Clément Pellegrini

clement.pellegrini@math.univ-toulouse.fr

Institut de Mathématiques de Toulouse, Equipe de Statistique et Probabilité, Bureau 220 Bâtiment 1R1

Introduction

- La théorie des martingales est un sujet central dans la théorie des probabilités
- Outil probabiliste (pas vraiment d'équivalent dans les autres domaines des maths)
- Une martingale est un processus stochastique décrit par une suite de variables aléatoires (X_n)

$$X_n:\Omega\to\mathbb{R}$$

 On va utiliser du conditionnement (plus géneéral que celui utilisé pour les chaines de Markov)

Plan

- Conditionnement
- Martingale

Définitions

Rappelons la définition d'une tribu

Definition

Soit Ω un ensemble et \mathcal{A} une famille de parties de Ω . On dit que \mathcal{A} est une tribu (sur Ω) si:

- (i) $\Omega \in \mathcal{A}$.
- (ii) pour tout ensemble $A \in \mathcal{A}$, on a $A^c \in \mathcal{A}$, o ù A^c désigne le complémentaire de A dans Ω (stabilité par passage au complémentaire).
- (iii) pour toute famille $(A_n)_{n\in\mathbb{N}}$ de Ω satisfaisant $A_n\in\mathcal{A}$ pour tout $n\in\mathbb{N}$, alors $\cup_{n\in\mathbb{N}}A_n\in\mathcal{A}$ (stabilité par union dénombrable).

Définitions

- En particulier, on appelle tribu engendrée par une classe de parties C de Ω la plus petite tribu sur Ω contenant C, c'est- à-dire l'intersection de toutes les tribus contenant C. On la note $\sigma(C)$.
- Un exemple classique est bien sur la tribu borélienne sur $\Omega = \mathbb{R}^d$, o ù C désigne l'ensemble des ouverts de \mathbb{R}^d . On la note

$$\mathcal{B}(\mathbb{R}^d)$$

• On parlera de tribu engendrée par une variable aléatoire $X:\Omega \to \mathbb{R}$

$$\sigma(X) = \{X^{-1}(B), B \in \mathcal{B}(\mathbb{R})\}\$$

On parlera aussi de tribu engendrée par X₁, X₂,..., X_n

$$\sigma(X_1,...,X_n) = \sigma(\{X_1^{-1}(B_1),...,X_1^{-1}(B_n),B_1,...,B_n \in \mathcal{B}(\mathbb{R})\})$$

• La probabilité conditionnelle de $A \in \mathcal{A}$ sachant B est

$$P(A|B) := \frac{P(A \cap B)}{P(B)}$$
.

La mesure de probabilité conditionnelle sachant B est l'application

$$\mathcal{A} \rightarrow [0,1]$$
 $A \mapsto \frac{P(A \cap B)}{P(B)} = P(A|B).$

On note la $P(\cdot|B)$.

• Si Y est une v.a.r. sur (Ω, \mathcal{A}, P) positive ou intégrable, on définit son espérance conditionnelle sachant B par

$$E(Y|B) := \int_{\Omega} Y dP(\cdot|B) = \frac{E(Y1_B)}{P(B)} = \frac{1}{P(B)} \int_{B} Y dP.$$

Definition

Soit X une v.a. sur (Ω, \mathcal{A}, P) à valeur dans E dénombrable. On suppose que $\forall x \in E, P(X = x) > 0$.

Pour $A \in \mathcal{A}$, on pose

$$\varphi(X) := P(A|X = X) = \frac{P(A \cap \{X = X\})}{P(X = X)}$$

et on définit $P(A|X) := \varphi(X)$. C'est une v.a. qui dépend de X.

Definition

Soit X une v.a. sur (Ω, \mathcal{A}, P) à valeur dans E dénombrable. On suppose que $\forall x \in E, P(X = x) > 0$.

Pour $A \in \mathcal{A}$, on pose

$$\varphi(X) := P(A|X = X) = \frac{P(A \cap \{X = X\})}{P(X = X)}$$

et on définit $P(A|X) := \varphi(X)$. C'est une v.a. qui dépend de X.

Comme X est une v.a discrète on peutécrire

$$\varphi(X) = \sum_{i \in E} \varphi(i) \mathbf{1}_{X=i} = \sum_{i \in E} P(A|X=i) \mathbf{1}_{X=i}$$

Definition

Si Y est une v.a.r. avec $Y \in L^1(\Omega, \mathcal{A}, P)$ ou $Y \ge 0$, on définit

$$\Psi(x) = E(Y|X=x)$$

Par définition l'espérance conditionnelle de Y sachant X notée

$$E(Y|X) := \Psi(X).$$

- En théorie de la mesure on définit \mathbb{E} en partant de $P(A) = \mathbb{E}[\mathbf{1}_A]$ et ensuite on sait calculer $\mathbb{E}[X]$ pour une v.a
- Ici on fait de même on définit $P(A|X) = \mathbb{E}[\mathbf{1}_A|X]$ et enfin on définit $\mathbb{E}[Y|X]$

A nouveau $\Psi(X)$ peu s'écrire

$$\mathbb{E}[Y|X] = \Psi(X) = \sum_{i \in E} \Psi(i) \mathbf{1}_{X=i}$$

On a donc

$$\mathbb{E}[Y|X] = \sum_{i \in E} \mathbb{E}[Y|X = i] \mathbf{1}_{X=i}$$

Il s'agit là d'une définition mais on est en mesure de calculer toutes les quantités notamment

$$\mathbb{E}[Y|X=i] = \frac{\mathbb{E}[Y\mathbf{1}_{X=i}]}{P(X=i)}$$

Lemma (Doob)

Soit $X : (\Omega, \mathcal{A}, P) \to E$, et $Y : \Omega \to \mathbb{R}^d$ deux v.a.. Alors Y est $\sigma(X)$ -mesurable si et seulement s'il existe une fonction $h : E \to \mathbb{R}^d$ borélienne avec Y = h(X).

- Il est alors essentiel de remarquer que les espérances conditionnelles sachant une v.a X sont $\sigma(X)$ mesurables
- Rappel: une v.a est $\sigma(X)$ mesurable si pour tout borélien A

$$Y^{-1}(A) \in \sigma(X)$$
.

• Intuitivement $\sigma(X)$ contient l'information contenue dans la v.a X. Une v.a $\sigma(X)$ mesurable est entièrement déterminée par X

Proposition

Soit X une v.a. discrète et $Y \in L^1$, alors

- 2 Pour toute v.a. Z, $\sigma(X)$ -mesurable et bornée

$$E(ZE(Y|X)) = E(ZY).$$

Réciproquement, si W est une v.a $\sigma(X)$ mesurable et que pour toute v.a. Z, $\sigma(X)$ -mesurable et bornée

$$E(ZW) = E(ZY)$$

alors E(Y|X) = W presque sûrement. De plus une telle v.a est unique.

