
THE EULER EQUATION IN THE MULTIPLE INTEGRALS
CALCULUS OF VARIATIONS

PIERRE BOUSQUET

Abstract. For a multiple integrals problem in the calculus of vari-
ations, we establish the validity of the Euler equation when the La-
grangian L satisfies a mild growth assumption from below at infinity.
We do not assume that the map L is differentiable or convex.

1. Introduction

We consider the following problem (P ) in the multiple integrals calculus
of variations :

(1.1) To minimize I : u 7→
∫

Ω
L(x, u(x),∇u(x)) dx

over the set of those u ∈ W 1,1
0 (Ω) + ϕ. Here, Ω is a bounded open set

in Rn and ϕ ∈ W 1,1(Ω). The map L : (x, p, ξ) ∈ Ω × R × Rn 7→ R+ is
measurable with respect to x and locally Lipschitz continuous with respect
to (p, ξ). In particular, for any u ∈W 1,1(Ω), the map x 7→ L(x, u(x),∇u(x))
is measurable and nonnegative on Ω, so that the integral in (1.1) is well
defined.

We assume that there exists a solution u∗ to (P ) : u∗ ∈ W 1,1
0 (Ω) + ϕ,

I(u∗) <∞ and u∗ minimizes I over W 1,1
0 (Ω)+ϕ. The existence of a solution

can be established with the direct method in the calculus of variations. It
generally requires convexity and coercivity with respect to ξ (see e.g. [14]
Theorem 3.4.1). However, it is sometimes possible to prove the existence of
a solution when these properties are not satisfied ( for nonconvex variational
problems, see [6, 17] and the references therein).

When L is sufficiently smooth, we say that u∗ satisfies the Euler equation
if for every θ ∈ C∞c (Ω), we have

(1.2)
∫

Ω
〈(θ(x),∇θ(x)),∇p,ξL(x, u∗(x),∇u∗(x))〉 dx = 0.

In writing this, we implicitly require that ∇p,ξL(x, u∗(x),∇u∗(x)) belongs
to L1

loc(Ω). We have denoted by 〈·, ·〉 the standard inner product in R×Rn.
Even in the one dimensional case n = 1 and when L is smooth and strictly

convex with respect to ξ, it may happen that a minimum does not satisfy
the Euler equation. Several examples are presented in [1]. However, when
n = 1, general conditions are now available to ensure the validity of the Euler
equation, even when L is neither smooth nor convex, see e.g. [12], chapter
4.
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In the multidimensional setting n > 1, the Euler equation is satisfied
by any minimum of (P ) when L satisfies growth conditions of polynomial
type (see e.g. [14] Theorem 3.4.4). Clarke [10, 11] has established the Euler
equation when the growth of L is at most exponential. Since L is merely
locally Lipschitz continuous, the Euler equation stated in [10] is expressed
in terms of the generalized subdifferential ∂L of L with respect to (p, ξ) (the
definition of ∂L is detailed in the following section). More precisely, assume
that L does not depend on x (in order to simplify the presentation) and that
L satisfies the following growth condition: there exists k > 0 such that for
any (p, ξ) ∈ R× Rn,

(1.3) |∂L(p, ξ)| ≤ k(1 + |L(p, ξ)|+ |(p, ξ)|).
Then there exists p ∈ L1(Ω,Rn) such that div p ∈ L1(Ω) and

(div p(x), p(x)) ∈ ∂L(u∗(x),∇u∗(x)) a.e. x ∈ Ω.

The divergence has to be understood in the distributional sense. When L is
C1, then ∂L(u∗(x),∇u∗(x)) only contains ∇L(u∗(x),∇u∗(x)) and the above
inclusion coincides with the standard Euler equation (1.2).

In [7], Cellina considers the case when L has the form L(x, p, ξ) = F (|ξ|)+
G(x, p) where F (| · |) is convex and differentiable and G is a Caratheodory
function which satisfies some growth assumptions of polynomial type with
respect to u. Euler equation is then established under a further growth
assumption on F , which is more general than the exponential growth. For
related results, see also [2, 8, 9, 18].

Very recently, Degiovanni and Marzocchi [15] have obtained the validity of
the Euler equation when L(x, p, ξ) = L(x, ξ) does not depend on p, and is C1

and convex with respect to ξ. Moreover, ϕ is required to be in L∞loc(Ω). We
emphasize the fact that no growth assumption is needed on F . This result
was later generalized in [4] to Lagrangians of the form F (ξ) + G(x, p) with
F C1 and convex. Here, G must be concave with respect to p and satisfy
some growth assumptions of polynomial type.

In this paper, we establish the Euler equation when L is not necessarily
convex or C1. Our main assumption requires that L does not decrease too
fast at infinity, with respect to (p, ξ). When L is C1, this is implied by the
following condition:

lim inf
|(p,ξ)|→+∞

x∈Ω

〈(p, ξ), ∇Lx(p, ξ)
|∇Lx(p, ξ)|

〉 = +∞.

In contrast to [10] or [7], we do not require any growth assumptions from
above on L. In the particular case when L(x, p, ξ) = F (ξ) +G(x, p) and the
minimum u∗ is locally bounded, we prove that the convexity of F alone is a
sufficient condition for the validity of the Euler equation (here, G is merely
assumed to be locally Lipschitz in p, uniformly with respect to x). Detailed
statements of our results are given in the following section.

2. Statement of the main results

Throughout the paper, we assume that L : (x, p, ξ) ∈ Ω × R × Rn 7→
L(x, p, ξ) ∈ R+ is measurable in x and locally Lipschitz in (p, ξ) uniformly
with respect to x ∈ Ω. More precisely, for any (p, ξ) ∈ R × Rn, there exist
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ε > 0, T > 0 such that for any (p1, ξ1), (p2, ξ2) ∈ Bn+1((p, ξ), ε), for a.e.
x ∈ Ω, we have

(H0) |L(x, p1, ξ1)− L(x, p2, ξ2)| ≤ T |(p1, ξ1)− (p2, ξ2)|.
We often write Lx(p, ξ) := L(x, p, ξ).

