THE EULER EQUATION IN THE MULTIPLE INTEGRALS CALCULUS OF VARIATIONS

PIERRE BOUSQUET

Abstract

For a multiple integrals problem in the calculus of variations, we establish the validity of the Euler equation when the Lagrangian L satisfies a mild growth assumption from below at infinity. We do not assume that the map L is differentiable or convex.

1. Introduction

We consider the following problem (P) in the multiple integrals calculus of variations :

$$
\begin{equation*}
\text { To minimize } \quad I: u \mapsto \int_{\Omega} L(x, u(x), \nabla u(x)) d x \tag{1.1}
\end{equation*}
$$

over the set of those $u \in W_{0}^{1,1}(\Omega)+\varphi$. Here, Ω is a bounded open set in \mathbb{R}^{n} and $\varphi \in W^{1,1}(\Omega)$. The map $L:(x, p, \xi) \in \Omega \times \mathbb{R} \times \mathbb{R}^{n} \mapsto \mathbb{R}^{+}$is measurable with respect to x and locally Lipschitz continuous with respect to (p, ξ). In particular, for any $u \in W^{1,1}(\Omega)$, the map $x \mapsto L(x, u(x), \nabla u(x))$ is measurable and nonnegative on Ω, so that the integral in (1.1) is well defined.

We assume that there exists a solution u_{*} to $(P): u_{*} \in W_{0}^{1,1}(\Omega)+\varphi$, $I\left(u_{*}\right)<\infty$ and u_{*} minimizes I over $W_{0}^{1,1}(\Omega)+\varphi$. The existence of a solution can be established with the direct method in the calculus of variations. It generally requires convexity and coercivity with respect to ξ (see e.g. [14] Theorem 3.4.1). However, it is sometimes possible to prove the existence of a solution when these properties are not satisfied (for nonconvex variational problems, see $[6,17]$ and the references therein).

When L is sufficiently smooth, we say that u_{*} satisfies the Euler equation if for every $\theta \in C_{c}^{\infty}(\Omega)$, we have

$$
\begin{equation*}
\int_{\Omega}\left\langle(\theta(x), \nabla \theta(x)), \nabla_{p, \xi} L\left(x, u_{*}(x), \nabla u_{*}(x)\right)\right\rangle d x=0 \tag{1.2}
\end{equation*}
$$

In writing this, we implicitly require that $\nabla_{p, \xi} L\left(x, u_{*}(x), \nabla u_{*}(x)\right)$ belongs to $L_{l o c}^{1}(\Omega)$. We have denoted by $\langle\cdot, \cdot\rangle$ the standard inner product in $\mathbb{R} \times \mathbb{R}^{n}$.

Even in the one dimensional case $n=1$ and when L is smooth and strictly convex with respect to ξ, it may happen that a minimum does not satisfy the Euler equation. Several examples are presented in [1]. However, when $n=1$, general conditions are now available to ensure the validity of the Euler equation, even when L is neither smooth nor convex, see e.g. [12], chapter 4.

In the multidimensional setting $n>1$, the Euler equation is satisfied by any minimum of (P) when L satisfies growth conditions of polynomial type (see e.g. [14] Theorem 3.4.4). Clarke [10,11] has established the Euler equation when the growth of L is at most exponential. Since L is merely locally Lipschitz continuous, the Euler equation stated in [10] is expressed in terms of the generalized subdifferential ∂L of L with respect to (p, ξ) (the definition of ∂L is detailed in the following section). More precisely, assume that L does not depend on x (in order to simplify the presentation) and that L satisfies the following growth condition: there exists $k>0$ such that for any $(p, \xi) \in \mathbb{R} \times \mathbb{R}^{n}$,

$$
\begin{equation*}
|\partial L(p, \xi)| \leq k(1+|L(p, \xi)|+|(p, \xi)|) \tag{1.3}
\end{equation*}
$$

Then there exists $p \in L^{1}\left(\Omega, \mathbb{R}^{n}\right)$ such that $\operatorname{div} p \in L^{1}(\Omega)$ and

$$
(\operatorname{div} p(x), p(x)) \in \partial L\left(u_{*}(x), \nabla u_{*}(x)\right) \quad \text { a.e. } x \in \Omega
$$

The divergence has to be understood in the distributional sense. When L is C^{1}, then $\partial L\left(u_{*}(x), \nabla u_{*}(x)\right)$ only contains $\nabla L\left(u_{*}(x), \nabla u_{*}(x)\right)$ and the above inclusion coincides with the standard Euler equation (1.2).

In [7], Cellina considers the case when L has the form $L(x, p, \xi)=F(|\xi|)+$ $G(x, p)$ where $F(|\cdot|)$ is convex and differentiable and G is a Caratheodory function which satisfies some growth assumptions of polynomial type with respect to u. Euler equation is then established under a further growth assumption on F, which is more general than the exponential growth. For related results, see also [2, 8, 9, 18].

Very recently, Degiovanni and Marzocchi [15] have obtained the validity of the Euler equation when $L(x, p, \xi)=L(x, \xi)$ does not depend on p, and is C^{1} and convex with respect to ξ. Moreover, φ is required to be in $L_{l o c}^{\infty}(\Omega)$. We emphasize the fact that no growth assumption is needed on F. This result was later generalized in [4] to Lagrangians of the form $F(\xi)+G(x, p)$ with $F C^{1}$ and convex. Here, G must be concave with respect to p and satisfy some growth assumptions of polynomial type.

In this paper, we establish the Euler equation when L is not necessarily convex or C^{1}. Our main assumption requires that L does not decrease too fast at infinity, with respect to (p, ξ). When L is C^{1}, this is implied by the following condition:

$$
\liminf _{\substack{|(p, \xi)| \rightarrow+\infty \\ x \in \Omega}}\left\langle(p, \xi), \frac{\nabla L_{x}(p, \xi)}{\left|\nabla L_{x}(p, \xi)\right|}\right\rangle=+\infty
$$

In contrast to [10] or [7], we do not require any growth assumptions from above on L. In the particular case when $L(x, p, \xi)=F(\xi)+G(x, p)$ and the minimum u_{*} is locally bounded, we prove that the convexity of F alone is a sufficient condition for the validity of the Euler equation (here, G is merely assumed to be locally Lipschitz in p, uniformly with respect to x). Detailed statements of our results are given in the following section.

2. Statement of the main Results

Throughout the paper, we assume that $L:(x, p, \xi) \in \Omega \times \mathbb{R} \times \mathbb{R}^{n} \mapsto$ $L(x, p, \xi) \in \mathbb{R}^{+}$is measurable in x and locally Lipschitz in (p, ξ) uniformly with respect to $x \in \Omega$. More precisely, for any $(p, \xi) \in \mathbb{R} \times \mathbb{R}^{n}$, there exist
$\varepsilon>0, T>0$ such that for any $\left(p_{1}, \xi_{1}\right),\left(p_{2}, \xi_{2}\right) \in B^{n+1}((p, \xi), \varepsilon)$, for a.e. $x \in \Omega$, we have

$$
(H 0) \quad\left|L\left(x, p_{1}, \xi_{1}\right)-L\left(x, p_{2}, \xi_{2}\right)\right| \leq T\left|\left(p_{1}, \xi_{1}\right)-\left(p_{2}, \xi_{2}\right)\right| .
$$

We often write $L_{x}(p, \xi):=L(x, p, \xi)$.
We next define the generalized subdifferential of a locally Lipschitz function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$. For any $a, v \in \mathbb{R}^{m}$, the generalized directional derivative of f at a in the direction v is

$$
f^{0}(a, v):=\limsup _{\substack{b \rightarrow a \\ \lambda \downarrow 0}} \frac{f(b+\lambda v)-f(b)}{\lambda}
$$

where $b \in \mathbb{R}^{m}$ and $\lambda \in(0, \infty)$. It is a consequence of the Hahn-Banach Theorem (see e.g. [13], Chapter 2 for details) that there exists a uniquely defined compact convex subset $\partial f(a) \subset \mathbb{R}^{m}$ such that for any $v \in \mathbb{R}^{m}$,

$$
f^{0}(a, v)=\max _{\zeta \in \partial f(a)}\langle\zeta, v\rangle
$$

The set $\partial f(a)$ is called the generalized subdifferential of f at a.
We require that L does not decrease too fast at infinity. More precisely, we assume that for every $R>0$ there exist a nonnegative summable map $K_{R}^{0} \in L^{1}(\Omega)$ and a constant $K_{R}^{1}>0$ such that for every $(p, \xi) \in \mathbb{R} \times \mathbb{R}^{n}$,

$$
(H 1) \max _{\left|\left(p^{\prime}, \xi^{\prime}\right)\right| \leq R} L_{x}^{0}\left((p, \xi),\left(p^{\prime}-p, \xi^{\prime}-\xi\right)\right) \leq K_{R}^{0}(x)+K_{R}^{1}\left(L_{x}(p, \xi)+|(p, \xi)|\right)
$$

