Université Paul Sabatier Master 1 ESR Second semestre 2022-2023 Probabilités

TD1 : Conditional Calculus

Exercice 1. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Let X be a L^1 random variable. Let \mathcal{B} be a sub sigma algebra of \mathcal{A} .

- (1) Let $A \in \mathcal{A}$. Determine $\mathbb{E}[X|A] = \mathbb{E}[X|\sigma(A)]$
- (2) Let $(A_i)_{i \in I}$ be a countable partition of Ω such that $A_i \in \mathcal{A}$ for all $i \in I$. Determine

$$\mathbb{E}[X|\sigma(A_i, i \in I)]$$

Deduce a formula for $\mathbb{E}[X|Z]$ where Z is a discrete random variable.

- (3) Determine $\mathbb{E}[\mathbb{E}[X|\mathcal{B}]]$.
- (4) Suppose that X is independent of \mathcal{B} . Determine $\mathbb{E}[X|\mathcal{B}]$.
- (5) Let $\mathcal{F} \subset \mathcal{B}$ be a sub sigma algebra of \mathcal{A} . Show that

$$\mathbb{E}[\mathbb{E}[X|\mathcal{B}]|\mathcal{F}] = \mathbb{E}[X|\mathcal{F}]$$

(6) Suppose that X > 0 a.s. Show that $\mathbb{E}[X|\mathcal{B}] > 0$ a.s.

Exercice 2. Let X, Y be two independent Poisson random variables. Compute

$$\mathbb{E}[X|X+Y]$$

Exercice 3. Let N be a N-valued r.v. and let $(X_i)_{i \in \mathbb{N}^*}$ be a sequence of i.i.d. r.v. in L^2 . Let

$$S = \sum_{i=1}^{N} X_i$$

(1) Compute $\mathbb{E}[S|N]$ and then $\mathbb{E}[S]$

(2) Compute $\mathbb{E}[S^2|N]$ and then $\mathbb{E}[S^2]$. Show that

$$Var(S) = \mathbb{E}[N]Var(X_1) + Var(N)\mathbb{E}[X_1^2]$$

Exercice 4. Let U and V be two independent r.v. uniformly distributed on $\{1, 2, 3, 4, 5\}$. Let $X = \min(U, V)$ and $Y = \max(U, V)$.

- (1) Determine the law of (U, Y)
- (2) Determine $\mathbb{E}[U|Y=n]$
- (3) Deduce $\mathbb{E}[U|Y]$
- (4) Determine $\mathbb{E}[Y|U]$
- (5) Same questions with X instead of Y.

Exercice 5. Let X uniformly distributed on $\{-1, 1, 2\}$. Compute $\mathbb{E}(X||X|)$

Exercice 6. Let X, Y be two independent r.v. with law P_X and P_Y respectively. Let $\Phi : \mathbb{R}^2 \to \mathbb{R}$ be a bounded Borel function. Show that $\mathbb{E}(\Phi(X, Y)|X) = h(X)$ where

$$h(x) = \int_{\mathbb{R}} \Phi(x, y) dP_Y(y).$$

Exercice 7.

- (1) Let X be uniformly distributed on $\{-2, -1, 1, 2\}$, Determine $\mathbb{E}[X]$ and $\mathbb{E}[X|Y]$ where Y = |X|. Show that X and |X| are not independent. Conclusion?
- (2) Let X and Y be two Bernoulli r.v with parameter 1/2. Determine $\mathbb{E}[X|\sigma(X+Y)]$. Conclusion?

Exercice 8. For $x \in \mathbb{R}$, we denote by $\lfloor x \rfloor$ the floor function and $F(x) = x - \lfloor x \rfloor$. Let X be a r.v. with exponential distribution with parameter $1 : P_X(dt) = e^{-t} \mathbb{1}_{[0,+\infty[}(t)dt$.

- (1) Determine the law of |X|.
- (2) Compute the conditional expectations $\mathbb{E}(|X||X)$ and $\mathbb{E}(X||X|)$. Deduce $\mathbb{E}(F(X)||X|)$.
- (3) Determine the conditional distribution of X given $\lfloor X \rfloor$. Deduce that F(X) and $\lfloor X \rfloor$ are independent.

Exercice 9. Let $X_1, ..., X_n$ be independent Poisson random variables with parameters $\lambda_1, ..., \lambda_n$.