Interprétation

Soit X une v.a uniforme sur {−1, 1, 2}. Déterminer

$$\mathbb{E}[X||X|]$$

 Soient X₁ et X₂ deux v.a indépendantes de loi de Poisson de paramètre λ > 0. On sait que X₁ + X₂ est une v.a de Poisson de paramètre 2λ. Déterminer

$$E(X_1|X_1+X_2)$$

Soit X une v.a uniforme sur {−1, 1, 2}. Déterminer

$$\mathbb{E}[X||X|]$$

 Soient X₁ et X₂ deux v.a indépendantes de loi de Poisson de paramètre λ > 0. On sait que X₁ + X₂ est une v.a de Poisson de paramètre 2λ. Déterminer

$$E(X_1|X_1+X_2)$$

Pour généraliser le cas discret on va partir du fait que l'espérance conditionnelle E(Y|X) est l'unique v.a $\sigma(X)$ mesurable telle que pour toute v.a. Z, $\sigma(X)$ -mesurable et bornée

$$\mathbb{E}\big(Z\mathbb{E}(Y|X)\big)=\mathbb{E}(ZY)$$

D'après le Lemme de Doob ceci est aussi équivalent à pour toute fonction f continue bornée

$$\mathbb{E}(f(X)\mathbb{E}(Y|X)) = \mathbb{E}(f(X)Y)$$

Soient (Ω, \mathcal{A}, P) un espace de probabilité et \mathcal{B} une sous tribu de \mathcal{A} , alors $L^2(\Omega, \mathcal{B}, P)$ est un sous espace fermé de $L^2(\Omega, \mathcal{A}, P)$.

Definition

Soit $Y \in L^2(\Omega, \mathcal{A}, P)$. L'espérance conditionnelle de Y sachant \mathcal{B} , notée $E(Y|\mathcal{B})$ est la projection orthogonale de Y sur $L^2(\Omega, \mathcal{B}, P)$. Elle est caractérisée par:

- $\forall Z \in L^2(\Omega, \mathcal{B}, P), E(ZY) = E(ZE(Y|\mathcal{B})).$

Si $\mathcal{B} = \sigma(X)$ on écrit $E(Y|\mathcal{B}) = E(Y|X)$.

Definition

Soit Y une v.a.r. de $L^1(\Omega, \mathcal{A}, P)$. On définit $E(Y|\mathcal{B})$ comme l'unique v.a satisfaisant les propriétées suivantes:

- **1** $E(Y|\mathcal{B})$ est \mathcal{B} -mesurable,
- 2 Pour toute variable Z, \mathcal{B} -mesurable et bornée, $E(Z E(Y|\mathcal{B})) = E(ZY)$.
- Attention cette définition estégalement un résultat car elle suppose qu'une telle v.a existe. L'existence dépasse le cadre de ce cours et nous aurons simplement besoin de la caractérisation.
- Dans le cadre des v.a discrètes on construit les objets à la main. Là nous avons besoin d'utiliser des définitions abstraites dans le sens où il n'y a pas directement de formule simple de calcul.

Dans le cas où $\mathcal{B} = \sigma(X)$ on écrit

$$\mathbb{E}[Y|\mathcal{B}] = \mathbb{E}[Y|X]$$

qui est l'unique v.a telle que pour toute fonction f continue bornée

$$\mathbb{E}(f(X)\mathbb{E}(Y|X)) = \mathbb{E}(f(X)Y)$$

Proposition

 \bigcirc Si $X, Y \in L^1$ et $a, b \in \mathbb{R}$ alors

$$E(aX + bY|\mathcal{B}) = aE(X|\mathcal{B}) + bE(Y|\mathcal{B})$$
 p.s.

- ② Si $X \in L^1$ et $f : \mathbb{R} \to \mathbb{R}^+$ est convexe alors $E(f(X)|\mathcal{B}) \geqslant f(E(X|\mathcal{B}))$ p.s.
- Si $Y \ge Y'$ sont des v.a L^1 alors

$$\mathbb{E}[Y|\mathcal{B}] \geqslant \mathbb{E}[Y'|\mathcal{B}]$$

Proposition

③ Si $(X_n)_{n\geq 0}$ est une suite croissante de v.a.r. positives telle que $X_n \nearrow X$ p.s. alors

$$E(X_n|\mathcal{B}) \underset{n\to\infty}{\nearrow} E(X|\mathcal{B})$$
 p.s.

② Si $(X_n)_{n\geq 0}$ est une suite de variables positives, alors

$$E(\liminf X_n|\mathcal{B}) \leq \liminf E(X_n|\mathcal{B})$$
 p.s.

③ Soit $(X_n)_{n\geq 0}$ une suite de v.a.r. dominées (il existe Y avec $|X_n| \leq Y$ et $EY < +\infty$) et telle que $X_n \xrightarrow[n \to \infty]{p.s.} X$ alors

$$E(X_n|\mathcal{B}) \xrightarrow[n\to\infty]{p.s., L^1} E(X|\mathcal{B}).$$

Proposition

Soient X, Y des v.a.r. définies sur (Ω, \mathcal{A}, P) et \mathcal{B} une sous-tribu de \mathcal{A} .

Si Y est
 B-mesurable alors l'égalité

$$E(YX|\mathcal{B}) = YE(X|\mathcal{B})$$
 p.s.

est valable dès que $X \ge 0$, $Y \ge 0$ ou X, $XY \in L^1$.

② Si $X \in L^1$, et indépendante de \mathcal{B} alors

$$\mathbb{E}[X|\mathcal{B}] = X$$
 p.s

Proposition

Soient X, Y des v.a.r. définies sur (Ω, \mathcal{A}, P) et $C \subset \mathcal{B}$ des sous-tribus de \mathcal{A} .

 \bigcirc Si $X \in L^1$, alors p.s.

$$E(E(X|\mathcal{B})|C) = E(X|C),$$

 $E(E(X|C)|\mathcal{B}) = E(X|C).$

② Si $X \in L^1$ alors p.s

$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X|\mathcal{B}]]$$

On va utiliser souvent ces 4 derniers points dans l'étude des martingales.

Définition

Une suite $(\mathcal{F}_n)_{n\in\mathbb{N}}$ de sous-tribus de \mathcal{A} est appelée une filtration de l'espace $(\Omega,\mathcal{A},\mathbb{P})$ si

$$\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n \subset \cdots \subset \mathcal{A}.$$

L'espace $(\Omega,\mathcal{A},(\mathcal{F}_n)_{n\in\mathbb{N}},\mathbb{P})$ est alors appelé un espace de probabilité filtré.

Remarque

La notion de tribu est liée à l'information dont nous disposons.

Ainsi, supposer cette suite de tribus croissante traduit simplement le fait que plus on avance dans le temps, plus on a d'informations.

Définition

Une suite $(\mathcal{F}_n)_{n\in\mathbb{N}}$ de sous-tribus de \mathcal{A} est appelée une filtration de l'espace $(\Omega,\mathcal{A},\mathbb{P})$ si

$$\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n \subset \cdots \subset \mathcal{A}$$
.

L'espace $(\Omega, \mathcal{A}, (\mathcal{F}_n)_{n \in \mathbb{N}}, \mathbb{P})$ est alors appelé un espace de probabilité filtré.

Remarque

La notion de tribu est liée à l'information dont nous disposons.

Ainsi, supposer cette suite de tribus croissante traduit simplement le fait que plus on avance dans le temps, plus on a d'informations.

Définition

Considérons une suite de variables aléatoires réelles $(M_n)_{n\in\mathbb{N}}$. On dit que $(M_n)_{n\in\mathbb{N}}$ est adaptée à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ si M_n est \mathcal{F}_n -mesurable pour tout $n\in\mathbb{N}$.

