^{p}(P$, $W^{1, p}(D)$, and $Z_{0}:=L^{p}(D), Z_{1}:=W^{1, p}(D)$. Then we have:

$$
\left(X_{0}, X_{1}\right)_{s, p} \subset L^{p}\left(P,\left(Z_{0}, Z_{1}\right)_{s, p}\right)=L^{p}\left(P, W^{s, p}(D)\right)
$$

Proof: Let $u \in\left(X_{0}, X_{1}\right)_{s, p}$ and $\epsilon>0$. Then, for each $i \in \mathbb{Z}$, there exists $u_{0}^{i} \in X_{0}, u_{1}^{i} \in X_{1}$ such that $u=u_{0}^{i}+u_{1}^{i}$ and

$$
\left\|u_{0}^{i}\right\|_{X_{0}}+2^{i}\left\|u_{1}^{i}\right\|_{X_{1}}<K_{i}(u)+\epsilon /(1+|i|)!
$$

where

$$
K_{i}(u):=\inf \left\{\left\|u_{0}\right\|_{X_{0}}+2^{i}\left\|u_{1}\right\|_{X_{1}}: u=u_{0}+u_{1}, u_{0} \in X_{0}, u_{1} \in X_{1}\right\}
$$

Then, for \mathcal{H}^{k} a.e. $\xi \in P, u(\xi)=u_{0}^{i}(\xi)+u_{1}^{i}(\xi), u_{0}^{i}(\xi) \in Z_{0}, u_{1}^{i}(\xi) \in Z_{1}$. Hence,

$$
\begin{gathered}
\inf \left\{\left\|v_{0}\right\|_{Z_{0}}+2^{i}\left\|v_{1}\right\|_{Z_{1}}: u(\xi)=v_{0}+v_{1}, v_{0} \in Z_{0}, v_{1} \in Z_{1}\right\} \leq \\
\left\|u_{0}^{i}(\xi)\right\|_{Z_{0}}+2^{i}\left\|u_{1}^{i}(\xi)\right\|_{Z_{1}}
\end{gathered}
$$

so that

$$
\|u(\xi)\|_{\left(Z_{0}, Z_{1}\right)_{s, p}} \leq\left\|\left(2^{-i s}\left(\left\|u_{0}^{i}(\xi)\right\|_{Z_{0}}+2^{i}\left\|u_{1}^{i}(\xi)\right\|_{Z_{1}}\right)\right)_{i \in \mathbb{Z}}\right\|_{l^{p}(\mathbb{Z})}
$$

Finally,

$$
\|u\|_{L^{p}\left(P,\left(Z_{0}, Z_{1}\right)_{s, p}\right)} \leq\| \|\left(2^{-i s}\left(\left\|u_{0}^{i}(\cdot)\right\|_{Z_{0}}+2^{i}\left\|u_{1}^{i}(\cdot)\right\|_{Z_{1}}\right)\right)_{i \in \mathbb{Z}}\left\|_{l^{p}(\mathbb{Z})}\right\|_{L^{p}(P)}
$$

$$
\begin{gathered}
=\left\|\left(2^{-i s}\| \| u_{0}^{i}(\cdot)\left\|_{Z_{0}}+2^{i}\right\| u_{1}^{i}(\cdot)\left\|_{Z_{1}}\right\|_{L^{p}(P)}\right)_{i \in \mathbb{Z}}\right\|_{l^{p}(\mathbb{Z})} \\
\leq\left\|\left(2^{-i s}\left(\left\|u_{0}^{i}\right\|_{X_{0}}+2^{i}\left\|u_{1}^{i}\right\|_{X_{1}}\right)\right)_{i \in \mathbb{Z}}\right\|_{l^{p}(\mathbb{Z})} \\
\leq \|\left(2^{-i s}\left(K_{i}(u)+\epsilon /(1+|i|!)\right)_{i \in \mathbb{Z}} \|_{l^{p}(\mathbb{Z})}\right. \\
\leq\left\|\left(2^{-i s} K_{i}(u)\right)_{i \in \mathbb{Z}}\right\|_{l^{p}(\mathbb{Z})}+\epsilon\left\|\left(2^{-i s} /(1+|i|)!\right)_{i \in \mathbb{Z}}\right\|_{l^{p}(\mathbb{Z})} \\
=\|u\|_{\left(X_{0}, X_{1}\right)_{s, p}}+C \epsilon .
\end{gathered}
$$

This shows the required inclusion when $\epsilon \rightarrow 0$.
Similarly, when $s \in(1,2)$, we have:

$$
\begin{equation*}
\left(L^{p}\left(P, W^{1, p}(D)\right), L^{p}\left(P, W^{2, p}(D)\right)\right)_{s-1, p} \subset L^{p}\left(P, W^{s, p}(D)\right) \tag{6}
\end{equation*}
$$

Given a map $H: \bar{D} \times P \rightarrow M$, we assume that H satisfies:
(H1) $H \in C^{2}(\bar{D} \times P)$ and $[H(\cdot, \xi)]_{\operatorname{Lip}(\bar{D})} \leq c_{0}$ for any $\xi \in P$.
(H2) There exists a positive number c_{1} such that the m dimensional Jacobian $J_{H}(x, \xi) \geq c_{1}, \mathcal{H}^{d+k}$ a.e $(x, \xi) \in \bar{D} \times P$.
(H3) There exists a positive number c_{2} such that $\mathcal{H}^{d+k-m}\left(H^{-1}(y)\right) \leq c_{2}$ for \mathcal{H}^{m} a.e. $y \in M$.

We will denote $H(\cdot, \xi)$ by H_{ξ} or h_{ξ}. Then, we have:
Lemma 13 ([9], Lemma 3.3) For any Borel function $\chi: M \rightarrow \mathbb{R}^{+} \cup\{+\infty\}$, we have:

$$
\int_{P} d \mathcal{H}^{k}(\xi) \int_{D} \chi\left(H_{\xi}(x)\right) d \mathcal{H}^{d}(x) \leq c_{1}^{-1} c_{2} \int_{M} \chi(y) d \mathcal{H}^{m}(y)
$$

In particular, for any Borel subset $E \subset M$, we have

$$
\int_{P} \mathcal{H}^{d}\left(H_{\xi}^{-1}(E)\right) d \mathcal{H}^{k}(\xi) \leq c_{1}^{-1} c_{2} \mathcal{H}^{m}(E)
$$

If in addition $\mathcal{H}^{m}(E)=0$, then $\mathcal{H}^{d}\left(H_{\xi}^{-1}(E)\right)=0$ for \mathcal{H}^{k} a.e. $\xi \in P$.
The following lemma will allow us to give the definition of $[s p]-1$ homotopy.

Lemma 14 i) Let $f \in W^{s, p}(M)$. Then, there exists a Borel set $E \subset P$ such that $\mathcal{H}^{k}(E)=0$ and for any $\xi \in P \backslash E, f \circ H_{\xi} \in W^{s, p}(D)$.
ii) If we define \tilde{f} by $\tilde{f}(\xi)=f \circ H_{\xi}$ for any $\xi \in P$, then $\tilde{f} \in L^{p}\left(P, W^{s, p}(D)\right)$. In addition,

$$
\|\tilde{f}\|_{L^{p}\left(P, W^{s, p}(D)\right)} \leq c\|f\|_{W^{s, p}(M)},
$$

where c depends only on p, c_{0}, c_{1} and c_{2}.
iii) If $f_{i} \in C^{2}(M)$ converges to f in $W^{s, p}(M)$, then \tilde{f}_{i} converges to \tilde{f} in $L^{p}\left(P, W^{s, p}(D)\right)$. Moreover, there exists a subsequence $f_{i^{\prime}}$ and a Borel set $E \subset P$ such that $\mathcal{H}^{k}(E)=0$, and for any $\xi \in P \backslash E, f_{i^{\prime}} \circ H_{\xi} \rightarrow f \circ H_{\xi}$ in $W^{s, p}(D)$.

