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M1-ESR. Stochastic Processes. .

TD - MARTINGALES

Exercice 1.
Consider the process (Zn) defined by

Z0 = 1, Zn+1 =

Zn∑
i=1

Yn,i,

where (Yn,i) are i.i.d with law µ. We suppose that µ({0}) 6= 0 and we note m = E[Yn, i].

1. Show that (Zn) is a Markov chain.

2. Identify the large time behavior of (Zn) ?

3. Show that the process
Zn

mn

is a martingale.

4. Let g(s) = E[sYn,i ]. For m < 1, suppose there exists a unique s ∈]0, 1[ such that g(s) = s.
Show that sZn is a martingale that converges almost surely and in Lp for all p.

5. Deduce the asymptotic behavior of Zn in the cases m > 1 and m < 1.

6. Calculate the extinction probability in these two cases.

7. Case m = 1. Show that Z∞ is in L1 and deduce its value. Do we have L1 convergence of
(Zn) ? Do we have uniform integrability ?

Exercice 1.
Let (Xi)i≥1 be a sequence of independent random variables such that E(Xi) = 0 and E(X2

i ) = σ2
i .

We define Sn =
∑n

i=1Xi, Mn = S2
n −

∑n
i=1 σ

2
i and Fn as the natural filtration of X.

1. Show that Sn and Mn are Fn martingales.

2. Show that if
∑+∞

i=1 σ
2
i < +∞, then Sn converges almost surely and in L2.

Exercice 2.
Let (Xi)i≥1 be a sequence of i.i.d. random variables with N (0, 1) distribution, and define Sn =∑n

i=1Xi. For t ∈ R, we define

Mn(t) = et Sn−nt2

2 .

1. Show that Mn(t) is a positive martingale that converges almost surely to M∞(t).

2. Show that if t 6= 0, tSn − nt2

2 converges almost surely to −∞. Deduce the value of M∞(t),
and then show that for t 6= 0, Mn(t) does not converge in L1.

Exercice 3.
Let (Un)n be a sequence of i.i.d. random variables uniformly distributed on [0, 1], and let a ∈ [0, 1].
We define X0 = a and recursively, Xn+1 = Un+1 + (1− Un+1)X2

n.

1. Show that Xn is a submartingale with respect to the natural filtration of U .
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2. Show that almost surely 0 ≤ Xn ≤ 1. Deduce that Xn converges almost surely and in Lp

(1 ≤ p < +∞) to a variable X∞.

3. Show that X∞ = 1 almost surely.

Exercise 4.
Let (Xi)i≥1 be a sequence of independent random variables such that E(Xi) = 0 and E(X2

i ) = 1.
We define Yn = 1

n

∏n
i=1Xi and Zn =

∑n
k=1 Yk. Show that Zn converges almost surely and in L2.

Replace 1/n by an. Under what condition can we assert that the result remains true ?

Exercise 5.
Let x ∈ R∗+ and let α ∈ R such that 0 < |α| < 1. We define a sequence of random variables (Sn)n≥0
by

S0 = x, Sn+1 = Sn + αεn+1Sn,

for all n ≥ 0 where (εn)n≥1 is a sequence of i.i.d. random variables such that

P[ε1 = 1] = P [ε1 = −1] =
1

2
.

We denote by (Fn) the natural filtration of (Sn), that is,

Fn = σ(S0, . . . , Sn), n ∈ N.

1. Show that (Sn) is a (Fn) martingale.

2. Show by induction that Sn > 0 for all n ≥ 0.

3. Deduce that (Sn) converges almost surely as n tends to +∞.

4. Define for all n ≥ 0
Zn = log(Sn).

Show that Zn = Zn−1 + log(1 + αεn) for all n ≥ 1.

5. Deduce by induction that for all n ≥ 1

Zn = log x+

n∑
k=1

log(1 + αεk).

6. Calculate E(log(1 + αε1)) and deduce the limit of
(
Zn

n

)
.

