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Statistical Model



Definition

Let Q2 be a set
A c P(Q) is a o-algebra on Q if the following conditions are satisfied

Q@ QeA

@ A s stable by the complementary operation i.e if A € A then A € A

© A is stable by countable union i.e if (A,), is @ countable family of
elements of A i.e A, € AforallneNthen|J,An e A
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Definition

Let Q be a set

A c P(Q) is a o-algebra on Q if the following conditions are satisfied
Q QeA
@ A s stable by the complementary operation i.e if A € A then A € A

© A is stable by countable union i.e if (A,), is @ countable family of
elements of A i.e A, € AforallneNthen|J,An e A

@ (0,Q} is the smallest o — algebra

Q@ P(Q) is called the trivial o — algebra, usually considered when Q is
discrete

© When Q is a topologic space equipped with a family of open sets, the
smallest o— algebra which contains all these open is called the Borel
o—algebra. We denote it by B(2). Why does it always exists?
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Definition

A set Q equipped with a o—algebra A is called a measurable space and
we denote it by (2, A)

A measure p on (2, A) is an application from A — [0, +o0] such that

Q@ u()=0

@ If (An)n is a countable family of elements of A mutally disjoints i.e
AiNA;=0ifi#jthen

u(lJAn) = D u(An)

neN neN

@ Dirac measure §,. Counting measure ey On-
@ Lebesgue measure

A([a, b]) = A(la, b]) = A([a, b]) = A(]a,b[) =b - a
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@ The triplet (Q, A, u) is called a measured set.

© When y is of mass 1 that is u(Q2) = 1 we speak about probability
measure. In this case we denote u by P.

© A probability space is then a measurable space (2, A) equipped
with a probability measure P: (Q, A, P)
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@ The triplet (2, A, u) is called a measured set.

@ When p is of mass 1 that is u(Q2) = 1 we speak about probability
measure. In this case we denote u by P.

© A probability space is then a measurable space (2, A) equipped
with a probability measure P: (2, A, P)

© One important situation in statistics is when the probability measure P
depends on a unknown parameter 6. We usually denote Py- this
probability.

© We shall assume that the probability Py- belongs to a class of
probability measure that we shall denote #.

@ One of the aim of statistics is to find how can we obtain information on
this parameter?
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Definition

Let E and F be two sets equipped with o—algebras A for E and B for F.
An application f : (E, A) — (E, B) is called measurable if

VBeB,f(B)e A

@ Recall that a random variable X is a measurable function from 2 to R
or a discrete or countable space

@ Let us throw two dices and compute the sum
S:{1,...,62 > {2,...,12}: S(i,j) = i+jisarv

@ When is X is valued on R¥, k > 1, we usually speak of random
vectors
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Statistical Model

Definition
A statistical model is a triplet (2, A, ) where
@ Qs called the space of realizations

Q Ais a o-algebra
@ P is a family of probability measure defined on A
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Statistical Model

Definition
A statistical model is a triplet (2, A, ) where
@ Qs called the space of realizations

Q Ais ao—algebra
@ P is a family of probability measure defined on A

@ Family of Gaussian laws:
P = {N(m,0?),meR,0 e R")
Recall that the density of N'(m, o®) is given by
1 1 (x—m)2

e 2 o

fﬁ/(nngrz)()() = Cr’\éé;;

@ Family of Bernoulli laws:
P ={B(0),0 € [0,1]}

9/150



@ The examples
o Family of Gaussian laws:

P ={N(m,c?),meR,o € R}
o Family of Bernoulli laws:
P = {B(6),6 €[0,1]}

are usually associated with a random variable X whose law is either
Gaussian or Bernoulli.
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@ The examples
o Family of Gaussian laws:

P ={N(m,c?),meR,o € R}
o Family of Bernoulli laws:
P =1{8B(9),6 €[0,1]}
are usually associated with a random variable X whose law is either

Gaussian or Bernoulli.

@ Assume you want to extract information on m, o or 8 (these are
unknown parameters). You can easily guess that one realization (one
observation) of the value of X is not enough.
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@ The examples
o Family of Gaussian laws:

P ={N(m,c?),meR,o € R}
o Family of Bernoulli laws:
P = {B(6),6 €[0,1]}

are usually associated with a random variable X whose law is either
Gaussian or Bernoulli.

@ Assume you want to extract information on m, o or 8 (these are
unknown parameters). You can easily guess that one realization (one
observation) of the value of X is not enough.

@ Usually we are faced to n independent realizations of the same
random variable. This way we consider Xi,..., X, nr.v independent
and identically distributed such as X; ~ X forallie {1,...,n}

10/150



In the situation where you have n observations i.i.d Xj, ..., X;, the statical
models can be described by

@ Gaussian: Q = R" =R x...x R (ntimes), A = B(R"),
P ={N®"(m,o),meR,0 R}
e Bernoulli: Q = (0,1}, A = P(Q)
P = {B°"(6),0 € [0,1]}

the notation ®n means that we consider the product of measure on the
cartesian product R" or {0, 1}". This corresponds to the fact that we
consider independent situation.

@ Exercise: describe the statistical model where you throw 100 times 10
dices and you just look at the sum of each result.

11/150



@ Other situations. Assume you observe n realizations of random
variables X; valued in R such that

E[Xi] = i6

where 6 is an unknown parameter and the law of X; are unknown (you
do not know the forme of the density for example). Your focus is on 6!
only and not on the distribution of X;

e Q=R"

o P =(Px, ®...0Px, [, xdPx(x) = 6,0 € R|
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@ Other situations. Assume you observe n realizations of random
variables X; valued in R such that

E[Xi] = i6

where 6 is an unknown parameter and the law of X; are unknown (you
do not know the forme of the density for example). Your focus is on 6!
only and not on the distribution of X;

e Q=R"
o P =(Px, ®...0Px, [, xdPx(x) = 6,0 € R|

@ Assume simply that you observe n independent and identical
realizations of X. What can you say?
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@ Parametric Model: the family law is parametrized by a subset of RY.
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@ Parametric Model: the family law is parametrized by a subset of RY.

© Semi- parametric Model: the family laws is not parametrized by a
subset of RY but the quantity of interest is.
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Definition

@ Parametric Model: the family law is parametrized by a subset of RY.

© Semi- parametric Model: the family laws is not parametrized by a
subset of RY but the quantity of interest is.

© Non parametric models: all the other cases.
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@ Now we have clearly defined what is a statistical model and what kind
of different model we can address let us come back to the main
statistical questions.
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@ Now we have clearly defined what is a statistical model and what kind
of different model we can address let us come back to the main
statistical questions.

@ Estimation

© Hypothesis testing
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@ Estimation: Assume you want to estimate an unknown parameter 6 or
a function g(6). This estimation has to be based only on the
observations; this is done by the notion of estimator. We shall
concentrate only the i.i.d situation

Definition
Let Xi,..., X, be a sample that is the r.v are independent and identically
distributed. An estimator is a measurable function of the observations.
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@ Estimation: Assume you want to estimate an unknown parameter 6 or
a function g(6). This estimation has to be based only on the
observations; this is done by the notion of estimator. We shall
concentrate only the i.i.d situation

Definition

Let Xi,..., X, be a sample that is the r.v are independent and identically
distributed. An estimator is a measurable function of the observations.

@ An estimator can not be defined with unknown parameters

© Usual estimator take the form T = f(Xi,..., X;,). An estimator is a r.v.
When you have an observations (x1,. .., Xn), the quantity
t = f(x1,...,Xn) is a realization of T and is called an estimation
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@ Estimation: Assume you want to estimate an unknown parameter 6 or
a function g(6). This estimation has to be based only on the
observations; this is done by the notion of estimator. We shall
concentrate only the i.i.d situation

Definition
Let Xi,..., X, be a sample that is the r.v are independent and identically
distributed. An estimator is a measurable function of the observations.

@ An estimator can not be defined with unknown parameters

© Usual estimator take the form T = f(Xi,..., X;,). An estimator is a r.v.
When you have an observations (x1,. .., Xn), the quantity
t = f(x1,...,Xn) is a realization of T and is called an estimation

© Examples:
1 n
T= EZ‘X:" T = max(Xy,..., Xn)
=

can be considered as estimators
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@ Hypothesis testing: Assume that your unknown parameter
g* € © = ©1 U ©2 where the union is disjoint.

© Within the observations you want to take a decision: the parameter 6*
belongs either to ©4 or to ©»
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@ Hypothesis testing: Assume that your unknown parameter
g* € © = ©1 U ©2 where the union is disjoint.

© Within the observations you want to take a decision: the parameter 6*
belongs either to ©4 or to ©»

@ Again this decision has to be made in a measurable way with respect
to the observations. A test is a measurable function of (X1, ..., Xp)

© We won't study the theory of hypothesis testing in this course and we
shall concentrate on estimation
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@ Before going further: Important point: making statistic is assuming
that you are going to make mistakes, errors.

@ Indeed you won't be able, in general, to be sure having founded the
unknown parameter only with a finite number of observations
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@ Before going further: Important point: making statistic is assuming
that you are going to make mistakes, errors.

@ Indeed you won't be able, in general, to be sure having founded the
unknown parameter only with a finite number of observations

© Statisticians are Mathematicians who are able to control the error
they will make by establishing qualitative analysis of their estimators
or tests.

© Before going into the details, we shall recall some basic probability
result.
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Probability background



First concentration inequality

@ This part will be a glossary of notions of probability we shall need in
the sequel

@ Let us start with two useful concentration inequalities. Let us consider
a random variable X on a probability space (2, A, P).

@ If X e L', the mean, average, expectation is denoted by E[X]

@ If X € L2, the variance is denoted by
Var(X) = E[(X - E[X])?] = E[X?] - E[X]?
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First concentration inequality

@ This part will be a glossary of notions of probability we shall need in
the sequel

Let us start with two useful concentration inequalities. Let us consider
a random variable X on a probability space (2, A, P).

If X € L', the mean, average, expectation is denoted by E[X]
If X e L2, the variance is denoted by

Var(X) = E[(X - E[X])?] = E[X?] - E[X]?