- Give the law of $S_n = X_1 + \dots + X_n$.
- Compute $\mathbb{P}(X_1 = k_1, ..., X_n = k_n | S_n = k)$ for all integers $k_1, ..., k_n, k$.
- Give the conditional distribution of $(X_1, ..., X_n)$ given $S_n = k$.
- Give the conditional distribution of $(X_1, ..., X_n)$ given S_n .

Exercice 10. Let (X, Y) be a random vector in \mathbb{R}^2 uniformly distributed on the domain T of \mathbb{R}^2 defined by $T = \{(x, y) \in [0, 1]^2 : y \leq x\}.$

- (1) Determine the law of Y.
- (2) Compute $\mathbb{E}(h(X)|Y)$ for all Borel positive function h.
- (3) Give the conditional law of X given Y.
- (4) Compute the law of X + Y. (consider u = x, v = x + y).
- (5) Determine the conditional law of X given X + Y.

Exercice 11. Let (X, Y) whose density is given by $f(x, y) = \frac{1}{4}x^{-5/4}y^{-1/4}\mathbb{1}_D(x, y)$ where the domain D is given by $D = \{(x, y) \in \mathbb{R}^2 : 0 < y < x < 1/y\}$. Compute the density $f_Y(y)$ of Y. Deduce the conditional density of X given Y = y, for $y \in]0, 1[$.

Exercice 12. Let (X, Y) be a couple of random variables whose law is supported on $\mathbb{N}^* \times [0, 1]$, and is given by

$$\forall k \in \mathbb{N}^*, \forall A \in \mathcal{B}([0,1]), \qquad \mathbb{P}(X=k, Y \in A) = \frac{k}{2^k} \int_0^1 (1-y)^{k-1} \mathbf{1}_A(y) dy.$$

- (1) Show that (X, Y) has a density with respect to $\mu \otimes \lambda$ where μ is the counting measure on \mathbb{N}^* and where λ is the Lebesgue measure on \mathbb{R} . Give it ?
- (2) What are the distributions of X and Y?
- (3) Deduce the conditional distribution of X given Y = y and that of Y given X = k.

Exercice 13. Let Y_1, Y_2 two i.i.d. r.v. with exponential distribution with parameter 1.

- (1) For $\Psi : \mathbb{R}^2 \to \mathbb{R}$ a Borel positive function, compute $\mathbb{E}(\Psi(Y_1, Y_2) | \min(Y_1, Y_2))$.
- (2) Deduce the conditional law of (Y_1, Y_2) given $\min(Y_1, Y_2)$. Interpret the result.

Exercice 14. Let (X, Y) be a couple of random variables such that X is uniformly distributed on [0, 1] and such that the conditional distribution of Y given X is given by

$$\mathcal{L}_{Y|X=x} = x\delta_1 + (1-x)\delta_0$$

2

- (1) Determine $\mathbb{P}((X,Y) \in A)$, for $A \in \mathcal{B}(\mathbb{R}^2)$. Draw the support of the law $P_{(X,Y)}$.
- (2) What is the law of Y?
- (3) Compute the conditional law of X given Y.

Exercice 15. Let X, Y be two random variables on the same probability space. Suppose that X has a Poisson distribution $\mathcal{P}(\lambda) = \sum_{k \in \mathbb{N}} e^{-\lambda \frac{\lambda^k}{k!}} \delta_k$, and that the conditional law of Y given X = x is given by the probability kernel

$$K(x, \cdot) = B(x, q) = \sum_{k=0}^{x} C_x^k q^k (1-q)^{x-k} \delta_k$$

- (1) Compute the law of the couple (X, Y).
- (2) Show that Y has a classical law.

Exercice 16.

Let X and Y be two random variables on \mathbb{N} and on \mathbb{R} respectively such that, for all $n \in \mathbb{N}$ and all $t \in \mathbb{R}_+$,

$$\mathbb{P}\left[X=n, Y \le t\right] = 2\int_0^t \frac{y^n}{n!} e^{-3y} dy.$$

- (1) Show that, for all $n \ge 0$, $\int_0^\infty \frac{y^n}{n!} e^{-3y} dy = \frac{1}{3^{n+1}}$. (2) What is the law of X and what is the density of Y?
- (3) Compute $\mathbb{E}[Y|X]$.
- (4) Compute $\mathbb{E}\left[\frac{Y}{(X+1)}\right]$.
- (5) Compute $\mathbb{P}[X = n|Y] = \mathbb{E}[\mathbb{1}_{X=n}|Y]$ and give the conditional law of X given Y using a transition kernel.
- (6) Compute $\mathbb{E}[X|Y]$.