7. Deduce that Sn converges almost surely to zero. Does the convergence occur in L1 norm ?

Exercise 6.
Let θ ∈]0, 1[ and x ∈]0, 1[. We consider the sequence (Xn) defined by

X0 = x, Xn+1 = θXn + (1− θ)εn+1

where (εn) is a sequence of random variables taking values in {0, 1} satisfying

E[f(εn+1)|Fn] = Xnf(1) + (1−Xn)f(0)

for all bounded measurable functions f . Here (Fn) denotes the natural filtration of (Xn), that is,
for all n ∈ N

Fn = σ(X0, . . . , Xn).
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1. Show that 0 < Xn < 1 for all n ∈ N.

2. Show that (Xn) is a (Fn) martingale.

3. Show that (Xn) converges in L2 to a random variable X∞.

4. Does the previous convergence occur almost surely ? Does it occur in L1 ?

5. Show that for all n ∈ N

E
[
(Xn+1 −Xn)2

]
= (1− θ)2E[Xn(1−Xn)].

6. Deduce the value of E[X∞(1−X∞)].

7. Determine the distribution of X∞.

Exercise 7.
(A proof of Kolmogorov’s 0-1 Law using martingale theory). Let (Xn)n≥0 be a sequence of inde-
pendent random variables. We define :

Fn = σ(X0, X1, . . . , Xn), F∞ = σ

⋃
n≥1

Fn


Fn = σ(Xn, . . . , Xn+1, . . .), F∞ =

⋂
n≥1

Fn

Let A ∈ F∞, show using Mn = E[1A|Fn] that P(A) = 0 or P(A) = 1.

Exercice 8.
The aim of this exercise is to show by a probabilistic approach that any lipschitzian function is a
primitive of a bounded measurable function. Let X a random variable with a uniform distribution
on [0, 1] and f : [0, 1]→ R a Lipschitz function with constant L > 0. For all n ≥ 0, we put

Xn = b2nXc2−n

and
Zn = 2n(f(Xn + 2−n)− f(Xn)).

1. Show that for all n n ≥ 0

Fn := σ(X0, X1, ..., Xn) = σ(Xn) et
⋂
n≥0

σ(Xn, Xn+1, ...) = σ(X)

(We could prove that for 0 ≤ k ≤ n : Xk = 2−kb2kXnc)
2. Let x ∈]0, 1[ and let n ≥ 0, we put

xn = b2nxc2−n.

Lett n ≥ 0, what are the values taken by xn ? Suppose that the value of xn is fixed, what are
the possible values of xn+1 ?

3. Let h : [0, 1] → R a bounded measurable function. Show that for all n n ≥ 0 and all
0 ≤ k ≤ 2n−1

E[h(X)1Xn=
k
2n

] =

∫ (k+1)2−n

k2−n

h(x)dx
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4. Deduce that for all n ≥ 0

E[h(X)|Xn] = 2n
∫ Xn+2−n

Xn

h(x)dx

5. Show that for all n n ≥ 0 and all 0 ≤ k ≤ 2n−1

E[h(Xn+1)1Xn=
k
2n

] = 2−(n+1)

(
h

(
k

2n

)
+ h

(
2k + 1

2n+1

))
6. Deduce that for all n ≥ 0

E[h(Xn+1)|Xn] =
1

2

(
h (Xn) + h

(
Xn + 2−(n+1)

))
7. Show that (Zn) is a (Fn) bounded martingale

8. Show that (Zn) converges almost surely and in L1 towards a random variable Z.

9. Show that Z is σ(X) mesurable and then that there exists g mesurable such that Z = g(X).
Show that g can be chosen bounded.

10. We recall that Zn = E[Z|Fn], show that

Zn = 2n
∫ Xn+2−n

Xn

g(x)dx

11. Show that for all x ∈ [0, 1] we have

f(x) = f(0) +

∫ x

0

g(u)du
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