In case when L_{x} is $C^{1}, L_{x}^{0}\left((p, \xi),\left(p^{\prime}-p, \xi^{\prime}-\xi\right)\right)=\left\langle\nabla L_{x}(p, \xi),\left(p^{\prime}-p, \xi^{\prime}-\xi\right)\right\rangle$ and $(H 1)$ is equivalent to

$$
R\left|\nabla L_{x}(p, \xi)\right|-\left\langle\nabla L_{x}(p, \xi),(p, \xi)\right\rangle \leq K_{R}^{0}(x)+K_{R}^{1}\left(L_{x}(p, \xi)+|(p, \xi)|\right)
$$

Property (H1) only depends on the behavior of L when $|(p, \xi)| \rightarrow \infty$. It is substantially weaker than the assumptions needed to establish the Euler equation in the papers quoted in the introduction. In order to clarify this fact, here is a list of sufficient conditions that imply $(H 1)$ (for the sake of clarity, we consider the case of a C^{1} map L that depends only on ξ; a more general statement is given in the last section).
Proposition 2.1. The map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$satisfies $(H 1)$ if one of the following assumptions is satisfied:
i) There exists $S>0$ such that L coincides with a convex map \widetilde{L} : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$outside $B^{n}(0, S)$.
ii) There exists $C>0$ such that for any $|\xi| \leq\left|\xi^{\prime}\right|$, we have

$$
L(\xi) \leq L\left(\xi^{\prime}\right)+C\left|\xi-\xi^{\prime}\right|
$$

iii) There exist $\alpha>0, \beta \in \mathbb{R}$ such that $L(\xi) \geq \alpha|\xi|^{2}+\beta$, and L is semiconvex: there exists $C>0$ such that for every $\xi, \xi^{\prime} \in \mathbb{R}^{n}$, for every $\theta \in(0,1)$, we have

$$
L\left(\theta \xi+(1-\theta) \xi^{\prime}\right) \leq \theta L(\xi)+(1-\theta) L\left(\xi^{\prime}\right)+C \theta(1-\theta)\left|\xi-\xi^{\prime}\right|^{2}
$$

iv) The map L satisfies the following radial growth condition from below:

$$
\liminf _{|\xi| \rightarrow+\infty}\left\langle\xi, \frac{\nabla L(\xi)}{|\nabla L(\xi)|}\right\rangle=+\infty
$$

v) The map L is non decreasing in the following sense $\langle\nabla L(\xi), \xi\rangle \geq 0$ and the growth of L is at most exponential: there exists $K>0$ such that

$$
|\nabla L(\xi)| \leq K(1+L(\xi)+|\xi|) \quad, \quad \xi \in \mathbb{R}^{n} .
$$

Roughly speaking, a C^{1} map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$fails to satisfy (H1) when the quantity $\left\langle\xi, \frac{\nabla L(\xi)}{\nabla L(\xi)\rangle}\right\rangle$ becomes 'too negative' for arbitrarily large values of $|\xi|$. This is for instance the case of $L(\xi)=1+\sin \left(|\xi|^{2}\right)$.

Given a map $u \in W^{1,1}(\Omega)$, we say that $\left.u\right|_{\partial \Omega}$ is bounded if there exists $M>$ 0 such that the map $u^{M}:=\max (-M, \min (u, M))$ belongs to $u+W_{0}^{1,1}(\Omega)$. Observe that

$$
u^{M}(x)=\left\{\begin{array}{l}
M \text { if } u(x)>M, \tag{2.1}\\
u(x) \text { if }|u(x)| \leq M, \\
-M \text { if } u(x)<-M .
\end{array}\right.
$$

When Ω is smooth, $\left.u\right|_{\partial \Omega}$ is bounded if and only if the trace of u belongs to $L^{\infty}(\partial \Omega)$.

We now state our main result :
Theorem 1. If $L: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$satisfies (H1) and $\left.u_{*}\right|_{\partial \Omega}$ is bounded, then there exists $(q, \zeta) \in L_{l o c}^{1}(\Omega) \times L_{l o c}^{1}(\Omega)$ such that

1) for a.e. $x \in \Omega,(q(x), \zeta(x)) \in \partial L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)$,
2) $q u_{*}+\left\langle\zeta, \nabla u_{*}\right\rangle \in L_{l o c}^{1}(\Omega)$,
3) for any $\theta \in C_{c}^{\infty}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} q(x) \theta(x)+\langle\zeta(x), \nabla \theta(x)\rangle d x=0 . \tag{2.2}
\end{equation*}
$$

It is often possible to prove a priori that any minimum of (P) is bounded. This is the case when L is a convex function of ξ, and does not depend either on x or on p. Then any minimum is bounded on Ω provided that $\left.\varphi\right|_{\partial \Omega}$ is bounded. When L has the form $(x, p, \xi) \mapsto F(\xi)+G(x, p)$, certain growth assumptions on G together with the uniform convexity of F guarantee the boundedness of any minimum (see e.g. [19]).

When we know that the minimum u_{*} is (locally) bounded, it is natural to provide separate assumptions regarding the dependence of L with respect to p and ξ. Roughly speaking, we assume in the following statement that $\xi \mapsto L_{(x, p)}(\xi):=L(x, p, \xi)$ does not decrease too fast at infinity, uniformly with respect to (x, p), and that $p \mapsto L_{(x, \xi)}(p):=L(x, p, \xi)$ is locally Lipschitz. More precisely,
Theorem 2. We assume that for every $M>0$, there exists a nonnegative summable map $C_{M}^{0} \in L^{1}(\Omega)$ and a constant $C_{M}^{1}>0$ such that for a.e. $x \in \Omega$, for every $p \in(-M, M)$, for every $\xi \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\left|\partial L_{x, \xi}(p)\right| \leq C_{M}^{0}(x)+C_{M}^{1}\left(L_{x}(p, \xi)+|\xi|\right) . \tag{H2}
\end{equation*}
$$

We also assume that for every $R>0$ there exist a nonnegative summable map $K_{R}^{0} \in L^{1}(\Omega)$ and a constant $K_{R}^{1}>0$ such that for every $p \in(-R, R)$, for every $\xi \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\max _{\left|\xi^{\prime}\right| \leq R} L_{x, p}^{0}\left(\xi, \xi^{\prime}-\xi\right) \leq K_{R}^{0}(x)+K_{R}^{1}\left(L_{x}(p, \xi)+|\xi|\right) . \tag{H3}
\end{equation*}
$$

If $u_{*} \in L_{l o c}^{\infty}(\Omega)$, then there exists $(q, \zeta) \in L_{l o c}^{1}(\Omega) \times L_{l o c}^{1}(\Omega)$ such that

1) for a.e. $x \in \Omega,(q(x), \zeta(x)) \in \partial L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)$,
2) $q u_{*}+\left\langle\zeta, \nabla u_{*}\right\rangle \in L_{l o c}^{1}(\Omega)$,
3) for any $\theta \in C_{c}^{\infty}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} q(x) \theta(x)+\langle\zeta(x), \nabla \theta(x)\rangle d x=0 \tag{2.3}
\end{equation*}
$$

In particular, if L has the form $L(x, p, \xi)=F(\xi)+G(x, p)$ with F convex and G_{x} locally Lipschitz (uniformly with respect to x), L satisfies the assumptions of Theorem 2.

When $n=1$, any minimum is bounded and Theorem 2 applies (Theorem 1 is still valid but less interesting in that setting). In all the counterexamples presented in [1], the $\operatorname{map} x \mapsto \nabla_{p} L\left(x, u_{*}(x), u_{*}^{\prime}(x)\right)$ is not summable on Ω (an interval in that case). In our framework, such a phenomenon is impossible in view of (H2). Actually, in the one-dimensional case, one can establish a generalized form of the Euler equation without $(H 0)$ and $(H 3)$ and under a weaker version of $(H 2)$, the so-called 'generalized Tonelli-Morrey growth condition'. It requires that for every $M>0$, there exist a summable function K^{0} and a constant K^{1} such that for a.e. x, for every $p \in(-M, M)$, for every $\xi \in \mathbb{R}$, for every $(\zeta, \psi) \in \partial L_{x}(p, \xi)$, one has

$$
\frac{|\zeta|}{1+|\psi|} \leq K^{0}(x)+K^{1}\left(L_{x}(p, \xi)+|\xi|\right)
$$

Then by [12] Theorem 4.3.2, a generalized form of the Euler equation holds true.

In view of the one dimensional case, it is thus very plausible that the conclusion of Theorem 2 remains true under a weaker version of $(H 2)$ alone, without any assumption on $\partial L_{x, p}$. Moreover, $(H 0)$ is a quite restrictive assumption regarding the dependence with respect to x. In [15], the dependence with respect to x was controlled by a very mild assumption, but only for lagrangians not depending on p, and which were C^{1} and convex with respect to ξ.

Theorem 1 is proved in the next section while Theorem 2 is proved in section 3. The last section is devoted to the proof of (a more general version of) Proposition 2.1.