Cette notion abstraite sera en générale toujours satisfaite dans les exemples et exercices que nous traiterons.

Remarque

Notons que $(M_n)_{n\in\mathbb{N}}$ est évidemment adaptée à sa filtration naturelle, définie par $\mathcal{F}_n := \sigma(M_k : k \in \{0, ..., n\})$ pour tout $n \in \mathbb{N}$.

Définition

Considérons une suite de variables aléatoires réelles $(M_n)_{n\in\mathbb{N}}$. On dit que $(M_n)_{n\in\mathbb{N}}$ est adaptée à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ si M_n est \mathcal{F}_n -mesurable pour tout $n\in\mathbb{N}$.

Cette notion abstraite sera en générale toujours satisfaite dans les exemples et exercices que nous traiterons.

Remarque

Notons que $(M_n)_{n\in\mathbb{N}}$ est évidemment adaptée à sa filtration naturelle, définie par $\mathcal{F}_n := \sigma(M_k : k \in \{0, ..., n\})$ pour tout $n \in \mathbb{N}$.

Définition

Considérons une suite $(M_n)_{n\in\mathbb{N}}$ adaptée à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$, et dont tous les éléments sont intégrables. On dit que la suite $(M_n)_{n\in\mathbb{N}}$ est (pour $(\mathcal{F}_n)_{n\in\mathbb{N}}$) une

- (i) martingale si $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] = M_n$ pour tout $n \in \mathbb{N}$.
- (ii) surmartingale si $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] \leqslant M_n$ pour tout $n \in \mathbb{N}$.
- (iii) sous-martingale si $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] \geqslant M_n$ pour tout $n \in \mathbb{N}$.

Remarque

Définition

Considérons une suite $(M_n)_{n\in\mathbb{N}}$ adaptée à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$, et dont tous les éléments sont intégrables. On dit que la suite $(M_n)_{n\in\mathbb{N}}$ est (pour $(\mathcal{F}_n)_{n\in\mathbb{N}}$) une

- (i) martingale si $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] = M_n$ pour tout $n \in \mathbb{N}$.
- (ii) surmartingale si $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] \leq M_n$ pour tout $n \in \mathbb{N}$.
- (iii) sous-martingale si $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] \geqslant M_n$ pour tout $n \in \mathbb{N}$.

Remarque

Définition

Considérons une suite $(M_n)_{n\in\mathbb{N}}$ adaptée à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$, et dont tous les éléments sont intégrables. On dit que la suite $(M_n)_{n\in\mathbb{N}}$ est (pour $(\mathcal{F}_n)_{n\in\mathbb{N}}$) une

- (i) martingale si $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] = M_n$ pour tout $n \in \mathbb{N}$.
- (ii) surmartingale si $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] \leq M_n$ pour tout $n \in \mathbb{N}$.
- (iii) sous-martingale si $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] \ge M_n$ pour tout $n \in \mathbb{N}$.

Remarque

Définition

Considérons une suite $(M_n)_{n\in\mathbb{N}}$ adaptée à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$, et dont tous les éléments sont intégrables. On dit que la suite $(M_n)_{n\in\mathbb{N}}$ est (pour $(\mathcal{F}_n)_{n\in\mathbb{N}}$) une

- (i) martingale si $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] = M_n$ pour tout $n \in \mathbb{N}$.
- (ii) surmartingale si $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] \leq M_n$ pour tout $n \in \mathbb{N}$.
- (iii) sous-martingale si $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] \geqslant M_n$ pour tout $n \in \mathbb{N}$.

Remarque

Donnons-nous quelques exemples bien sympathiques:

- (*i*) Si $(X_n)_{n\in\mathbb{N}_*}$ désigne une suite de variables aléatoires indépendantes et intégrables, alors la suite $(S_n)_{n\in\mathbb{N}_*}$ définie par $S_n:=\sum_{i=1}^n X_i$ est une martingale (resp. surmartingale, sous-martingale) pour la filtration engendrée par la suite $(X_n)_{n\in\mathbb{N}_*}$ lorsque pour tout $n\in\mathbb{N}_*$, on a $\mathbb{E}[X_n]=0$ (resp. $\mathbb{E}[X_n]\leqslant 0$, $\mathbb{E}[X_n]\geqslant 0$).
- (ii) Même conclusion pour la suite $M_n := S_n^2 n\sigma^2$, sous réserve que les X_i ont même variance σ^2 .

Donnons-nous quelques exemples bien sympathiques:

- (*i*) Si $(X_n)_{n\in\mathbb{N}_*}$ désigne une suite de variables aléatoires indépendantes et intégrables, alors la suite $(S_n)_{n\in\mathbb{N}_*}$ définie par $S_n:=\sum_{i=1}^n X_i$ est une martingale (resp. surmartingale, sous-martingale) pour la filtration engendrée par la suite $(X_n)_{n\in\mathbb{N}_*}$ lorsque pour tout $n\in\mathbb{N}_*$, on a $\mathbb{E}[X_n]=0$ (resp. $\mathbb{E}[X_n]\leqslant 0$, $\mathbb{E}[X_n]\geqslant 0$).
- (ii) Même conclusion pour la suite $M_n := S_n^2 n\sigma^2$, sous réserve que les X_i ont même variance σ^2 .

- (iii) Si $(X_n)_{n\in\mathbb{N}_*}$ désigne une suite de variables aléatoires indépendantes, intégrables et d'espérance commune égale à 1, alors la suite $M_n:=\prod_{i=1}^n X_i$ est une martingale par rapport à la filtration naturelle de $(X_n)_{n\in\mathbb{N}_*}$.
- (iv) Si $(M_n)_{n \in \mathbb{N}_*}$ est une suite de variables aléatoires intégrables, centrées, et à accroissements indépendants, alors c'est une martingale par rapport à sa filtration naturelle.
- (v) Si $(\mathcal{F}_n)_{n\in\mathbb{N}}$ est une filtration quelconque et X une variable aléatoire intégrable, alors $M_n := \mathbb{E}[X \mid \mathcal{F}_n]$ est une martingale pour $(\mathcal{F}_n)_{n\in\mathbb{N}}$.

- (iii) Si $(X_n)_{n\in\mathbb{N}_*}$ désigne une suite de variables aléatoires indépendantes, intégrables et d'espérance commune égale à 1, alors la suite $M_n:=\prod_{i=1}^n X_i$ est une martingale par rapport à la filtration naturelle de $(X_n)_{n\in\mathbb{N}_*}$.
- (iv) Si $(M_n)_{n\in\mathbb{N}_*}$ est une suite de variables aléatoires intégrables, centrées, et à accroissements indépendants, alors c'est une martingale par rapport à sa filtration naturelle.
- (v) Si $(\mathcal{F}_n)_{n\in\mathbb{N}}$ est une filtration quelconque et X une variable aléatoire intégrable, alors $M_n := \mathbb{E}[X \mid \mathcal{F}_n]$ est une martingale pour $(\mathcal{F}_n)_{n\in\mathbb{N}}$.

(iii) Si $(X_n)_{n\in\mathbb{N}_*}$ désigne une suite de variables aléatoires indépendantes, intégrables et d'espérance commune égale à 1, alors la suite $M_n:=\prod_{i=1}^n X_i$ est une martingale par rapport à la filtration naturelle de $(X_n)_{n\in\mathbb{N}_*}$.

