TD - MARTINGALES

Exercice 1. Consider the process (Z_n) defined by

$$Z_0 = 1, \ Z_{n+1} = \sum_{i=1}^{Z_n} Y_{n,i},$$

where $(Y_{n,i})$ are i.i.d with law μ . We suppose that $\mu(\{0\}) \neq 0$ and we note $m = \mathbb{E}[Y_n, i]$.

- 1. Show that (Z_n) is a Markov chain.
- 2. Identify the large time behavior of (Z_n) ?
- 3. Show that the process

$$\frac{Z_n}{m^n}$$

is a martingale.

- 4. Let $g(s) = \mathbb{E}[s^{Y_{n,i}}]$. For m < 1, suppose there exists a unique $s \in]0, 1[$ such that g(s) = s. Show that s^{Z_n} is a martingale that converges almost surely and in L^p for all p.
- 5. Deduce the asymptotic behavior of Z_n in the cases m > 1 and m < 1.
- 6. Calculate the extinction probability in these two cases.
- 7. Case m = 1. Show that Z_{∞} is in L^1 and deduce its value. Do we have L^1 convergence of (Z_n) ? Do we have uniform integrability?

Exercice 1.

Let $(X_i)_{i\geq 1}$ be a sequence of independent random variables such that $\mathbb{E}(X_i) = 0$ and $\mathbb{E}(X_i^2) = \sigma_i^2$. We define $S_n = \sum_{i=1}^n X_i$, $M_n = S_n^2 - \sum_{i=1}^n \sigma_i^2$ and \mathcal{F}_n as the natural filtration of X.

- 1. Show that S_n and M_n are \mathcal{F}_n martingales.
- 2. Show that if $\sum_{i=1}^{+\infty} \sigma_i^2 < +\infty$, then S_n converges almost surely and in \mathbb{L}^2 .

Exercice 2.

Let $(X_i)_{i\geq 1}$ be a sequence of i.i.d. random variables with $\mathcal{N}(0,1)$ distribution, and define $S_n = \sum_{i=1}^n X_i$. For $t \in \mathbb{R}$, we define

$$M_n(t) = e^{t S_n - \frac{nt^2}{2}}.$$

- 1. Show that $M_n(t)$ is a positive martingale that converges almost surely to $M_{\infty}(t)$.
- 2. Show that if $t \neq 0$, $tS_n \frac{nt^2}{2}$ converges almost surely to $-\infty$. Deduce the value of $M_{\infty}(t)$, and then show that for $t \neq 0$, $M_n(t)$ does not converge in \mathbb{L}^1 .

Exercice 3.

Let $(U_n)_n$ be a sequence of i.i.d. random variables uniformly distributed on [0, 1], and let $a \in [0, 1]$. We define $X_0 = a$ and recursively, $X_{n+1} = U_{n+1} + (1 - U_{n+1}) X_n^2$.

1. Show that X_n is a submartingale with respect to the natural filtration of U.

- 2. Show that almost surely $0 \le X_n \le 1$. Deduce that X_n converges almost surely and in \mathbb{L}^p $(1 \le p < +\infty)$ to a variable X_{∞} .
- 3. Show that $X_{\infty} = 1$ almost surely.

Exercise 4.

Let $(X_i)_{i\geq 1}$ be a sequence of independent random variables such that $\mathbb{E}(X_i) = 0$ and $\mathbb{E}(X_i^2) = 1$. We define $Y_n = \frac{1}{n} \prod_{i=1}^n X_i$ and $Z_n = \sum_{k=1}^n Y_k$. Show that Z_n converges almost surely and in \mathbb{L}^2 . Replace 1/n by a_n . Under what condition can we assert that the result remains true?

Exercise 5.

Let $x \in \mathbb{R}^*_+$ and let $\alpha \in \mathbb{R}$ such that $0 < |\alpha| < 1$. We define a sequence of random variables $(S_n)_{n \ge 0}$ by

$$S_0 = x, \quad S_{n+1} = S_n + \alpha \epsilon_{n+1} S_n$$

for all $n \ge 0$ where $(\epsilon_n)_{n\ge 1}$ is a sequence of i.i.d. random variables such that

$$\mathbb{P}[\epsilon_1 = 1] = P[\epsilon_1 = -1] = \frac{1}{2}$$

We denote by (\mathcal{F}_n) the natural filtration of (S_n) , that is,

$$\mathcal{F}_n = \sigma(S_0, \dots, S_n), \quad n \in \mathbb{N}.$$

- 1. Show that (S_n) is a (\mathcal{F}_n) martingale.
- 2. Show by induction that $S_n > 0$ for all $n \ge 0$.
- 3. Deduce that (S_n) converges almost surely as n tends to $+\infty$.
- 4. Define for all $n \ge 0$

$$Z_n = \log(S_n).$$

Show that $Z_n = Z_{n-1} + \log(1 + \alpha \epsilon_n)$ for all $n \ge 1$.

5. Deduce by induction that for all $n \ge 1$

$$Z_n = \log x + \sum_{k=1}^n \log(1 + \alpha \epsilon_k)$$

- 6. Calculate $\mathbb{E}(\log(1 + \alpha \epsilon_1))$ and deduce the limit of $\left(\frac{Z_n}{n}\right)$.
- 7. Deduce that S_n converges almost surely to zero. Does the convergence occur in L^1 norm?