3. Proof of Theorem 1

We denote by \mathcal{G} the set of those measurable maps $(q, \zeta): \Omega \rightarrow \mathbb{R} \times \mathbb{R}^{n}$ such that for a.e. $x \in \Omega,(q(x), \zeta(x)) \in \partial L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)$. By the measurable selection theorem ([5], see also [11] Theorem 3.1.1), the set \mathcal{G} is not empty.

We also consider for $R>0$ the set \mathcal{A}_{R} of those $\eta \in W_{0}^{1,1}(\Omega)+u_{*}$ such that for a.e. $x \in \Omega,(\eta(x), \nabla \eta(x))$ belongs to the convex hull

$$
\text { со }\left(\left\{\left(u_{*}(x), \nabla u_{*}(x)\right)\right\} \cup \bar{B}^{n+1}(0, R)\right) .
$$

For $k \geq 0$, we introduce the measurable set

$$
E_{k}:=\left\{x \in \Omega: k \leq\left|\left(u_{*}(x), \nabla u_{*}(x)\right)\right|<k+1\right\} .
$$

As a consequence of ($H 0$), for any $K \geq 0$, there exists $M_{K} \geq 0$ such that for $x \in \cup_{k \leq K} E_{k}$, for any $(q, \zeta) \in \partial L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)$, we have

$$
\begin{equation*}
|(q, \zeta)| \leq M_{K} \tag{3.1}
\end{equation*}
$$

We also consider for $K>0$ the set \mathcal{G}_{K} of those measurable maps (q, ζ) : $\Omega \rightarrow \mathbb{R} \times \mathbb{R}^{n}$ such that

$$
\left\{\begin{array}{l}
(q(x), \zeta(x)) \in \partial L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right), \quad \text { a.e. } x \in \cup_{k \leq K} E_{k}, \\
(q(x), \zeta(x))=(0,0), \quad \text { a.e. } x \in \cup_{k>K} E_{k} .
\end{array}\right.
$$

By the above remark, \mathcal{G}_{K} is weakly* compact in $L^{\infty}(\Omega) \times L^{\infty}(\Omega)^{n}$. The convexity of $\partial L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)$ implies that \mathcal{G}_{K} is convex as well. Moreover,
Lemma 3.1. i) If $\left\{\left(q_{K}, \zeta_{K}\right)\right\}$ is a sequence of measurable maps such that for every $K \geq 0,\left(q_{K}, \zeta_{K}\right) \in \mathcal{G}_{K}$, then there exist $(q, \zeta) \in \mathcal{G}$ and a subsequence $\left\{\left(q_{K_{i}}, \zeta_{K_{i}}\right)\right\}_{i \geq 0}$ such that for any $k \geq 0$,

$$
\left(\left.q_{K_{i}}\right|_{E_{k}}, \zeta_{K_{i}} \mid E_{E_{k}}\right) \text { weakly* converges in } L^{\infty}\left(E_{k}\right) \text { to }\left(\left.q\right|_{E_{k}},\left.\zeta\right|_{E_{k}}\right) .
$$

ii) If $\left\{\left(q^{R}, \zeta^{R}\right)\right\}$ is a sequence in \mathcal{G}, then there exist $(q, \zeta) \in \mathcal{G}$ and a subsequence $\left\{\left(q^{R_{i}}, \zeta^{R_{i}}\right)\right\}_{i \geq 0}$ such that for any $k \geq 0$,

$$
\left(\left.q^{R_{i}}\right|_{E_{k}},\left.\zeta^{R_{i}}\right|_{E_{k}}\right) \text { weakly* converges in } L^{\infty}\left(E_{k}\right) \text { to }\left(\left.q\right|_{E_{k}},\left.\zeta\right|_{E_{k}}\right)
$$

Proof. For any $k \geq 0$, the sequence $\left\{\left(\left.q_{K}\right|_{E_{k}},\left.\zeta_{K}\right|_{E_{k}}\right)\right\}_{K \geq 0}$ is bounded in $L^{\infty}\left(E_{k}\right)$. By a diagonal process, we can thus extract a subsequence $\left\{\left(q_{K_{i}}, \zeta_{K_{i}}\right)\right\}_{i \geq 0}$ such that for any $k \geq 0$, the sequence $\left\{\left(q_{K_{i}}\left|E_{k}, \zeta_{K_{i}}\right| E_{E_{k}}\right)\right\}_{i \geq 0}$ weakly* converges in $L^{\infty}\left(E_{k}\right)$ to some limit that we denote by $\left(q^{k}, \zeta^{k}\right)$. We then define the measurable map $(q, \zeta): \Omega \rightarrow \mathbb{R} \times \mathbb{R}^{n}$ by $\left(\left.q\right|_{E_{k}},\left.\zeta\right|_{E_{k}}\right)=\left(q^{k}, \zeta^{k}\right)$ (observe that $\left\{E_{k}\right\}_{k \geq 0}$ is a partition of Ω up to a negligeable set).
We now prove that $(q, \zeta) \in \mathcal{G}$. We introduce the map $H: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
H(x, r, \gamma):=\max _{(q, \zeta) \in \partial L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)} q r+\langle\zeta, \gamma\rangle \quad, \quad(r, \gamma) \in \mathbb{R} \times \mathbb{R}^{n}, x \in \Omega
$$

We write $H_{x}(r, \gamma)=H(x, r, \gamma)$. The Hahn-Banach theorem implies that for a.e. $x \in \Omega$, we have $(q, \zeta) \in \partial L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)$ if and only if $q r+\langle\zeta, \gamma\rangle \leq$ $H_{x}(r, \gamma)$ for every $(r, \gamma) \in \mathbb{R} \times \mathbb{R}^{n}$.
Fix $(r, \gamma) \in \mathbb{R} \times \mathbb{R}^{n}$ and $K \geq 0$. For any $K_{i} \geq K,\left(q_{K_{i}}, \zeta_{K_{i}}\right) \in \mathcal{G}_{K_{i}}$ so that

$$
q_{K_{i}}(x) r+\left\langle\zeta_{K_{i}}(x), \gamma\right\rangle \leq H_{x}(r, \gamma) \quad \text {, a.e. } x \in \cup_{k \leq K} E_{k} .
$$

Hence, for any measurable subset $A \subset \Omega$, we have

$$
\int_{A \cap\left(\cup_{k \leq K} E_{k}\right)} q_{K_{i}}(x) r+\left\langle\zeta_{K_{i}}(x), \gamma\right\rangle d x \leq \int_{A \cap\left(\cup_{k \leq K} E_{k}\right)} H_{x}(r, \gamma) d x .
$$

By letting $i \rightarrow \infty$, we get

$$
\int_{A \cap\left(\cup_{k \leq K} E_{k}\right)} q(x) r+\langle\zeta(x), \gamma\rangle d x \leq \int_{A \cap\left(\cup_{k \leq K} E_{k}\right)} H_{x}(r, \gamma) d x .
$$

Since A is arbitrary, it then follows that for a.e. $x \in \cup_{k \leq K} E_{k}$,

$$
q(x) r+\langle\zeta(x)), \gamma\rangle \leq H_{x}(r, \gamma)
$$

This implies $(q(x), \zeta(x)) \in \partial L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)$, which completes the proof of i). The proof of ii) is very similar and we omit it.

We proceed to state two consequences of (H1).

Lemma 3.2. For any $R>0$, there exists $\ell_{R} \in L^{1}(\Omega)$ such that for every $\eta \in \mathcal{A}_{R}$, for a.e. $x \in \Omega$,
i) for every $(q, \zeta) \in \mathcal{G}$,

$$
\begin{equation*}
q(x)\left(\eta(x)-u_{*}(x)\right)+\left\langle\zeta(x), \nabla \eta(x)-\nabla u_{*}(x)\right\rangle \leq \ell_{R}(x) \tag{3.2}
\end{equation*}
$$

ii) for every $\lambda \in(0,1 / 2)$, we have

$$
\begin{align*}
\frac{1}{\lambda}\left(L _ { x } \left(u_{*}(x)+\lambda\left(\eta(x)-u_{*}(x)\right), \nabla u_{*}\right.\right. & (x)+\lambda\left(\nabla \eta(x)-\nabla u_{*}(x)\right) \tag{3.3}\\
& \left.-L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)\right) \leq \ell_{R}(x)
\end{align*}
$$

Proof. In order to prove (i), we first write

$$
\begin{aligned}
& q(x)\left(\eta(x)-u_{*}(x)\right)+\left\langle\zeta(x), \nabla \eta(x)-\nabla u_{*}(x)\right\rangle \\
& \quad \leq L_{x}^{0}\left(\left(u_{*}(x), \nabla u_{*}(x)\right),\left(\eta(x)-u_{*}(x), \nabla \eta(x)-\nabla u_{*}(x)\right)\right)
\end{aligned}
$$

Next, we use an equivalent form of (H1) where the maximum on $\bar{B}^{n+1}(0, R)$ in the right hand side of $(H 1)$ is replaced by a maximum on co $\left(\{(p, \xi)\} \cup \bar{B}^{n+1}(0, R)\right)$. This follows from the fact that $L_{x}^{0}((p, \xi), \cdot)$ is positively homogeneous. We thus get

$$
\begin{aligned}
& q(x)\left(\eta(x)-u_{*}(x)\right)+\left\langle\zeta(x), \nabla \eta(x)-\nabla u_{*}(x)\right\rangle \\
& \leq K_{R}^{0}(x)+K_{R}^{1}\left(L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)+\left|\left(u_{*}(x), \nabla u_{*}(x)\right)\right|\right) .
\end{aligned}
$$

The right hand side is summable. We only need to take $\ell_{R}(x) \geq K_{R}^{0}(x)+$ $K_{R}^{1}\left(L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)+\left|\left(u_{*}(x), \nabla u_{*}(x)\right)\right|\right)$ to obtain (3.2).