(*iv*) Si $(M_n)_{n\in\mathbb{N}_*}$ est une suite de variables aléatoires intégrables, centrées, et à accroissements indépendants, alors c'est une martingale par rapport à sa filtration naturelle.

(v) Si $(\mathcal{F}_n)_{n\in\mathbb{N}}$ est une filtration quelconque et X une variable aléatoire intégrable, alors $M_n := \mathbb{E}[X \mid \mathcal{F}_n]$ est une martingale pour $(\mathcal{F}_n)_{n\in\mathbb{N}}$.

Proposition

Soit $(M_n)_{n\in\mathbb{N}}$ une suite adaptée à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$, et telle que tous seséléments soient intégrables. Alors c'est une martingale si et seulement si pour tout $n, p \in \mathbb{N}$,

$$\mathbb{E}[M_{n+p} \mid \mathcal{F}_n] = M_n.$$

Preuve

Proposition

Soit $(M_n)_{n\in\mathbb{N}}$ une sous-martingale par rapport à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$, et soit $f:\mathbb{R}\to\mathbb{R}$ une fonction convexe croissante. On suppose que $f(M_n)\in L^1$ pour tout $n\in\mathbb{N}$. Alors la suite $(f(M_n))_{n\in\mathbb{N}}$ est elle-même une sous-martingale. Si $(M_n)_{n\in\mathbb{N}}$ est une martingale, alors il suffit que f soit convexe.

Preuve: Immédiate en utilisant l'inégalité de Jensen pour l'espérance conditionnelle.

Remarque

Par exemple, si $(M_n)_{n\in\mathbb{N}}$ est une martingale par rapport à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$, alors $(|M_n|^p)_{n\in\mathbb{N}}$ (avec $p \ge 1$ et sous réserve que chaque M_n est dans L^p) et $(M_n^+)_{n\in\mathbb{N}}$ sont des sous-martingales.

Proposition

Soit $(M_n)_{n\in\mathbb{N}}$ une sous-martingale par rapport à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$, et soit $f:\mathbb{R}\to\mathbb{R}$ une fonction convexe croissante. On suppose que $f(M_n)\in L^1$ pour tout $n\in\mathbb{N}$. Alors la suite $(f(M_n))_{n\in\mathbb{N}}$ est elle-même une sous-martingale. Si $(M_n)_{n\in\mathbb{N}}$ est une martingale, alors il suffit que f soit convexe.

Preuve: Immédiate en utilisant l'inégalité de Jensen pour l'espérance conditionnelle.

Remarque

Par exemple, si $(M_n)_{n\in\mathbb{N}}$ est une martingale par rapport à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$, alors $(|M_n|^p)_{n\in\mathbb{N}}$ (avec $p\geqslant 1$ et sous réserve que chaque M_n est dans L^p) et $(M_n^+)_{n\in\mathbb{N}}$ sont des sous-martingales.

Introduisons à présent la notion de temps d'arrêt.

Définition

Une variable aléatoire entière τ , pouvant prendre la valeur $+\infty$, est un temps d'arrêt pour une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ si

$$\{\tau \leqslant n\} \in \mathcal{F}_n, \quad n \in \mathbb{N}.$$

Notons que dans cette définition on peut remplacer l'événement $\{\tau \leq n\}$ par $\{\tau = n\}$

Pour illustrer cette notion de temps d'arrêt, prenons l'exemple d'un joueur rentrant avec une somme S_0 dans un casino. On note S_n sa fortune à l'instant n. Ce joueur décide de jouer tant qu'il a encore de l'argent dans son portefeuille (on suppose le casino ouvert 24h sur 24). Cela signifie qu'il joue jusqu'à l'instant

$$\tau := \inf\{n \in \mathbb{N} : S_n = 0\},\$$

qui est un temps d'arrêt pour la filtration naturelle de la suite $(S_n)_{n\in\mathbb{N}}$.

Définition

Étant donnés une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$ et un temps d'arrêt τ , on définit \mathcal{F}_{τ} la tribu des événements antérieurs à τ par

$$\mathcal{F}_{\tau} := \{ A \in \mathcal{A} : A \cap \{ \tau = n \} \in \mathcal{F}_n \quad \forall n \in \mathbb{N} \}.$$

Dans beaucoup de circonstances, ce qui nous intéresse est le comportement d'une suite de variables aléatoires, disons $(X_n)_{n\in\mathbb{N}}$, évaluée au temps d'arrêt τ .

S'il est supposé fini p.s., alors on peut définir la variable aléatoire X_{τ} , qui est \mathcal{F}_{τ} -mesurable, comme

$$X_{\tau}:=\sum_{n\in\mathbb{N}}\mathbf{1}_{\{\tau=n\}}\,X_n.$$

Lorsque que le temps d'arrêt est infini, nous pouvons toujours le tronquer en considérant plutôt pour un entier n donné le temps d'arrêt $n \wedge \tau$, qui est fini et même borné. Dans ce cas, la variable aléatoire $X_{n \wedge \tau}$ est bien définie.

Théorème (Théorème d'arrêt)

Soit $(M_n)_{n\in\mathbb{N}}$ une martingale par rapport à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$, et soit τ un temps d'arrêt. Alors la suite arrêtée $(M_{n\wedge\tau})_{n\in\mathbb{N}}$ est aussi une martingale.

De plus, si $\tau_1 \leqslant \tau_2$ sont deux temps d'arrêt supposés bornés, alors on a

$$\mathbb{E}[M_{\tau_2} \mid \mathcal{F}_{\tau_1}] = M_{\tau_1} \quad \text{et} \quad \mathbb{E}[M_{\tau_1}] = \mathbb{E}[M_{\tau_2}] = \mathbb{E}[M_0].$$

Preuve

Lorsque l'on étudie un processus aléatoire, une question importante en pratique est de savoir contrôler son évolution.

En particulier, il s'avère que pour les sous-martingales positives, nous pouvons obtenir des inégalités sur son processus supremum, à savoir

$$M_n^* := \sup_{0 \le k \le n} M_k, \quad n \in \mathbb{N}.$$

On les appelle inégalités maximales (de Doob).

Dans cette partie, nous établissons deux inégalités maximales pour les sous-martingales positives.

En particulier, une fois que tous les résultats ci-dessous seront démontrés, ils seront immédiatement valables pour des martingales, en remplaçant M_n^* par

$$\sup_{0 \le k \le n} |M_k|$$

Théorème

Soit $(M_n)_{n\in\mathbb{N}}$ une sous-martingale positive par rapport à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$.