We next define the generalized subdifferential of a locally Lipschitz func-
tion f : Rm → R. For any a, v ∈ Rm, the generalized directional derivative
of f at a in the direction v is

f0(a, v) := lim sup
b→a
λ↓0

f(b+ λv)− f(b)
λ

,

where b ∈ Rm and λ ∈ (0,∞). It is a consequence of the Hahn-Banach
Theorem (see e.g. [13], Chapter 2 for details) that there exists a uniquely
defined compact convex subset ∂f(a) ⊂ Rm such that for any v ∈ Rm,

f0(a, v) = max
ζ∈∂f(a)

〈ζ, v〉.

The set ∂f(a) is called the generalized subdifferential of f at a.
We require that L does not decrease too fast at infinity. More precisely,

we assume that for every R > 0 there exist a nonnegative summable map
K0

R ∈ L1(Ω) and a constant K1
R > 0 such that for every (p, ξ) ∈ R× Rn,

(H1) max
|(p′,ξ′)|≤R

L0
x((p, ξ), (p′ − p, ξ′ − ξ)) ≤ K0

R(x) +K1
R(Lx(p, ξ) + |(p, ξ)|).

In case when Lx is C1, L0
x((p, ξ), (p′−p, ξ′−ξ)) = 〈∇Lx(p, ξ), (p′−p, ξ′−ξ)〉

and (H1) is equivalent to

R|∇Lx(p, ξ)| − 〈∇Lx(p, ξ), (p, ξ)〉 ≤ K0
R(x) +K1

R(Lx(p, ξ) + |(p, ξ)|).
Property (H1) only depends on the behavior of L when |(p, ξ)| → ∞. It

is substantially weaker than the assumptions needed to establish the Euler
equation in the papers quoted in the introduction. In order to clarify this
fact, here is a list of sufficient conditions that imply (H1) (for the sake of
clarity, we consider the case of a C1 map L that depends only on ξ; a more
general statement is given in the last section).

Proposition 2.1. The map L : Rn → R+ satisfies (H1) if one of the fol-
lowing assumptions is satisfied:

i) There exists S > 0 such that L coincides with a convex map L̃ :
Rn → R+ outside Bn(0, S).

ii) There exists C > 0 such that for any |ξ| ≤ |ξ′|, we have

L(ξ) ≤ L(ξ′) + C|ξ − ξ′|.
iii) There exist α > 0, β ∈ R such that L(ξ) ≥ α|ξ|2 + β, and L is

semiconvex: there exists C > 0 such that for every ξ, ξ′ ∈ Rn, for
every θ ∈ (0, 1), we have

L(θξ + (1− θ)ξ′) ≤ θL(ξ) + (1− θ)L(ξ′) + Cθ(1− θ)|ξ − ξ′|2.
iv) The map L satisfies the following radial growth condition from below:

lim inf
|ξ|→+∞

〈ξ, ∇L(ξ)
|∇L(ξ)|

〉 = +∞.
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v) The map L is non decreasing in the following sense 〈∇L(ξ), ξ〉 ≥ 0
and the growth of L is at most exponential: there exists K > 0 such
that

|∇L(ξ)| ≤ K(1 + L(ξ) + |ξ|) , ξ ∈ Rn.

Roughly speaking, a C1 map L : Rn → R+ fails to satisfy (H1) when the
quantity 〈ξ, ∇L(ξ)

|∇L(ξ)|〉 becomes ‘too negative’ for arbitrarily large values of |ξ|.
This is for instance the case of L(ξ) = 1 + sin(|ξ|2).

Given a map u ∈W 1,1(Ω), we say that u|∂Ω is bounded if there existsM >

0 such that the map uM := max(−M,min(u,M)) belongs to u +W 1,1
0 (Ω).

Observe that

(2.1) uM (x) =

 M if u(x) > M,
u(x) if |u(x)| ≤M,
−M if u(x) < −M.

When Ω is smooth, u|∂Ω is bounded if and only if the trace of u belongs to
L∞(∂Ω).

We now state our main result :

Theorem 1. If L : Ω× R× Rn → R+ satisfies (H1) and u∗|∂Ω is bounded,
then there exists (q, ζ) ∈ L1

loc(Ω)× L1
loc(Ω) such that

1) for a.e. x ∈ Ω, (q(x), ζ(x)) ∈ ∂Lx(u∗(x),∇u∗(x)),
2) qu∗ + 〈ζ,∇u∗〉 ∈ L1

loc(Ω),
3) for any θ ∈ C∞c (Ω),

(2.2)
∫

Ω
q(x)θ(x) + 〈ζ(x),∇θ(x)〉 dx = 0.

It is often possible to prove a priori that any minimum of (P ) is bounded.
This is the case when L is a convex function of ξ, and does not depend either
on x or on p. Then any minimum is bounded on Ω provided that ϕ|∂Ω is
bounded. When L has the form (x, p, ξ) 7→ F (ξ) + G(x, p), certain growth
assumptions on G together with the uniform convexity of F guarantee the
boundedness of any minimum (see e.g. [19]).