For (ii), we first prove that there exist a nonnegative summable map $C_{R}^{0} \in$ $L^{1}(\Omega)$ and a constant $C_{R}^{1}>0$ such that for every $(p, \xi) \in \mathbb{R} \times \mathbb{R}^{n}$, for every $\left(p^{\prime}, \xi^{\prime}\right) \in \operatorname{co}\left(\{(p, \xi)\} \cup \bar{B}^{n+1}(0, R)\right)$ and for every $\lambda \in(0,1 / 2)$, we have

$$
\begin{equation*}
\frac{L_{x}\left((p, \xi)+\lambda\left(p^{\prime}-p, \xi^{\prime}-\xi\right)\right)-L_{x}(p, \xi)}{\lambda} \leq C_{R}^{0}(x)+C_{R}^{1}\left(L_{x}(p, \xi)+|(p, \xi)|\right) \tag{3.4}
\end{equation*}
$$

We simplify the notation by writing $\alpha=(p, \xi)$ and $\alpha^{\prime}=\left(p^{\prime}, \xi^{\prime}\right)$. Let $g(\lambda)=$ $L_{x}\left(\alpha+\lambda\left(\alpha^{\prime}-\alpha\right)\right)-L_{x}(\alpha)$. Then (see e.g. [13] Theorem 2.4)

$$
\partial g(\lambda) \subset\left\langle\partial L_{x}\left(\alpha+\lambda\left(\alpha^{\prime}-\alpha\right)\right), \alpha^{\prime}-\alpha\right\rangle
$$

Since g is locally Lipschitz, it is differentiable a.e., and the derivative $g^{\prime}(\lambda)$ then belongs to $\partial g(\lambda)$. This gives
$g^{\prime}(\lambda) \leq L_{x}^{0}\left(\alpha+\lambda\left(\alpha^{\prime}-\alpha\right), \alpha^{\prime}-\alpha\right)=\frac{1}{1-\lambda} L_{x}^{0}\left(\alpha+\lambda\left(\alpha^{\prime}-\alpha\right),(1-\lambda)\left(\alpha^{\prime}-\alpha\right)\right)$.
Since $(1-\lambda)\left(\alpha^{\prime}-\alpha\right)=\alpha^{\prime}-\left(\alpha+\lambda\left(\alpha^{\prime}-\alpha\right)\right)$ and $\alpha^{\prime} \in \operatorname{co}\left(\left\{\alpha+\lambda\left(\alpha^{\prime}-\alpha\right)\right\} \cup \bar{B}^{n+1}(0, R)\right)$, it follows from $(H 1)$ that for a.e. $\lambda \in(0,1 / 2)$

$$
\begin{aligned}
g^{\prime}(\lambda) \leq 2\left(K_{R}^{0}(x)+K_{R}^{1}(\right. & \left.\left.L_{x}\left(\alpha+\lambda\left(\alpha^{\prime}-\alpha\right)\right)+\left|\alpha+\lambda\left(\alpha^{\prime}-\alpha\right)\right|\right)\right) \\
& \leq 2 K_{R}^{1} g(\lambda)+2 K_{R}^{0}(x)+2 K_{R}^{1}\left(L_{x}(\alpha)+|\alpha|+R\right)
\end{aligned}
$$

By a Gronwall type argument, we get

$$
\frac{L_{x}\left(\alpha+\lambda\left(\alpha^{\prime}-\alpha\right)\right)-L_{x}(\alpha)}{\lambda} \leq\left(\frac{K_{R}^{0}(x)}{K_{R}^{1}}+L_{x}(\alpha)+|\alpha|+R\right) \frac{e^{2 K_{R}^{1} \lambda}-1}{\lambda}
$$

Since $\lambda \mapsto \frac{e^{2 K_{R}^{1}}-1}{\lambda}$ is bounded on $(0,1 / 2)$, inequality (3.4) follows for suitable $C_{R}^{0} \in L^{1}(\Omega)$ and $C_{R}^{1}>0$. Hence,

$$
\begin{aligned}
& \frac{1}{\lambda}\left(L_{x}\left(u_{*}(x)+\lambda\left(\eta(x)-u_{*}(x)\right), \nabla u_{*}(x)+\lambda\left(\nabla \eta(x)-\nabla u_{*}(x)\right)\right)\right. \\
&\left.\quad-L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)\right) \\
& \leq C_{R}^{0}(x)+C_{R}^{1}\left(L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)+\left|\left(u_{*}(x), \nabla u_{*}(x)\right)\right|\right)
\end{aligned}
$$

The right hand side is summable, which implies the existence of ℓ_{R}.

By (3.2), the integral $\int_{\Omega} q(x)\left(\eta(x)-u_{*}(x)\right)+\left\langle\zeta(x), \nabla \eta(x)-\nabla u_{*}(x)\right\rangle d x$ is well defined in $[-\infty, \infty)$ for every $(q, \zeta) \in \mathcal{G}$ and for every $\eta \in \mathcal{A}_{R}, R>0$.

As in [10], in order to handle the fact that $\partial L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)$ is not a singleton in general, we use a minimax theorem that we apply to the function

$$
f:((q, \zeta), \eta) \mapsto \int_{\Omega} q\left(\eta-u_{*}\right)+\left\langle\zeta, \nabla \eta-\nabla u_{*}\right\rangle
$$

The map f is continuous on $L^{\infty}(\Omega) \times L^{\infty}(\Omega)^{n} \times W^{1,1}(\Omega)$. Moreover, it is linear (or affine) with respect to q, ζ and η.

Lemma 3.3. For any $R>0, K \geq 0$ and any $\eta \in \mathcal{A}_{R}$, we have

$$
\sup _{(q, \zeta) \in \mathcal{G}_{K}} f((q, \zeta), \eta) \geq \alpha_{K}(R)
$$

where $\alpha_{K}(R):=-\int_{\cup_{k>K} E_{k}} \ell_{R}(x) d x$ and ℓ_{R} is given by Lemma 3.2.
Proof. By the measurable selection theorem,

$$
\sup _{(q, \zeta) \in \mathcal{G}_{K}} f((q, \zeta), \eta)=\int_{\cup_{k \leq K} E_{k}} \max _{(q, \zeta) \in \partial L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)} q\left(\eta-u_{*}\right)+\left\langle\zeta, \nabla \eta-\nabla u_{*}\right\rangle
$$

We introduce the notation

$$
M(x, \lambda)=L_{x}\left(u_{*}+\lambda\left(\eta-u_{*}\right), \nabla u_{*}+\lambda\left(\nabla \eta-\nabla u_{*}\right)\right)-L_{x}\left(u_{*}, \nabla u_{*}\right)
$$

We thus have

$$
\begin{equation*}
\sup _{(q, \zeta) \in \mathcal{G}_{K}} f((q, \zeta), \eta) \geq \int_{\cup_{k \leq K} E_{k}} \limsup _{\lambda \downarrow 0} \frac{1}{\lambda} M(x, \lambda) d x \tag{3.5}
\end{equation*}
$$

In view of (3.3), we can apply Fatou lemma in (3.5):

$$
\begin{equation*}
\sup _{(q, \zeta) \in \mathcal{G}_{K}} f((q, \zeta), \eta) \geq \limsup _{\lambda \downarrow 0} \frac{1}{\lambda} \int_{\cup_{k \leq K} E_{k}} M(x, \lambda) d x \tag{3.6}
\end{equation*}
$$

By minimality of u_{*}, we have

$$
0 \leq \int_{\Omega} M(x, \lambda) d x
$$

We now write

$$
0 \leq \limsup _{\lambda \downarrow 0} \frac{1}{\lambda} \int_{\Omega} \cdots \leq \limsup _{\lambda \downarrow 0} \frac{1}{\lambda} \int_{\cup_{k \leq K} E_{k}} \cdots+\limsup _{\lambda \downarrow 0} \frac{1}{\lambda} \int_{\cup_{k>K} E_{k}} \cdots
$$

By applying (3.6) and (3.3) successively, we get

$$
\begin{aligned}
& \sup _{(q, \zeta) \in \mathcal{G}_{K}} f((q, \zeta), \eta) \geq-\limsup _{\lambda \downarrow 0} \frac{1}{\lambda} \int_{\cup_{k>K} E_{k}} M(x, \lambda) d x \\
& \geq-\underset{\lambda \downarrow 0}{\limsup } \int_{\cup_{k>K} E_{k}} \ell_{R}(x) d x=\int_{\cup_{k>K} E_{k}}-\ell_{R}(x) d x
\end{aligned}
$$

which is the required result.
We next state a version of the Sion-Ky Fan minimax theorem that is convenient for our purpose (see e.g. [16]):

Theorem 3. Let A and B be nonempty convex subsets of two locally convex topological vector spaces, and let A be compact. Suppose that $f: A \times B \rightarrow \mathbb{R}$ is such that for each $a \in A, f(a, \cdot)$ is convex, and for each $b \in B, f(\cdot, b)$ is upper semicontinuous and concave. Then, if the quantity

$$
\beta=\inf _{b \in B} \sup _{a \in A} f(a, b)
$$

is finite, we have $\beta=\sup _{a \in A} \inf _{b \in B} f(a, b)$ and there exists an element $a \in A$ such that $\inf _{b \in B} f(a, b)=\beta$.