Alors pour tout $n \in \mathbb{N}$,

$$\lambda\,\mathbb{P}\big(M_n^*\geqslant\lambda\big)\leqslant\mathbb{E}[M_n\,\mathbf{1}_{\{M_n^*\geqslant\lambda\}}]\leqslant\mathbb{E}[M_n],\quad\lambda>0.$$

Par ailleurs, si $(M_n)_{n\in\mathbb{N}}$ a tous ses éléments dans L^p , où $p\geqslant 1$, alors pour tout $n\in\mathbb{N}$,

$$\mathbb{P}(M_n^* \geqslant \lambda) \leqslant \frac{\mathbb{E}[|M_n|^p]}{\lambda^p}, \quad \lambda > 0.$$

Preuve

Preuve Établissons tout d'abord la première inégalité. Notons que pour une sous-martingale, on a

$$M_k \leq \mathbb{E}[M_n \mid \mathcal{F}_k], \quad k \leq n, \quad n,k \in \mathbb{N},$$

ce qui entraîne que pour tout $A \in \mathcal{F}_k$, en multipliant par 1_A et en prenant l'espérance,

$$\mathbb{E}[M_k \, 1_A] \leqslant \mathbb{E}[M_n \, 1_A].$$

Par ailleurs, on peut écrire l'identité suivante: pour tout $\lambda > 0$,

$$\mathbb{P}(M_n^* \geqslant \lambda) = \mathbb{P}(\tau_{\lambda} \leqslant n), \quad n \in \mathbb{N},$$

où τ_{λ} est le temps d'arrêt $\tau_{\lambda} := \inf\{n \in \mathbb{N} : M_n \geqslant \lambda\}.$

Ainsi, étant donné que sur $\{\tau_{\lambda} \leq n\}$, on a $M_{\tau_{\lambda}} \geqslant \lambda$, on obtient en passant à l'espérance et en utilisant l'inégalité précédente que

$$\lambda \mathbb{P}(\tau_{\lambda} \leq n) \leq \mathbb{E}[M_{\tau_{\lambda}} \mathbf{1}_{\{\tau_{\lambda} \leq n\}}]$$

$$= \sum_{k=0}^{n} \mathbb{E}[M_{k} \mathbf{1}_{\{\tau_{\lambda} = k\}}]$$

$$\leq \sum_{k=0}^{n} \mathbb{E}[M_{n} \mathbf{1}_{\{\tau_{\lambda} = k\}}] \quad \operatorname{car} \{\tau_{\lambda} = k\} \in \mathcal{F}_{k}$$

$$= \mathbb{E}[M_{n} \mathbf{1}_{\{\tau_{\lambda} \leq n\}}],$$

Ainsi, étant donné que sur $\{\tau_{\lambda} \leq n\}$, on a $M_{\tau_{\lambda}} \geqslant \lambda$, on obtient en passant à l'espérance et en utilisant l'inégalité précédente que

$$\lambda \mathbb{P}(\tau_{\lambda} \leq n) \leq \mathbb{E}[M_{\tau_{\lambda}} \mathbf{1}_{\{\tau_{\lambda} \leq n\}}]$$

$$= \sum_{k=0}^{n} \mathbb{E}[M_{k} \mathbf{1}_{\{\tau_{\lambda} = k\}}]$$

$$\leq \sum_{k=0}^{n} \mathbb{E}[M_{n} \mathbf{1}_{\{\tau_{\lambda} = k\}}] \quad \operatorname{car} \{\tau_{\lambda} = k\} \in \mathcal{F}_{k}$$

$$= \mathbb{E}[M_{n} \mathbf{1}_{\{\tau_{\lambda} \leq n\}}],$$

Ainsi, étant donné que sur $\{\tau_{\lambda} \leq n\}$, on a $M_{\tau_{\lambda}} \geqslant \lambda$, on obtient en passant à l'espérance et en utilisant l'inégalité précédente que

$$\begin{split} \lambda \, \mathbb{P}(\tau_{\lambda} \leqslant n) & \leqslant & \mathbb{E}[M_{\tau_{\lambda}} \, \mathbf{1}_{\{\tau_{\lambda} \leqslant n\}}] \\ & = & \sum_{k=0}^{n} \mathbb{E}[M_{k} \, \mathbf{1}_{\{\tau_{\lambda} = k\}}] \\ & \leqslant & \sum_{k=0}^{n} \mathbb{E}[M_{n} \, \mathbf{1}_{\{\tau_{\lambda} = k\}}] \quad \text{car} \, \{\tau_{\lambda} = k\} \in \mathcal{F}_{k} \\ & = & \mathbb{E}[M_{n} \, \mathbf{1}_{\{\tau_{\lambda} \leqslant n\}}], \end{split}$$

Ainsi, étant donné que sur $\{\tau_{\lambda} \leq n\}$, on a $M_{\tau_{\lambda}} \geq \lambda$, on obtient en passant à l'espérance et en utilisant l'inégalité précédente que

$$\begin{split} \lambda \, \mathbb{P}(\tau_{\lambda} \leqslant n) & \leqslant & \mathbb{E}[M_{\tau_{\lambda}} \, \mathbf{1}_{\{\tau_{\lambda} \leqslant n\}}] \\ & = & \sum_{k=0}^{n} \mathbb{E}[M_{k} \, \mathbf{1}_{\{\tau_{\lambda} = k\}}] \\ & \leqslant & \sum_{k=0}^{n} \mathbb{E}[M_{n} \, \mathbf{1}_{\{\tau_{\lambda} = k\}}] \quad \text{car} \, \{\tau_{\lambda} = k\} \in \mathcal{F}_{k} \\ & = & \mathbb{E}[M_{n} \, \mathbf{1}_{\{\tau_{\lambda} \leqslant n\}}], \end{split}$$

Pour la seconde inégalité, on notera que si $(M_n)_{n\in\mathbb{N}}$ est une martingale ou une sous-martingale positive et telle que $M_n\in L^p$ pour tout $n\in\mathbb{N}$, alors $(|M_n|^p)_{n\in\mathbb{N}}$ est une sous-martingale positive et l'inégalité précédente s'applique, ce qui termine la preuve.

À présent, donnons une seconde inégalité maximale, comparant l'espérance du processus supremum avec celle du processus originel.

Théorème (Doob L^p)

Soit p > 1. Supposons que $(M_n)_{n \in \mathbb{N}}$ soit une sous-martingale positive par rapport à une filtration $(\mathcal{F}_n)_{n \in \mathbb{N}}$ et telle que $M_n \in L^p$ pour tout $n \in \mathbb{N}$. Alors pour tout $n \in \mathbb{N}$, $M_n^* \in L^p$ et

$$\mathbb{E}[(M_n^*)^p] \leq \left(\frac{p}{p-1}\right)^p \, \mathbb{E}[M_n^p].$$

Preuve Tout d'abord, le fait que $M_n^* \in L^p$ est une conséquence des inégalités

$$(M_n^*)^p = \sup_{0 \le k \le n} M_k, \quad n \in \mathbb{N}$$
 (1)

$$\leqslant \left(\sum_{k=0}^{n} M_k\right)^p \tag{2}$$

$$\leq (n+1)^{p-1} \sum_{k=0}^{\infty} M_k^p.$$
 (3)

Preuve Tout d'abord, le fait que $M_n^* \in L^p$ est une conséquence des inégalités

$$(M_n^*)^p = \sup_{0 \le k \le n} M_k, \quad n \in \mathbb{N}$$
 (1)

$$\leq \left(\sum_{k=0}^{n} M_{k}\right)^{p}$$
(2)

$$\leq (n+1)^{p-1} \sum_{k=0}^{n} M_k^p.$$
 (3)

Preuve Tout d'abord, le fait que $M_n^* \in L^p$ est une conséquence des inégalités

$$(M_n^*)^p = \sup_{0 \le k \le n} M_k, \quad n \in \mathbb{N}$$
 (1)

$$\leqslant \left(\sum_{k=0}^{n} M_{k}\right)^{p} \tag{2}$$

$$\leq (n+1)^{p-1} \sum_{k=0}^{n} M_k^p.$$
 (3)