When we know that the minimum u∗ is (locally) bounded, it is natural
to provide separate assumptions regarding the dependence of L with respect
to p and ξ. Roughly speaking, we assume in the following statement that
ξ 7→ L(x,p)(ξ) := L(x, p, ξ) does not decrease too fast at infinity, uniformly
with respect to (x, p), and that p 7→ L(x,ξ)(p) := L(x, p, ξ) is locally Lipschitz.
More precisely,

Theorem 2. We assume that for every M > 0, there exists a nonnegative
summable map C0

M ∈ L1(Ω) and a constant C1
M > 0 such that for a.e. x ∈ Ω,

for every p ∈ (−M,M), for every ξ ∈ Rn,

(H2) |∂Lx,ξ(p)| ≤ C0
M (x) + C1

M (Lx(p, ξ) + |ξ|).
We also assume that for every R > 0 there exist a nonnegative summable

map K0
R ∈ L1(Ω) and a constant K1

R > 0 such that for every p ∈ (−R,R),
for every ξ ∈ Rn,

(H3) max
|ξ′|≤R

L0
x,p(ξ, ξ

′ − ξ) ≤ K0
R(x) +K1

R(Lx(p, ξ) + |ξ|).
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If u∗ ∈ L∞loc(Ω), then there exists (q, ζ) ∈ L1
loc(Ω)× L1

loc(Ω) such that
1) for a.e. x ∈ Ω, (q(x), ζ(x)) ∈ ∂Lx(u∗(x),∇u∗(x)),
2) qu∗ + 〈ζ,∇u∗〉 ∈ L1

loc(Ω),
3) for any θ ∈ C∞c (Ω),

(2.3)
∫

Ω
q(x)θ(x) + 〈ζ(x),∇θ(x)〉 dx = 0.

In particular, if L has the form L(x, p, ξ) = F (ξ) + G(x, p) with F con-
vex and Gx locally Lipschitz (uniformly with respect to x), L satisfies the
assumptions of Theorem 2.

When n = 1, any minimum is bounded and Theorem 2 applies ( Theorem
1 is still valid but less interesting in that setting). In all the counterexamples
presented in [1], the map x 7→ ∇pL(x, u∗(x), u′∗(x)) is not summable on Ω (an
interval in that case). In our framework, such a phenomenon is impossible
in view of (H2). Actually, in the one-dimensional case, one can establish a
generalized form of the Euler equation without (H0) and (H3) and under
a weaker version of (H2), the so-called ‘generalized Tonelli-Morrey growth
condition’. It requires that for every M > 0, there exist a summable function
K0 and a constant K1 such that for a.e. x, for every p ∈ (−M,M), for every
ξ ∈ R, for every (ζ, ψ) ∈ ∂Lx(p, ξ), one has

|ζ|
1 + |ψ|

≤ K0(x) +K1(Lx(p, ξ) + |ξ|).

Then by [12] Theorem 4.3.2, a generalized form of the Euler equation holds
true.

In view of the one dimensional case, it is thus very plausible that the
conclusion of Theorem 2 remains true under a weaker version of (H2) alone,
without any assumption on ∂Lx,p. Moreover, (H0) is a quite restrictive
assumption regarding the dependence with respect to x. In [15], the depen-
dence with respect to x was controlled by a very mild assumption, but only
for lagrangians not depending on p, and which were C1 and convex with
respect to ξ.

Theorem 1 is proved in the next section while Theorem 2 is proved in
section 3. The last section is devoted to the proof of (a more general version
of) Proposition 2.1.

3. Proof of Theorem 1

We denote by G the set of those measurable maps (q, ζ) : Ω → R×Rn such
that for a.e. x ∈ Ω, (q(x), ζ(x)) ∈ ∂Lx(u∗(x),∇u∗(x)). By the measurable
selection theorem ([5], see also [11] Theorem 3.1.1), the set G is not empty.

We also consider for R > 0 the set AR of those η ∈ W 1,1
0 (Ω) + u∗ such

that for a.e. x ∈ Ω, (η(x),∇η(x)) belongs to the convex hull

co
(
{(u∗(x),∇u∗(x))} ∪B

n+1(0, R)
)
.

For k ≥ 0, we introduce the measurable set

Ek := {x ∈ Ω : k ≤ |(u∗(x),∇u∗(x))| < k + 1}.
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As a consequence of (H0), for any K ≥ 0, there exists MK ≥ 0 such that
for x ∈ ∪k≤KEk, for any (q, ζ) ∈ ∂Lx(u∗(x),∇u∗(x)), we have

(3.1) |(q, ζ)| ≤MK .

We also consider for K > 0 the set GK of those measurable maps (q, ζ) :
Ω → R× Rn such that{

(q(x), ζ(x)) ∈ ∂Lx(u∗(x),∇u∗(x)) , a.e. x ∈ ∪k≤KEk,
(q(x), ζ(x)) = (0, 0) , a.e. x ∈ ∪k>KEk.

By the above remark, GK is weakly* compact in L∞(Ω) × L∞(Ω)n. The
convexity of ∂Lx(u∗(x),∇u∗(x)) implies that GK is convex as well. Moreover,

Lemma 3.1. i) If {(qK , ζK)} is a sequence of measurable maps such
that for every K ≥ 0, (qK , ζK) ∈ GK , then there exist (q, ζ) ∈ G and
a subsequence {(qKi , ζKi)}i≥0 such that for any k ≥ 0,

(qKi |Ek
, ζKi |Ek

) weakly* converges in L∞(Ek) to (q|Ek
, ζ|Ek

).

ii) If {(qR, ζR)} is a sequence in G, then there exist (q, ζ) ∈ G and a
subsequence {(qRi , ζRi)}i≥0 such that for any k ≥ 0,

(qRi |Ek
, ζRi |Ek

) weakly* converges in L∞(Ek) to (q|Ek
, ζ|Ek

).

Proof. For any k ≥ 0, the sequence {(qK |Ek
, ζK |Ek

)}K≥0 is bounded in
L∞(Ek). By a diagonal process, we can thus extract a subsequence {(qKi , ζKi)}i≥0

such that for any k ≥ 0, the sequence {(qKi |Ek
, ζKi |Ek

)}i≥0 weakly* con-
verges in L∞(Ek) to some limit that we denote by (qk, ζk). We then define
the measurable map (q, ζ) : Ω → R× Rn by (q|Ek

, ζ|Ek
) = (qk, ζk) (observe

that {Ek}k≥0 is a partition of Ω up to a negligeable set).
We now prove that (q, ζ) ∈ G. We introduce the map H : Ω×R×Rn → R
H(x, r, γ) := max

(q,ζ)∈∂Lx(u∗(x),∇u∗(x))
qr + 〈ζ, γ〉 , (r, γ) ∈ R× Rn, x ∈ Ω.