We shall apply this result with the map f on $A=\mathcal{G}_{K}$ (which is a nonempty compact convex subset of $L^{\infty}(\Omega)^{n+1}$ endowed with the weak * topology), $B=\mathcal{A}_{R}$ (which is a nonempty convex subset of $\left.W^{1,1}(\Omega)\right)$.

Lemma 3.4. There exists $(q, \zeta) \in \mathcal{G}$ such that for every $\eta \in \cup_{R>0} \mathcal{A}_{R}$, we have

$$
\int_{\Omega} q\left(\eta-u_{*}\right)+\left\langle\zeta, \nabla \eta-\nabla u_{*}\right\rangle \geq 0
$$

Proof. Fix $R>0$. In view of Lemma 3.3 and by the Sion-Ky Fan minimax theorem, for any $K \geq 1$, there exists $\left(q_{K}, \zeta_{K}\right) \in \mathcal{G}_{K}$ such that for every $\eta \in \mathcal{A}_{R}$, we have

$$
\begin{equation*}
\int_{\Omega} q_{K}\left(\eta-u_{*}\right)+\left\langle\zeta_{K}, \nabla \eta-\nabla u_{*}\right\rangle \geq \alpha_{K}(R) \tag{3.7}
\end{equation*}
$$

By Lemma 3.1 i), there exist $(q, \zeta) \in \mathcal{G}$ (which depends on R) and a subsequence (we do not relabel) such that for any $k \geq 0,\left\{\left(\left.q_{K}\right|_{E_{k}},\left.\zeta_{K}\right|_{E_{k}}\right)\right\}_{K \geq 0}$ weakly* converges to $\left(\left.q\right|_{E_{k}},\left.\zeta\right|_{E_{k}}\right)$ in $L^{\infty}\left(E_{k}\right)$. We claim that for every $K \geq 0$, for every $\bar{R} \leq R$ and for every $\eta \in \mathcal{A}_{\bar{R}}$, we have

$$
\begin{equation*}
\int_{\cup_{k \leq K} E_{k}} q\left(\eta-u_{*}\right)+\left\langle\zeta, \nabla \eta-\nabla u_{*}\right\rangle \geq \alpha_{K}(\bar{R}) . \tag{3.8}
\end{equation*}
$$

Indeed,
$\int_{\cup_{k \leq K} E_{k}} q\left(\eta-u_{*}\right)+\left\langle\zeta, \nabla \eta-\nabla u_{*}\right\rangle=\lim _{L \rightarrow+\infty} \int_{\cup_{k \leq K} E_{k}} q_{L}\left(\eta-u_{*}\right)+\left\langle\zeta_{L}, \nabla \eta-\nabla u_{*}\right\rangle$.

For any $L \geq K$,

$$
\int_{\bigcup_{k \leq K} E_{k}} q_{L}\left(\eta-u_{*}\right)+\left\langle\zeta_{L}, \nabla \eta-\nabla u_{*}\right\rangle=\int_{\Omega} \cdots-\int_{\cup_{k>K} E_{k}} \cdots
$$

By (3.7), the first term in the right hand side is not lower than $\alpha_{L}(R)$. By using (3.2) with $\left(q_{L}, \zeta_{L}\right)$ in the second term, we get

$$
\begin{aligned}
\int_{\cup_{k \leq K} E_{k}} q_{L}\left(\eta-u_{*}\right)+\left\langle\zeta_{L}, \nabla\right. & \left.\eta-\nabla u_{*}\right\rangle \\
& \geq \alpha_{L}(R)-\int_{\cup_{k>K} E_{k}} \ell_{\bar{R}}=\alpha_{L}(R)+\alpha_{K}(\bar{R}) .
\end{aligned}
$$

Since $\lim _{L \rightarrow+\infty} \alpha_{L}(R)=0$, (3.8) follows at once.
In order to emphasize the dependence of (q, ζ) with respect to R, we denote it by $\left(q^{R}, \zeta^{R}\right)$. By Lemma 3.1 ii), there exist $(q, \zeta) \in \mathcal{G}$ and a subsequence (we do not relabel) such that for any $k \geq 0,\left\{\left(\left.q^{R}\right|_{E_{k}},\left.\zeta^{R}\right|_{E_{k}}\right)\right\}_{R}$ weakly* converges to $\left(\left.q\right|_{E_{k}},\left.\zeta\right|_{E_{k}}\right)$ in $L^{\infty}\left(E_{k}\right)$. As a consequence of (3.8), for every $K \geq 0, \bar{R}>0$ and $R \geq \bar{R}>0$, we have

$$
\int_{\bigcup_{k \leq K} E_{k}} q^{R}\left(\eta-u_{*}\right)+\left\langle\zeta^{R}, \nabla \eta-\nabla u_{*}\right\rangle \geq \alpha_{K}(\bar{R}) \quad, \eta \in \mathcal{A}_{\bar{R}} .
$$

We then let $R \rightarrow \infty$ to get

$$
\begin{equation*}
\int_{\bigcup_{k \leq K} E_{k}} q\left(\eta-u_{*}\right)+\left\langle\zeta, \nabla \eta-\nabla u_{*}\right\rangle \geq \alpha_{K}(\bar{R}) . \tag{3.9}
\end{equation*}
$$

Since by (3.2), $q\left(\eta-u_{*}\right)+\left\langle\zeta, \nabla \eta-\nabla u_{*}\right\rangle \leq \ell_{\bar{R}}$, we can apply Fatou Lemma when $K \rightarrow+\infty$. This gives

$$
\begin{equation*}
\int_{\Omega} q\left(\eta-u_{*}\right)+\left\langle\zeta, \nabla \eta-\nabla u_{*}\right\rangle \geq \limsup _{K \rightarrow \infty} \alpha_{K}(\bar{R})=0 \tag{3.10}
\end{equation*}
$$

This completes the proof of Lemma 3.4.

We now complete the proof of Theorem 1 with the following proposition
Proposition 3.5. Let $u_{*} \in W^{1,1}(\Omega)$ such that $\left.u_{*}\right|_{\partial \Omega}$ is bounded. Assume that there exists $(q, \zeta) \in \mathcal{G}$ such that for every $\eta \in \cup_{R>0} \mathcal{A}_{R}$,

$$
\begin{equation*}
0 \leq \int_{\Omega} q\left(\eta-u_{*}\right)+\left\langle\zeta, \nabla \eta-\nabla u_{*}\right\rangle \tag{3.11}
\end{equation*}
$$

Then
i) $q \in L_{l o c}^{1}(\Omega)$ and $\zeta \in L_{l o c}^{1}(\Omega)$,
ii) $q u_{*}+\left\langle\zeta, \nabla u_{*}\right\rangle \in L_{l o c}^{1}(\Omega)$,
iii) for any $\theta \in C_{c}^{\infty}(\Omega)$, we have

$$
\int_{\Omega} q \theta+\langle\zeta, \nabla \theta\rangle=0 .
$$

Proof. The proof is reminiscent of the proof of [15] Theorem 2.4. The key observation is that for every $R>0$, for every $\eta \in \mathcal{A}_{R}$, (3.11) holds true as well as

$$
q(x)\left(\eta(x)-u_{*}(x)\right)+\left\langle\zeta(x), \nabla \eta(x)-\nabla u_{*}(x)\right\rangle \leq \ell_{R}(x) \quad, \quad \text { a.e. } x \in \Omega .
$$

It then follows that the map $q\left(\eta-u_{*}\right)+\left\langle\zeta, \nabla \eta-\nabla u_{*}\right\rangle$ belongs to $L^{1}(\Omega)$.
We fix $M>0$ such that the map u_{*}^{M} defined by (2.1) belongs to $u_{*}+$ $W_{0}^{1,1}(\Omega)$.