Exercise 6.

Let $\theta \in [0, 1[$ and $x \in [0, 1[$. We consider the sequence (X_n) defined by

$$X_0 = x, \quad X_{n+1} = \theta X_n + (1 - \theta)\varepsilon_{n+1}$$

where (ε_n) is a sequence of random variables taking values in $\{0, 1\}$ satisfying

$$\mathbb{E}[f(\varepsilon_{n+1})|\mathcal{F}_n] = X_n f(1) + (1 - X_n) f(0)$$

for all bounded measurable functions f. Here (\mathcal{F}_n) denotes the natural filtration of (X_n) , that is, for all $n \in \mathbb{N}$

$$\mathcal{F}_n = \sigma(X_0, \dots, X_n).$$

- 1. Show that $0 < X_n < 1$ for all $n \in \mathbb{N}$.
- 2. Show that (X_n) is a (\mathcal{F}_n) martingale.
- 3. Show that (X_n) converges in L^2 to a random variable X_{∞} .
- 4. Does the previous convergence occur almost surely? Does it occur in L^1 ?
- 5. Show that for all $n \in \mathbb{N}$

$$\mathbb{E}\left[(X_{n+1} - X_n)^2\right] = (1-\theta)^2 \mathbb{E}[X_n(1-X_n)].$$

- 6. Deduce the value of $\mathbb{E}[X_{\infty}(1-X_{\infty})]$.
- 7. Determine the distribution of X_{∞} .

Exercise 7.

(A proof of Kolmogorov's 0-1 Law using martingale theory). Let $(X_n)_{n\geq 0}$ be a sequence of independent random variables. We define :

$$\mathcal{F}_n = \sigma(X_0, X_1, \dots, X_n), \quad \mathcal{F}_\infty = \sigma\left(\bigcup_{n \ge 1} \mathcal{F}_n\right)$$
$$\mathcal{F}^n = \sigma(X_n, \dots, X_{n+1}, \dots), \quad \mathcal{F}^\infty = \bigcap_{n \ge 1} \mathcal{F}^n$$

Let $A \in \mathcal{F}^{\infty}$, show using $M_n = \mathbb{E}[\mathbf{1}_A | \mathcal{F}_n]$ that $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$.

Exercice 8.

The aim of this exercise is to show by a probabilistic approach that any lipschitzian function is a primitive of a bounded measurable function. Let X a random variable with a uniform distribution on [0, 1] and $f : [0, 1] \to \mathbb{R}$ a Lipschitz function with constant L > 0. For all $n \ge 0$, we put

$$X_n = \lfloor 2^n X \rfloor 2^{-n}$$

and

$$Z_n = 2^n (f(X_n + 2^{-n}) - f(X_n)).$$

1. Show that for all n $n \ge 0$

$$\mathcal{F}_n := \sigma(X_0, X_1, \dots, X_n) = \sigma(X_n) \text{ et } \bigcap_{n \ge 0} \sigma(X_n, X_{n+1}, \dots) = \sigma(X)$$

(We could prove that for $0 \le k \le n : X_k = 2^{-k} \lfloor 2^k X_n \rfloor$)

2. Let $x \in [0, 1[$ and let $n \ge 0$, we put

$$x_n = \lfloor 2^n x \rfloor 2^{-n}.$$

Let $n \ge 0$, what are the values taken by x_n ? Suppose that the value of x_n is fixed, what are the possible values of x_{n+1} ?

3. Let $h:[0,1]\to \mathbb{R}$ a bounded measurable function. Show that for all n $n\geq 0$ and all $0\leq k\leq 2^{n-1}$

$$\mathbb{E}[h(X)\mathbf{1}_{X_n=\frac{k}{2^n}}] = \int_{k^{2^{-n}}}^{(k+1)2^{-n}} h(x)dx$$

4. Deduce that for all $n \ge 0$

$$\mathbb{E}[h(X)|X_n] = 2^n \int_{X_n}^{X_n + 2^{-n}} h(x) dx$$

5. Show that for all n $n \geq 0$ and all $0 \leq k \leq 2^{n-1}$

$$\mathbb{E}[h(X_{n+1})\mathbf{1}_{X_n=\frac{k}{2^n}}] = 2^{-(n+1)} \left(h\left(\frac{k}{2^n}\right) + h\left(\frac{2k+1}{2^{n+1}}\right)\right)$$

6. Deduce that for all $n \ge 0$

$$\mathbb{E}[h(X_{n+1})|X_n] = \frac{1}{2} \left(h(X_n) + h\left(X_n + 2^{-(n+1)}\right) \right)$$

- 7. Show that (Z_n) is a (\mathcal{F}_n) bounded martingale
- 8. Show that (Z_n) converges almost surely and in L^1 towards a random variable Z.
- 9. Show that Z is $\sigma(X)$ mesurable and then that there exists g mesurable such that Z = g(X). Show that g can be chosen bounded.
- 10. We recall that $Z_n = \mathbb{E}[Z|\mathcal{F}_n]$, show that

$$Z_n = 2^n \int_{X_n}^{X_n + 2^{-n}} g(x) dx$$

11. Show that for all $x \in [0, 1]$ we have

$$f(x) = f(0) + \int_0^x g(u)du$$