We write Hx(r, γ) = H(x, r, γ). The Hahn-Banach theorem implies that for
a.e. x ∈ Ω, we have (q, ζ) ∈ ∂Lx(u∗(x),∇u∗(x)) if and only if qr + 〈ζ, γ〉 ≤
Hx(r, γ) for every (r, γ) ∈ R× Rn.

Fix (r, γ) ∈ R×Rn and K ≥ 0. For any Ki ≥ K, (qKi , ζKi) ∈ GKi so that

qKi(x)r + 〈ζKi(x), γ〉 ≤ Hx(r, γ) , a.e. x ∈ ∪k≤KEk.

Hence, for any measurable subset A ⊂ Ω, we have∫
A∩(∪k≤KEk)

qKi(x)r + 〈ζKi(x), γ〉 dx ≤
∫

A∩(∪k≤KEk)
Hx(r, γ) dx.

By letting i→∞, we get∫
A∩(∪k≤KEk)

q(x)r + 〈ζ(x), γ〉 dx ≤
∫

A∩(∪k≤KEk)
Hx(r, γ) dx.

Since A is arbitrary, it then follows that for a.e. x ∈ ∪k≤KEk,

q(x)r + 〈ζ(x)), γ〉 ≤ Hx(r, γ).

This implies (q(x), ζ(x)) ∈ ∂Lx(u∗(x),∇u∗(x)), which completes the proof
of i). The proof of ii) is very similar and we omit it. �

We proceed to state two consequences of (H1).
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Lemma 3.2. For any R > 0, there exists `R ∈ L1(Ω) such that for every
η ∈ AR, for a.e. x ∈ Ω,

i) for every (q, ζ) ∈ G,

(3.2) q(x)(η(x)− u∗(x)) + 〈ζ(x),∇η(x)−∇u∗(x)〉 ≤ `R(x),

ii) for every λ ∈ (0, 1/2), we have

(3.3)
1
λ

(Lx(u∗(x) + λ(η(x)− u∗(x)),∇u∗(x) + λ(∇η(x)−∇u∗(x))

−Lx(u∗(x),∇u∗(x))) ≤ `R(x).

Proof. In order to prove (i), we first write

q(x)(η(x)− u∗(x)) + 〈ζ(x),∇η(x)−∇u∗(x)〉
≤ L0

x((u∗(x),∇u∗(x)), (η(x)− u∗(x),∇η(x)−∇u∗(x))).

Next, we use an equivalent form of (H1) where the maximum on Bn+1(0, R)
in the right hand side of (H1) is replaced by a maximum on co

(
{(p, ξ)} ∪Bn+1(0, R)

)
.

This follows from the fact that L0
x((p, ξ), ·) is positively homogeneous. We

thus get

q(x)(η(x)− u∗(x)) + 〈ζ(x),∇η(x)−∇u∗(x)〉
≤ K0

R(x) +K1
R(Lx(u∗(x),∇u∗(x)) + |(u∗(x),∇u∗(x))|).

The right hand side is summable. We only need to take `R(x) ≥ K0
R(x) +

K1
R(Lx(u∗(x),∇u∗(x)) + |(u∗(x),∇u∗(x))|) to obtain (3.2).
For (ii), we first prove that there exist a nonnegative summable map C0

R ∈
L1(Ω) and a constant C1

R > 0 such that for every (p, ξ) ∈ R× Rn, for every
(p′, ξ′) ∈ co

(
{(p, ξ)} ∪Bn+1(0, R)

)
and for every λ ∈ (0, 1/2), we have

(3.4)
Lx((p, ξ) + λ(p′ − p, ξ′ − ξ))− Lx(p, ξ)

λ
≤ C0

R(x) + C1
R(Lx(p, ξ) + |(p, ξ)|).

We simplify the notation by writing α = (p, ξ) and α′ = (p′, ξ′). Let g(λ) =
Lx(α+ λ(α′ − α))− Lx(α). Then (see e.g. [13] Theorem 2.4)

∂g(λ) ⊂ 〈∂Lx(α+ λ(α′ − α)), α′ − α〉.

Since g is locally Lipschitz, it is differentiable a.e., and the derivative g′(λ)
then belongs to ∂g(λ). This gives

g′(λ) ≤ L0
x(α+λ(α′−α), α′−α) =

1
1− λ

L0
x(α+λ(α′−α), (1−λ)(α′−α)).

Since (1−λ)(α′−α) = α′−(α+λ(α′−α)) and α′ ∈ co
(
{α+ λ(α′ − α)} ∪Bn+1(0, R)

)
,

it follows from (H1) that for a.e. λ ∈ (0, 1/2)

g′(λ) ≤ 2
(
K0

R(x) +K1
R(Lx(α+ λ(α′ − α)) + |α+ λ(α′ − α)|)

)
≤ 2K1

Rg(λ) + 2K0
R(x) + 2K1

R(Lx(α) + |α|+R).
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By a Gronwall type argument, we get

Lx(α+ λ(α′ − α))− Lx(α)
λ

≤ (
K0

R(x)
K1

R

+ Lx(α) + |α| + R)
e2K1

Rλ − 1
λ

.

Since λ 7→ e2K1
Rλ−1
λ is bounded on (0, 1/2), inequality (3.4) follows for suit-

able C0
R ∈ L1(Ω) and C1

R > 0. Hence,

1
λ

(Lx(u∗(x) + λ(η(x)− u∗(x)),∇u∗(x) + λ(∇η(x)−∇u∗(x)))

−Lx(u∗(x),∇u∗(x)))
≤ C0

R(x) + C1
R(Lx(u∗(x),∇u∗(x)) + |(u∗(x),∇u∗(x))|).