En se ramenant à la première inégalité maximale du théorème 0.13, il vient

$$\mathbb{E}[(M_{n}^{*})^{p}] = p \int_{0}^{\infty} x^{p-1} \mathbb{P}(M_{n}^{*} \ge x) dx$$

$$\leq p \int_{0}^{\infty} x^{p-2} \mathbb{E}[M_{n} 1_{\{M_{n}^{*} \ge x\}}] dx$$

$$= p \mathbb{E}[M_{n} \int_{0}^{M_{n}^{*}} x^{p-2} dx]$$

$$= \frac{p}{p-1} \mathbb{E}[M_{n} (M_{n}^{*})^{p-1}]$$

$$\leq \frac{p}{p-1} \mathbb{E}[M_{n}^{p}]^{1/p} \mathbb{E}[(M_{n}^{*})^{p}]^{(p-1)/p},$$

En se ramenant à la première inégalité maximale du théorème 0.13, il vient

$$\mathbb{E}[(M_{n}^{*})^{p}] = p \int_{0}^{\infty} x^{p-1} \, \mathbb{P}(M_{n}^{*} \ge x) \, dx$$

$$\leq p \int_{0}^{\infty} x^{p-2} \, \mathbb{E}[M_{n} \, \mathbf{1}_{\{M_{n}^{*} \ge x\}}] \, dx$$

$$= p \, \mathbb{E}[M_{n} \, \int_{0}^{M_{n}^{*}} x^{p-2} \, dx]$$

$$= \frac{p}{p-1} \, \mathbb{E}[M_{n} \, (M_{n}^{*})^{p-1}]$$

$$\leq \frac{p}{p-1} \, \mathbb{E}[M_{n}^{p}]^{1/p} \, \mathbb{E}[(M_{n}^{*})^{p}]^{(p-1)/p},$$

En se ramenant à la première inégalité maximale du théorème 0.13, il vient

$$\mathbb{E}[(M_{n}^{*})^{p}] = p \int_{0}^{\infty} x^{p-1} \, \mathbb{P}(M_{n}^{*} \ge x) \, dx$$

$$\leq p \int_{0}^{\infty} x^{p-2} \, \mathbb{E}[M_{n} \, \mathbf{1}_{\{M_{n}^{*} \ge x\}}] \, dx$$

$$= p \, \mathbb{E}[M_{n} \, \int_{0}^{M_{n}^{*}} x^{p-2} \, dx]$$

$$= \frac{p}{p-1} \, \mathbb{E}[M_{n} \, (M_{n}^{*})^{p-1}]$$

$$\leq \frac{p}{p-1} \, \mathbb{E}[M_{n}^{p}]^{1/p} \, \mathbb{E}[(M_{n}^{*})^{p}]^{(p-1)/p},$$

En se ramenant à la première inégalité maximale du théorème 0.13, il vient

$$\mathbb{E}[(M_{n}^{*})^{p}] = p \int_{0}^{\infty} x^{p-1} \mathbb{P}(M_{n}^{*} \ge x) dx$$

$$\leq p \int_{0}^{\infty} x^{p-2} \mathbb{E}[M_{n} 1_{\{M_{n}^{*} \ge x\}}] dx$$

$$= p \mathbb{E}[M_{n} \int_{0}^{M_{n}^{*}} x^{p-2} dx]$$

$$= \frac{p}{p-1} \mathbb{E}[M_{n} (M_{n}^{*})^{p-1}]$$

$$\leq \frac{p}{p-1} \mathbb{E}[M_{n}^{p}]^{1/p} \mathbb{E}[(M_{n}^{*})^{p}]^{(p-1)/p},$$

En se ramenant à la première inégalité maximale du théorème 0.13, il vient

$$\mathbb{E}[(M_{n}^{*})^{p}] = p \int_{0}^{\infty} x^{p-1} \, \mathbb{P}(M_{n}^{*} \geq x) \, dx$$

$$\leq p \int_{0}^{\infty} x^{p-2} \, \mathbb{E}[M_{n} \, \mathbf{1}_{\{M_{n}^{*} \geq x\}}] \, dx$$

$$= p \, \mathbb{E}[M_{n} \, \int_{0}^{M_{n}^{*}} x^{p-2} \, dx]$$

$$= \frac{p}{p-1} \, \mathbb{E}[M_{n} \, (M_{n}^{*})^{p-1}]$$

$$\leq \frac{p}{p-1} \, \mathbb{E}[M_{n}^{p}]^{1/p} \, \mathbb{E}[(M_{n}^{*})^{p}]^{(p-1)/p},$$

Convergence des martingales

Dans ce paragraphe, nous nous attaquons à la convergence des martingales, sous diverses hypothèses d'intégrabilité.

Enonçons ce premier résultat, dont la preuve repose essentiellement sur une inégalité maximale de Doob dans L^2 .

Théorème

Soit $(M_n)_{n\in\mathbb{N}}$ une martingale par rapport à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$, qui est supposée bornée dans L^2 , i.e.

$$\sup_{n\in\mathbb{N}}\mathbb{E}\big[M_n^2\big]<+\infty.$$

Alors la suite $(M_n)_{n\in\mathbb{N}}$ converge p.s. et dans L^2 vers une variable aléatoire $M_\infty\in L^2$.

Preuve: Pour toute paire arbitraire de rationnels a < b, notons l'ensemble

$$A_{a,b} := \left\{ \omega \in \Omega : \liminf_{n \to +\infty} M_n(\omega) \leqslant a < b \leqslant \limsup_{n \to +\infty} M_n(\omega) \right\}.$$

Ainsi, la suite $(M_n)_{n\in\mathbb{N}}$ va converger p.s. (éventuellement vers l'infini) à partir du moment où l'on montre que $\mathbb{P}(\cup_{a,b\in\mathbb{Q}}A_{a,b})=0$.

Afin de faire le rapprochement avec les inégalités maximales, observons que l'on a

$$A_{a,b} \subset \left\{ \omega \in \Omega : \sup_{k \geqslant m} |M_k(\omega) - M_m(\omega)| \geqslant \frac{b-a}{2} \right\}, \quad m \in \mathbb{N}.$$

En effet, si $\omega \in A_{a,b}$, on a

$$\liminf_{n \to +\infty} M_n(\omega) \leqslant a < b \leqslant \limsup_{n \to +\infty} M_n(\omega)$$

Or

$$\liminf_{n \to +\infty} M_n(\omega) = \liminf_{n \to +\infty} M_k(\omega) \quad (croissante) \tag{4}$$

$$\limsup_{n \to +\infty} M_n(\omega) = \limsup_{n \to +\infty} M_k(\omega) \quad (decroissante)$$
 (5)

Ainsi pour tout $m \in \mathbb{N}$

$$\inf_{k \geqslant m} M_k(\omega) \leqslant a < b \leqslant \sup_{k \geqslant m} M_k(\omega)$$

alors pour tout $m \in \mathbb{N}$

$$b-a \leq \sup_{k \geqslant m} M_k(\omega) - \inf_{k \geqslant m} M_k(\omega)$$

$$\leq \sup_{k \geqslant m} |M_k(\omega)| - \inf_{k \geqslant m} |M_k(\omega)|$$

$$\leq \sup_{k,l \geqslant m} |M_k(\omega) - M_l(\omega)|$$

$$\leq 2 \sup_{k \geqslant m} |M_k(\omega) - M_m(\omega)|.$$

Considérons à présent les accroissements définis par $d_k := M_k - M_{k-1}$, $k \in \mathbb{N}_*$.