Proof: This lemma corresponds to Lemma 3.4 in [9], the proof of which shows that the map $f \rightarrow \tilde{f}$ is continuous from $L^{p}(M)$ into $L^{p}\left(P, L^{p}(D)\right)$ and from $W^{1, p}(M)$ into $L^{p}\left(P, W^{1, p}(D)\right)$. In light of Lemma 12, we deduce that this map is continuous from $W^{s, p}(M)$ into $L^{p}\left(P, W^{s, p}(D)\right)$ in the case $s \in(0,1)$. This proves ii) when $s \leq 1$. To complete the proof of ii), it remains to consider the case $s \in(1,1+1 / p)$. To this end, we claim that the map $f \rightarrow \tilde{f}$ is continuous from $W^{2, p}(M)$ into $L^{p}\left(P, W^{2, p}(D)\right)$. This will prove the required result by interpolation as before (using (6) instead of Lemma 12).

The proof of the claim is similar to the proof of [9] Lemma 3.4., except that $\|f\|_{W^{1, p}(M)}=\|f\|_{L^{p}(M)}+\|d f\|_{L^{p}(M)}$ is replaced by (see [13]):

$$
\|f\|_{W^{2, p}(M)}=\|f\|_{L^{p}(M)}+\|d f\|_{L^{p}(M)}+\left\|d^{*} d f\right\|_{L^{p}(M)}
$$

where d^{*} is the formal adjoint of the differential operator d on differential forms on M. (The notations $d f, d^{*} d f$ have to be understood in a distributional sense).

The rest of the proof is the same and we omit it.

Lemma 14 implies the following corollary exactly as Lemma 3.4 implies Corollary 3.1 in [9].

Corollary 2 Let $f \in W^{s, p}(M), K$ be a finite rectilinear cell complex, H : $|K| \times P \rightarrow M$ be a map such that $\left.H\right|_{\Delta \times P}$ satisfies $(H 1)$, (H2) and (H3) for any $\Delta \in K$. Then, there exists a Borel set $E \subset P$ such that $\mathcal{H}^{k}(E)=0$ and for any $\xi \in P \backslash E$, we have $f \circ H_{\xi} \in \mathcal{W}^{s, p}(K)$; in addition, the map $\tilde{f}=f \circ H_{\xi}$ for $\xi \in P$ belongs to $L^{p}\left(P, \mathcal{W}^{s, p}(K)\right)$.

6.5 Filling a hole (bis)

Lemma 3 is valid for any hole diffeomorphic to a ball. When $s \in(1,1+1 / p)$, we have a similar result when the 'hole' is a rectilinear cell.

Proposition 1 Let Δ be a rectilinear cell and $y_{\Delta} \in \operatorname{Int} \Delta$. Let $u \in W^{s, p}(\Delta)$ be such that $\left.\operatorname{tr} u\right|_{\partial \Delta}=f \in \tilde{\mathcal{W}}^{s, p}(\partial \Delta)$. Then the map u^{t} defined by

$$
u^{t}(x):=\left\{\begin{array}{l}
u(x /(1-t)) \text { when }|x|_{\Delta} \leq 1-t \\
f\left(x /|x|_{\Delta}\right) \text { when }|x|_{\Delta} \geq 1-t
\end{array}\right.
$$

belongs to $C^{0}\left([0,1), W^{s, p}(\Delta)\right)$.
Moreover, when $s p<\operatorname{dim} \Delta$, the map u^{t} is continuous on $[0,1]$.
We will say that u^{1} is the homogeneous degree-zero extension of f.
Proof: We denote by d the dimension of Δ. Let $\Sigma_{1}, . ., \Sigma_{r}$ be the $d-1$ faces of Δ and $\Delta_{1}, . ., \Delta_{r}$ be the rectilinear cells defined by

$$
\Delta_{i}:=\left\{\lambda y_{\Delta}+(1-\lambda) x: x \in \Sigma_{i}, 0 \leq \lambda \leq 1\right\} .
$$

Since

$$
\left.\operatorname{tr}\left(u^{t} \mid \Delta_{i}\right)\right|_{\Delta_{i} \cap \Delta_{j}}=\left.\operatorname{tr}\left(u^{t} \mid \Delta_{j}\right)\right|_{\Delta_{i} \cap \Delta_{j}},
$$

in light of Lemma 11, it suffices to show that $\left.u^{t}\right|_{\Delta_{i}}$ is continuous into $W^{s, p}\left(\Delta_{i}\right)$.

There exists a C^{2} diffeomorphism Φ_{i} between each Δ_{i} and a subset of B_{1}^{d} of the form $\left\{\lambda x: \lambda \in[0,1], x \in U_{i}\right\}$ where U_{i} is a connected compact subset of S_{1}^{d}, which is isometric in the sense that $\left|\Phi_{i}(x)\right|=|x|_{\Delta_{i}}, x \in \Delta_{i}$.

Hence, the continuity of $\left.u^{t}\right|_{\Delta_{i}}$ is a mere consequence of Lemma 3. The proposition is proved.

6.6 The final step for the definition of $[s p]-1$ homotopy

Let X, Y be topological spaces. Then $[X, Y]$ denotes the set of all homotopy classes of continuous maps from X to Y. Given any $f \in C^{0}(X, Y)$, we use $[f]_{X, Y}$ (or simply $[f]$) to denote the homotopy class corresponding to f as a map from X to Y. If K is a complex, then for any $f \in \mathcal{W}^{s, p}(K, N)$ and $0 \leq k<s p$, there exists a unique $g \in C^{0}\left(K^{k}, N\right)$ such that for any $\Delta \in K^{k}$, we have $\left.f\right|_{\Delta}=\left.g\right|_{\Delta} \quad \mathcal{H}^{d}$ a.e. on Δ with $d=\operatorname{dim} \Delta$. Hence, we may define the homotopy class $\left[\left.f\right|_{K^{k}}\right]$ of f as the homotopy class $[g]$ of $g\left(\right.$ in $C^{0}\left(K^{k}, N\right)$).

Lemma 15 (Lemma 4.4 in [9]) Assume that $d \in \mathbb{N}, 1<d$, $s p=d, \Delta$ is a rectilinear cell of dimension d and $u \in W^{s, p}(\Delta, N)$ is such that the trace $\left.\operatorname{tr} u\right|_{\partial \Delta}=f \in \tilde{\mathcal{W}}^{s, p}(\partial \Delta, N) \subset C^{0}(\partial \Delta, N)$. Then, there exists $v \in C^{0}(\Delta, N) \cap$ $W^{s, p}(\Delta, N)$ such that $\left.v\right|_{\partial \Delta}=f$ and $v \sim_{W^{s, p}(\Delta, N)} u$.

Proof: For any $\delta \in(0,1)$, we define $u_{\delta}(x)=u(x /(1-\delta))$ for $|x|_{\Delta} \leq 1-\delta$ and $u_{\delta}(x)=f\left(x /|x|_{\Delta}\right)$ for $1-\delta \leq|x|_{\Delta} \leq 1$. Then $u_{\delta} \in W^{s, p}(\Delta)$ and $u_{\delta} \rightarrow u$ in $W^{s, p}(\Delta)$ as $\delta \rightarrow 0^{+}$(here, we use Proposition 1).

Choose an $\eta \in C_{c}^{\infty}(\Delta, \mathbb{R})$ such that $0 \leq \eta \leq 1,\left.\eta\right|_{\Delta_{1-\delta / 2}}=1$ and $\left.\eta\right|_{\Delta \backslash \Delta_{1-\delta / 3}}=0$. The notation Δ_{r} signifies the set $\left\{x \in \Delta:|x|_{\Delta}<r\right\}$. For $\epsilon>0$ small enough, we set $v_{\epsilon}(x)=f_{B_{\epsilon}(x)} u_{\delta}$ for $x \in \Delta_{1-\delta / 4}$. Then, we define:

$$
w_{\epsilon}(x)=(1-\eta(x)) u_{\delta}(x)+\eta(x) v_{\epsilon}(x) \quad \forall x \in \Delta .
$$

Clearly, $w_{\epsilon} \in C^{0}(\bar{\Delta})$. Since u_{δ} is VMO, we have $\operatorname{dist}\left(v_{\epsilon}(x), N\right) \rightarrow 0$ uniformly for $x \in \Delta_{1-\delta / 2}$, when $\epsilon \rightarrow 0^{+}$(see [7], section I.2, Example 2). This implies that the same is true for w_{ϵ} on $\Delta_{1-\delta / 2}$ because $\left.v_{\epsilon}\right|_{\Delta_{1-\delta / 2}}=\left.w_{\epsilon}\right|_{\Delta_{1-\delta / 2}}$. Moreover, from the uniform continuity of f, we know that $w_{\epsilon}(x)-u_{\delta}(x) \rightarrow 0$ uniformly for $x \in \Delta \backslash \Delta_{1-\delta / 2}$ as $\epsilon \rightarrow 0^{+}$. Hence, dist $\left(w_{\epsilon}(x), N\right) \rightarrow 0$ uniformly for $x \in \Delta$ as $\epsilon \rightarrow 0^{+}$, from which we deduce that $\Pi_{N} \circ w_{\epsilon}$ is well defined for ϵ sufficiently small. We have $v_{\epsilon} \rightarrow u_{\delta}$ when $\epsilon \rightarrow 0^{+}$in $W^{s, p}(\Delta)$ (this can be shown as in the case of a regularization by a smooth kernel, see [11], Proposition 4.1.). Then w_{ϵ} converges to u_{δ} in $W^{s, p}(\Delta)$ when $\epsilon \rightarrow 0^{+}$.