The right hand side is summable, which implies the existence of `R.
�

By (3.2), the integral
∫
Ω q(x)(η(x) − u∗(x)) + 〈ζ(x),∇η(x) −∇u∗(x)〉 dx

is well defined in [−∞,∞) for every (q, ζ) ∈ G and for every η ∈ AR, R > 0.
As in [10], in order to handle the fact that ∂Lx(u∗(x),∇u∗(x)) is not a

singleton in general, we use a minimax theorem that we apply to the function

f : ((q, ζ), η) 7→
∫

Ω
q(η − u∗) + 〈ζ,∇η −∇u∗〉.

The map f is continuous on L∞(Ω) × L∞(Ω)n ×W 1,1(Ω). Moreover, it is
linear (or affine) with respect to q, ζ and η.

Lemma 3.3. For any R > 0,K ≥ 0 and any η ∈ AR, we have

sup
(q,ζ)∈GK

f((q, ζ), η) ≥ αK(R),

where αK(R) := −
∫
∪k>KEk

`R(x) dx and `R is given by Lemma 3.2.

Proof. By the measurable selection theorem,

sup
(q,ζ)∈GK

f((q, ζ), η) =
∫
∪k≤KEk

max
(q,ζ)∈∂Lx(u∗(x),∇u∗(x))

q(η−u∗)+〈ζ,∇η−∇u∗〉.

We introduce the notation

M(x, λ) = Lx(u∗ + λ(η − u∗),∇u∗ + λ(∇η −∇u∗))− Lx(u∗,∇u∗).

We thus have

(3.5) sup
(q,ζ)∈GK

f((q, ζ), η) ≥
∫
∪k≤KEk

lim sup
λ↓0

1
λ
M(x, λ) dx.

In view of (3.3), we can apply Fatou lemma in (3.5):

(3.6) sup
(q,ζ)∈GK

f((q, ζ), η) ≥ lim sup
λ↓0

1
λ

∫
∪k≤KEk

M(x, λ) dx.

By minimality of u∗, we have

0 ≤
∫

Ω
M(x, λ) dx.
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We now write

0 ≤ lim sup
λ↓0

1
λ

∫
Ω
· · · ≤ lim sup

λ↓0

1
λ

∫
∪k≤KEk

· · ·+ lim sup
λ↓0

1
λ

∫
∪k>KEk

· · · .

By applying (3.6) and (3.3) successively, we get

sup
(q,ζ)∈GK

f((q, ζ), η) ≥ − lim sup
λ↓0

1
λ

∫
∪k>KEk

M(x, λ) dx

≥ − lim sup
λ↓0

∫
∪k>KEk

`R(x) dx =
∫
∪k>KEk

−`R(x) dx,

which is the required result. �

We next state a version of the Sion-Ky Fan minimax theorem that is
convenient for our purpose (see e.g. [16]):

Theorem 3. Let A and B be nonempty convex subsets of two locally convex
topological vector spaces, and let A be compact. Suppose that f : A×B → R
is such that for each a ∈ A, f(a, ·) is convex, and for each b ∈ B, f(·, b) is
upper semicontinuous and concave. Then, if the quantity

β = inf
b∈B

sup
a∈A

f(a, b)

is finite, we have β = supa∈A infb∈B f(a, b) and there exists an element a ∈ A
such that infb∈B f(a, b) = β.

We shall apply this result with the map f on A = GK (which is a nonempty
compact convex subset of L∞(Ω)n+1 endowed with the weak * topology),
B = AR (which is a nonempty convex subset of W 1,1(Ω)).

Lemma 3.4. There exists (q, ζ) ∈ G such that for every η ∈ ∪R>0AR, we
have ∫

Ω
q(η − u∗) + 〈ζ,∇η −∇u∗〉 ≥ 0.

Proof. Fix R > 0. In view of Lemma 3.3 and by the Sion-Ky Fan minimax
theorem, for any K ≥ 1, there exists (qK , ζK) ∈ GK such that for every
η ∈ AR, we have

(3.7)
∫

Ω
qK(η − u∗) + 〈ζK ,∇η −∇u∗〉 ≥ αK(R).

By Lemma 3.1 i), there exist (q, ζ) ∈ G (which depends on R) and a sub-
sequence (we do not relabel) such that for any k ≥ 0, {(qK |Ek

, ζK |Ek
)}K≥0

weakly* converges to (q|Ek
, ζ|Ek

) in L∞(Ek). We claim that for every K ≥ 0,
for every R ≤ R and for every η ∈ AR, we have

(3.8)
∫
∪k≤KEk

q(η − u∗) + 〈ζ,∇η −∇u∗〉 ≥ αK(R).

Indeed,∫
∪k≤KEk

q(η−u∗)+〈ζ,∇η−∇u∗〉 = lim
L→+∞

∫
∪k≤KEk

qL(η−u∗)+〈ζL,∇η−∇u∗〉.
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For any L ≥ K,∫
∪k≤KEk

qL(η − u∗) + 〈ζL,∇η −∇u∗〉 =
∫

Ω
· · · −

∫
∪k>KEk

· · · .

By (3.7), the first term in the right hand side is not lower than αL(R). By
using (3.2) with (qL, ζL) in the second term, we get∫

∪k≤KEk

qL(η − u∗) + 〈ζL,∇η −∇u∗〉

≥ αL(R)−
∫
∪k>KEk

`R = αL(R) + αK(R).

Since limL→+∞ αL(R) = 0, (3.8) follows at once.
In order to emphasize the dependence of (q, ζ) with respect to R, we denote

it by (qR, ζR). By Lemma 3.1 ii), there exist (q, ζ) ∈ G and a subsequence (we
do not relabel) such that for any k ≥ 0, {(qR|Ek

, ζR|Ek
)}R weakly* converges

to (q|Ek
, ζ|Ek

) in L∞(Ek). As a consequence of (3.8), for every K ≥ 0, R > 0
and R ≥ R > 0, we have∫

∪k≤KEk

qR(η − u∗) + 〈ζR,∇η −∇u∗〉 ≥ αK(R) , η ∈ AR.