Let Ω_{0} be an open subset of Ω such that $\overline{\Omega_{0}} \subset \Omega$. Let $\theta_{0} \in C_{c}^{\infty}(\Omega)$ such that $\theta_{0}=1$ on Ω_{0}. For $t \geq 1$, we then define the map $\eta_{t}:=\max \left(u_{*}^{M}, t M\left(2 \theta_{0}-1\right)\right)$. The map η_{t} belongs to \mathcal{A}_{R} for some $R>0$. Hence, $q\left(\eta_{t}-u_{*}\right)+\left\langle\zeta, \nabla \eta_{t}-\right.$ $\left.\nabla u_{*}\right\rangle \in L^{1}(\Omega)$. Since $\eta_{t}=t M \geq u_{*}^{M}$ on Ω_{0}, this implies $q\left(t M-u_{*}\right)+$ $\left\langle\zeta,-\nabla u_{*}\right\rangle \in L^{1}\left(\Omega_{0}\right)$. In particular, this property is true for $t=1$ and $t=2$. Hence, $q \in L^{1}\left(\Omega_{0}\right)$ and thus $q \in L_{l o c}^{1}(\Omega)$. In turn, this implies that $q u_{*}+$ $\left\langle\zeta, \nabla u_{*}\right\rangle \in L^{1}\left(\Omega_{0}\right)$. This completes the proof of ii). Moreover, by writing for any $\eta \in \mathcal{A}_{R}$,

$$
q \eta+\langle\zeta, \nabla \eta\rangle=q\left(\eta-u_{*}\right)+\left\langle\zeta, \nabla \eta-\nabla u_{*}\right\rangle+q u_{*}+\left\langle\zeta, \nabla u_{*}\right\rangle,
$$

we have proved that $q \eta+\langle\zeta, \nabla \eta\rangle \in L_{l o c}^{1}(\Omega)$.
Let $c>0$ be such that $\Omega \subset(-c, c)^{n}$. We write $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right)$. We define $\eta:=\max \left(u_{*}^{M}, M\left(2 \theta_{0}-1\right)\left(x_{1}+c+1\right)\right)$. Then $\eta \in \mathcal{A}_{R}$ for some $R>0$ and $\eta=M\left(x_{1}+c+1\right) \geq u_{*}^{M}$ on Ω_{0}. This implies $\nabla \eta=M(1,0, \ldots, 0)$. We know by the previous step that $q \eta+\langle\zeta, \nabla \eta\rangle \in L^{1}\left(\Omega_{0}\right)$. Since $(q \eta) \mid \Omega_{0}=$ $q M\left(x_{1}+c+1\right) \in L^{1}\left(\Omega_{0}\right)$, we get $\zeta_{1} \in L^{1}\left(\Omega_{0}\right)$. Similarly, $\zeta_{i} \in L^{1}\left(\Omega_{0}\right)$, $1 \leq i \leq n$. This completes the proof of i).
We next prove iii). Let $\theta \in C_{c}^{\infty}(\Omega)$. For any $t>0$, we consider $\eta:=$ $\max \left(u_{*}^{M}, t \theta-M\right)$. By inserting η in (3.11) and dividing by t, we obtain

$$
\begin{aligned}
\int_{\left[\theta>\frac{u_{*}^{M}+M}{t}\right]} q\left(\theta-\frac{1}{t}(M\right. & \left.\left.+u_{*}\right)\right)+\left\langle\zeta, \nabla \theta-\frac{1}{t} \nabla u_{*}\right\rangle \\
& \geq \frac{-1}{t} \int_{\left[\theta \leq \frac{u_{*}^{M}+M}{t}\right]} q\left(u_{*}^{M}-u_{*}\right)+\left\langle\zeta, \nabla u_{*}^{M}-\nabla u_{*}\right\rangle .
\end{aligned}
$$

Since $u_{*}^{M} \in \cup_{R>0} \mathcal{A}_{R}$, the map $q\left(u_{*}^{M}-u_{*}\right)+\left\langle\zeta, \nabla u_{*}^{M}-\nabla u_{*}\right\rangle$ belongs to $L^{1}(\Omega)$. Hence the right hand side goes to 0 when $t \rightarrow+\infty$.

For any $t>0,\left[\theta>\frac{u_{*}^{M}+M}{t}\right]$ is a subset of supp θ. Since the maps q, ζ and $q u_{*}+\left\langle\zeta, \nabla u_{*}\right\rangle$ belong to $L_{l o c}^{1}(\Omega)$, we can apply the dominated convergence theorem in the left hand side to get

$$
\int_{[\theta \geq 0]} q \theta+\langle\zeta, \nabla \theta\rangle \geq 0 .
$$

We now insert $\eta:=\min \left(u_{*}^{M}, t \theta+M\right)$ to obtain

$$
\int_{[\theta \leq 0]} q \theta+\langle\zeta, \nabla \theta\rangle \geq 0 .
$$

This gives

$$
\int_{\Omega} q \theta+\langle\zeta, \nabla \theta\rangle \geq 0
$$

Since the same inequality is true with $-\theta$ instead of θ, this completes the proof of iii).

4. Proof of Theorem 2

We only indicate the major changes with respect to the proof of Theorem 1.

Proof. Let $\left\{\Omega_{i}\right\}_{i \geq 0}$ be an increasing sequence of open subsets compactly contained in Ω, such that $\Omega:=\cup_{i \geq 0} \Omega_{i}$. For each $i \geq 0, u_{*} \mid \Omega_{i}$ minimizes $u \mapsto \int_{\Omega} L_{x}(u, \nabla u)$ on $\left.u_{*}\right|_{\Omega_{i}}+W_{0}^{1,1}\left(\Omega_{i}\right)$. Moreover, $u_{*} \mid \Omega_{i} \in L^{\infty}\left(\Omega_{i}\right)$.

We keep the notation introduced in the proof of Theorem 1. Lemma 3.1 remains true with the same proof. Lemma 3.2 has the following analogue:

Lemma 4.1. For any $R>0$, there exists $\ell_{R} \in L^{1}(\Omega)$ such that for every $\eta \in \mathcal{A}_{R}$, for a.e. $x \in \Omega$ satisfying $\left|u_{*}(x)\right| \leq R$, (3.2) and (3.3) hold true.

Proof. Let $(p, \xi) \in \mathbb{R} \times \mathbb{R}^{n},(r, \gamma) \in \mathbb{R} \times \mathbb{R}^{n}$ and $\lambda \in(0,1 / 2)$. Then for a.e. $x \in \Omega$,

$$
\begin{align*}
& \frac{L_{x}((p, \xi)+\lambda(r-p, \gamma-\xi))-L_{x}(p, \xi)}{\lambda} \tag{4.1}\\
& \quad=\frac{L_{x}((p, \xi)+\lambda(r-p, \gamma-\xi))-L_{x}(p+\lambda(r-p), \xi)}{\lambda} \\
& \quad+\frac{L_{x}(p+\lambda(r-p), \xi)-L_{x}(p, \xi)}{\lambda} .
\end{align*}
$$

Let $R>0$. Let $|p|,|r| \leq R$ and $\gamma \in \operatorname{co}\left(\{\xi\} \cup \bar{B}^{n}(0, R)\right)$. The assumption (H2) in conjunction with a Gronwall type argument applied to the map $g(\lambda)=L_{x, \xi}(p+\lambda(r-p))-L_{x, \xi}(p)$ (as in the proof of Lemma 3.2) imply

$$
\begin{equation*}
\frac{L_{x, \xi}(p+\lambda(r-p))-L_{x, \xi}(p)}{\lambda} \leq \tilde{C}_{R}^{0}(x)+\tilde{C}_{R}^{1}\left(L_{x}(p, \xi)+|\xi|\right) . \tag{4.2}
\end{equation*}
$$

Here $\tilde{C}_{R}^{0} \in L^{1}(\Omega), \tilde{C}_{R}^{1}>0$.
We next estimate the first term in the right hand side of (4.1). For $\lambda, t \in$ $(0,1 / 2)$, we consider

$$
h(t)=L_{x, p+\lambda(r-p)}(\xi+t(\gamma-\xi))-L_{x, p+\lambda(r-p)}(\xi) .
$$

By a now routine technique, we obtain from (H3)

$$
h(t) \leq\left(\frac{K_{R}^{0}(x)}{K_{R}^{1}}+L_{x, p+\lambda(r-p)}(\xi)+|\xi|+R\right)\left(e^{2 K_{R}^{1} t}-1\right) .
$$