If X is L': Markov inequality

E(1X1)

P(IX| > t) < 7

@ If X is L2: Bienaymé-Tchebychev inequality

Var(X)

P(IX —E(X)| > 1) < 2
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Characteristic function

The characteristic function of a r.v X is defined by
ox(t) = E[e™],Vte R
The characeristic function of a random vector is

ox(u) = E[e"<“**],Yu e RY,

where <, > denote the scalar product on R9.
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characteristic function

@ X ~ B(p) then ¢x(t) =1 - p + pe'
@ X ~ B(n,p) then ¢x(t) = (1 - p + pe)"
@ X ~ P(1) then ¢x(t) = exp(A(e" - 1))
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characteristic function

X ~ B(p) then ¢x(t) =1 - p + pe'
X ~ B(n,p) then ¢x(t) = (1 — p + pe")"
X ~ P(2) then ¢x(t) = exp(A(e — 1))

bt _giat
(b-a)it

X ~ U([a, b]) then ¢x(t)
X ~ &(A) then ¢x(t) = 25
X ~ C(a) then ¢x(t) = exp(-alt|)

X ~ N(m,a2) then ¢x(t) = exp(imt — o)
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characteristic function and moments

Proposition

Let X be a r.v which admits a moment of order p then its characteristic
function is p times differentiable and we have

¢ (0) = PEIX”]
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Other transformation

@ The moment generator function of a r.v X with values in S(X) c N
and px =P(X =k) is

Gx(1) = B[] = ) pit*
k

This function is C* on [0, 1] and p times differentiable on 1 if
E[XP] < 0
GX(0) = klp, k €N
If the mean exists, we have G (1) = E(X)
@ Laplace transform. For a r.v X, we call its Laplace transform

ox(t) = E[e™]
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Other transformation

@ As we shall see in the sequel, we shall be interested in limits of
estimator when the number of observations n goes to infinity.

@ This asks for convergence of random variables.
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Definition

Let (X,) be a sequence of r.v and X be a r.v. We say that (X,) converge
towards X

o Almost surely a.sif P(lim X, = X) = 1 we note X, —> X

25/150



Definition

Let (X,) be a sequence of r.v and X be a r.v. We say that (X,) converge
towards X

o Almost surely a.sif P(lim X, = X) = 1 we note X, —> X

p
o InLPnormif  lim E[X, - XI’] = 0 we note X, %
n—-+4o00
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Definition

Let (X,) be a sequence of r.v and X be a r.v. We say that (X,) converge
towards X

o Almost surely a.sif P(lim X, = X) = 1 we note X, —> X

p
o InLPnormif  lim E[X, - XI’] = 0 we note X, %
n—-+4o00

© In probability if Ve >0, lim P[X, X| > €| = 0 we note X, X
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Definition

Let (X,) be a sequence of r.v and X be a r.v. We say that (X,) converge
towards X

o Almost surely a.sif P(lim X, = X) = 1 we note X, —> X

p
o InLPnormif  lim E[X, - XI’] = 0 we note X, %
n—-+4o00

® In probability if Ve >0, lim P[1X; - X| > €] = 0 we note X, X

@ In law if for all continuous and bounded furlctions f we have
n“T E[f(Xn)] = E[f(X)] wenote X,— X

When the law of X depends on a unknown parameter 6 we make appear
this dependency.
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Convergence en loi

For a r.v we denote its partition function Fx and recall that ¢x denotes its
characteristic function

(Xn) converge in law towards X if and only if
Fx, (t) — Fx(t)

in all points where Fx is continuous i.e in all points t such that
P(X=1)=0

Theorem

(Xn) converges in law towards X if and only if

¢x, (1) = ox(t)

forallt € R. )
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Usual Convergence mode

In order to finish let us recall the usual convergence mode

@ Beppo Levy Theorem: let (X,) be a non decreasing sequence of
non negative numbers then if li rr7n Xn = X we have

lim E[X,] = E[X]
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Usual Convergence mode

In order to finish let us recall the usual convergence mode

@ Beppo Levy Theorem: let (X,) be a non decreasing sequence of
non negative numbers then if li rr7n Xn = X we have

lim E[X,] = E[X]

@ Fatou Lemma: let (X,) be a sequence of non negative numbers then

E[Iimninf Xn] < IimninfE[Xn]

27/150



Usual Convergence mode

In order to finish let us recall the usual convergence mode

@ Beppo Levy Theorem: let (X,) be a non decreasing sequence of
non negative numbers then if li rr7n Xn = X we have

lim E[X,] = E[X]

@ Fatou Lemma: let (X,) be a sequence of non negative numbers then

E[Iimninf Xn] < IimninfE[Xn]

o Lebesgue dominated convergence Theorem: let (X,) be a
sequence such that X, converges a.s to X. Let Y such that
E[| Y]] < co and |X,| < Y| then
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Links between convergence modes

Recall the usual links
@ Almost sure convergence = Convergence in probability
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Links between convergence modes

Recall the usual links
@ Almost sure convergence = Convergence in probability
@ LP Convergence p > 1 = L' Convergence = Convergence in
probability
@ All convergence modes =— Convergence in law
@ Almost surely convergence + domination = L' convergence
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Links between convergence modes

Recall the usual links
@ Almost sure convergence = Convergence in probability
@ LP Convergence p > 1 = L' Convergence = Convergence in
probability
@ All convergence modes =— Convergence in law
@ Almost surely convergence + domination = L' convergence
@ L' convergence = Almost sure convergence for a sub-sequence
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Slutsky

@ When (X,) converges in law to X and (Y,;) converges in law to Y this
does not implies in general that (X, Y,) converges in law to (X, Y).
But we have this useful result:
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Slutsky

@ When (X,) converges in law to X and (Y,;) converges in law to Y this
does not implies in general that (X, Y,) converges in law to (X, Y).
But we have this useful result:

Proposition

(Slutsky)

@ If(X,) converges in law to X and (Y,) converges in law to c then
(Xn, Yn) converges in law to (X, c)
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Slutsky

@ In the sequel we shall also need the notion of op
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Slutsky

@ In the sequel we shall also need the notion of op
o We say that X, = op(Y)) if
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Slutsky

@ In the sequel we shall also need the notion of op
o We say that X, = op(Y)) if

@ Note that if R is a continuous function such that R(h) = o(]|h||P) and
(X») is a sequence which converges in probability to 0 then

R(Xn) = op(IXxlIP)

Here we shall use the fact that if X, i X then for all continuous
function f(Xp) N f(X)
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Law of Large Numbers (LLN)
and Central Limit Theorem
(CLT)



Objectif

@ The objective of this section is to understand the convergence of
_ 1<
Xo =~ ; Xi

VA% - m) = % S (X - m)
i=1

when (X,) is a sequence of i.i.d random variables where m = E[Xj].

@ As we shall see the first quantity is a good estimator of m and the
second quantity allows to control the error we make when making
estimation
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Weak Law of Large Numbers L? and L

Let (X,) be a sequence of i.i.d r.v which are L2 then

- 1< P
X, = EZX,-—AE[)Q]
i=1

1 n
@ Let (X,) be a sequence of i.i.d r.v B(p) then M, := - Z Xi 5 p
i=1

o First step towards estimation of an unknown proportion
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Weak Law of Large Numbers L? and L

Let (X,) be a sequence of i.i.d r.v which are L2 then

- 1< P
X, = EZX,-—AE[)Q]
i=1

1 n
@ Let (X,) be a sequence of i.i.d r.v B(p) then M, := - Z Xi 5 p
i=1

@ First step towards estimation of an unknown proportion

Let (X,) be a sequence of i.i.d r.v which are L' then

= 1 ¢ P
X, = HZX,-—>]E[X1]
i=1
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Law of Large Numbers

Law of Large Numbers: Let (X,) be a sequence of i.i.d r.vand L' then

— ZX, —>]E[X1
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Law of Large Numbers

Law of Large Numbers: Let (X,) be a sequence of i.i.d r.vand L' then

—ZX,—>]E[X1

@ Application: Monte Carlo Method. Let f be a measurable function
such that f(X;) Let L'

Z F(X) S E[F(X1)]

Rq: note that the advantage of this method is that we do not require
any regularity property of f

@ Xp=13" Xiand62=13" (Xi-X,)2 =135, X2-X2are
estimators of the mean and of the variance
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Central Limit Theorem

Central Limit Theorem: Let (X,) be a sequence of i.i.d r.v which are L?.
Let m be the common mean and o> the common variance. We put

then
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Central Limit Theorem

@ This is a strong refinement of the LLN: somehow it gives the rate of
convergence of the empirical mean towards the mean.
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Central Limit Theorem

@ This is a strong refinement of the LLN: somehow it gives the rate of
convergence of the empirical mean towards the mean.
@ As we shall see later, this allows to construct confidence interval

@ Sometimes we need to consider f(X,) for f sufficiently smooth. It is

easy to see that
a.s

f(Xn) = f(E[X1])
using the continuity of f

@ Concerning extension of CLT one is interested in convergence in law
of

Vn(f(Xn) - f(E[X1]))

@ This asks for the so called Delta method which will be exposed at the
end of the next part concerning Gaussian laws.

36/150



Gaussian Vectors



Definition

A random vector X = (Xji,..., Xd)’ is called Gaussian vector if all linear
combination of its coordinates are Gaussian, that is for all a € R the r.v

<a,X>=

d
aiXi

i=1

is a Gaussian r.v.
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Definition

A random vector X = (Xji,..., Xd)’ is called Gaussian vector if all linear
combination of its coordinates are Gaussian, that is for all a € R the r.v

<a,X>=

d
aiXi

i=1

is a Gaussian r.v.

v

o If X is a Gaussian vector then for all matrices A the vector AX is still a
Gaussian vector
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matrix de covaroiance

Let X = (Xi,..., Xq)! be a Gaussian vector we note K its covariance
matrix defined by

Kij = Cov(Xi, X;) = E[XiX] - E[X]E[X],
foralli,j=1,...,d. We shall also note

m = E[X] = (B[Xi],..., E[X4])"

the vector of mean. We shall note X ~ Ny(m, K)
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matrix de covaroiance

Let X = (Xi,..., Xq)! be a Gaussian vector we note K its covariance
matrix defined by

Kij = Cov(Xi, X;) = E[XiX] - E[X]E[X],
foralli,j=1,...,d. We shall also note

m = E[X] = (B[Xi],..., E[X4])"

the vector of mean. We shall note X ~ Ny(m, K)

@ The matrix K is semi-definite positive
@ E[<a,X > =<a,E[X] >
d

Z a,-X,-

i=1

d
= Z aiajCov(X;, Xj) = a'Ka =<
=1

e Var(<a,X >) = Var

a,Ka >
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characteristic function

@ One can check that

1
b<ax>(t) = exp (i <a,m>t- EatKa t2)

@ ¢x(x) = E[ei<x,X>] = dxx>(1)

Proposition
The characteristic function of a Gaussian vector is given by

]
Px(x) = exp (i <x,m> —EXtKX)

@ The coordinates of a Gaussian vector are independent if and only if
its covariance matrix is diagonal
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Transformation linéaire

Proposition
Let X ~ N4(m, K) then for all matrices A € Mp 4(R) then

AX ~ Np(AX, AKAY)

@ If X ~ Ny(0, Iy) then the law of X is invariant by all rotation.
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Centrer and réduire un Gaussian vector

@ We shall say that a Gaussian vector X is degenerate if its covariance
matrix K is non invertible

@ In the degenerate case, there exists a such that Ka = 0 which implies
that
Var(<a,X>)=0

and then < a, X >= b a.s. Then X leaves in the affine space
{<a,x>=b,x eRY

e If K is invertible then VK='(X — m) ~ N(0, Iy)
@ If N~ N(0,lg) then X = VKN + m e N(m,K)
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@ If X ~ Ny(0, I4) then the coordinates (X;)i=1...q arei.i.d and
X1 ~ N(0,1). Then the density of X is given by the product of
densities i.e