We extend Π_{N} to the whole \mathbb{R}^{l} and we may assume that Π_{N} vanishes outside a large ball. Since Π_{N} is smooth and N is bounded, by the composition property (see [6] and [10]), the map

$$
z \in W^{s, p}\left(\Delta, \mathbb{R}^{l}\right) \mapsto \Pi_{N} \circ z W^{s, p}\left(\Delta, \mathbb{R}^{l}\right)
$$

is continuous. Hence $\Pi_{N} \circ w_{\epsilon} \rightarrow u_{\delta}$ in $W^{s, p}(\Delta, N)$ when $\epsilon \rightarrow 0^{+}$and $\Pi_{N} \circ w_{t \epsilon} \in C^{0}\left([0,1], W^{s, p}(\Delta, N)\right.$). Since $u_{\delta} \sim_{W^{s, p}(\Delta, N)} u$ (by Proposition 1), we have $\Pi_{N} \circ w_{\epsilon} \sim_{W^{s, p}(\Delta, N)} u$. The map $v:=\Pi_{N} \circ w_{\epsilon}$ satisfies the requirements of Lemma 15.

Lemma 16 (Lemma 4.7 in [9]) Let $u \in W^{s, p}(M, N), K$ be a rectilinear cell complex. Assume that the parameter space P is a k dimensional connected Riemannian manifold, and that $H:|K| \times P \rightarrow M$ is a map such that $\left.H\right|_{\Delta \times P}$ satisfies $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$ for any $\Delta \in K$. Then
i) there exists a Borel set $E \subset P$ such that $\mathcal{H}^{k}(E)=0$ and $u \circ H_{\xi} \in$ $\mathcal{W}^{s, p}(K, N)$ for any $\xi \in P \backslash E$.
ii) Let $0 \leq d \leq[s p]-1$. We can define $\chi=\chi_{d, H, u}: P \rightarrow\left[\left|K^{d}\right|, N\right]$ by setting $\chi(\xi)=\left[\left.u \circ H_{\xi}\right|_{\left|K^{d}\right|}\right]$. Then χ is a constant \mathcal{H}^{k} a.e. on P.

Proof: From Corollary 2 we know that there exists a Borel set $E_{0} \subset P$ such that $\mathcal{H}^{k}\left(E_{0}\right)=0$ and $u \circ H_{\xi} \in \mathcal{W}^{s, p}\left(K, \mathbb{R}^{l}\right)$ for any $\xi \in P \backslash E_{0}$. Since $u(x) \in N$ for almost every $x \in M$, Lemma 13 shows that there exists a Borel set $E \subset P$ such that $\mathcal{H}^{k}(E)=0$ and $u \circ H_{\xi} \in \mathcal{W}^{s, p}(K, N)$ for any $\xi \in P \backslash E$; that is, the first assertion of the lemma.

The second assertion can be proved exactly as in [9] Lemma 4.7 except that in the proof, [9] Lemma 4.3 has to be replaced by i) and [9] Lemma 4.4 has to be replaced by our Lemma 15 .

Finally, we give the definition of $[s p]-1$ homotopy (when $s \geq 1$, this definition is the same as in [9]).

Let K be a finite rectilinear cell complex and $h: K \rightarrow M$ be a triangulation of M. We define $H:|K| \times B_{\epsilon_{M}}^{a} \rightarrow M$ as $H(x, \xi)=\Pi_{M}(h(x)+\xi)$. Then H satisfies $(H 1),(H 2)$ and $(H 3)$ for each $\Delta \in K$ with $P:=B_{\epsilon_{M}}^{a}$ (see [9], page 72) so that $\chi_{[s p-1], H, u}$ is a constant a.e. on $B_{\epsilon_{M}}^{a}$. We denote this constant by $u_{\sharp, s, p}(h)$. When $s \in(1,1+1 / p), W^{s, p}(M, N) \subset W^{1, s p}(M, N)$ (because N is a bounded subset of \mathbb{R}^{l}) and $u_{\sharp, s, p}(h)$ is exactly the constant $u_{\sharp, s p}(h)$ defined in [9] (for $s=1$).

We also remark that for ϵ_{M} sufficiently small, $H(\cdot, \xi)$ is a triangulation of M (see [12]). We will denote $H(\cdot, \xi)$ by H_{ξ} or h_{ξ}.

Lemma 4.8 and Lemma 4.9 in [9] show that if $u, v \in W^{s, p}(M, N)$ and $h_{i}: K_{i} \rightarrow M$ are triangulations for $i=1,2\left(K_{i}\right.$ being a rectilinear cell complex) and $u_{\sharp, s, p}\left(h_{1}\right)=v_{\sharp, s, p}\left(h_{1}\right)$, then $u_{\sharp, s, p}\left(h_{2}\right)=v_{\sharp, s, p}\left(h_{2}\right)$. In fact, when $s \in(0,1)$, the same proof as in the case $s=1$ is valid. When $s \in(1,1+1 / p)$,
one can use the inclusion $W^{s, p}(M, N) \subset W^{1, s p}(M, N)$ and apply directly the results in [9] with $s p$ instead of p. Hence, we can define:

Definition 1 Let $u, v \in W^{s, p}(M, N)$. If for any Lipschitz rectilinear cell decomposition $h: K \rightarrow M$, we have $u_{\sharp, s, p}(h)=v_{\sharp, s, p}(h)$, then we say that u is $[s p]-1$ homotopic to v.

Clearly, this is an equivalence relation on $W^{s, p}(M, N)$.

7 A preliminary to the proof of Theorem 4

In [9], the fact that $\operatorname{Lip}(\Delta) \subset W^{1, p}(\Delta)$ for any simplex Δ is widely used. In contrast, $\operatorname{Lip}(\Delta) \not \subset W^{s, p}(\Delta)$ when $s>1$. To overcome this difficulty, we have to substantially modify some parts of the proofs of [9]. This is the aim of this section.