We then let R→∞ to get

(3.9)
∫
∪k≤KEk

q(η − u∗) + 〈ζ,∇η −∇u∗〉 ≥ αK(R).

Since by (3.2), q(η−u∗)+〈ζ,∇η−∇u∗〉 ≤ `R, we can apply Fatou Lemma
when K → +∞. This gives

(3.10)
∫

Ω
q(η − u∗) + 〈ζ,∇η −∇u∗〉 ≥ lim sup

K→∞
αK(R) = 0.

This completes the proof of Lemma 3.4.
�

We now complete the proof of Theorem 1 with the following proposition

Proposition 3.5. Let u∗ ∈ W 1,1(Ω) such that u∗|∂Ω is bounded. Assume
that there exists (q, ζ) ∈ G such that for every η ∈ ∪R>0AR,

(3.11) 0 ≤
∫

Ω
q(η − u∗) + 〈ζ,∇η −∇u∗〉.

Then
i) q ∈ L1

loc(Ω) and ζ ∈ L1
loc(Ω),

ii) qu∗ + 〈ζ,∇u∗〉 ∈ L1
loc(Ω),

iii) for any θ ∈ C∞c (Ω), we have∫
Ω
qθ + 〈ζ,∇θ〉 = 0.

Proof. The proof is reminiscent of the proof of [15] Theorem 2.4. The key
observation is that for every R > 0, for every η ∈ AR, (3.11) holds true as
well as

q(x)(η(x)− u∗(x)) + 〈ζ(x),∇η(x)−∇u∗(x)〉 ≤ `R(x) , a.e. x ∈ Ω.
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It then follows that the map q(η − u∗) + 〈ζ,∇η −∇u∗〉 belongs to L1(Ω).
We fix M > 0 such that the map uM

∗ defined by (2.1) belongs to u∗ +
W 1,1

0 (Ω).
Let Ω0 be an open subset of Ω such that Ω0 ⊂ Ω. Let θ0 ∈ C∞c (Ω) such that

θ0 = 1 on Ω0. For t ≥ 1, we then define the map ηt := max(uM
∗ , tM(2θ0−1)).

The map ηt belongs to AR for some R > 0. Hence, q(ηt − u∗) + 〈ζ,∇ηt −
∇u∗〉 ∈ L1(Ω). Since ηt = tM ≥ uM

∗ on Ω0, this implies q(tM − u∗) +
〈ζ,−∇u∗〉 ∈ L1(Ω0). In particular, this property is true for t = 1 and t = 2.
Hence, q ∈ L1(Ω0) and thus q ∈ L1

loc(Ω). In turn, this implies that qu∗ +
〈ζ,∇u∗〉 ∈ L1(Ω0). This completes the proof of ii). Moreover, by writing for
any η ∈ AR,

qη + 〈ζ,∇η〉 = q(η − u∗) + 〈ζ,∇η −∇u∗〉+ qu∗ + 〈ζ,∇u∗〉,

we have proved that qη + 〈ζ,∇η〉 ∈ L1
loc(Ω).

Let c > 0 be such that Ω ⊂ (−c, c)n. We write ζ = (ζ1, . . . , ζn). We
define η := max(uM

∗ ,M(2θ0 − 1)(x1 + c+ 1)). Then η ∈ AR for some R > 0
and η = M(x1 + c + 1) ≥ uM

∗ on Ω0. This implies ∇η = M(1, 0, . . . , 0).
We know by the previous step that qη + 〈ζ,∇η〉 ∈ L1(Ω0). Since (qη)|Ω0 =
qM(x1 + c + 1) ∈ L1(Ω0), we get ζ1 ∈ L1(Ω0). Similarly, ζi ∈ L1(Ω0),
1 ≤ i ≤ n. This completes the proof of i).

We next prove iii). Let θ ∈ C∞c (Ω). For any t > 0, we consider η :=
max(uM

∗ , tθ −M). By inserting η in (3.11) and dividing by t, we obtain∫
[θ>

uM∗ +M

t
]
q(θ − 1

t
(M + u∗)) + 〈ζ,∇θ − 1

t
∇u∗〉

≥ −1
t

∫
[θ≤uM∗ +M

t
]
q(uM

∗ − u∗) + 〈ζ,∇uM
∗ −∇u∗〉.

Since uM
∗ ∈ ∪R>0AR, the map q(uM

∗ − u∗) + 〈ζ,∇uM
∗ − ∇u∗〉 belongs to

L1(Ω). Hence the right hand side goes to 0 when t→ +∞.

For any t > 0, [θ > uM
∗ +M

t ] is a subset of supp θ. Since the maps q, ζ and
qu∗ + 〈ζ,∇u∗〉 belong to L1

loc(Ω), we can apply the dominated convergence
theorem in the left hand side to get∫

[θ≥0]
qθ + 〈ζ,∇θ〉 ≥ 0.

We now insert η := min(uM
∗ , tθ +M) to obtain∫

[θ≤0]
qθ + 〈ζ,∇θ〉 ≥ 0.

This gives ∫
Ω
qθ + 〈ζ,∇θ〉 ≥ 0.

Since the same inequality is true with −θ instead of θ, this completes the
proof of iii). �
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4. Proof of Theorem 2

We only indicate the major changes with respect to the proof of Theorem
1.

Proof. Let {Ωi}i≥0 be an increasing sequence of open subsets compactly
contained in Ω, such that Ω := ∪i≥0Ωi. For each i ≥ 0, u∗|Ωi minimizes
u 7→

∫
Ω Lx(u,∇u) on u∗|Ωi +W 1,1

0 (Ωi). Moreover, u∗|Ωi ∈ L∞(Ωi).
We keep the notation introduced in the proof of Theorem 1. Lemma 3.1

remains true with the same proof. Lemma 3.2 has the following analogue:

Lemma 4.1. For any R > 0, there exists `R ∈ L1(Ω) such that for every
η ∈ AR, for a.e. x ∈ Ω satisfying |u∗(x)| ≤ R, (3.2) and (3.3) hold true.