1 1
fx X1,...,Xd): exp|—= X-2
( 2nd 24

@ In the case where K is invertible we have
1

e 06) = e exp(—% < (x—m) K (x—m) )

@ Raq: if X is Gaussian all its coordinates are Gaussian, the converse is
not true in general.
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CLT multidimensional

Theorem

Let X(") be a sequence of random vectors of R? which are i.i.d and L? of
mean vector m and of covariance matrix K. We put S(" = 3" . X() then
we have

n—1/2 \/R—1 (S(”) - nm) £> Nd(oa Id)
or

n~12(8( — nm) £>Nd(0, K)
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Transformation of Gaussian law

@ Let X ~ N(0,1) and consider Z = X2. Let f be a continuous and
bounded function

E[f(Z)] = E[f(X?)]
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Transformation of Gaussian law

@ Let X ~ N(0,1) and consider Z = X2. Let f be a continuous and
bounded function

E[f(2)] = E[f(X?)]
o 1 %
fRf(x )@e dx
= 2f0+00 f(xz)\;?e‘%dx

T
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Transformation of Gaussian law

@ Let X ~ N(0,1) and consider Z = X2. Let f be a continuous and
bounded function

E[f(2)] = E[f(X?)]
o 1 %
fRf(x )@e dx
= 2f0+00 f(xz)\;—z_ﬂe‘%dx

_ fo " f(z)\;—z_ﬂe‘g( Vz)dz
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Transformation of Gaussian law

@ Let X ~ N(0,1) and consider Z = X2. Let f be a continuous and
bounded function

E[f(2)] = E[f(X*)]
oy 1 2
fRf(x )—2ﬂe dx

T
oo 1
_ f f(z)——e % (Vz)"dz
0 2r
@ Then Z ~ x?(1) where fz(z) = #e‘é( Vz) M50
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Transformation of Gaussian law

@ Let X = (Xi,..., Xy) a Gaussian random vector where (X;) are i.i.d of

law N(0, 1) then
d
Z=> X
i=1

is a random variable whose law is y?(d) where d is called the degree
of freedom

@ The density of thisr.v is

fz(Z) =

where [ is the Gamma function
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Transformation of Gaussian law

@ Let X ~ N(0,1) and Z ~ y?(k) then the r.v
X

VZ/k

is said to be distributed as the Student law of degree k

47/150



Transformation of Gaussian law

@ Let X ~ N(0,1) and Z ~ y?(k) then the r.v
X

VZ/k

is said to be distributed as the Student law of degree k
@ The density is given by
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Cochran Theorem

Let X ~ Ny(0, l4) and letRY = Fy & ... ® Fx a decomposition in orthogonal
space with dim(F;) = d;. We note Pf,,i = 1,..., k the orthogonal
projectors associated with space Fj,i = 1..., k. In this case the vectors
Pe,(X), ..., Pr.(X) are independent Gaussian vectors. We have also

IPR(X)IE ~ x?(ch),i = 1,....k

@ This is linear algebra

@ We can express a more general result X ~ N(0, K) with non
degenerate K by introducing a scalar product with respect to K i.e
<a,b>k=<a,Kb >.
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Test of adequation y2:

@ We observe a random variable X where the set of values
S(X)={ai,...,atand pj =P(X = g) = Q({a}}),j =1,....r
unknown. We note p = (p1, ..., pr) the corresponding vector of
probability.
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@ We consider a reference probability Qo = >; 7id; with same support
but with a known vector = = (r1,...,7,) where 7; > 0
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probability.

@ We consider a reference probability Qo = >; 7id; with same support
but with a known vector 7 = (ny,...,7,) where 7; > 0

@ The Hypothesis testing is Hy : Q = Qp against Hy : Q # Qp.
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Test of adequation y2:

@ We observe a random variable X where the set of values
S(X)={ai,...,atand pj =P(X = g) = Q({a}}),j =1,....r
unknown. We note p = (p1, ..., pr) the corresponding vector of
probability.

@ We consider a reference probability Qo = >; 7id; with same support
but with a known vector = = (r1,...,7,) where 7; > 0

@ The Hypothesis testing is Hp : Q = Qo against Hy : Q # Qp.

@ Let (X,) be a sequence of i.i.d.r.v of law Q. For n € N, we put

n
’\G — :}:: 1 )Q::Ey
i=1
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Test of adequation y2:

@ We observe a random variable X where the set of values
S(X)={ai,...,atand pj =P(X = g) = Q({a}}),j =1,....r
unknown. We note p = (p1, ..., pr) the corresponding vector of
probability.

@ We consider a reference probability Qo = >; 7id; with same support
but with a known vector = = (r1,...,7,) where 7; > 0

@ The Hypothesis testing is Hp : Q = Qo against Hy : Q # Qp.

@ Let (X,) be a sequence of i.i.d.r.v of law Q. For n € N, we put

n
’\G — :}:: 1 )Q::Ey
i=1

@ The random vector N = (Nj, Np, ..., N;)! follows a multinomial law

M(n,pi1,....pr)ie
n! n ny
P(Nj =n1,---,Nr=nr)=mp11...p,, nM+...4n-=n
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Test of chi?

o We put
r 2
(N; - nm;)
Th = R
n 1221 nm;

@ Under Hy this quantity is close to 0 whereas under H; this quantity is
big.

@ Under Hy we have

@ Under Hi we have

@ Homogeneity Test, Independency Test
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Delta method

@ Let (X,) be a sequence of i.i.d r.v L2. Denote 6 = E[X;] and

o2 = Var(Xy). Recall
1L
Xo=— ; X;

@ Recall that the CLT says

Vn(X, - 6) 5 N(0, o2)
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Delta method

@ Let (X,) be a sequence of i.i.d r.v L2. Denote 6 = E[X;] and

o2 = Var(Xy). Recall
1L
Xo=— ; X;

@ Recall that the CLT says

Vn(X, - 6) 5 N(0, o2)

@ As already announced, for a particular class of f we would like to
understand the convergence of

Vn(f(Xa) - £(6))
@ To this end we use the delta method
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Delta method

@ Keep in mind the CLT

Vn(X, - 6) 5 N(0, o2)
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Delta method

@ Keep in mind the CLT

Vn(X, - 6) 5 N(0, o2)

@ First let us consider f(x) = ax + b then we have

Vi (aXy - a6)) 5 an(0,02) = N(0,a%02)
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Delta method

@ Keep in mind the CLT

Vn(X, - 6) 5 N(0, o2)

@ First let us consider f(x) = ax + b then we have

Vi (aXy - a6)) 5 an(0,02) = N(0,a%02)

@ Now suppose that f is differentiable in 6 you can write
f(x) = f(0) + '(0)(x — 8) + o(|x — 6]). Since X, — 6 converges to 0
almost surely it converges to 0 in probability which allows to write

f(Xn) = £(68) + £(8)(Xn — 6) + op(1Xn - )

52/150



Delta method

@ Plugging )
f(Xn) = £(6) + f'(8)(Xn — 6) + op(1Xn — 6])

into Vn(f(X,) — f(6)), we get
Vn(f(Xn) = 6) = Vnf' (6)(Vn(Xa = 6))(1 + ox(1))
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Delta method

@ Plugging
f(Xn) = £(8) + f(6)(Xn — 6) + o= (1Xn - 6l)
into Vn(f(X,) — f(6)), we get
Vn(f(Xn) = 6) = Vnf' (6)(Vn(Xa = 0))(1 + op(1))

@ Now the term 1 + op(1) converges towards 1 in probability and then in
Law (since the limit is a constant). Using the Slutsky Lemma allows to
conclude that

VR(F(Xn) - £(8)) S F(O)N(0, ) = N(0, F (6)202)
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Delta method

@ Plugging
f(Xn) = £(6) + f'(8)(Xn — 6) + op(1Xn — 6])

into Vn(f(X,) — f(6)), we get
Vn(f(Xn) = 6) = Vnf' (6)(Vn(Xa = 6))(1 + ox(1))

@ Now the term 1 + op(1) converges towards 1 in probability and then in
Law (since the limit is a constant). Using the Slutsky Lemma allows to
conclude that

VR(F(Xn) - £(8)) S F(O)N(0, ) = N(0, F (6)202)

@ Note that it is easy to extend such result to situation where (Tp)
satisfy that there exist a sequence (r,) and ar.v T (non necessary
Gaussian) such that

r(Ta—6) 5T



Delta method: General version

Let 0 in RX. Let ¢ be an application from R¥ to R™ differentiable in 6. We
denote Dy¢(.) the corresponding differential application.
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Delta method: General version

Theorem

Let 0 in RX. Let ¢ be an application from R¥ to R™ differentiable in 6. We
denote Dy¢(.) the corresponding differential application. Let (T,) be a

sequence of random vectors of R¥ such that there exists a sequence (r,)
and a random vector T such that

’}1( 777 - (9) ;5; 7-
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Delta method: General version

Theorem

Let 0 in RX. Let ¢ be an application from R¥ to R™ differentiable in 6. We
denote Dy¢(.) the corresponding differential application. Let (T,) be a

sequence of random vectors of R¥ such that there exists a sequence (r,)
and a random vector T such that

’}1( 777 - (9) ;5; 7-

then we have

n(¢(Ta) = $(6)) > Dag(T)
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Delta method: General version

Theorem

Let 0 in RX. Let ¢ be an application from R¥ to R™ differentiable in 6. We
denote Dy¢(.) the corresponding differential application. Let (T,) be a

sequence of random vectors of R¥ such that there exists a sequence (r,)
and a random vector T such that

(Ta—6) 5T
then we have .
rn(¢(Tn) — ¢(6)) > Deg(T)

@ In the Gaussian case if Z ~ N(0, K) where K is the covariance matrix
and Z a Gaussian vector, then we have

v

Dyp(Z) ~ N(0, JppKJgs"),

where Jy¢ is the Jacobian matrix of ¢.
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Conditioning



Definition

Let B be a event of non zero probability i.e P(B) # 0. For all events A we
define the conditional probability A knowing B by

P(ANB)
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Definition

Let B be a event of non zero probability i.e P(B) # 0. For all events A we
define the conditional probability A knowing B by

P(ANB)

e P(AnB)=P(AIB)P(B)
@ The application P(:|B) defines a measure on (€2, A)
o If A 1L B then P(A|B) = P(A)
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Total probability law formula and Bayes formula

@ Total probability law:
P(A) = P(A|B)P(B) + P(A|B°)P(B°)

@ Two players A and B owns respectively a and b euros. They throw a
dice where a odd number apear with probability p. The player B gives
1 euro to A if a odd number appear and the converse if a even
number appears. We define u, the probability that A bankrupt. We
have

Uz = PUat1 + (1 = p)Ua-1
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Total probability law formula and Bayes formula

@ Total probability law:
P(A) = P(A|B)P(B) + P(A|B°)P(B°)

@ Two players A and B owns respectively a and b euros. They throw a
dice where a odd number apear with probability p. The player B gives
1 euro to A if a odd number appear and the converse if a even
number appears. We define u, the probability that A bankrupt. We

have
Uz = PUat1 + (1 = p)Ua-1
@ Bayes law:
P(A|B)P(B)
P(BJA) = —————=

In the practice, the total probability law is used to compute P(A).
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Total probability law formula and Bayes formula

LetAq,..., Ap a partition of Q2 then

N
P(A) = D P(AIA)P(A)
i=1

L P(AIA)P(A)  P(AJA)P(A)
FAA =TT T I, rame(a)
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Conditional Law

@ Let X and Y two random variables. One can write
P(YcA XeB) = fp(v € AIX = X)Px(dx) = E[1gB(Y € AIX)]

@ The quantity P(Y € A|X = x) is a notation which corresponds to the
Radon Nykodym derivative

@ The family (P(Y € :|X = x)xer is called conditional probability law
family of Y knowing X.