Throughout this section, X denotes a rectilinear cell complex of dimension $k+1$ with $0 \leq k \leq s p-1$ and X^{k} its subcomplex of dimension k. We also define $[0,1] \times X^{k} \cup\{0\} \times X$ as the complex:

$$
\left\{[0,1] \times \Delta: \Delta \in X^{k}\right\} \cup\{\{0\} \times \Delta: \Delta \in X\} \cup\left\{\{1\} \times \Delta: \Delta \in X^{k}\right\}
$$

If X is embedded in some \mathbb{R}^{S} and $\Delta \in X^{k}$, then $[0,1] \times \Delta$ is a rectilinear cell in $\mathbb{R} \times \mathbb{R}^{S}$ and its boundary is

$$
\{0\} \times \Delta \cup\{1\} \times \Delta \cup[0,1] \times \partial \Delta \subset[0,1] \times X^{k} \cup\{0\} \times X
$$

The proof of [9], Lemma 3.2 (with obvious modifications) shows the following

Lemma 17 The set $C^{0}(X) \cap \mathcal{W}^{s, p}(X)$ is dense in the set $C^{0}(X)$.
A consequence of Lemma 17 is given by
Lemma 18 Let $H_{0} \in C^{0}\left([0,1] \times X^{k}, N\right)$ be such that $H_{0}(0, \cdot)$ and $H_{0}(1, \cdot)$ belong to $\mathcal{W}^{s, p}\left(X^{k}, N\right)$. Then there exists

$$
H_{1} \in \mathcal{W}^{s, p}\left([0,1] \times X^{k}, N\right) \cap C^{0}\left([0,1] \times X^{k}, N\right)
$$

such that $H_{0}(0, \cdot)=H_{1}(0, \cdot)$ and $H_{0}(1, \cdot)=H_{1}(1, \cdot)$.
Proof: First, we may assume that $H_{0}(t, \cdot)=H_{0}(0, \cdot), t \in[0, \delta]$ and $H_{0}(t, \cdot)=$ $H_{0}(1, \cdot), t \in[1-\delta, 1]$, for some $\delta \in(0,1 / 4)$. Moreover, using Lemma 17, there exists G in $\mathcal{W}^{s, p}\left([0,1] \times X^{k}\right) \cap C^{0}\left([0,1] \times X^{k}\right)$ such that $\left|G(t, x)-H_{0}(t, x)\right| \leq$ ϵ_{N} for $(t, x) \in[0,1] \times\left|X^{k}\right|$.

Finally, let $\theta \in C^{\infty}(\mathbb{R},[0,1])$ such that $\theta \equiv 1$ on $[\delta / 2,1-\delta / 2]$ and $\theta \equiv 0$ on $[0, \delta / 4] \cup[1-\delta / 4,1]$. Then we define

$$
H(t, x):=\theta(t) G(t, x)+(1-\theta(t)) H_{0}(t, x) .
$$

The map H belongs to $\mathcal{W}^{s, p}\left([0,1] \times X^{k}, \mathbb{R}^{l}\right) \cap C^{0}\left([0,1] \times X^{k}, \mathbb{R}^{l}\right)$ and

$$
\left|H(t, x)-H_{0}(t, x)\right| \leq \epsilon_{N}
$$

Thus, we can define $H_{1}(t, x):=\Pi_{N} \circ H(t, x)$. By the composition property, $H_{1} \in \mathcal{W}^{s, p}\left([0,1] \times X^{k}, N\right) \cap C^{0}\left([0,1] \times X^{k}, N\right)$. We have $H_{1}(0, \cdot)=$ $H_{0}(0, \cdot)$ and $H_{1}(1, \cdot)=H_{0}(1, \cdot)$. This completes the proof of the lemma.

Lemma 19 Let $H_{1} \in \mathcal{W}^{s, p}\left([0,1] \times X^{k} \cup\{0\} \times X, N\right) \cap C^{0}\left([0,1] \times X^{k} \cup\{0\} \times\right.$ $X, N)$. Then H_{1} may be extended to a map

$$
H_{2} \in \mathcal{W}^{s, p}([0,1] \times X, N) \cap C^{0}([0,1] \times X, N)
$$

Proof: For each $\Delta \in X \backslash X^{k}$, consider its barycenter y_{Δ} and define $\bar{y}_{\Delta}:=$ $\left(2, y_{\Delta}\right) \in \bar{\Delta}:=[0,4] \times \Delta$. Let ρ be the map defined on $[0,1] \times \Delta$ by

$$
x \mapsto \bar{y}_{\Delta}+\left(x-\bar{y}_{\Delta}\right) /|x|_{\bar{\Delta}} .
$$

Then

$$
\rho(x) \in[0,1] \times \partial \Delta \cup\{0\} \times \Delta, \quad x \in[0,1] \times \Delta
$$

and $\rho(x)=x$ for any $x \in[0,1] \times \partial \Delta \cup\{0\} \times \Delta$. Define ρ on each such $[0,1] \times \Delta$ for $\Delta \in X \backslash X^{k}$ and extend it to $[0,1] \times|X|$ by setting $\rho(x)=x$ on $[0,1] \times\left|X^{k}\right|$. Then ρ is a Lipschitz map from $[0,1] \times|X|$ into $[0,1] \times\left|X^{k}\right| \cup\{0\} \times|X|$, so that the map $H_{2}:=H_{1} \circ \rho$ belongs to $C^{0}([0,1] \times X, N)$. Moreover, H_{2} is an extension of H_{1}. To see that $H_{2} \in \mathcal{W}^{s, p}([0,1] \times X, N)$, remark that on each cell $[0,1] \times \Delta$, with $\Delta \in X \backslash X^{k}, H_{2}$ is defined as the homogeneous degreezero extension of H_{1} (except that the center of the homogeneous degree-zero extension \bar{y}_{Δ} does not belong to the cell, which makes no trouble as the proof of Proposition 1 shows). Hence, $\left.H_{2}\right|_{[0,1] \times \Delta} \in W^{s, p}$. That $\left.H_{2}\right|_{\{1\} \times \Delta} \in W^{s, p}$ is an easy consequence of the fact that $H_{1} \in \mathcal{W}^{s, p}([0,1] \times \partial \Delta \cup\{0\} \times \Delta)$ and that ρ^{-1} defined on the complex $[0,1] \times \partial \Delta \cup\{0\} \times \Delta$ is a triangulation of $\{1\} \times \Delta$ (see the remarks before Lemma 11). The lemma is proved.

Lemma 20 Let $H_{2} \in C^{0}([0,1] \times X, N)$ be such that $H_{2}(0, \cdot)$ and $H_{2}(1, \cdot)$ belong to $\mathcal{W}^{s, p}(X, N)$. Then there exists $H_{3} \in C^{0}\left([0,1], \mathcal{W}^{s, p}(X, N)\right)$ such that $H_{3}(0)=H_{2}(0, \cdot)$ and $H_{3}(1)=H_{2}(1, \cdot)$.

Proof: There exists $\delta>0$ such that $\left|H_{2}\left(t_{1}, x_{1}\right)-H_{2}\left(t_{2}, x_{2}\right)\right| \leq \epsilon_{N} / 8$ for any $\left|x_{1}-x_{2}\right|+\left|t_{1}-t_{2}\right| \leq \delta$. Pick some $m \in \mathbb{N}$ such that $1 / m<\delta$. For any $1 \leq k \leq m-1$, there exists $L_{k / m} \in C^{0}(X) \cap \mathcal{W}^{s, p}(X)$ such that $\left|L_{k / m}(x)-H_{2}(k / m, x)\right| \leq \epsilon_{N} / 8$ for $x \in|X|$. (Here, we use Lemma 17). We also define $L_{0}:=H_{2}(0, \cdot)$ and $L_{1}:=H_{2}(1, \cdot)$. For any $0 \leq k \leq m-1$, $t \in[k / m,(k+1) / m]$ and $x \in X$, we define

$$
L(t)(x)=(k+1-m t) L_{k / m}(x)+(m t-k) L_{(k+1) / m}(x) .
$$

It is easy to see that

$$
L \in C^{0}\left([0,1], \mathcal{W}^{s, p}\left(X, \mathbb{R}^{l}\right)\right) \cap C^{0}\left([0,1] \times X, \mathbb{R}^{l}\right)
$$

and $\operatorname{dist}(L(t)(x), N)<\epsilon_{N}, t \in[0,1], x \in|X|$.
We define $H_{3}(t)(x):=\Pi_{N}(L(t)(x))$. The composition property shows that the map $t \in[0,1] \mapsto \Pi_{N} \circ L(t) \in W^{s, p}(\Delta, N)$ is continuous for each $\Delta \in X$. This implies that $H_{3} \in C^{0}\left([0,1], \mathcal{W}^{s, p}(X, N)\right)$.

The proof of Theorem 4 is mainly based on the following proposition:
Proposition 2 Let $u, v \in \mathcal{W}^{s, p}(X, N)$. Then $\left.u\right|_{\left|X^{k}\right|}$ and $\left.v\right|_{\left|X^{k}\right|}$ can be identified to elements in $C^{0}\left(X^{k}, N\right)$. Assume that $\left.\left.u\right|_{\left|X^{k}\right|} \sim_{C^{0}\left(X^{k}, N\right)} v\right|_{\left|X^{k}\right|}$. Then there exists $f \in \mathcal{W}^{s, p}(X, N) \cap C^{0}(X, N)$ such that $u \sim_{\mathcal{W}^{s, p}(X, N)} f$ and $\left.f\right|_{\left|X^{k}\right|}=\left.v\right|_{\left|X^{k}\right|}$.