Proof. Let (p, ξ) ∈ R × Rn, (r, γ) ∈ R × Rn and λ ∈ (0, 1/2). Then for a.e.
x ∈ Ω,

(4.1)
Lx((p, ξ) + λ(r − p, γ − ξ))− Lx(p, ξ)

λ

=
Lx((p, ξ) + λ(r − p, γ − ξ))− Lx(p+ λ(r − p), ξ)

λ

+
Lx(p+ λ(r − p), ξ)− Lx(p, ξ)

λ
.

Let R > 0. Let |p|, |r| ≤ R and γ ∈ co
(
{ξ} ∪Bn(0, R)

)
. The assumption

(H2) in conjunction with a Gronwall type argument applied to the map
g(λ) = Lx,ξ(p+ λ(r − p))− Lx,ξ(p) (as in the proof of Lemma 3.2) imply

(4.2)
Lx,ξ(p+ λ(r − p))− Lx,ξ(p)

λ
≤ C̃0

R(x) + C̃1
R(Lx(p, ξ) + |ξ|).

Here C̃0
R ∈ L1(Ω), C̃1

R > 0.
We next estimate the first term in the right hand side of (4.1). For λ, t ∈

(0, 1/2), we consider

h(t) = Lx,p+λ(r−p)(ξ + t(γ − ξ))− Lx,p+λ(r−p)(ξ).

By a now routine technique, we obtain from (H3)

h(t) ≤
(
K0

R(x)
K1

R

+ Lx,p+λ(r−p)(ξ) + |ξ|+R

)
(e2K1

Rt − 1).

In view of (4.2), we thus get

(4.3)
Lx(p+ λ(r − p), ξ + λ(γ − ξ))− Lx(p+ λ(r − p), ξ)

λ

≤ K̃0
R(x) + K̃1

R(Lx(p, ξ) + |ξ|),

with K̃0
R ∈ L1(Ω) and K̃1

R > 0. By (4.1)-(4.3), we have thus proved that for
every |p|, |r| ≤ R, γ ∈ co

(
{ξ} ∪Bn(0, R)

)
and for every ξ ∈ Rn,

(4.4)
Lx((p, ξ) + λ(r − p, γ − ξ))− Lx(p, ξ)

λ
≤ T 0

R(x) + T 1
R(Lx(p, ξ) + |ξ|),
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where T j
R = C̃j

R + K̃j
R, j = 0, 1. For a.e. x ∈ Ω such that |u∗(x)| ≤ R, (4.4)

implies (3.3) as well as

L0
x(u∗(x),∇u∗(x))(η(x)− u∗(x),∇η(x)−∇u∗(x))

≤ T 0
R+1(x) + T 1

R+1Lx(u∗(x),∇u∗(x)) + T 1
R+1|∇u∗(x)|,

from which (3.2) follows.
This proves Lemma 4.1. �

For any i, u∗ is bounded on Ωi. Hence, there exists Ri(= |u∗|L∞(Ωi)) such
that (3.3) and (3.2) hold on Ωi for every R ≥ Ri.

By using exactly the same arguments as in the proof of Theorem 1, there
exists a measurable map (qi, ζi) : Ωi → R × Rn such that for a.e. x ∈ Ωi,
(qi(x), ζi(x)) ∈ ∂Lx(u∗(x),∇u∗(x)) and moreover, for every K ≥ 0, for every
R ≥ Ri and for every η ∈ AR, we have

(4.5)
∫

Ωi∩∪k≤KEk

qi(η−u∗)+ 〈ζi,∇η−∇u∗〉 ≥ −
∫

Ωi∩∪k>KEk

`R ≥ αK(R).

We recall that αK(R) = −
∫
∪k>KEk

`R (here, we also use the fact that `R
can be assumed nonnegative without loss of generality). We extend (qi, ζi)
by 0 on the whole Ω.

As in the proof of Lemma 3.1, there exists (q, ζ) ∈ G and a subsequence
of {(qi, ζi)}i (we do not relabel) such that for each k ≥ 0, {(qi|Ek

, ζi|Ek
)}i

weakly* converges to (q|Ek
, ζ|Ek

).
We introduce the set ÃR, R > 0, of those maps in AR which coincide with

u∗ on a neighborhood of ∂Ω.
Let R > 0 and η ∈ ÃR. For i sufficiently large, say i ≥ i0, η = u∗ on

Ω \ Ωi. Hence, for any K ≥ 0 and i ≥ i0, we have∫
∪k≤KEk

qi(η − u∗) + 〈ζi,∇η −∇u∗〉 ≥ αK(max(R,Ri0)).

We now let i→ +∞. This gives∫
∪k≤KEk

q(η − u∗) + 〈ζ,∇η −∇u∗〉 ≥ αK(max(R,Ri0)).

By Lemma 4.1 on Ωi0 , the map under the integral sign is not larger than
`max(R,Ri0

). We can thus apply Fatou Lemma to obtain∫
Ω
q(η − u∗) + 〈ζ,∇η −∇u∗〉 ≥ 0.

We now complete the proof of Theorem 2 with the following analogue of
Proposition 3.5

Proposition 4.2. Let u∗ ∈ W 1,1(Ω) ∩ L∞loc(Ω). Assume that there exists
(q, ζ) ∈ G such that for every η ∈ ∪R>0ÃR,

(4.6) 0 ≤
∫

Ω
q(η − u∗) + 〈ζ,∇η −∇u∗〉.

Then
i) q ∈ L1

loc(Ω) and ζ ∈ L1
loc(Ω),

ii) qu∗ + 〈ζ,∇u∗〉 ∈ L1
loc(Ω),
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iii) for any θ ∈ C∞c (Ω), we have∫
Ω
qθ + 〈ζ,∇θ〉 = 0.