@ The conditional law of Y knowing X is denoted by P(Y € -|X)
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Conditional Law

@ In the discrete case, the conditional probability law family is easy to
obtain. In particular
P(Y=y,X=x)

we have then

P(YedX)= > P(Y = ylX = x)1x=x
xeS(X)
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Conditional Law

@ In the discrete case, the conditional probability law family is easy to
obtain. In particular
P(Y=y,X=x)

we have then

P(YedX)= > P(Y = ylX = x)1x=x
xeS(X)

@ In the continuous case, we speak about conditional density. To this
end, we put
~ fxy(xy)

frix=x(y) = W1fx(x)>o
with

fx(x) = ffx,v(xv y)dy



Conditional expectation

@ So far we have addressed conditional probability. We want to
construct a notion of conditional expectation. Let us consider the
following

P[A N B

Pl = S

= E[14B]
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Conditional expectation

@ So far we have addressed conditional probability. We want to
construct a notion of conditional expectation. Let us consider the
following

P[A N B

Pl = S

= E[1alB]

@ Then one is tempting to define the conditional expectation of a r.v
knowing an event by
E[X15g]

E[X|B] = o

@ Now we aim to extend this notation to the conditional expectation to a
r.v knowing a o-algebra B:

E[X|B]?7?
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Conditional expectation

o Let (Q, A, P) be a probability space and let B such that 0 < P[B] < 1.
Consider 8 = o (B) the o-algebra generated by B.
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Conditional expectation

o Let (Q, A, P) be a probability space and let B such that 0 < P[B] < 1.
Consider 8 = o (B) the o-algebra generated by B.

B8=1{0,B,B°Q},
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Conditional expectation

o Let (Q, A, P) be a probability space and let B such that 0 < P[B] < 1.
Consider 8 = o (B) the o-algebra generated by B.

B8=1{0,B,B°Q},

@ WeputforXalL'rv
E[X|8] = E[X|B]15 + E[X|B°|1e

@ This is a random variable called conditional expectation of X knowing
8.

@ Note that this r.v is measurable with respect to B
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Conditional expectation

@ Let us investigate the property of this random variable
Y = E[X|B] = E[X|B]15 + E[X|B°]15¢
@ First note that

E[Y1B] = E[(E[X|B]1B—|—E[X|Bc]1Bc)1B]
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Conditional expectation

@ Let us investigate the property of this random variable
Y = E[X|B] = E[X|B]15 + E[X|B°]15¢
@ First note that

E[Y‘Ig] = E[(E[X|B]1B—|—E[X|Bc]1Bc)1B]
= E[(E[XIB]) 18]
— E[XIBE[15]
E[X1g]
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Conditional expectation

@ Let us investigate the property of this random variable
Y = E[X|B] = E[X|B]15 + E[X|B°]15¢
@ First note that

E[Y‘Ig] = E[(E[X|B]1B—|—E[X|Bc]1Bc)1B]
= E[(E[XIB]) 18]
— E[XIBE[15]
E[X1g]
— E[X1g]
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Conditional expectation

@ Let us investigate the property of this random variable
Y = E[X|B] = E[X|B]15 + E[X|B°]15¢
@ First note that

E[Y1s] = E[(E[X|B]1s + E[X|B|15¢) 18]
= E[(E[X|B]) 18]
= E[XIB]E[1g]
E[X1g]
= @ P[B]
— E[X1g]
E[Y1g:] = E[X1g]

@ We easy see also that E[Y1y] = E[X1y] and
E[Y] = E[Y1q] = E[X1q] = E[X]
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Conditional expectation

@ As a conclusion we can see that for all event G € 8 = {0, B, B®, Q} we
have
E[Y1g] = E[X1g] (1)
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@ As a conclusion we can see that for all event G € 8 = {0, B, B®, Q} we
have
E[Y1g] = E[X1g] (1)

@ The r.v Y = E[X|8B] is the only r.v 8 mesurable satisfying the above
property.
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Conditional expectation

@ As a conclusion we can see that for all event G € 8 = {0, B, B®, Q} we
have
E[Y1g] = E[X1g] (1)

@ The r.v Y = E[X|8B] is the only r.v 8 mesurable satisfying the above
property.
@ Indeed a B mesurable r.v Z can be written in form of

Z=alg + Blpge

then asking (1) implies @ = E[X|B] and 8 = E[X|B°]
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Conditional expectation

@ Let us go further and consider 8 = o{B;,i = 1, ..., N}, where B;is a
partition of €2, that is

N
Q= B;, BiﬁBj:(b,i;tj
i=1
@ We define

N
E[X|8] = > E[XIB]1s
i=1

@ One can verify that forall G € B

E[E[X|B]16] = E[X1g]

and this is the only 8 mesurable r.v satisfying such a property.
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Conditional expectation

@ We have the following theorem

Theorem

Let (Q, A, P) be a probability space and let B c A. Let X be a L' r.v.
There exists a unique r.v Y with is 8 mesurable such that

E[Y1g] = E[X1g],
for all G € B.
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Conditional expectation

@ We have the following theorem

Theorem

Let (Q, A, P) be a probability space and let B c A. Let X be a L' r.v.
There exists a unique r.v Y with is 8 mesurable such that

E[Y1g] = E[X1g],
for all G € B. We denote this r.v

E[X|8]

the conditional expectation knowing 8
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Conditional expectation

@ The conditioning calls for partial information and as we shall see the
r.v E[X|B] is somehow best "approximation" of X knowing only the
information included in 8.
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Conditional expectation

@ The conditioning calls for partial information and as we shall see the
r.v E[X|B] is somehow best "approximation" of X knowing only the
information included in 8.

@ Come back to B8 = {0, B, B¢, Q} we recall that

E[X|B] = E[X|B]15 + E[X|B°|15¢ (2)
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Conditional expectation

@ The conditioning calls for partial information and as we shall see the
r.v E[X|B] is somehow best "approximation" of X knowing only the
information included in 8.

@ Come back to B8 = {0, B, B¢, Q} we recall that
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Conditional expectation

@ The conditioning calls for partial information and as we shall see the
r.v E[X|B] is somehow best "approximation" of X knowing only the
information included in 8.

@ Come back to B8 = {0, B, B¢, Q} we recall that

E[X|B] = E[X|B]15 + E[X|B°|15e 2)

15 o 1ge
— P[BIE[X|B P[BC]E[X|B 3
[BIE[ ]P[B]+ [BCIE[ ]P[BC] (3)

1p 15 15¢ 15¢c
= E|X E(X 4
[ FP[B‘]I NEE [ x/_P[B_"]l R
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Conditional expectation

@ If X is L2 one can write

B 1g 1ge 1ge
B8 = \/P[_B 11»[15;]+E VE[B | VP[BY
in the form
_ 1p 1 15¢c 15¢
BIXig] = <X’ \/W> \/IP[B]+<X’ \/]P’[BC]> \P[B] ©
where

(X,Y) =E[XY],

is the scalar product in L2

68/150



Conditional expectation

@ If X is L2 one can write

1gc 15¢
E[X|8] = 5 5
\/P[B P[B \/P[BC ]P>[BC
in the form
15 15 15¢ 15¢
E[X|B] = <X, > — <X, > (6)
\P[B]/ +/P[B] VP[B]] P[B°]
where
(X,Y) =E[XY],
is the scalar product in L2
1gc .
@ Note that one can easily check that { \/P[_B \/P[?} is an

orthonormal basis of L2((Q, B, P))

@ E[X|8] is then just the L2 orthonormal projection of X onto
L2((Q, B, P)).
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Conditional expectation

@ In fact, in the case where X is L2, the property
E[E[XIB]16] = E[X1g]

for all G € 8 means that E[X|38] is the orthogonal projection of X onto
L3((2.8.P))

@ We can then express the following result which is useful in some
situation (for example in the Gaussian context)

Let (9, A, P) be a probability space and let B c A. Let X be a L? r.v.

The conditional expectation of X knowing 8 is the orthogonal projection of
X onto L?((Q, B,P))
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Conditional expectation

@ Recall that the conditional law of Y knowing X was given by

fx v(x, fx y(X,
fyix=x(y) = th(xpo, fyix(y) = M1fx(x)>0
fx(x) fx (X)

with

fx(X):ffX,Y(X’Y)dy
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Conditional expectation

@ Recall that the conditional law of Y knowing X was given by

fx.y(x.y) fx.y(X,y)
fyix=x(y) = W1fx(x)>0’ fyix(y) = W1fx(x)>0
with

fx(x) = f fxy(x,y)dy

@ Let denote E[h(Y)|X] = E[h(Y)|o(X)], where o(X) is the o-algebra
generated by X

@ We have
Eln(V)IX] = [ h()fnx(X. )y
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Conditional expectation

@ Some useful properties

E[E[X|B]] = E[X]
@ if X is independent of 8
E[X|8B] = E[X]
@ If X is 8 mesurable
E[X|B] = X

o If Zis B mesurable
E[X Z|B] = E[X|B]Z
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Estimation



Generality

@ Let us consider a parametric model where 6 is an unknown parameter

valued in © c R?
@ Recall that an estimator of 6 is a r.v which is measurable with respect

to a nsample Xi,..., X,

@ An estimator T is said to be unbiased if for all § € ©

Eg[T] =0
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@ Let us consider a parametric model where 6 is an unknown parameter
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@ An estimator T is said to be unbiased if for all § € ©
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@ T is said to be consistent if for all 6 € ©
T(X1, s Xn) —n—co 0

in probability or almost surely (with respect to Py)
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Generality

@ Let us consider a parametric model where 6 is an unknown parameter
valued in © c RY

@ Recall that an estimator of 6 is a r.v which is measurable with respect
to a nsample Xi,..., X,

@ An estimator T is said to be unbiased if for all § € ©

Eg[T] =0

@ T is said to be consistent if for all 6 € ©
T(X1, s Xn) —n—co 0

in probability or almost surely (with respect to Py)
@ T is said asymptotically normal if there exists a sequence (a,) converging to oo such that

an (T(X1..... Xn) = 6) = N(0.1)

v
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Moment estimation

@ Let (Xy,...,X,) asample
@ Recall that the moment of order k for ar.v is

E[XK] =E[X[],i=1,....k
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Moment estimation

@ Let (Xy,...,X,) asample
@ Recall that the moment of order k for ar.v is
E[XK] =E[X[],i=1,....k

@ We can replace these moments by their empirical version that is

- 1 & «
xg:EZx,
1=

74/150



Moment estimation

@ Let (Xy,...,X,) asample
@ Recall that the moment of order k for ar.v is

E[XK] =E[X[],i=1,....k
@ We can replace these moments by their empirical version that is
_ 1 &
k
Xf =~ > X!
i=1

@ The centered version
E[(X1 - E[X1))¥]

_ 1 < _
X = ,-Z‘(Xi — X))k
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Moment estimation

@ Method principle
@ Assuming that you can apply the Law of large numbers we have

ok _ 1Nk as ok

X = DU XFESEX]

i=1
@ Assume that X = (X1,..., Xp) is distributed along P, where 6 € © is
unknown.