Proof: First, we claim that we may assume that $u \in C^{0}(X, N)$. Indeed, if $s p>k+1$, then this is a consequence of Sobolev's embeddings. If $s p=$ $k+1$, then Lemma 15 applied to each $\Delta \in X \backslash X^{k}$ shows that there exists $u_{1} \in \mathcal{W}^{s, p}(X, N) \cap C^{0}(X, N)$ such that $\left.u_{1}\right|_{\left|X^{k}\right|}=\left.u\right|_{\left|X^{k}\right|}$ and $u_{1} \sim_{\mathcal{W}^{s, p}(X, N)} u$.

There exists $H_{0} \in C^{0}\left([0,1] \times X^{k}, N\right)$ such that $H_{0}(0, \cdot)=\left.u\right|_{\left|X^{k}\right|}$ and $H_{0}(1, \cdot)=\left.v\right|_{\left|X^{k}\right|}$. Using Lemma 18, there exists

$$
H_{1} \in \mathcal{W}^{s, p}\left([0,1] \times X^{k}, N\right) \cap C^{0}\left([0,1] \times X^{k}, N\right)
$$

such that $H_{1}(0, \cdot)=H_{0}(0, \cdot)$ and $H_{1}(1, \cdot)=H_{0}(1, \cdot)$.
Then extend H_{1} to a map still denoted by H_{1}, defined on $[0,1] \times X^{k} \cup$ $\{0\} \times X$ by setting $H_{1}(0, x)=u(x)$ for $x \in X$. It is clear that H_{1} now belongs to the space

$$
\mathcal{W}^{s, p}\left([0,1] \times X^{k} \cup\{0\} \times X, N\right) \cap C^{0}\left([0,1] \times X^{k} \cup\{0\} \times X, N\right) .
$$

In light of Lemma 19, we may extend H_{1} to a map

$$
H_{2} \in \mathcal{W}^{s, p}([0,1] \times X, N) \cap C^{0}([0,1] \times X, N) .
$$

Finally, using Lemma 20 , there exists $H_{3} \in C^{0}\left([0,1], \mathcal{W}^{s, p}(X, N)\right)$ such that $H_{3}(0)=H_{2}(0, \cdot)=u$ and $H_{3}(1)=H_{2}(1, \cdot)$. We have $\left.H_{2}(1, \cdot)\right|_{\left|X^{k}\right|}=\left.v\right|_{\left|X^{k}\right|}$. We can set $f:=H_{3}(1)$.

8 Proof of Theorem 4

Lemma 21 There exists $\eta>0$ such that for any $u, v \in W^{s, p}(M, N)$ satisfying $\|u-v\|_{W^{s, p}\left(M, \mathbb{R}^{l}\right)}<\eta$, we have u is $[s p]-1$ homotopic to v.

Proof: Fix a smooth triangulation of M, say $h: K \rightarrow M$. We may find a Borel set $E_{1} \subset B_{\epsilon_{M}}^{a}$ such that $\mathcal{H}^{a}\left(E_{1}\right)=0$ and for any $\xi \in B_{\epsilon_{M}}^{a} \backslash E_{1}$, we have $u \circ h_{\xi}, v \circ h_{\xi} \in \mathcal{W}^{s, p}(K, N)$ and

$$
\left[\left.u \circ h_{\xi}\right|_{\left|K^{[s p]}-1\right|}\right]=u_{\sharp, s, p}(h),\left[\left.v \circ h_{\xi}\right|_{\left|K^{[s p]}-1\right|}\right]=v_{\sharp, s, p}(h) .
$$

For any $\Delta \in K$, we have (see Lemma 14)

$$
f_{B_{\epsilon_{M}}^{a}} d \mathcal{H}^{a}(\xi)\left\|u \circ h_{\xi}-v \circ h_{\xi}\right\|_{W^{s, p}\left(\Delta, \mathbb{R}^{l}\right)}^{p} \leq C\|u-v\|_{W^{s, p}\left(M, \mathbb{R}^{l}\right)}^{p}
$$

This implies:

$$
\mathcal{H}^{a}\left(\left\{\xi \in B_{\epsilon_{M}}^{a}:\left\|u \circ h_{\xi}-v \circ h_{\xi}\right\|_{W^{s, p}\left(\Delta, \mathbb{R}^{l}\right)}^{p} \geq r\right\}\right) \leq C \frac{\epsilon_{M}^{a}\|u-v\|_{W^{s, p}\left(M, \mathbb{R}^{l}\right)}^{p}}{r}
$$

Hence, we may find a Borel set $E_{2} \subset B_{\epsilon_{M}}^{a}$ such that $\mathcal{H}^{a}\left(E_{2}\right)>0$ and for any $\xi \in E_{2}$, we have:
(i) $u \circ h_{\xi}, v \circ h_{\xi} \in \mathcal{W}^{s, p}(K, N)$
(ii) For any $\Delta \in K$, we have

$$
\left\|u \circ h_{\xi}-v \circ h_{\xi}\right\|_{W^{s, p}\left(\Delta, \mathbb{R}^{l}\right)}^{p} \leq C\|u-v\|_{W^{s, p}\left(M, \mathbb{R}^{l}\right)^{2}}^{p}
$$

Hence, for any $\Delta \in K^{[s p-1]}$, we have:

$$
\begin{aligned}
\left\|u \circ h_{\xi}-v \circ h_{\xi}\right\|_{L^{\infty}(\Delta)} & \leq C\left\|u \circ h_{\xi}-v \circ h_{\xi}\right\|_{W^{s, p}}\left(\Delta, \mathbb{R}^{l}\right) \\
& \leq C\|u-v\|_{W^{s, p}\left(M, \mathbb{R}^{l}\right)} .
\end{aligned}
$$

If $\|u-v\|_{W^{s, p}\left(M, \mathbb{R}^{l}\right)} \leq \eta:=\epsilon_{N} / C$, then the continuous map

$$
H(t, x):=\Pi_{N}\left((1-t) u \circ h_{\xi}(x)+t v \circ h_{\xi}(x)\right)
$$

is well defined. This shows that u is $[s p]-1$ homotopic to v.

Lemma 21 will allow us to prove one implication of Theorem 2. For the converse of this implication, we will need the two following propositions.

Proposition 3 Assume that $1<s p<d$ and that f is a continuous path in $\tilde{\mathcal{W}}^{s, p}(\partial \Delta, N)$, where Δ is a d dimensional rectilinear cell containing 0. Define $\tilde{f}(t)(x)=f(t)(x /|x|)$ for $0 \leq t \leq 1$ and $x \in \Delta$. (Here, $|\cdot|$ denotes the Minkowski functional of Δ with respect to 0). Then \tilde{f} is a continuous path in $W^{s, p}(\Delta, N)$.

Proof: In light of the proof of Proposition 1, Lemma 1 and (5), the proposition follows from

$$
\|\tilde{f}(t)-\tilde{f}(s)\|_{W^{s, p}(\Delta)}=\| f\left(\widetilde{t)-f}(s)\left\|_{W^{s, p}(\Delta)} \leq C\right\| f(t)-f(s) \|_{\tilde{\mathcal{N}}^{s, p}(\partial \Delta)}\right.
$$

Proposition 4 Consider a d dimensional rectilinear cell Δ containing 0. Assume that $1<s p<d$. Let $u, v \in W^{s, p}(\Delta, N)$ be such that $\left.\operatorname{tr} u\right|_{\partial \Delta},\left.\operatorname{tr} v\right|_{\partial \Delta} \in$ $\tilde{\mathcal{W}}^{s, p}(\partial \Delta, N)$ and $\left.\left.\operatorname{tr} u\right|_{\partial \Delta} \sim_{\tilde{\mathcal{W}}^{s, p}(\partial \Delta, N)} \operatorname{tr} v\right|_{\partial \Delta}$. Then $u \sim_{W^{s, p}(\Delta, N)} v$.