The proof is very similar to the proof of Proposition 3.5. As a matter of
fact, it is exactly the same as the proof of [15] Theorem 2.4. We omit it.

This completes the proof of Theorem 2.
�

5. Proof of Proposition 2.1

We first state a more general version of Proposition 2.1.

Proposition 5.1. The map L : Ω × R × Rn → R+ satisfies (H1) if one of
the following assumptions is satisfied:

i) There exists S > 0 and a map L̃ : Rn×R×Rn → R+ which is locally
bounded, convex with respect to (p, ξ) and such that for a.e. x ∈ Ω,
Lx|Rn+1\Bn+1(0,S) = L̃x|Rn+1\Bn+1(0,S).

ii) There exists C > 0 such that for any |(p, ξ)| ≤ |(p′, ξ′)|, for a.e.
x ∈ Ω, we have

Lx(p, ξ) ≤ Lx(p′, ξ′) + C|(p, ξ)− (p′, ξ′)|.
iii) There exist α > 0, β ∈ R such that Lx(p, ξ) ≥ α|(p, ξ)|2+β, (x, p, ξ) ∈

Ω × R × Rn, L is bounded on bounded sets and Lx is semiconvex:
there exists C > 0 such that for every (p, ξ), (p′, ξ′) ∈ Rn, for every
θ ∈ (0, 1), for a.e. x ∈ Ω, we have

Lx(θp+ (1− θ)p′, θξ + (1− θ)ξ′)

≤ θLx(p, ξ) + (1− θ)Lx(p′, ξ′) + Cθ(1− θ)|(p, ξ)− (p′, ξ′)|2.
iv) The map L satisfies

lim inf
|(p,ξ)|→+∞

x∈Ω

min
ζ∈∂Lx(p,ξ)

〈(p, ξ), ζ
|ζ|
〉 = +∞.

v) The map Lx is non decreasing: L0
x((p, ξ),−(p, ξ)) ≤ 0 and the growth

of Lx is at most exponential: there exists K0 ∈ L1(Ω) and K1 > 0
such that

max
ζ∈∂Lx(p,ξ)

|ζ| ≤ K0(x) +K1(Lx(p, ξ) + |(p, ξ)|) , (x, p, ξ) ∈ Ω× R× Rn.

Proposition 2.1 is an easy consequence of the above proposition.

Proof. In order to simplify the notation, we fix x ∈ Ω, and we introduce for
any a = (p, ξ) ∈ R× Rn, the map f(a) = Lx(p, ξ). Each of the assumptions
(i)-(v) will imply the following version of (H1): for every R > 0, there exist
SR > 0 andK0

R,K
1
R : Ω → (0,∞) such that for every a ∈ Rn+1\Bn+1(0, SR),

max
|a′|≤R

f0(a, a′ − a) ≤ K0
R +K1

R(f(a) + |a|).

In each case, K0
R will be a summable function of x and K1

R will be (essen-
tially) bounded. Since f is globally Lipschitz on Bn+1(0, SR), this will imply
(H1).
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Case (i). There exists S > 0 such that f |Rn+1\Bn+1(0,S) = f̃ |Rn+1\Bn+1(0,S),
where f̃ is convex on Rn+1. For every a, a′ ∈ Rn+1, f̃(a′)− f̃(a) ≥ 〈ξ, a′−a〉
for any ξ in the convex subdifferential of f̃ at a (which coincides with the
generalized subdifferential ∂f̃(a)). Hence,

f̃0(a, a′ − a) ≤ f̃(a′)− f̃(a) ≤ f̃(a′).

This implies that for every |a| > S, for every R > 0,

max
|a′|≤R

f0(a, a′ − a) ≤ |f̃ |L∞(Bn+1(0,R)).

In view of the above discussion, this completes the proof of Proposition 5.1
in Case (i).
Case (ii). We know that there exists C > 0 such that for any |a| ≤ |a′|, we
have f(a) ≤ f(a′) + C|a′ − a|. Let R > 0 and |a| > R. For any |a′| ≤ R, for
any (λ, b) ∈ (0,∞)×Rn sufficiently close to (0, a), one has |b+λ(a′−a)| ≤ |b|.
This implies f(b+ λ(a′ − a)) ≤ f(b) + Cλ|a′ − a| so that

f0(a, a′ − a) ≤ C|a′ − a| ≤ CR+ C|a|.

Case (ii) follows at once.
Case (iii). Since f is semiconvex, there exists C > 0 such that for every
a, a′ ∈ Rn+1,

f0(a, a′ − a) ≤ f(a′)− f(a) + C|a′ − a|2 ≤ f(a′) + 2C|a′|2 + 2C|a|2.

Since f is coercive of order 2, we get

max
|a′|≤R

f0(a, a′ − a) ≤ K0
R +K1

Rf(a).

This proves Case (iii).
Case (iv). We have

max
|a′|≤R

f0(a, a′ − a) = max
|a′|≤R

max
ζ∈∂f(a)

〈ζ, a′ − a〉 ≤ max
ζ∈∂f(a)

|ζ|(R− 〈 ζ
|ζ|
, a〉).

By assumption, for every R > 0, there exists SR > 0 such that for ev-
ery |a| ≥ SR, for every ζ ∈ ∂f(a), we have 〈 ζ

|ζ| , a〉 ≥ R. This implies
max|a′|≤R f

0(a, a′ − a) ≤ 0; that is, Case (iv).
Case (v). By subadditivity of f0(a, ·) and the fact that f is non decreasing,
we have

max
|a′|≤R

f0(a, a′ − a) ≤ max
|a′|≤R

f0(a, a′) + f0(a,−a) ≤ max
|a′|≤R

f0(a, a′).

Now, we use the fact that the growth of f is at most exponential to get

max
|a′|≤R

f0(a, a′ − a) ≤ K0
R +K1

R(f(a) + |a|).

This proves Case (v).
�
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