@ Hope: extract information on 6 by knowing the moment
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Moment estimation

@ Example
@ Bernoulli of parameter 6: B(6)

E[X] =

we can use the first moment

- 1 & .
T:xn:EZx,ﬁe
i=1
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Moment estimation

@ Example
@ Bernoulli of parameter 6: B(6)

E[X] =

we can use the first moment

- 1 & .
T:xn:EZx,ﬁe
i=1

@ We also have
E[X?] =6

we can use the second moment
a.s 1 < a.s
v & 2 2 a
X, — 0, T:Xn:E‘E1Xi—>9
=
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Moment estimation

@ Example
@ Binomial of parameter (k, §). Assume you know k and just want to
estimate 6
E[X1] = k6

we can use the first moment

1 1 & a.s
T:FXn:E;X;—w
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Moment estimation

@ Example
@ Binomial of parameter (k, §). Assume you know k and just want to

estimate 6
E[X1] = ko

we can use the first moment
1_ 1 & a.s
T =X = E;X;—w)

@ Assume you do not know k and need to estimate k and 6 you should
use also the second moment

Var(X1) = B[(Xi —E(X1))?] = k6(1 - 6) = E[X;](1 - 6)

@ Then
0 — 1 Var(X1 ) . E[X1]
- ’ - Var(X;)
E[X1] 1-
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Moment estimation

@ Then Var(x X
0=1- E&f) h= [Va:(]xo
1 - &

@ Then we can estimate k and 8 by putting

Zx,, s2=1 Z(x,- — Xp)?

and defining
R 52 X,
9()(1,... ,)(n) - 1 - = I(()(1, ,)(n) - >
)(n 1 _ %%1
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Moment estimation

@ Case of a sample (X1,..., Xp) whose density is fy(x) = 6e™1g+(x)
@ simple computation shows that

BIXi] =

@ Then our estimator of 8 can be chosen as

A 1
0:_—
Xn

@ Exercise: do the same job for (Xi,..., X,) distributed along N (u, 02)
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Moment estimation

@ In order to summarize. Assume you want to estimate g(6). First you
should find h such that

E[h(X1)] = g(6)
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Moment estimation

@ In order to summarize. Assume you want to estimate g(6). First you
should find h such that

E[h(X1)] = g(6)

@ Determine the number p of moments you shall need to recover g(6)

80/150



Moment estimation

@ In order to summarize. Assume you want to estimate g(6). First you
should find h such that

E[h(X1)] = g(6)

@ Determine the number p of moments you shall need to recover g(6)

@ Then compute the p moments you need and connect them to the
quantity you aim to estimate
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Moment estimation

@ In order to summarize. Assume you want to estimate g(6). First you
should find h such that

E[h(X1)] = g(6)

@ Determine the number p of moments you shall need to recover g(6)

@ Then compute the p moments you need and connect them to the
quantity you aim to estimate

@ Replace these p moments by their empirical version.
@ Unbiaised, asymptotic normality, Delta method
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Moment estimation

@ Comme back to the initial question with the notion of bias and
asymtptotic normality.

@ If you have found h such that E[h(X1)] = g(6) then using
1 < a.s
T=— > h(X)=g(6)
i=

T is an unbiaised estimator of g(6)
@ Assume that Var(h(X1)) = o?(6) then we have

\/E(T;(zg‘g))ﬁ)/v(o, 1)
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Moment estimation

@ One can see that the moment method has weakness

@ First you can see that in the study of asymptotically normality one see
that it depends on o-(6) which is also unknown.

@ You can avoid this obstacle using Slutsky Lemma, you look at

\/E(T;f(e)ﬂ/v(o,n

n
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Moment estimation

@ ltis not evident to find h such that E[h(X;)] = g(6). For example the
density case where fy(x) = fe~*1y+(x), the estimator of 6 was

n

T=—
Xi1+...+ X,

and it is not even easy to compute E[T] which makes the study of
bias not straightforward.
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Moment estimation

@ ltis not evident to find h such that E[h(X;)] = g(6). For example the
density case where fy(x) = fe~*1y+(x), the estimator of 6 was

n

T=—
X1+ ...+ Xy

and it is not even easy to compute E[T] which makes the study of

bias not straightforward.

@ Concerning the asymptotically normality property you have to use
delta method to get

«/ﬁ()‘(n - %) L N(0,1/67),then V(T = 6) = N(0, 62)
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Maximum likelihood

@ The framework is the following, we consider a parametric model
P = {Py, 0 € ©} and we consider that the model is dominated in the
sense that for all 9 there exists fy such that for all A € A:

Py(A) = fA () du(x)
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Maximum likelihood

@ The framework is the following, we consider a parametric model
P = {Py, 0 € ©} and we consider that the model is dominated in the

sense that for all 9 there exists fy such that for all A € A:

Pu(A) = [ 600ok(x)

Definition (Vraissemblance)
Let (Xi,..., Xn) be a n-sample of probability Py, we call likelihood of this
sample, the joint density of this sample with respect to 4. We denote it as

L(xi,....Xm; 6;).

In general this can be expressed as

n
L (3, 0) = [ | x).
i=1
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MLE

@ In the discrete case it takes the form

Ln(X‘],. . .,Xn, 0) — PQ(X1 — X1) .o Pg(Xn — Xn)
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MLE

@ In the discrete case it takes the form

Ln(X1,. . .,Xn, 0) — PQ(X1 — X1) .o Pg(Xn — Xn)

@ In the continuous case

La(X1s ...y X0, 0) = fa(X1) ... fo(Xn)

where fy corresponds to the density of X; with respect to the
Lebesgue measure.
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MLE

@ Example
@ Let (Xi,...,Xy) be a n-sample of law N (m,o2). Assume that the
unknown parameters are § = (m,o?) € Rx R;..

n

]
L(xt,....xn;0) = | | ——e
" l:[ V2102

@ Let (X1,...,Xp) be a n-sample of law P(0). Assume that the unknown
parameter 6 € R.

(x-m)? 1 2L Ogm)?

202 = e 252
(21102

-n6 02?21 X

( y=[]e 2
L(xt,....xi0) = [ e =e™——.
i—1 Xj! H7:1X,‘!
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MLE

Let consider a statistical model dominated by a measure u and let L(X, 6)
be its likelihood function. All statistic ¥V = 8MV(X,..., X,) such that

L(Xq,..., Xn,0M) = max L(Xi.,.... X, 6)

is called estimator of the maximum likelihood.
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MLE

Let consider a statistical model dominated by a measure u and let L(X, 6)
be its likelihood function. All statistic 84V = MV (X, ..., X,) such that

L(Xq,..., Xn,0M) = max L(Xi.,.... X, 6)
is called estimator of the maximum likelihood. We shall denote
MV — argmax L(X1,...,Xp,60)
if there are several point where the maximum is reached, we can replace

=bye
In the sequel, we shall denote the so-called log likelihood

In(6) = —— Z In L(X;, 6)

v
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MLE

@ Example

_ x4

= ) 0 € R, unknown and o known.

@ Laplace model f(x,8) = - exp(

1 n
h(6) = In(20) + — ’; 1X; — 6.

88/150



MLE

@ Example
@ Laplace model f(x,0) = 5 exp (—@), 6 € R, unknown and o known.

1 n
h(6) = In(20) + — ; 1X; - .

@ We shall need to find the minium of ) | X; — 6|. Note that this function
is almost surely differentiable and its differential h is given by

- Zn: sign(X; — ) = h(0).
i=1

if n is even the differential vanishes on every point of [X(,,/g), X(,,/2+1)]
and then any point of this interval is an MLE. If n is odd a unique MLE
is the mediane but there is no point where the differential vanishes.
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MLE

@ Cauchy law f(x) = m

The critical point study is not explicit, in general there exists many
critical point and then many MLE.

@ Consider a model of the form
f(x,0) = fo(x — 0)

with
o XI/2

22nx]
then the likelihood converges towards +oco when 6 — X; for all i then
tehre is no MLE.

fo(X) =
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MLE

@ Normal case N (u,0?)
@ Bernoulli case: B(6)

@ Uniform law case: U([0,d])
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MLE

@ What can we say about the asymptotic behaviour of the MLE
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MLE

@ What can we say about the asymptotic behaviour of the MLE
@ First we shall address the consistency
@ To this end we introduce an assumption

f [ £ (X)d(x) < o0, V6 € ©. @)
@ This means that the r.v
—In(fy(Xy)) e L

and then we can applied the LLN to get that

Pgra.s

In(8) =57 J(6) = - f f(x,6") In f(x, 6)du
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MLE

@ We have J(0) > J(6").
@ If moreover the model is identifiable the inequality is strict as soon as
0+ 6.
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MLE

@ We have J(0) > J(6").

@ If moreover the model is identifiable the inequality is strict as soon as
0+ 6.

© Now we know that I,(6) converges towards J(6) we can hope that the
argmin of I,(#) converges towards the argmin of J(6) which appears
to be 6* under the hypotheses of identifiability.
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MLE

Theorem

Suppose that © is an open set of R and
@ that for all x the density f(x, 6) is continuous in 6,
Q@ that the model is identifiable
© that the Hypothesis (7) is satisfied

Q that for all n 6MV exists and that the set of local minima of I,(6) is a
bounded closed interval include in 6.

then MV is a consistant estimator (which converges in probability with
respect to Py-).
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MLE

Weibull Model of density f(x,8) = 6x’~! exp(=x?)1x=0. We then obtain

1 n 1 n
/,,(9)=—|n9—(9—1)52|nx,+32xf)
i=1 i=1

) 1 1< 1 )
I,,(O):—E—E;InX;—FEZX, In X;

" 1 1 0 2
1'(6) = 9—2+32xi(|nx,) > 0.

a study of the function shows that there exists only one critival point which
is then a global minimum, we have then existence and uniqueness MV It
remains just to verify that

Ey (

and then we conclude that 8 is consistent.
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MLE

We shall say that a model is ML regular if
@ The model is dominated
©Q ©isanopensetof Rand f(x,0) >0 < f(x,0’)>0
@ The functions fand | = In f are C? in 6.