Comme la suite $(M_n)_{n\in\mathbb{N}}$ est de carré intégrable, on en déduit que les $(d_k)_{k\in\mathbb{N}_*}$ sont orthogonaux entre eux c'est à dire:

$$\mathbb{E}[d_k d_j] = 0, i \neq j$$

Comme précédemment nous pouvons supposer sans perte de généralité que $M_0=0$, et l'on obtient alors

$$\mathbb{E}[M_n^2] = \mathbb{E}\left[\left(\sum_{k=1}^n d_k\right)^2\right] = \sum_{k=1}^n \mathbb{E}\left[d_k^2\right],$$

qui est la somme partielle d'une série convergente par l'hypothèse de L^2 -bornitude.

Par ailleurs, le processus $(M_{k+m}-M_m)_{k\in\mathbb{N}}$ étant une martingale (pour la filtration translatée $(\mathcal{F}_{k+m})_{k\in\mathbb{N}}$), la suite $(M_k')_{k\in\mathbb{N}}$ définie pour tout $k\in\mathbb{N}$ par $M_k':=(M_{k+m}-M_m)^2$ est une sous-martingale positive et l'inégalité de Doob, combinée au lemme de Fatou, s'applique de la manière suivante:

$$\mathbb{P}\left(\sup_{k\geqslant m}|M_k - M_m| \geqslant \frac{b-a}{2}\right) = \mathbb{P}\left(\sup_{k\geqslant 0}M_k' \geqslant \frac{(b-a)^2}{4}\right) \\
\leqslant \frac{4}{(b-a)^2} \liminf_{k\to\infty} \mathbb{E}\left[M_k'\right] \\
= \frac{4}{(b-a)^2} \sup_{k\geqslant 0} \mathbb{E}\left[M_k'\right] \\
= \frac{4}{(b-a)^2} \sup_{k\geqslant 0} \sum_{i=m}^{k+m} \mathbb{E}\left[d_i^2\right] \\
= \frac{4}{(b-a)^2} \sum_{k\geqslant m} \mathbb{E}\left[d_i^2\right].$$

Enfin, le terme de droite tend vers 0 lorsque $m \to +\infty$, ce qui démontre que $\mathbb{P}(A_{a,b}) = 0$, et donc que $\mathbb{P}(\bigcup_{a,b \in \mathbb{Q}} A_{a,b}) = 0$.

Pour démontrer la seconde assertion, notons M_{∞} la limite p.s. de la martingale $(M_n)_{n\in\mathbb{N}}$. Par le lemme de Fatou, on a

$$\mathbb{E}\left[M_{\infty}^{2}\right] \leqslant \liminf_{n \to +\infty} \mathbb{E}\left[M_{n}^{2}\right] \leqslant \sup_{n \in \mathbb{N}} \mathbb{E}\left[M_{n}^{2}\right] < +\infty,$$

d'où M_{∞} est non seulement finie mais aussi dans L^2 . Enfin, la convergence dans L^2 est immédiate d'après ce qui précède:

$$\mathbb{E}\big[(M_{\infty}-M_n)^2\big]=\sum_{k\geqslant n+1}\mathbb{E}[d_k^2]\underset{n\to+\infty}{\longrightarrow}0.$$

Enfin, le terme de droite tend vers 0 lorsque $m \to +\infty$, ce qui démontre que $\mathbb{P}(A_{a,b}) = 0$, et donc que $\mathbb{P}(\bigcup_{a,b \in \mathbb{Q}} A_{a,b}) = 0$.

Pour démontrer la seconde assertion, notons M_{∞} la limite p.s. de la martingale $(M_n)_{n\in\mathbb{N}}$. Par le lemme de Fatou, on a

$$\mathbb{E}\big[M_{\infty}^2\big]\leqslant \liminf_{n\to+\infty}\mathbb{E}\big[M_n^2\big]\leqslant \sup_{n\in\mathbb{N}}\,\mathbb{E}\big[M_n^2\big]<+\infty,$$

d'où M_{∞} est non seulement finie mais aussi dans L^2 . Enfin, la convergence dans L^2 est immédiate d'après ce qui précède:

$$\mathbb{E}\big[(M_{\infty}-M_n)^2\big]=\sum_{k\geqslant n+1}\mathbb{E}[d_k^2]\underset{n\to+\infty}{\longrightarrow}0.$$

Mentionnons que ce résultat reste valable lorsqu'on remplace L^2 par L^p pour tout p>1

Théorème

Soit $(M_n)_{n\in\mathbb{N}}$ une martingale par rapport à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$, qui est supposée bornée dans L^p p>1, i.e.

$$\sup_{n\in\mathbb{N}}\mathbb{E}[|M_n|^p]<+\infty.$$

Alors la suite $(M_n)_{n\in\mathbb{N}}$ converge p.s. et dans L^p vers une variable aléatoire $M_\infty\in L^p$.

Il s'avère que l'on peut obtenir une complète caractérisation de la convergence des martingales dans l'espace L^1 . Pour ce faire, introduisons tout d'abord le concept d'intégrabilité uniforme.

Définition

Une famille de variables aléatoires réelles $(X_i)_{i \in I}$ est dite uniformément intégrable si

$$\lim_{a\to+\infty}\sup_{i\in I}\mathbb{E}\big[|X_i|\,\mathbf{1}_{\{|X_i|>a\}}\big]=0.$$

L'intérêt d'introduire cette notion est qu'elle va nous permettre d'obtenir la convergence dans L^1 à partir de la convergence p.s., lorsque le théorème de convergence dominée ne s'applique pas.

Proposition

Si une suite $(X_n)_{n\in\mathbb{N}}$ est uniformément intégrable et converge p.s. vers une variable aléatoire X_∞ , alors $X_\infty\in L^1$ et la convergence a aussi lieu dans L^1 .

La proposition suivante exhibe des critères intéressants en pratique pour établir la propriété d'intégrabilité uniforme.

Proposition

Les assertions suivantes sont vérifiées.

- (i) Si une famille de variables aléatoires réelles $(X_i)_{i \in I}$ est bornée par une variable aléatoire intégrable, alors elle est uniformément intégrable.
- (ii) S'il existe p > 1 tel que la famille de variables aléatoires $(X_i)_{i \in I}$ soit bornée dans L^p , i.e.

$$\sup_{i\in I}\mathbb{E}[|X_i|^p]<+\infty,$$

alors elle est uniformément intégrable.

À présent, nous sommes en mesure d'établir la caractérisation de la convergence dans L^1 des martingales.

Théorème

Soit $(M_n)_{n\in\mathbb{N}}$ une martingale par rapport à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$. Alors les assertions suivantes sontéquivalentes:

(i) il existe une variable aléatoire $Z \in L^1$ telle que

$$M_n = \mathbb{E}[Z \mid \mathcal{F}_n], \quad n \in \mathbb{N}.$$

- (ii) la suite $(M_n)_{n\in\mathbb{N}}$ est uniformément intégrable.
- (iii) la suite $(M_n)_{n\in\mathbb{N}}$ converge p.s. et dans L^1 vers une variable $M_\infty\in L^1$.