Proof: There exists $f \in C^{0}\left([0,1], \tilde{\mathcal{W}}^{s, p}(\partial \Delta, N)\right)$ such that $\operatorname{tr} u=f(0), \operatorname{tr} v=$ $f(1)$. Then, Proposition 3 implies the existence of some

$$
\tilde{f} \in C^{0}\left([0,1], W^{s, p}(\Delta, N)\right)
$$

satisfying $\tilde{f}(0)=\tilde{u}, \tilde{f}(1)=\tilde{v}$ with $\tilde{u}(x)=\left.\operatorname{tr} u\right|_{\partial \Delta}(x /|x|)$ and similarly for \tilde{v}. Moreover, Proposition 1 shows that $\tilde{u} \sim_{W^{s, p}(\Delta)} u, \tilde{v} \sim_{W^{s, p}(\Delta)} v$. Finally, $u \sim_{W^{s, p}(\Delta)} v$.

We proceed to prove Theorem 4; that is,
Theorem 7 Let $u, v \in W^{s, p}(M, N)$. Then $u \sim_{s, p} v$ if and only if u is $[s p]-1$ homotopic to v in $W^{s, p}(M, N)$.

Proof: Let $u, v \in W^{s, p}(M, N)$. Assume that $u \sim_{s, p} v$. Then there exists a continuous map $H \in C^{0}\left([0,1], W^{s, p}(M, N)\right)$ such that $H(0, \cdot)=u$ and $H(1, \cdot)=v$.

Let η be the number in Lemma 21. There exists $m \in \mathbb{N}$ such that for any $s, t \in[0,1]$ satisfying $|s-t| \leq 1 / m$, we have:

$$
\|H(s)-H(t)\|_{W^{s, p}\left(M, \mathbb{R}^{l}\right)}<\eta
$$

Then, for $i=0, . ., m-1$, we have $H(i / m)$ is $[s p]-1$ homotopic to $H((i+$ $1) / m)$. This proves that u is $[s p]-1$ homotopic to v.

The converse is very close to [9]. Suppose that we are given two maps $u, v \in W^{s, p}(M, N)$ which are $[s p]-1$ homotopic. For convenience, we note $k=[s p]-1$. Let $h: K \rightarrow M$ be a smooth triangulation of M.

By definition of $[s p]-1$ homotopy, we may find a $\xi \in B_{\epsilon_{M}}^{a}$ such that $u \circ h_{\xi}, v \circ h_{\xi} \in \mathcal{W}^{s, p}(K, N)$ and $\left.\left.u \circ h_{\xi}\right|_{\left|K^{k}\right|} \sim v \circ h_{\xi}\right|_{\left|K^{k}\right|}$ as maps from $\left|K^{k}\right|$ to N. We remark that it is enough to prove that $u \circ h_{\xi}$ and $v \circ h_{\xi}$ are $\tilde{W}^{s, p}(K, N)$ homotopic. Indeed, if this is the case, u and v will be $W^{s, p}\left(h_{\xi}(\Delta), N\right)$ homotopic for each $\Delta \in K$ of dimension m (recall that h_{ξ} is a smooth diffeomorphism from Δ onto $h_{\xi}(\Delta)$). Then, Lemma 11 implies that $u \sim_{W^{s, p}(M, N)} v$.

Step 1: a reduction. We claim that we can assume that $\left.u \circ h_{\xi}\right|_{\left|K^{k}\right|}=$ $\left.v \circ h_{\xi}\right|_{\left|K^{k}\right|}$. Indeed, since $\left.\left.u \circ h_{\xi}\right|_{\left|K^{k}\right|} \sim v \circ h_{\xi}\right|_{\left|K^{k}\right|}$ as maps from $\left|K^{k}\right|$ to N, we may apply Proposition 2 which shows that $\left.u \circ h_{\xi}\right|_{K^{k+1}}$ is $\mathcal{W}^{s, p}\left(K^{k+1}, N\right)$ homotopic to a map $f \in \mathcal{W}^{s, p}\left(K^{k+1}, N\right) \cap C^{0}\left(K^{k+1}, N\right)$ which coincides with v on $\left|K^{k}\right|$. For each $(k+2)$ simplex Δ, f and $\left.\operatorname{tr} u \circ h_{\xi}\right|_{\partial \Delta}=\left.u \circ h_{\xi}\right|_{\partial \Delta}$ belongs to $\mathcal{W}^{s, p}(\partial \Delta)$. We choose the barycenter of Δ as origin and do homogeneous
degree-zero extension from f to get $f_{\Delta} \in W^{s, p}(\Delta, N)$ on Δ. Define f_{Δ} on each such Δ to get $f_{k+2} \in \mathcal{W}^{s, p}\left(K^{k+2}, N\right)$. Proposition 4 shows that $\left.u \circ h_{\xi}\right|_{K^{k+2}}$ is homotopic to f_{k+2} in $\mathcal{W}^{s, p}\left(K^{k+2}, N\right)$. Simply by induction we finish after working with n simplices.

Then, $u \circ h_{\xi}$ is $\mathcal{W}^{s, p}(K, N)$ homotopic to f. This completes the proof of step 1.

Step 2: completion of the proof. We now show that f can be connected to $v \circ h_{\xi}$ by a continuous path in $\tilde{\mathcal{W}}^{s, p}(K, N)$.

Applying Proposition 1 to each $k+1$ simplex $\Delta \in K$, we may assume that $\left.f\right|_{\Delta \backslash B_{\delta}\left(c_{\Delta}\right)}=\left.v \circ h_{\xi}\right|_{\Delta \backslash B_{\delta}\left(c_{\Delta}\right)}$. Here c_{Δ} is the barycenter of Δ and δ is a small number. Note that f is continuous on Δ and that v is continuous on $\Delta \backslash B_{\delta}\left(c_{\Delta}\right)$.

Doing homogeneous degree-zero extension from $\left.v \circ h_{\xi}\right|_{K^{k+1}}$ and $\left.f\right|_{K^{k+1}}$ as we have done above, we may assume that $v \circ h_{\xi}$ and f are homogeneous of degree zero on $\Sigma \in K$ with $\operatorname{dim} \Sigma \geq k+2$. Then, on any $k+2$ simplex $\Sigma \in K$, f is continuous on $\Sigma \backslash\left\{c_{\Sigma}\right\}$ and $v \circ h_{\xi}$ is continuous on $\Sigma \backslash\left\{t z+(1-t) c_{\Sigma}\right.$: $\left.z \in \bar{B}_{\delta}\left(c_{\Delta}\right), t \in[0,1]\right\}$ (here, c_{Σ} is the barycenter of Σ and the center of the homogeneous degree-zero extension on Σ).

Fix a $k+1$ simplex Δ. It must be the face of several $k+2$ simplices, say $\Sigma_{1}, . ., \Sigma_{r}, r \geq 2$. Now, for two small numbers $\delta^{\prime}>\delta$ and $\epsilon>0$, consider $\Omega:=\cup_{i=1}^{r} \Omega_{i}$ where $\Omega_{i} \subset \Sigma_{i}$ is formally equal to $\left(\bar{B}_{2 \delta^{\prime}}\left(c_{\Delta}\right) \cap \Delta\right) \times[0, \epsilon]$, for which the product means that we go in the Σ_{i} in the normal direction by length ϵ. Define

$$
\begin{gathered}
\Omega_{i}^{\prime}:=\left(\bar{B}_{2 \delta^{\prime}}\left(c_{\Delta}\right) \cap \Delta\right) \times\left[0, \frac{1}{2} \epsilon\right], \Omega_{i}^{\prime \prime}:=\left(\bar{B}_{2 \delta^{\prime}}\left(c_{\Delta}\right) \cap \Delta\right) \times[\epsilon / 2, \epsilon], \\
\Omega^{\prime}=\cup_{i=1}^{r} \Omega_{i}^{\prime}, \Omega^{\prime \prime}=\cup_{i=1}^{r} \Omega_{i}^{\prime \prime} .
\end{gathered}
$$

We may choose δ^{\prime} and ϵ such that $\left.f\right|_{\partial \Omega_{i} \cup \partial \Omega_{i}^{\prime \prime}} \in \tilde{\mathcal{W}}^{s, p}\left(\partial \Omega_{i} \cup \partial \Omega_{i}^{\prime \prime}\right)$ and $v \circ$ $h_{\xi} \in \tilde{\mathcal{W}}^{s, p}\left(\partial \Omega_{i}^{\prime}\right)$ (this amounts to Lemma 2 i); note also that the trace compatibility conditions are automatically satisfied for $\delta^{\prime}>\delta$ and $\epsilon>0$ sufficiently small: this follows from the continuity properties of f and $v \circ h_{\xi}$ stated above). This implies that $\left.f\right|_{\partial \Omega} \in \tilde{\mathcal{W}}^{s, p}(\partial \Omega)$ (once again, the trace compatibility conditions are satisfied). If ϵ is taken sufficiently small (this depends only on the geometry of the $k+2$ simplices), we can assume that $v \circ h_{\xi}=f$ on a neighborhood of $\partial \Omega^{\prime} \cap \partial \Omega$ (recall that on K^{k+2}, f and $v \circ h_{\xi}$ are now homogeneous of degree zero).