© V0o there exists a neighborhood of §* denoted by U and a function
A(x) such that
11" (x,0)] < A(x), II'(x,0)] < A(x), IF'(x,60)2 < A(x) forall § € U and u
almost surely in x and

f/\(x) sup f(x, 0)du < .
ocU

Q 1(6) :=Ep [I(X.0")(X.0%)!| = —E¢ [I"(X.6")] > 0, V6 € ©.
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MLE

Theorem (T.C.L pour §"V)

Suppose that the model M.V. is regular and Let 9,,"/"/ be a sequence of
consistent de square root of I,(§) = 0. Then ¥6* € 6

Vn(8MY - 6*) — N(0,1/1(6%)).

The quantity
I(6) == Eg- [I'(X.07)'(X.0°)!| = —E¢- [I” (X, 67)]

is usually called the Fisher information
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MLE

@ Why are we interested by unbiased estimator?
@ Let (Th) an estimator of 6, we have the quadratic risk defined by

E((Tn - 6)°)
which corresponds to the L? distance between our estimator T,, and
the target 0
@ One can write
E((Ta - 6)?)

= E((To ~E(Tp) +E(Tn) - 6)°)

= E((Tn —E(Tn))? + 2E((Tn — Tn)(E(Tn) — 0)) + (E(T5) — 6)®

= E((To ~E(Th))* + (E(Tn) - 6)°

which is called the variance-bias decomposition. The bias makes the
distance larger.
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Confidence set

@ In this section we shall follow an example to make clear the idea
behind the confidence set

@ Essentially when we make an estimation we are forced to make an
error. Confidence set are here to control this error.
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Confidence set

@ In this section we shall follow an example to make clear the idea
behind the confidence set

@ Essentially when we make an estimation we are forced to make an
error. Confidence set are here to control this error.

@ The idea is to construct a random interval (or set in higher dimension)
who contains the true parameter with high probability.

@ For example if z is an estimation we want to determine € such that a
true parameter satisfies

Pluel-e+pe+p]]=1-«

where « is small (such that Plu € [-€ 4+ p, € + u]] is close to 1)

99/150



Confidence set

@ Let consider the guiding example of (X1, ..., X;) a n-sample of
Bernoulli law of parameter 6*: B(6")
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Confidence set

@ Let consider the guiding example of (X1, ..., X;) a n-sample of
Bernoulli law of parameter 6*: B(6")

@ As we have seen a good estimator is

_ 1 <
Xn:E;X;

@ We know that .
X, -5 6

@ Let us try to estimate

P[0 € [Xn — €, Xn + €]] = Pg-[|1Xn — 6°| < €]
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Confidence set

@ First let us check that
_ 1 &
E[Xn] = ; E[X] = E[X:] = 6*

and
(1 -6
Var, X,, Z Var[Xj] = ) .

101/150



Confidence set

@ First let us check that
_ 1 &
E[Xn] = ; E[X] = E[X:] = 6*

and
(1 -6
Var, X,, Z Var[Xj] = ) .

@ Then we can apply Bienaymé Chebyschev

Var(X,)
2
— M (9)

ne?

P[IX, - 6% > €] <
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Confidence set

@ Now one can see that for all x € [0, 1]

1
1-x)< -
x(1-x)<
then

— 1
Pl|X, -0 > €] < —
(1% > €] 4ne?
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Confidence set

@ Now one can see that for all x € [0, 1]

1

x(1-x)< =
(1-x) <
then ]
P[IX, - 6°| > €] < —
[IXn > €] 4ne?
@ Fixing
1
YT 4ne
which imposes
1
€ =
4dna

102/150



Confidence set

@ We can then conclude that
1
V4na

IP)[|)_<n_9*| > ] <a

which finally yields

- 1 - 1
Plo* € [ X, — , Xn+ >1-a
[["m”m”
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Confidence set

@ We can then conclude that
1
V4na

P[IX, — 67| > |<a

which finally yields

- 1 - 1
Plo* € [ X, — , Xn+ >1-a
[[”m”m”

@ As we can see through this approach we can adjust the parameter «
to make the above probability close to 1. This parameter represents a
risk.

@ Often we choose @ = 0,05 = 5.1072
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Confidence set

@ The confidence interval is then

1 - 1
_ X 4+ —
V4na 5 4na

@ Assume you want a small interval this imposes

(X, - ]

1

4na
to be small
@ For example for @ = 0, 05 if you want ﬁ =0,1youneed n=
@ For example for @ = 0, 05 if you want ﬁ = 0,01 youneed n =

@ Note that since this is v/n which is involved, when you want to obtain
a smallr interval (gaining a significative number you need a sample
100 times bigger).
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Confidence set

@ Using this approach you can see that you can need a large number n.
But when n is large enough you can use the Central Limit Theorem.

@ Recall that
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Confidence set

@ Using this approach you can see that you can need a large number n.
But when n is large enough you can use the Central Limit Theorem.

@ Recall that _
n( Xn =8 ]ﬂ/\/(o,n
6(1 - 6%)
@ Since
- Pp
Xp— 6",
then by Slutsky we have
Xp - 6* Vo(1 - o Xn—0 )L
\/;; - n - _ S ( ) _\/;; ( n ) __519 /\/(()’ 1 )
X(-%))  JX-x;) VI =E)

105/150



Confidence set

@ Keep in mind that for n large enough we have

X, -6 Ly
Vn| ———= "% N(0,1)
X5(1-X5)
@ We can say that
_ Xo(1-Xn) < Xn(1 =X .
Po:[| Xn — Q1-as2 M;Xn+q1—w/2 % 59]
jzn(1 _'j%n)

= Pyr||Xn = 6% < G1-as2

n
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Confidence set

@ Keep in mind that for n large enough we have

Xn - 9 Lg*

Vi < N(0.1)
o1 = %)

@ We can say that

1—X 1—X
— Q1-q/2 \/ ). ; Xn + a1 01/2\/ n)

)

1-X
=Py ||Xn = 0"| < G1-as2 (Tn)
6n—0"
= Py | | VN ———| < Gt-aj2 | = P[IX| < G1_q/2], (10)
VX1 - X5)

where X ~ Nio, 1 i



Confidence set

@ So far we have

_ Xo(1=X,) o Xa(1 =X
Po| | Xn — Q1-a/2 M; Xn + Q1-aj2 % 99*]
(11)
= P[IX| < G1-a/2] (12)

@ Now we can say what is q1—_q/2,
P(IX| < Qioqr2) =1-(a/2+ @/2) =1 -«

<
o

©
o

o~
o

4 a/2 al2

o

o
=1

T T T
4 “Q1.ar2 0 Q1-a2 4
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Confidence set

@ This way we have construct a confidence interval

_ /)‘( 1-X,) - /)'( 1-X,
Xn = Qi-a/2 %:Xn*‘cﬁ—a/z y

@ For example for @ = 0,05, we get q1_,/2 = 1,96. This can be read on
table of the N(0,1) law.
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Confidence set

@ Can we compare the two interval that we have constructed. In fact we
can show that

- 1 - 1 1
lim Pyp:| [ X — — ; X +—]39)>1—exp(——):1—oaf
n—eo 6([ ! V4na " Vana 2« (@)

@ Essentially this means that for large n, we have

_ /)‘( 1-X,) - X,(1 =X
Xn = Qi-a/2 y; Xn + Q1-aj2 %
- 1 — 1

] (14)

(13)

c | Xn +

V4na " V4na

then for large n the confidence interval obtained via the CLT is better
than the one obtained by Bienaymé Chebychev
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Confidence set

@ Can we compare the two interval that we have constructed. In fact we
can show that

- 1 - 1 1
lim Pyp:| [ X — — ; X +—}39)>1—exp(——)=1—oaf
n—eo 6([ ! V4na " Vana 2« (@)

@ Essentially this means that for large n, we have

_ /)‘( 1-X,) - X,(1 =X
Xn = Qi-a/2 y; Xn + Q1-aj2 %
- 1 — 1

] (14)

(13)

c | Xn +

V4na ! V4na
then for large n the confidence interval obtained via the CLT is better
than the one obtained by Bienaymé Chebychev

@ The interest of Bienaymé Tchebychev is that it is true for all n. This
can give information for small sample.
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Confidence set

@ In general for a n-sample (X, ..., X,) of a law Py for using Bienaymé
Tchebychev we need to control the variance independently of 8*.
Here for B(6*) we have used

o o(1-6) A
Var(X,) = % <1

@ For Poisson random variable (6*) we have
_ o*
Var(X,) = "

and conditions on 8* have to be known to construct a confidence
interval with B-T (example you know that 6* < M for a known value M.

@ For using_CLT one can use the same trick by replacing the variance in
terms of X, and justify it via Slustsky theorem.
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Confidence set

@ In general if we are not in such a situation, in order to use the CLT, we
have to estimate the variance. To this end we have the following

estimator .
R 1 S
o=~ ;(x,- — Xp)?

@ and the corresponding confidence interval is

_ 6’2 _ 6’2
Xn = Qi-a/2 7” ; Xn + Q1-ay2 7"
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Confidence set

@ Let us concentrate on this estimator

2 1%
o= ) (%= Z(X, (Xn)?

@ As we said it is an estimator of the variance. If you come back to the
previous chapter, let us adress the usual question, bias,
consistency....
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Confidence set

@ Let us start with the bias

Blod] = - B - Bl(X)]
i=
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Confidence set

@ Let us start with the bias

Blod] = %ZE{X?]—E[%)Z]

=3 L
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Confidence set

@ Let us start with the bias

Blod] = - B - Bl(X)]
i=

(5]

i=1

1
= E(XF) - — ) EIXX]
i.j

= E(X?)-E
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Confidence set

@ Let us start with the bias
1 < -
Blof] = > EXFI-E[(X)]
i=1
18 YV
e
=

1
= E(XF) - — ) EIXX]
i.j

= E(X?)-E

= E(X3)- # [Z E[(X)?] + > EIX]E[X]
=

i#j
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Confidence set

@ Let us start with the bias

Blod] = - B - Bl(X)]
i=

Aig]

i=1

— E(X?)- # Z BIXX]

~ E(X})

Z E[(X)?] + ) EIXIELX]

i#f

= E(X}) ——E[Xﬂ— S B
i#j
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Confidence set

@ Let us start with the bias

Blod] = - B - Bl(X)]
i=

Aig]

i=1

= B(¢)- Z BIXX]

~ E(X})

1
__2

Z E[(X)?] + ) EIXIELX]

i#f

= E(X}) ——E[Xﬂ— ZE[X@Z
i#j

= % Var(X1)
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Confidence set

@ Let us start with the bias
n-1
E[o?] = — Var(X1)

@ Then considering

we have an unbiased estimator.
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Confidence set

@ Letassume that (Xi,..., X,)! be a Gaussian vector of law N (m, o?).