Dans ce cas, on a $Z=M_{\infty}$ et la martingale $(M_n)_{n\in\mathbb{N}}$ est dite fermée (par M_{∞}).

Le théorème précédent indique que la seule bornitude L^1 ne permet pas de conclure comme pour le cas de L^p p > 1. On a cependant le théorème suivant très utile

Théorème

Soit $(M_n)_{n\in\mathbb{N}}$ une martingale par rapport à une filtration $(\mathcal{F}_n)_{n\in\mathbb{N}}$, qui est supposée bornée dans L^1 , i.e.

$$\sup_{n\in\mathbb{N}}\mathbb{E}[|M_n|]<+\infty.$$

Alors la suite $(M_n)_{n\in\mathbb{N}}$ converge p.s. vers une variable aléatoire $M_\infty\in L^1$.

Attention en général il n'y a pas convergence L^1 . Il faut l'uniforme intégrabilité pour avoir al convergence L^1 Une martingale positive converge donc toujours p.s !!!!!!!!

On reprend le cadre de la marche aléatoire sur \mathbb{Z} avec p(droite) et q(gauche) avec p > q. On s'intérresse

$$T = \inf\{n : S_n = -a \quad ou \quad S_n = b\}$$

On a que

$$S_n - n(p-q), \quad U_n = \left(\frac{q}{p}\right)^{S_n}$$

sont des martingales pour la filtration naturelle. Appliquons le théorème d'arrêt. Attention ici ${\cal T}$ est fini presque surement mais pas borné donc on considère

$$n \wedge T$$

On va en déduire que

$$P(S_T = -a)$$
 $et\mathbb{E}[T].$

Attention ici on a que $p \neq q$. Si = q cette approche tombe à l'eau. Cependant on trouve bien la valeur de

$$P(S_T = -a)$$

Pour la valeur de $\mathbb{E}[T]$ on va regarder la martingale

$$S_n^2 - n$$

Un chimpanzé est assis devant une machine à écrire et commence à taper une lettre par seconde. Il tape à chaque fois une lettre choisie uniformément parmi les 26 lettres de l'alphabet, indépendamment des lettres précédentes. On note T le premier temps auquel les 11 dernières lettres écrites par le singe forment le mot

ABRACADABRA

Le but de l'exercice est de calculer

 $\mathbb{E}[T]$

.

Pour cela, on va définir une martingale. On suppose que le singe a juste à côté de lui un sac rempli de beaucoup (beaucoup, beaucoup) de bananes. On joue alors au jeu suivant : juste avant chaque seconde $n=1,2,3,\dots$ un joueur arrive derrière le singe et parie 1 banane avec lui sur l'événement

la n – eme lettre tape par l'animal est un A

Si il perd, il part et le singe met 1 banane dans son sac. Si il gagne, il reçoit 26 bananes du singe, qu'il remise immédiatement sur l'événement

la n+1 – eme lettre tape par l'animal est un B

Si il perd, il part. Si il gagne, il reçoit 26² bananes qu'il remise immédiatement sur l'événement

la n + 2 – eme lettre tape par l'animal est un R

Et ainsi de suite jusqu'à ce que

ABRACADABRA

sorte de la machine. Notez qu'il peut y avoir jusqu'à trois joueurs en train de miser derrière le singe.

Galton Watson

On considere le processus (Z_n) defini par

$$Z_0 = 1, \ Z_{n+1} = \sum_{i=1}^{Z_n} Y_{n,i},$$

où les $(Y_{n,i})$ sont i.i.d de loi μ . On suppose que $\mu(\{0\}) \neq 0$ et on note $m = \mathbb{E}[Y_n, i]$.

- (Z_n) est une chaine de Markov
- Comportement de (Z_n) ?

Galton Watson

Le processus

$$\frac{Z_n}{m^n}$$

est une martingale

- On pose $g(s) = \mathbb{E}[s^{Y_{n,i}}]$. Pour m < 1 on suppose qu'il existe un unique $s \in]0, 1[$ tel que g(s) = s montrer que s^{Z_n} est une martingale qui converge p.s et dans L^p pour tout p
- En déduire le comportement asymptotique de Z_n dans le cas m > 1 et m < 1
- Calculer la probabilité d'extinction dans ces deux cas.
- Cas m=1. Montrer que Z_{∞} est L^1 et en déduire sa valeur. A t-on convergence L^1 de (Z_n) ? A t-on uniforme intégrabilité.

- Mise en place du problème. On considère un processsus (Z_n) adapté à une filtration (\mathcal{F}_n) . On se fixe un horizon N et on cherche à optimiser (Z_n) en moyenne jusqu'à ce temps N.
- Pour cela on veut se donner une règle c'est à dire déerminer un temps T où l'on veut s'arrêter (Z_n) . Qui dit temps et arrêt dit temps d'arrêt. On cherche donc

$$\sup_{T \ t.a \ \leqslant N} \mathbb{E}[Z_T]$$

- Un exemple vous devez recruter quelqu'un et vous recevez 50 personnes pour ce poste. A chacune de ces personnes est attribué un score suite à son entretien. A chaque fois que vous refusez une personne vous ne pouvez pas la rappeler. Quelle stratégie pouvez vous mettre en place pour optimiser votre recrutement?
- Les martingales vous aident...

On définit par récurrence descendante

$$U_N = Z_N$$
, $U_n = \sup\{Z_n, \mathbb{E}[U_{n+1}|\mathcal{F}_n]\}$

 \bullet (U_n) est une surmartingale

Proposition

C'est la plus petite surmartingale qui majore (Z_n)

Rappel une surmartingale satisfait

$$\mathbb{E}[M_{n+1}|\mathcal{F}_n] \leq M_n$$

c'est donc un "jeu" défavorable. Donc (U_n) est le moins défavorable parmi les défavorables.

Proposition

On pose

$$T=\inf\{n,|U_n=Z_n\}.$$

T est un temsp d'arrêt et $(U_{n \wedge T})$ est une martingale

Proposition

T est optimal dans le sens où

$$[EY_S] \leq [EY_T]$$

pour tout temps d'arrêt $S \leq N$.

- Revenons à la situation concrète
- Un exemple vous devez recruter quelqu'un et vous recevez N personnes pour ce poste. A chacune de ces personnes est attribué un score suite à son entretien. A chaque fois que vous refusez une personne vous ne pouvez pas la rappeler. Quelle stratégie pouvez vous mettre en place pour optimiser votre recrutement?

- On va considérer Ω l'ensemble des permutations des N candidats muni de la mesure uniforme.
- Pour $\omega \in \Omega$ on note $R_i(\omega) = \omega_i$ qui donne le rang du candidat i
- Attention on ne connait pas le rang de tous les candidats avant de les avoir tous auditionner.
- Pour n ≤ N on note X_n le rang relatif du nieme candidat vis a vis des autres interrogés. En particulier X_n ∈ {1,...,n}.

frame

- Les v.a (R_i) sont i.i.d. Quelle est leur loi?
- Les v.a (X_i) sont indépendantes. Loi?