In view of (4.2), we thus get

$$
\begin{align*}
& \frac{L_{x}(p+\lambda(r-p), \xi+\lambda(\gamma-\xi))-L_{x}(p+\lambda(r-p), \xi)}{\lambda} \tag{4.3}\\
& \leq \tilde{K}_{R}^{0}(x)+\tilde{K}_{R}^{1}\left(L_{x}(p, \xi)+|\xi|\right),
\end{align*}
$$

with $\tilde{K}_{R}^{0} \in L^{1}(\Omega)$ and $\tilde{K}_{R}^{1}>0$. By (4.1)-(4.3), we have thus proved that for every $|p|,|r| \leq R, \gamma \in \mathrm{co}\left(\{\xi\} \cup \bar{B}^{n}(0, R)\right)$ and for every $\xi \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\frac{L_{x}((p, \xi)+\lambda(r-p, \gamma-\xi))-L_{x}(p, \xi)}{\lambda} \leq T_{R}^{0}(x)+T_{R}^{1}\left(L_{x}(p, \xi)+|\xi|\right), \tag{4.4}
\end{equation*}
$$

where $T_{R}^{j}=\tilde{C}_{R}^{j}+\tilde{K}_{R}^{j}, j=0,1$. For a.e. $x \in \Omega$ such that $\left|u_{*}(x)\right| \leq R$, (4.4) implies (3.3) as well as

$$
\begin{aligned}
L_{x}^{0}\left(u_{*}(x), \nabla u_{*}(x)\right) & \left(\eta(x)-u_{*}(x), \nabla \eta(x)-\nabla u_{*}(x)\right) \\
\leq & T_{R+1}^{0}(x)+T_{R+1}^{1} L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)+T_{R+1}^{1}\left|\nabla u_{*}(x)\right|
\end{aligned}
$$

from which (3.2) follows.
This proves Lemma 4.1.
For any i, u_{*} is bounded on Ω_{i}. Hence, there exists $R_{i}\left(=\left|u_{*}\right|_{L^{\infty}\left(\Omega_{i}\right)}\right)$ such that (3.3) and (3.2) hold on Ω_{i} for every $R \geq R_{i}$.

By using exactly the same arguments as in the proof of Theorem 1, there exists a measurable map $\left(q_{i}, \zeta_{i}\right): \Omega_{i} \rightarrow \mathbb{R} \times \mathbb{R}^{n}$ such that for a.e. $x \in \Omega_{i}$, $\left(q_{i}(x), \zeta_{i}(x)\right) \in \partial L_{x}\left(u_{*}(x), \nabla u_{*}(x)\right)$ and moreover, for every $K \geq 0$, for every $R \geq R_{i}$ and for every $\eta \in \mathcal{A}_{R}$, we have
(4.5) $\int_{\Omega_{i} \cap \cup_{k \leq K} E_{k}} q_{i}\left(\eta-u_{*}\right)+\left\langle\zeta_{i}, \nabla \eta-\nabla u_{*}\right\rangle \geq-\int_{\Omega_{i} \cap \cup_{k>K} E_{k}} \ell_{R} \geq \alpha_{K}(R)$.

We recall that $\alpha_{K}(R)=-\int_{\cup_{k>K} E_{k}} \ell_{R}$ (here, we also use the fact that ℓ_{R} can be assumed nonnegative without loss of generality). We extend $\left(q_{i}, \zeta_{i}\right)$ by 0 on the whole Ω.

As in the proof of Lemma 3.1, there exists $(q, \zeta) \in \mathcal{G}$ and a subsequence of $\left\{\left(q_{i}, \zeta_{i}\right)\right\}_{i}$ (we do not relabel) such that for each $k \geq 0,\left\{\left(q_{i}\left|E_{k}, \zeta_{i}\right| E_{k}\right)\right\}_{i}$ weakly* converges to $\left(\left.q\right|_{E_{k}},\left.\zeta\right|_{E_{k}}\right)$.

We introduce the set $\widetilde{\mathcal{A}}_{R}, R>0$, of those maps in \mathcal{A}_{R} which coincide with u_{*} on a neighborhood of $\partial \Omega$.

Let $R>0$ and $\eta \in \widetilde{\mathcal{A}_{R}}$. For i sufficiently large, say $i \geq i_{0}, \eta=u_{*}$ on $\Omega \backslash \Omega_{i}$. Hence, for any $K \geq 0$ and $i \geq i_{0}$, we have

$$
\int_{\cup_{k \leq K} E_{k}} q_{i}\left(\eta-u_{*}\right)+\left\langle\zeta_{i}, \nabla \eta-\nabla u_{*}\right\rangle \geq \alpha_{K}\left(\max \left(R, R_{i_{0}}\right)\right)
$$

We now let $i \rightarrow+\infty$. This gives

$$
\int_{\cup_{k \leq K} E_{k}} q\left(\eta-u_{*}\right)+\left\langle\zeta, \nabla \eta-\nabla u_{*}\right\rangle \geq \alpha_{K}\left(\max \left(R, R_{i_{0}}\right)\right)
$$

By Lemma 4.1 on $\Omega_{i_{0}}$, the map under the integral sign is not larger than $\ell_{\max \left(R, R_{i_{0}}\right)}$. We can thus apply Fatou Lemma to obtain

$$
\int_{\Omega} q\left(\eta-u_{*}\right)+\left\langle\zeta, \nabla \eta-\nabla u_{*}\right\rangle \geq 0
$$

We now complete the proof of Theorem 2 with the following analogue of Proposition 3.5
Proposition 4.2. Let $u_{*} \in W^{1,1}(\Omega) \cap L_{l o c}^{\infty}(\Omega)$. Assume that there exists $(q, \zeta) \in \mathcal{G}$ such that for every $\eta \in \cup_{R>0} \widetilde{\mathcal{A}_{R}}$,

$$
\begin{equation*}
0 \leq \int_{\Omega} q\left(\eta-u_{*}\right)+\left\langle\zeta, \nabla \eta-\nabla u_{*}\right\rangle \tag{4.6}
\end{equation*}
$$

Then
i) $q \in L_{l o c}^{1}(\Omega)$ and $\zeta \in L_{l o c}^{1}(\Omega)$,
ii) $q u_{*}+\left\langle\zeta, \nabla u_{*}\right\rangle \in L_{l o c}^{1}(\Omega)$,
iii) for any $\theta \in C_{c}^{\infty}(\Omega)$, we have

$$
\int_{\Omega} q \theta+\langle\zeta, \nabla \theta\rangle=0
$$

The proof is very similar to the proof of Proposition 3.5. As a matter of fact, it is exactly the same as the proof of [15] Theorem 2.4. We omit it.

This completes the proof of Theorem 2.

5. Proof of Proposition 2.1

We first state a more general version of Proposition 2.1.
Proposition 5.1. The map $L: \Omega \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$satisfies (H1) if one of the following assumptions is satisfied:
i) There exists $S>0$ and a map $\widetilde{L}: \mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$which is locally bounded, convex with respect to (p, ξ) and such that for a.e. $x \in \Omega$, $\left.L_{x}\right|_{\mathbb{R}^{n+1} \backslash B^{n+1}(0, S)}=\left.\widetilde{L}_{x}\right|_{\mathbb{R}^{n+1} \backslash B^{n+1}(0, S)}$.
ii) There exists $C>0$ such that for any $|(p, \xi)| \leq\left|\left(p^{\prime}, \xi^{\prime}\right)\right|$, for a.e. $x \in \Omega$, we have

$$
L_{x}(p, \xi) \leq L_{x}\left(p^{\prime}, \xi^{\prime}\right)+C\left|(p, \xi)-\left(p^{\prime}, \xi^{\prime}\right)\right|
$$

iii) There exist $\alpha>0, \beta \in \mathbb{R}$ such that $L_{x}(p, \xi) \geq \alpha|(p, \xi)|^{2}+\beta,(x, p, \xi) \in$ $\Omega \times \mathbb{R} \times \mathbb{R}^{n}$, L is bounded on bounded sets and L_{x} is semiconvex: there exists $C>0$ such that for every $(p, \xi),\left(p^{\prime}, \xi^{\prime}\right) \in \mathbb{R}^{n}$, for every $\theta \in(0,1)$, for a.e. $x \in \Omega$, we have

$$
\begin{aligned}
& L_{x}\left(\theta p+(1-\theta) p^{\prime}, \theta \xi+(1-\theta) \xi^{\prime}\right) \\
& \quad \leq \theta L_{x}(p, \xi)+(1-\theta) L_{x}\left(p^{\prime}, \xi^{\prime}\right)+C \theta(1-\theta)\left|(p, \xi)-\left(p^{\prime}, \xi^{\prime}\right)\right|^{2}
\end{aligned}
$$

iv) The map L satisfies

$$
\liminf _{\substack{|(p, \xi)| \rightarrow+\infty \\ x \in \Omega}} \min _{\zeta \in \partial L_{x}(p, \xi)}\left\langle(p, \xi), \frac{\zeta}{|\zeta|}\right\rangle=+\infty
$$

v) The map L_{x} is non decreasing: $L_{x}^{0}((p, \xi),-(p, \xi)) \leq 0$ and the growth of L_{x} is at most exponential: there exists $K^{0} \in L^{1}(\Omega)$ and $K^{1}>0$ such that
$\max _{\zeta \in \partial L_{x}(p, \xi)}|\zeta| \leq K^{0}(x)+K^{1}\left(L_{x}(p, \xi)+|(p, \xi)|\right) \quad, \quad(x, p, \xi) \in \Omega \times \mathbb{R} \times \mathbb{R}^{n}$.
Proposition 2.1 is an easy consequence of the above proposition.
Proof. In order to simplify the notation, we fix $x \in \Omega$, and we introduce for any $a=(p, \xi) \in \mathbb{R} \times \mathbb{R}^{n}$, the map $f(a)=L_{x}(p, \xi)$. Each of the assumptions (i)-(v) will imply the following version of (H1): for every $R>0$, there exist $S_{R}>0$ and $K_{R}^{0}, K_{R}^{1}: \Omega \rightarrow(0, \infty)$ such that for every $a \in \mathbb{R}^{n+1} \backslash \bar{B}^{n+1}\left(0, S_{R}\right)$,

$$
\max _{\left|a^{\prime}\right| \leq R} f^{0}\left(a, a^{\prime}-a\right) \leq K_{R}^{0}+K_{R}^{1}(f(a)+|a|)
$$

In each case, K_{R}^{0} will be a summable function of x and K_{R}^{1} will be (essentially) bounded. Since f is globally Lipschitz on $\bar{B}^{n+1}\left(0, S_{R}\right)$, this will imply (H1).