We have
n-1

o2 Sﬁ ~X2(n_ 1)
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Confidence set

@ Letassume that (Xi,..., X,)! be a Gaussian vector of law N (m, o?).

We have
n-1

o2 Sﬁ ~X2(n_ 1)

@ Indeed note that Y = 1(X; —m,..., Xp — m)" ~ N(0, I)
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Confidence set

@ Letassume that (Xi,..., X,)! be a Gaussian vector of law N (m, o?).
We have
’7 - 1 2 2
— Sy ~x“(n-1)
g
@ Indeed note that Y = 1(X; —m,..., Xp — m)" ~ N(0, I)
@ Define F = Vect(1,) where 1, = (1,...,1)!. We easily have
dim(F) =1and dm(F*) =n—-1.
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Confidence set

@ Let assume that (X1, ..., X,)! be a Gaussian vector of law N (m, o).
We have
’7 - 1 2 2
— Sy ~x“(n-1)
g
@ Indeed note that Y = 1(X; —m,..., Xp — m)" ~ N(0, I)
@ Define F = Vect(1,) where 1, = (1,...,1)!. We easily have
dim(F) =1and dm(F*) =n—-1.
@ Now note that Pr(X) = <1—#X> 1—# = 1(X,-m,...X,—m)' and then

1 — _
Pe:(X) = X = Pe(X) = —(Xi = Xno.... Xo = Xo)'
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Confidence set

@ Let assume that (X1, ..., X,)! be a Gaussian vector of law N (m, o).
We have
,7 - 1 2 2
— Sy ~x“(n-1)
g
@ Indeed note that Y = 1(X; —m,..., Xp — m)" ~ N(0, I)
@ Define F = Vect(1,) where 1, = (1,...,1)!. We easily have
dim(F) =1and dm(F*) =n—-1.

@ Now note that Pr(X) = <1—#X> 1—# = 1(X,-m,... X, - m)! and then

1 — _
Pe:(X) = X = Pe(X) = —(Xi = Xno.... Xo = Xo)'

@ The Cochran Theorem then says that [|Pr-(X)|> ~ x?(n —1). Now it

is easy to see that

n-1
IPe (X1 = —5=57
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Confidence set

@ This allows to construct confidence interval for the variance of a
Gaussian law. Let denote x*_ the quantile of the y?(k) law that is if
T ~ x?(k) then
IP)[/\fa/z T<X1 a/2] =1-«
@ Then we have

n-1 _
@ This implies
n-1
ED E;ﬁ X C"2 \\ E;zl = 1 -
n-1
Xi—a/2 a/2

and then the interval

n-1

X1 a/2 Xo/2

- Sﬁ’usgl

is a confidence interval of level « for the variance o2 of Xj.
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Confidence set

@ Other possible interesting result when Xi, ..., X, are Gaussian
N(m,d?)

x/ﬁ(x”(; m) ~ N(0,1)

then if o is known this allows to construct a confidence interval for u
@ If o2 is not known replace o by S, and we have

X,—m
\/ﬁ( nS )"Tn—1
n

where 7,_1 is a r.v distributed along a Student law of n — 1 degree of
freedom.
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Confidence set

@ In the above example the confidence interval are bounded but we can also consider bounds
which are infinite (only one of course)

Let « € [0, 1] fixé and let 6" € R¥

o When k = 1, we call confidence interval of level 1 — & for 6* all random interval I of the form
[a(X1,....Xn),b(X1,...,Xn)] xhere a (Xi,...,Xn) and b (Xi,..., X,) are statistics
(independent of 6*) satisfying

Py(0cla(Xi,....%n) ., b(X1,....Xp)]) =1 -«
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Confidence set

@ In the above example the confidence interval are bounded but we can also consider bounds
which are infinite (only one of course)

Let « € [0, 1] fixé and let 6" € R¥

o When k = 1, we call confidence interval of level 1 — & for 6* all random interval I of the form
[a(X1,....Xn),b(X1,...,Xn)] xhere a (Xi,...,Xn) and b (Xi,..., X,) are statistics
(independent of 6*) satisfying

Po(0ela(Xt,....Xn),b(Xq,....Xp)]) =1 -a.

Q ifa(Xy,...,Xp) >—coand b (Xi,...,Xp) < co we speak about bilateral interval
@ ifa(Xy,...,Xp) = —co we speak about left unilateral interval
@ ifb(Xi,...,Xn) = co we speak about right unilateral interval

e When k > 1 we speak about confidence set of level 1 — a for 6 all random subset R (X1, ..., Xn)
of RK which depends on (Xi,..., X,) in a measurable way and is independent of 6 satisfying

Pg (9 (S F?()G,...,)(n)) =1-a.
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Confidence set

@ We can relax the previous definition by allowing > instead of =

Let « € [0, 1] fixé and let 6" € R¥

o When k = 1, we call confidence interval of level 1 — @ for 6* all random interval I of the form
[a(X1,....Xn),b(X1,...,Xn)] xhere a (Xi,...,Xn) and b (Xi,..., X,) are statistics
(independent of 6*) satisfying

Po(0ela(Xi....Xn).b (X1 . Xn)]) > 1 —a.

Q ifa(Xy,...,Xp) >—coand b (Xi,...,Xn) < co we speak about bilateral interval
@ ifa(Xy,...,Xp) = —co we speak about left unilateral interval
@ ifb(Xi,...,Xn) = co we speak about right unilateral interval

e When k > 1 we speak about confidence set of level 1 — a for 6 all random subset R (X1, ..., X5)
of R¥ which depends on (Xi,..., X,) in a measurable way and is independent of 6 satisfying

Py (9 € F?()G,...,)(n)) >1-a.
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Confidence set

@ We can also have asymptotic confidence set
Definition
Let a € [0, 1] fixé and let 9* € RK

o When k = 1, we call confidence interval of level 1 — « for 6* all random interval I of the form
[a(X1,....Xn).b(X1,...,Xq)] xhere a (Xi,...,X,) and b (Xy,..., X,) are statistics
(independent of 6*) satisfying

lim Py (0 € [a (X1, ... Xn) b (X1, Xo)]) = 1 -

Q ifa(Xy,...,Xp) > —coand b (Xi,...,Xn) < co we speak about bilateral interval
@ ifa(Xy,...,Xp) = —c we speak about left unilateral interval
@ ifb(Xi,...,Xn) = oo we speak about right unilateral interval

e When k > 1 we speak about confidence set of level 1 — a for 6 all random subset R (X1, ..., X5)
of R which depends on (Xj, ..., X;) in a measurable way and is independent of 6 satisfying

limPq (0€ R (X,.... X)) = 1-a.

v
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Confidence set

@ One can also use open set for confidence set
@ In general there is an infinity of confidence interval. For example with

the CLT we can choose
— /0'2
—00, Xn - q"—(l 7”]

@ Can it be interested to have a interval bound which is infinite? It looks
like not sharp!

@ Imagine that you known that the unknow quantity is non negative
(decibel of a night club, number of student attending the summer
school in France); then the part | — o, 0] is useless and the interval

_ o2 _ o2

Xn — —a 1 s Xn — - -

0, Xn — a1 \f . 0, Xnh — Q1-ay2 \/ -
which makes the interval ‘0, X, — Q-a \/‘%ﬁ‘ more relevant.
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Basic of Regression

o First let us start with a simple situation. Let Y be a L? r.v. You want to
approximate Y by a constant a by minimizing the quadratic error that
is you want to find

argminaezE[(Y — a)?]
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approximate Y by a constant a by minimizing the quadratic error that
is you want to find

argminaezE[(Y — a)?]

@ Infact it is easy to check that

minE[(Y - a)?]

aeR

is reached for a = E[Y].
@ Indeed one can think in terms of projection of Y onto the subspace of
constant function.
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Basic of Regression

o First let us start with a simple situation. Let Y be a L? r.v. You want to
approximate Y by a constant a by minimizing the quadratic error that
is you want to find

argminaezE[(Y — a)?]

@ Infact it is easy to check that

min E[(Y - a)?]
aeR
is reached for a = E[Y].
@ Indeed one can think in terms of projection of Y onto the subspace of
constant function.
@ If you do not have the possibility to consider the L? norma, one could
have thought
argminaerE[|Y — al|

and you would have founded the median
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Basic of Regression

@ Now imagine you have a couple (X, Y) whose you know the joint
distribution. Suppose that X and Y are L2.

@ Consider the situation where you only observe a realization of X let
say x. You want to estimate Y knowing this realization. Without
further information it is not possible since Y knowing x is random.
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Basic of Regression

@ Now imagine you have a couple (X, Y) whose you know the joint
distribution. Suppose that X and Y are L2.

@ Consider the situation where you only observe a realization of X let
say x. You want to estimate Y knowing this realization. Without
further information it is not possible since Y knowing x is random.

@ Anidea is to approximate Y as an affine function of X,i.e Y =aX+b
and you to minimise

minE[(Y — aX + b)?]
a,b

@ Here, you see that, you need to find the orthogonal projection onto
the subspace of affine function of X. Computations give

Cov(X,Y)

~ Cov(X,Y)
B a?(X)

2(X)

124/150
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Basic of Regression

@ At this stage let us introduce the so called correlation coefficient

_ Cov(X,Y)

P= Xty WIS
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_ Cov(X,Y)

P oX)e(y)y AT

@ Note that X and Y independent implies p =0
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Basic of Regression

@ At this stage let us introduce the so called correlation coefficient

_ Cov(X,Y)

P oX)e(y)y AT

@ Note that X and Y independent implies p =0
@ Interms of p one can check

mibn E[(Y - aX + b)?] = 2(Y)(1 - p?)
a,
@ The error is small when |o| is close to 1

@ When p = 0 the error is maximum. In this case the best
approximation is E[Y]
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Basic of Regression

@ In statistics, i.e in the true life we do not know the law of the couple
(X,Y). We have n realizations ((X1, Y1),...,(Xn, Yn)) and you want

to minimize
n

min > (¥; - (aX; + b))

a,b 4
i=1

@ In terms of realizations, in concrete terms you want to minimize
n
. 2
rg,ln Z (yi—(axi+ b))

b
i=1

@ Concretely, you replace

~ Cov(X.,Y) B Cov(X.,Y)
=T o P g B

by their empirical versions (variance, covariance, expectation...)
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Basic of Regression

@ More generally you can ask to approximate Y as a function u(X) and
then minimize
min E[(Y - u(X))?]
u
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Basic of Regression

@ More generally you can ask to approximate Y as a function u(X) and
then minimize
minE[(Y - u(X))?]