Now consider a w defined on $\left|K^{k+2}\right|$ by setting

$$
\left.w\right|_{\Omega^{\prime}}=v \circ h_{\xi}{\mid \Omega^{\prime}},\left.w\right|_{\left|K^{k+2}\right| \backslash \Omega}=\left.f\right|_{\left|K^{k+2}\right| \backslash \Omega} .
$$

On each $\Omega_{i}^{\prime \prime}$, we simply do homogeneous degree-zero extension with respect to a point in int $\Omega_{i}^{\prime \prime}$ (here, we use the fact that the map equal to f on
$\partial \Omega_{i}^{\prime \prime} \backslash \partial \Omega_{i}^{\prime}$ and equal to $v \circ h_{\xi}$ on $\partial \Omega_{i}^{\prime \prime} \cap \partial \Omega_{i}^{\prime}=\left(\bar{B}_{2 \delta}\left(c_{\Delta}\right) \cap \Delta\right) \times\{\epsilon / 2\}$ belongs to $\left.\tilde{\mathcal{W}}^{s, p}\left(\partial \Omega_{i}^{\prime \prime}\right)\right)$. Clearly, $w \in \tilde{\mathcal{W}}^{s, p}\left(K^{k+2}, N\right)$.

We may connect w to $\left.f\right|_{\mid K^{k+2 \mid}}$ by a continuous path in $\tilde{\mathcal{W}}^{s, p}\left(K^{k+2}, N\right)$ since for any $1 \leq i \neq j \leq r, \Omega_{i} \cup \Omega_{j}$ is star-shaped with respect to c_{Δ} and we may apply Proposition 1 to w on this set (here, we use the fact that $\left.w\right|_{\partial\left(\Omega_{i} \cup \Omega_{j}\right)}=\left.f\right|_{\partial\left(\Omega_{i} \cup \Omega_{j}\right)}$ belongs to $\left.\tilde{\mathcal{W}}^{s, p}\left(\partial\left(\Omega_{i} \cup \Omega_{j}\right)\right)\right)$.

Define \tilde{w} inductively to be the homogeneous degree-zero extension of w on each higher-dimensional simplex Δ with $\operatorname{dim} \Delta \geq k+3$, from its value on $\partial \Delta$ as described above. Then, one has $\tilde{w} \sim_{\tilde{\mathcal{W}}^{s, p(K, N)}} f$.

Since $\left.\tilde{w}\right|_{\left|K^{k+1}\right|}=\left.v \circ h_{\xi}\right|_{\left|K^{k+1}\right|}$, we have $\tilde{w} \sim_{\tilde{\mathcal{W}}^{s, p}(K, N)} v \circ h_{\xi}$ (by Proposition 4 and Lemma 11). Finally, $v \circ h_{\xi} \sim_{\tilde{\mathcal{W}}^{s, p}(K, N)} u \circ h_{\xi}$. This completes the proof of the theorem.

9 Consequences of Theorem 4

As in [9], Theorem 4 reduces certain problems about Sobolev mappings, which are analytical problems, to pure topology problems. In this section, we enumerate some of these results, which correspond to similar results in [9] (for $\left.W^{1, p}\right)$. We omit their proofs when they are similar to those of [9].

Proposition 5 ([9], Proposition 5.1) Assume that $1 \leq p, s \in(0,1+1 / p)$, $1<s p<m$. For any triangulation of M, say $h: K \rightarrow M$, we set $M^{j}=$ $h\left(\left|K^{j}\right|\right)$ for any j. There is a bijection between the sets $W^{s, p}(M, N) / \sim_{s, p}$ and $C^{0}\left(M^{[s p]}, N\right) / \sim_{M^{[s p]-1}}$. Here for $f, g \in C^{0}\left(M^{[s p]}, N\right), f \sim_{M^{[s p]-1}} g$ means that $\left.f\right|_{M^{[s p]-1}}$ and $\left.g\right|_{M^{[s p]-1}}$ are homotopic in $C^{0}\left(M^{[s p]-1}, N\right)$.

Proof: A way to show this proposition is to introduce the space

$$
X:=\left(C^{0}\left(M^{[s p]}, N\right) \cap \mathcal{W}^{s, p}\left(M^{[s p]}, N\right)\right) / \sim_{M^{[s p]-1}} .
$$

The definition of $\mathcal{W}^{s, p}\left(M^{[s p]}, N\right)$ follows exactly the definition of $\mathcal{W}^{s, p}(K, N)$.
The natural map $G: X \rightarrow C^{0}\left(M^{[s p]}, N\right) / \sim_{M^{[s p]-1}}$ is one-to-one. The surjectivity of G is an easy consequence of Lemma 17 . Indeed, let $u \in$ $C^{0}\left(M^{[s p]}, N\right)$. Then Lemma 17 shows that there exists $v \in C^{0}\left(M^{[s p]}\right) \cap$ $\mathcal{W}^{s, p}\left(M^{[s p]}\right)$ such that $\|u-v\|_{L^{\infty}\left(M^{[s p]}\right)}<\epsilon_{N}$ and $\left\|\Pi_{N}(v)-u\right\|_{L^{\infty}\left(M^{[s p]}\right)}<\epsilon_{N}$. Hence u is continuously connected to $\Pi_{N}(v) \in C^{0}\left(M^{[s p]}, N\right) \cap \mathcal{W}^{s, p}\left(M^{[s p]}, N\right)$ by the map $H(t):=\Pi_{N}\left(t \Pi_{N}(v)+(1-t) u\right)$, so that $G\left(\Pi_{N}(v)\right)=u$.

Thus, there is a bijection between $C^{0}\left(M^{[s p]}, N\right) / \sim_{M^{[s p]-1}}$ and X. It remains to show that there is a bijection between X and $W^{s, p}(M, N) / \sim_{s, p}$.

We define a map from X into $W^{s, p}(M, N) / \sim_{s, p}$ as follows: For any $w \in C^{0}\left(M^{[s p]}, N\right) \cap \mathcal{W}^{s, p}\left(M^{[s p]}, N\right)$, using h to pull w to $K^{[s p]}$, after doing homogeneous degree-zero extension on higher-dimensional cells, we pull it to M by h and get \tilde{w}. Then we send the equivalence class corresponding to
w to the equivalence class corresponding to \tilde{w}. This map is well defined by the proof of Theorem 4.

We proceed to prove that this map is one-to-one. Let $u, v \in C^{0}\left(M^{[s p]}, N\right)$ $\cap \mathcal{W}^{s, p}\left(M^{[s p]}, N\right)$ and \tilde{u}, \tilde{v} their homogeneous degree-zero extension. Assume that $\tilde{u} \sim_{s, p} \tilde{v}$. Then by Theorem 4, $\tilde{u}_{\sharp, s, p}(h)=\tilde{v}_{\sharp, s, p}(h)$. It is easy to see that $\tilde{u}_{\sharp, s, p}(h)=\left[\left.u \circ h\right|_{K^{[s p]-1}}\right]$ and similarly for v. Hence $u \sim_{M^{[s p]-1}} v$; that is, the map is one-to-one.