Case (i). There exists $S>0$ such that $\left.f\right|_{\mathbb{R}^{n+1} \backslash B^{n+1}(0, S)}=\left.\widetilde{f}\right|_{\mathbb{R}^{n+1} \backslash B^{n+1}(0, S)}$, where \tilde{f} is convex on \mathbb{R}^{n+1}. For every $a, a^{\prime} \in \mathbb{R}^{n+1}, \widetilde{f}\left(a^{\prime}\right)-\widetilde{f}(a) \geq\left\langle\xi, a^{\prime}-a\right\rangle$ for any ξ in the convex subdifferential of \tilde{f} at a (which coincides with the generalized subdifferential $\partial \widetilde{f}(a))$. Hence,

$$
\widetilde{f}^{0}\left(a, a^{\prime}-a\right) \leq \widetilde{f}\left(a^{\prime}\right)-\widetilde{f}(a) \leq \widetilde{f}\left(a^{\prime}\right)
$$

This implies that for every $|a|>S$, for every $R>0$,

$$
\max _{\left|a^{\prime}\right| \leq R} f^{0}\left(a, a^{\prime}-a\right) \leq|\widetilde{f}|_{L^{\infty}\left(B^{n+1}(0, R)\right)}
$$

In view of the above discussion, this completes the proof of Proposition 5.1 in Case (i).
Case (ii). We know that there exists $C>0$ such that for any $|a| \leq\left|a^{\prime}\right|$, we have $f(a) \leq f\left(a^{\prime}\right)+C\left|a^{\prime}-a\right|$. Let $R>0$ and $|a|>R$. For any $\left|a^{\prime}\right| \leq R$, for any $(\lambda, b) \in(0, \infty) \times \mathbb{R}^{n}$ sufficiently close to $(0, a)$, one has $\left|b+\lambda\left(a^{\prime}-a\right)\right| \leq|b|$. This implies $f\left(b+\lambda\left(a^{\prime}-a\right)\right) \leq f(b)+C \lambda\left|a^{\prime}-a\right|$ so that

$$
f^{0}\left(a, a^{\prime}-a\right) \leq C\left|a^{\prime}-a\right| \leq C R+C|a| .
$$

Case (ii) follows at once.
Case (iii). Since f is semiconvex, there exists $C>0$ such that for every $a, a^{\prime} \in \mathbb{R}^{n+1}$,

$$
f^{0}\left(a, a^{\prime}-a\right) \leq f\left(a^{\prime}\right)-f(a)+C\left|a^{\prime}-a\right|^{2} \leq f\left(a^{\prime}\right)+2 C\left|a^{\prime}\right|^{2}+2 C|a|^{2} .
$$

Since f is coercive of order 2 , we get

$$
\max _{\left|a^{\prime}\right| \leq R} f^{0}\left(a, a^{\prime}-a\right) \leq K_{R}^{0}+K_{R}^{1} f(a)
$$

This proves Case (iii).
Case (iv). We have

$$
\max _{\left|a^{\prime}\right| \leq R} f^{0}\left(a, a^{\prime}-a\right)=\max _{\left|a^{\prime}\right| \leq R \zeta \in \partial f(a)} \max \left\langle\zeta, a^{\prime}-a\right\rangle \leq \max _{\zeta \in \partial f(a)}|\zeta|\left(R-\left\langle\frac{\zeta}{|\zeta|}, a\right\rangle\right) .
$$

By assumption, for every $R>0$, there exists $S_{R}>0$ such that for every $|a| \geq S_{R}$, for every $\zeta \in \partial f(a)$, we have $\left\langle\frac{\zeta}{|\zeta|}, a\right\rangle \geq R$. This implies $\max _{\left|a^{\prime}\right| \leq R} f^{0}\left(a, a^{\prime}-a\right) \leq 0$; that is, Case (iv).
Case (v). By subadditivity of $f^{0}(a, \cdot)$ and the fact that f is non decreasing, we have

$$
\max _{\left|a^{\prime}\right| \leq R} f^{0}\left(a, a^{\prime}-a\right) \leq \max _{\left|a^{\prime}\right| \leq R} f^{0}\left(a, a^{\prime}\right)+f^{0}(a,-a) \leq \max _{\left|a^{\prime}\right| \leq R} f^{0}\left(a, a^{\prime}\right)
$$

Now, we use the fact that the growth of f is at most exponential to get

$$
\max _{\left|a^{\prime}\right| \leq R} f^{0}\left(a, a^{\prime}-a\right) \leq K_{R}^{0}+K_{R}^{1}(f(a)+|a|)
$$

This proves Case (v).

Acknowledgments

The author would like to thank Francis Clarke for interesting discussions and for his encouragement.

References

[1] J. M. Ball and V. J. Mizel, One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation, Arch. Rational Mech. Anal. 90 (1985), 325-388.
[2] Giovanni Bonfanti, Arrigo Cellina, and Marco Mazzola, The higher integrability and the validity of the Euler-Lagrange equation for solutions to variational problems, SIAM J. Control Optim. 50 (2012), 888-899.
[3] Giovanni Bonfanti and Arrigo Cellina, The validity of the Euler-Lagrange equation, Discrete Contin. Dyn. Syst. 28 (2010), 511-517.
[4] Giovanni Bonfanti and Marco Mazzola, On the validity of the Euler-Lagrange equation in a nonlinear case, Nonlinear Anal. 73 (2010), 266-269.
[5] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin, 1977.
[6] Pietro Celada, Giovanni Cupini, and Marcello Guidorzi, Existence and regularity of minimizers of nonconvex integrals with $p-q$ growth, ESAIM Control Optim. Calc. Var. 13 (2007), 343-358 (electronic).
[7] Arrigo Cellina, On the validity of the Euler-Lagrange equation, J. Differential Equations 171 (2001), 430-442.
[8] Arrigo Cellina and Marco Mazzola, Higher integrability for solutions to variational problems with fast growth, J. Convex Anal. 18 (2011), 173-180.
[9] A. Cellina and M. Mazzola, Necessary conditions for solutions to variational problems, SIAM J. Control Optim. 48 (2009/10), 2977-2983.
[10] Frank H. Clarke, Multiple integrals of Lipschitz functions in the calculus of variations, Proc. Amer. Math. Soc. 64 (1977), 260-264.
[11] F. H. Clarke, Optimization and nonsmooth analysis, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), 1990.
[12] Francis Clarke, Necessary conditions in dynamic optimization, Mem. Amer. Math. Soc. 173 (2005), x+113.
[13] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth analysis and control theory, Graduate Texts in Mathematics, vol. 178, Springer-Verlag, 1998.
[14] Bernard Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences, vol. 78, Springer-Verlag, 1989.
[15] Marco Degiovanni and Marco Marzocchi, On the Euler-Lagrange equation for functionals of the calculus of variations without upper growth conditions, SIAM J. Control Optim. 48 (2009), 2857-2870.
[16] I. Ekeland, Théorie des jeux, Presses Univ. France, Paris, 1975.
[17] Irene Fonseca, Nicola Fusco, and Paolo Marcellini, An existence result for a nonconvex variational problem via regularity, ESAIM Control Optim. Calc. Var. 7 (2002), 69-95 (electronic).
[18] Gary M. Lieberman, On the regularity of the minimizer of a functional with exponential growth, Comment. Math. Univ. Carolin. 33 (1992), 45-49.
[19] Guido Stampacchia, On some regular multiple integral problems in the calculus of variations, Comm. Pure Appl. Math. 16 (1963), 383-421.

Aix-Marseille Université, Laboratoire D'analyse, topologie, probabilités UMR 7353, CMI 39, Rue Frédéric Joliot Curie, 13453 Marseille Cedex 13, France

E-mail address: bousquet@cmi.univ-mrs.fr