@ As we already seen this quantity is obtained by using the conditional
expectation that is
E[YIX]

@ The curve
x - E[Y|X = x]

is called the regression curve (regression function).
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Basic of Regression

@ Example of a couple (X, Y) with density
f(x,y) = 2e‘("+y)10<X<y
@ The conditional expectation is then fyjx—x = fx,(x, y)/fx(x) where
fx(x) = 267%19<x, (exponential law)

@ We then have
fyix=x(¥) = € o<xsy

@ We can then compute

00
E[YIX =x] = f Yivix=x(y)dy = f e*yeVdy = x + 1
X
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Basic of Regression

@ Come back to the Gaussian case
@ Let (X, Y) be a Gaussian vector, one can check

Cov(X,Y)

E[YIX] = (Y] + 3 s

(X -E[X])
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@ Come back to the Gaussian case
@ Let (X, Y) be a Gaussian vector, one can check

Cov(X,Y)

E[YIX] = (Y] + 3 s

(X -E[X])

In the Gaussian world the regression curve and the regression line are the
same!
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Basic of Regression

@ Come back to the Gaussian case
@ Let (X, Y) be a Gaussian vector, one can check

Cov(X,Y)

E[YIX] = (Y] + 3 s

(X -E[X])

In the Gaussian world the regression curve and the regression line are the
same!

@ E[Y|X] is supposed to be the orthogonal projection of Y onto
L2(X) = {f(X), E[f(X)?] < co}
but here it reduces to the orthogonal projection onto
Vect{1, X}



Basic of Regression

@ On Vect{1, X} one can check that
] X - E[X]
’ / Var(X)

is an orthonormal basis.
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@ On Vect{1, X} one can check that
] X - E[X]
’ / Var(X)

is an orthonormal basis.
@ One can then check

E[Y|X] = (1, V)1 + < X~ EX] Y> X~ BIX]

JVar(X)" | yJVar(X)
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Basic of Regression

@ On Vect{1, X} one can check that
] X - E[X]
’ / Var(X)

is an orthonormal basis.
@ One can then check

E[Y|X] = (1, V)1 + < X~ EX] Y> X~ EX]

JVar(X)" | yJVar(X)
which is exactly another way of writting
Cov(X,Y
B[vIX] = B[Y] + S0V (x g[x)

Var(X)

130/150



Regression Hyperplan

@ Let X = (Xi,..., X,) be a random vector, we aim to approximate Y by
a hyperlan which minimizes

min ]E
ai, an

(b+ZaX,]
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@ Let X = (Xi,..., X,) be a random vector, we aim to approximate Y by
a hyperlan which minimizes

min ]E
a1,...,an

(b+ZaX,]

@ We suppose that the dispersion matrix

Mx = E[(X - E[X])(X - E[X])']
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Regression Hyperplan

@ Let X = (Xi,..., X,) be a random vector, we aim to approximate Y by
a hyperlan which minimizes

min ]E
a1,...,an

(b+ZaX,]

@ We suppose that the dispersion matrix

Mx = E[(X - E[X])(X - E[X])']

@ The regression hyperplan is given by
mu(Y) = E[Y] + Ty xIy (X = E[X)),

where 'y x = E[(Y — E(Y))(X — E(X))] is the covariance line matrix
(Cov(Y, X1),...,Cov(Y,Xn))
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Regression Hyperplan

@ We can also compute the quadratic error

E[(Y - ﬂH(Y))Z] =Iy- ry,)(r)_(1 rx,y

132/150



Regression Hyperplan

@ We can also compute the quadratic error

E[(Y - ﬂH(Y))Z] =Iy- ry,)(r)_(1 rx,y

@ Gaussian situation

In the Gaussian world if (X1, ..., Xn, Y) is a Gaussian vector, we have

E[YIX] = E[Y] + TyxIy (X — E[X))

then the Hyperplan of regression is equal to the conditional expectation.
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Principal Component
Analysis: Overview



PCA

@ Will be developed in details in the 3rd week

@ Assume you have access to p datas (age, sex, color of hair, rate of
alcohol in the blood ...) of n people

@ The parameter p can be huge and unless for p < 3 it is not possible to
represent these datas on a graph

@ We want to determine q < p variables which explains the phenomena,
we study, and which can be represented in a graph (q = 2, 3)
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PCA

@ The datas are grouped in a matrix X of size n x p

X = (X',............ , XP) (15)
Xi.1 Xip Xi
X = X,1 Xi,p — XI (16)
)<n71 “ee ce )(n,p )(h
@ Introduce X :( X' ... ... XP ),where XK is the mean of the

variable X¥. Denote s2 = Var(X¥) = 1 317 (X — X¥)? the
corresponding variance.
@ The number of people belongs to R" and the variables to RP where

the average is made by column
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PCA

@ The centered version

X1,1—)_<1 X1,p_)_(p
Y = | Xqu-X'" ... ... Xp-XP (17)
)(h’1 - 5(1 “ e “ e )(h’p - 5Zp
@ The centered and reduced version
X=X Xi,0-XP
T PP o s—p
) x;'->‘<1 X.,'_)-(p o
z = | X %R vaZ)=1=1. 09
Xm._ o xn,p; .

) e S Sp
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PCA

@ Let us speak about the distance between two people. To this end
consider a symmetric definite positive matrix M of size p x p and
denote

X, yIm = (x, My) = x'My
and ||x|ly = V{x, x)m as well as

du(x,y) = lIx = ylim
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PCA

@ Let us speak about the distance between two people. To this end
consider a symmetric definite positive matrix M of size p x p and
denote

X,y = (x, My)y = x'My

and ||x|ly = V{x, x)m as well as
du(x,y) = lIx = ylim

@ Often we consider matrix M of diagonal form M = diag(m;) and in this
case

p
X YIm = Z mixiy,

—

d2xy

m Mn
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PCA

@ Let us make the link between the matrix X, Y, Z and the above
distance. Let us consider a diagonal matrix M = diag(m;)

p p
X112, = Z meXa,  d3 (X, X)) = Z mk(Xik — Xjk)?
k=1 k=1
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PCA

@ Let us make the link between the matrix X, Y, Z and the above
distance. Let us consider a diagonal matrix M = diag(m;)

p p
X112, = Z mXa, 2 (X, X)) = Z mi(Xik — Xik)?
k=1 k=1
@ Inthe case where M = [, we have
p

o2 (X X)) = D (Xik = Xiu)® = &Y. V)
k=1
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PCA

@ Let us make the link between the matrix X, Y, Z and the above
distance. Let us consider a diagonal matrix M = diag(m;)

p p
X112, = Z meXa,  d3 (X, X)) = Z mk(Xik — Xjk)?
k=1 k=1

@ Inthe case where M = [, we have

p
A6 X) = ) (Xik = Xk = G} (¥, Y)
k=1
@ In the case where M = diag(1/s5....,1/s5) we have

0%, X) = &2 (Z1.2)

138/150



PCA

@ Now let us define the notion of inertia. Introducing the diagonal matrix
M = diag(m;) allows to consider weight. We define the inertia as

P P
IX) = > mid (X, X) = > mis?
k=1 k=1
It measures the dispersion of the data X; with respect to the

barycenter X.
@ Inthe case M = diag(1/sZ,..., 1/35) we have

(Z2) =p
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PCA

@ The p column of X represent a so-called scatter graph.

@ Regarding the weight introduced before we shall concentrate on
m; = 1in the context of PCA.

@ If we analyze Y we shall say we do non-normalized PCA

@ If we analyze Z we do normed PCA and we are going to focus on this
case
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PCA

@ In PCA you can have two points of view
o Either you analyze the n point people and you will choose the metric
with M = |,
e Oryou analyze the p datas and you will choose the metric given by
N=1,

~n

141/150



PCA

@ In PCA you can have two points of view

o Either you analyze the n point people and you will choose the metric
with M = |,
e Oryou analyze the p datas and you will choose the metric given by
N=1i,
@ We already have seen the effect of M = I, on the line of the matrix
@ The effect of the matrix N is on the column. Note that

, 1 <& _. .
Var(X!) = - Z(Xi,j - X2 = IV
i—

Var(Z') = |\ Y/|I§, = 1
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PCA

@ The covariance between X; and X is given by
Gy = — Z(Xu N(Xij = X) =Y, ¥

@ In particular one can easily see that the covariance matrix

C = Y'NY

142/150



PCA

@ The covariance between X; and X is given by
Cr =5 Z(Xu NXiy = X) = (Y. Y)n
@ In particular one can easily see that the covariance matrix

C = Y'NY

@ The correlation between X; and Xj is given by

Xij— X Xy - X o
E : — YLy
= i:1( 5 ) 5 ) =« IN

@ In particular one can easily see that the correlation matrix
R =Z'NzZ



PCA

@ Let us start by concentrating on the people

@ For example an reasonable objective is to find the projection plan
such that the distance between the people are the better conserved.

@ Let us speak about the projection of a guy. We are in the case M = I,
and we want to project Z; € R for example on an axis defined by A,
which is directed by a vector v,, of norm 1. The coordinate will be
given by

r}'a = <Z/, Vo) = thva

@ Define now
= (o s o)t = 2V,

this the vector of each coordinate of each projection of the Z
@ We can rewrite

p
[ = 2vy = ) ViaZ!
=
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PCA

@ Method: we are looking for an axis A1 with generator vy such that
Vi = argmaxy, jjv|=1var(Zvy)
@ We can show that this optimization problem can be written as

max_||Rv|]?
v/llvl|=1

with R = 1ﬁZtZ
@ Then this maximum is reached for vy the eigenvector associated to
the maximum eigenvalue of R
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PCA

@ Then f; = Zv; is the first principal coomponent
@ If we want to find a plan we look for v» such that

V2 = argmaxy, v, Lviv.l=1 Var(2vz)

@ v, appears as the second eigenvector corresponding to the second
higher eigenvalue. The vector f, = Zv, is the second principal
component

@ and so on
@ Note that f; and £, are orthogonal and then non correlated.

@ Conclusion: to find the principal component we need to diagonalize
R.
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PCA

@ If you denote 41 > 12 > ... > A, the eigenvalues of R (here r
corresponds to the rank of Z), we can show easily that

Var(f;) = A4

@ An important question is how many component shall we need. This
can be quantified by looking at the quantity

M+...+4 TR

@ You can fix a level 1 — « and you stop to the first time (first q) where

>1-
T(R) @
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PCA

@ In practice to find the first eigenvector vy and the first eigenvalue 1,
you can use the power method. Define

Rwp,
Wni1 =
|Rwp|
@ We have
[[RWn|| —n A4
and
Wh — V4

147/150



PCA

@ In practice to find the first eigenvector vy and the first eigenvalue 1,
you can use the power method. Define

Rwp,
Wni1 =
|Rwp|
@ We have
[[RWn|| —n A4
and
Wh — V4

@ In order to find the second eigenvector and the second eigenvalue
you do the same job on the orthogonal vectv;*
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PCA

@ You can also take the problem from the the p variable size by
considering Z! instead of Z and do the same job.
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PCA

@ Moment method for N(u, 0?)
@ MLE for U([0,d]). Consistency? Confidence set ?
@ Consider the density

|x 0| o x—tl

fo(x) = —— e,

Moment method ? Two type of confidence interval ?
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