To prove the surjectivity, let $u \in W^{s, p}(M, N)$. There exists $\xi \in B_{\epsilon_{M}}^{a}$ such that $u \circ h_{\xi} \in \mathcal{W}^{s, p}(K, N)$. By the Sobolev embeddings or Lemma 15 , there exists $f \in C^{0}\left(K^{s p}, N\right) \cap \mathcal{W}^{s, p}\left(K^{[s p]}, N\right)$ such that $\left.f\right|_{\left|K^{[s p]-1}\right|}=u \circ$ $\left.h_{\xi}\right|_{\left|K^{[s p]-1}\right|}$. We extend f by degree-zero homogeneity. We denote by \tilde{f} this extension. The proof of Theorem 4 (in fact, this is exactly 'step 2') shows that $u \circ h_{\xi} \sim_{\tilde{\mathcal{W}}^{s, p}(K, N)} \tilde{f}$. Hence, $u \circ h_{\xi} \circ h^{-1} \sim_{W^{s, p}(M, N)} \tilde{f} \circ h^{-1}$. Since $u \circ h_{\xi} \circ h^{-1} \sim_{W^{s, p}(M, N)} u$, the equivalence class corresponding to $\left.f \circ h^{-1}\right|_{M^{[s p]}}$ is mapped to the equivalence class corresponding to u. That is, the map is onto.

For any $0<s_{1}, s_{2} \leq 1,1 \leq p_{1}, p_{2}$, such that $W^{s_{2}, p_{2}} \subset W^{s_{1}, p_{1}}$, we have a map:

$$
i: W^{s_{2}, p_{2}} / \sim_{s_{2}, p_{2}} \rightarrow W^{s_{1}, p_{1}} / \sim_{s_{1}, p_{1}}
$$

defined in an obvious way. An immediate consequence of the above proposition is the following

Corollary 3 ([9], Corollary 5.1) Assume that $\left[s_{1} p_{1}\right]=\left[s_{2} p_{2}\right]$. Then i is a bijection.

The following corollary implies Theorem 3 b).
Corollary 4 ([9], Corollary 5.2) Assume that $1 \leq p, s \in(0,1+1 / p), 1<$ $s p<\operatorname{dim} M$, and $\pi_{i}(N)=0$ for $[s p] \leq i \leq \operatorname{dim} M$. Then there is a bijection between $C^{0}(M, N) / \sim$ and $W^{s, p}(M, N) / \sim_{s, p}$.

Corollary 5 ([9], Corollary 5.3) Assume that $1 \leq p, s \in(0,1+1 / p), 1<$ $s p<m$. If there exists some $k \in \mathbb{Z}, k \leq[s p]-1$ such that $\pi_{i}(M)=0$ for $1 \leq i \leq k$, and $\pi_{i}(N)=0$ for $k+1 \leq i \leq[s p]-1$, then $W^{s, p}(M, N)$ is path-connected.

This is Theorem 2.
We now turn to the question whether a given Sobolev map in $W^{s, p}(M, N)$ can be connected to a smooth map by a continuous path in $W^{s, p}(M, N)$. It turns out that there is a necessary and sufficient topological condition for this to be true.

Proposition 6 ([9], Proposition 5.2) Assume that $1 \leq p, s \in(0,1+1 / p)$, $1<s p<m, u \in W^{s, p}(M, N)$, and that $h: K \rightarrow M$ is a triangulation. Then,
u can be connected to a smooth map by a continuous path in $W^{s, p}(M, N)$ if and only if $u_{\sharp, s, p}(h)$ is extendible to M with respect to N, that is: for any $f \in C^{0}\left(K^{[s p]-1}, N\right)$ such that $f \in u_{\sharp, s, p}(h), f$ is the restriction of a map in $C^{0}(K, N)$.

Corollary 6 ([9], Corollary 5.4) Assume that $1 \leq p, s \in(0,1+1 / p), 1<$ $s p<m$. Then every map in $W^{s, p}(M, N)$ can be connected by a continuous path in $W^{s, p}(M, N)$ to a smooth map if and only if M satisfies the $[s p]-1$ extension property with respect to N, that is: there exists a CW complex structure $\left(M^{j}\right)_{j \in \mathbb{Z}}$ of M such that every $f \in C^{0}\left(M^{[s p]}, N\right),\left.f\right|_{M^{[s p]-1}}$ has a continuous extension to M.

This is Theorem 5 e).
Proof: Fix a smooth triangulation of M, say $h: K \rightarrow M$. Assume that every map in $W^{s, p}(M, N)$ can be connected continuously to a smooth map. Let $f \in C^{0}\left(M^{[s p]}, N\right)$. Then using Lemma 17, there exists $f_{1} \in$ $C^{0}\left(K^{[s p]}, N\right) \cap \mathcal{W}^{s, p}\left(K^{[s p]}, N\right)$ such that $f_{1} \sim_{C^{0}\left(K^{[s p]}, N\right)} f \circ h$. Let g be the homogeneous degree-zero extension of f_{1} to K. Then $u=g \circ h^{-1} \in W^{s, p}(M, N)$ and $u_{\sharp, s, p}(h)=\left[\left.g\right|_{K^{[s p]-1}}\right]$. Since u can be connected continuously to a smooth map, from Proposition 6 we know that $\left.f_{1}\right|_{\mid K^{[s p]-1 \mid}}$ has a continuous extension to K with respect to N. Hence, $\left.f\right|_{M^{[s p]-1}}$ has a continuous extension to M.

Conversely, assume that M satisfies the ($[s p]-1$) extension property with respect to N. Given any $u \in W^{s, p}(M, N)$, there exists $\xi \in B_{\epsilon_{M}}^{a}$ such that $u \circ h_{\xi} \in \mathcal{W}^{s, p}(K, N)$ and $u_{\sharp, s, p}(h)=\left[\left.u \circ h_{\xi}\right|_{\left.\mid K^{[s p]-1}\right]}\right]$. Using the Sobolev embeddings or Lemma 15 , we may assume that $u \circ h_{\xi} \in C^{0}\left(K^{[s p]}, N\right)$. Hence, by Proposition $6, u$ may be connected continuously to a smooth map.

Acknowledgment The author thanks Petru Mironescu for having introduced him to the subject of this paper and for many helpful remarks.

References

[1] R. A. Adams. Sobolev spaces. Academic Press, New-York-London, 1975. Pure and Applied Mathematics, Vol. 65.
[2] F. Bethuel and F. Demengel. Extensions for Sobolev mappings between manifolds. Calc. Var. Partial Differential Equations, 3(4):475-491, 1995.
[3] H. Brezis. The interplay between analysis and topology in some nonlinear PDE problems. Bull. Amer. Math. Soc. (N.S.), 40(2):179-201, 2003.
[4] H. Brezis and Y.Li. Topology and Sobolev spaces. J. Funct. Anal., 183(2):321-369, 2001.
[5] H. Brezis and P. Mironescu. On some questions of topology for S^{1} - valued fractional Sobolev spaces. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 95(1):121-143, 2001.
[6] H. Brezis and P. Mironescu. Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ., 1(4):387-404, 2001.
[7] H. Brezis and L. Nirenberg. Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.), 1(2):197-263, 1995.
[8] F. Hang and F. Lin. Topology of Sobolev mappings. Math. Res. Lett., 8(3):321-330, 2001.
[9] F. Hang and F. Lin. Topology of Sobolev mappings. II. Acta Math., 191(1):55-107, 2003.
[10] V. Maz'ya and T. Shaposhnikova. An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces. J. Evol. Equ., 2(1):113-125, 2002.
[11] P. Mironescu. Equations elliptiques linéaires et semilinéaires. Lectures available on the web page of the author, 2005.
[12] J. R. Munkres. Elementary differential topology, volume 1961 of Lectures given at Massachussetts Institute of Technology, Fall. Princeton University Press, Princeton, N.J., 1966.
[13] C. Scott. L^{p} theory of differential forms on manifolds. Trans. Amer. Math. Soc., 347(6):2075-2096, 1995.
[14] H. Triebel. Theory of function spaces, volume 78 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1983.
[15] B. White. Mappings that minimize area in their homotopy classes. J. Differential Geometry, 20(2):433-446, 1984.
[16] B. White. Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta Math., 160(1-2):1-17, 1988.

[^0]: *Université Claude Bernard Lyon 1, bousquet@igd.univ-lyon1.fr

