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Environment and strategy

K arms bandit problem, ν =
(
B(µ1), ..,B(µK )

)
with µi ∈ (0, 1).

Game, for each round 1 6 t 6 T :
1. Player pulls arm At ∈ {1, ..,K}.
2. He gets a reward Yt ∼ B(µAt ).

Information available at time t: Y1:t =
(
Y1, . . . , Yt

)
.

Goal of the player, minimize the expected regret :

Rν,T = Tµ? − Eν

[ T∑
t=1

Yt

]
=

K∑
a=1

(µ? − µa)Eν
[
Na(T )

]
.

where µ? = max
a=1,...,K

µa and Na(T ) =
∑T

t=1 I{At=a}.
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Theorem (Asymptotic lower bound from Lai & Robbins)
For all reasonable strategies (consistent), for all bandits problems ν, for all
suboptimal arms a,

lim inf
T→∞

Eν
[
Na(T )

]
lnT >

1
kl(µa, µ?)

.

where kl the Kullback-Leibler divergence for Bernoulli distributions :

∀p, q ∈ [0, 1]2, kl(p, q) := p ln
p
q
+ (1− p) ln

1− p
1− q

> 2(p − q)2 .

Theorem (UCB algorithm from Auer & Cesa-Bianchi & Fischer)
Algorithm UCB, for all bandits problems ν, for all suboptimal arm a:

Eν
[
Na(T )

]
6

8 ln(T )

(µ? − µa)2 + 2

(right constant with KL-UCB algorithm from Cappe & al).
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Figure : Bernoulli bandit problem with parameters :
(µa)16a66 = (0.05, 0.04, 0.02, 0.015, 0.01, 0.005)

• Logarithmic regret for large T (asymptotic lower bound).
• Transition phase between.
• Linear regret for T small.
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Consistent strategy

Strategy which always pulls the same arm → assumptions on the strategy.

Definition
A strategy is consistent if for all bandit problems ν, for all suboptimal arms
a, i.e., for all arms a such that ∆a > 0, it satisfies Eν

[
Na(T )

]
= o(Tα) for

all 0 < α 6 1.
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ν =
(
B(µ1), ..,B(µK )

)
ν ′ =

(
B(µ′1), ..,B(µ′K )

)
K∑

a=1
Eν
[
Na(T )

]
kl(µa, µ

′
a) > kl

(
Eν [Z ], Eν′ [Z ]

)
, (M)

where Z is a σ(Y1:T )–measurable random variable with values in [0, 1].
Typically Z = Na(T )/T .

Sketch of proof :
K∑

a=1
Eν
[
Na(T )

]
kl(µa, µ

′
a) = KL

(
PY1:T
ν , PY1:T

ν′
)

KL
(
PY1:T
ν , PY1:T

ν′
)
> kl

(
Eν [Z ], Eν′ [Z ]

)
,

where :
• PY1:T

ν and PY1:T
ν′ respective distributions of Y1:T under Pν and Pν′

• chain rule for Kullback-Leibler divergences
• contraction of entropy
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Proof.
Contraction of entropy :

Let V ∼ U [0, 1] independent of Y1:T , and the event E = {Z > V } then

KL(PY1:T
ν ,PY1:T

ν′ ) = KL
(
PY1:T
ν ⊗ U [0, 1], PY1:T

ν′ ⊗ U [0, 1]
)

> KL
((
PY1:T
ν ⊗ U [0, 1]

)IE ,
(
PY1:T
ν′ ⊗ U [0, 1]

)IE
)

= kl
((
PY1:T
ν ⊗ U [0, 1]

)
(E ),

(
PY1:T
ν′ ⊗ U [0, 1]

)
(E )

)
.

To conclude, for α = ν or ν ′ (Fubini theorem):(
PY1:T
α ⊗ U [0, 1]

)
(E ) = Eα[Z ] .
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Figure : Bernoulli bandit problem with parameters :
(µa)16a66 = (0.05, 0.04, 0.02, 0.015, 0.01, 0.005)

• Linear regret for T small.
• Logarithmic regret for large T (asymptotic lower bound).
• Transition phase between.
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Absolute lower bound for small T

In the remainder of this section ν =
(
B(µ1), ..,B(µK )

)
with an unique

optimal arm i?.

Uniform strategy : pull an arm uniformly at random at each round.

Definition
A strategy is smarter than the uniform strategy if for all bandit problems ν,
for all T > 1,

Eν
[
Ni?(T )

]
>

T
K

Eν
[
Na(T )

]
6

T
K if a suboptimal.
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Theorem
For all strategies that are smarter than the uniform strategy, for all bandit
problems ν, for all suboptimal arms a, for all T > 1,

Eν
[
Na(T )

]
>

T
K
(
1−

√
2Tkl(µa, µ?)

)
.

In particular,

∀T 6
1

8kl(µa, µ?)
, Eν

[
Na(T )

]
>

T
2K .

Linear regret
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a suboptimal arm.
Modified bandit problem with µ′a > µ?:

ν =
(
B(µ1), ..,B(µa), ..,B(µK )

)
ν ′ =

(
B(µ1), ..,B(µ′a), ..,B(µK )

)

Main inequality (M),

Eν
[
Na(T )

]
kl(µa, µ

′
a) > kl

(
Eν
[
Na(T )

]
/T , Eν′

[
Na(T )

]
/T
)

(
Eν

[
Na(T )

]
/T 6 1/K 6 Eν′

[
Na(T )

]
/T
)

> kl
(
Eν
[
Na(T )

]
/T , 1/K

)
(Pinsker inequality) >

K
2
(
Eν
[
Na(T )

]
/T − 1/K

)2

Still with Eν
[
Na(T )

]
/T 6 1/K :

kl(µa, µ
′
a)T/K >

K
2
(
Eν
[
Na(T )

]
/T − 1/K

)2
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Collective lower bound for small T
Theorem
For all strategies that are smarter than the uniform strategy, for all bandit
problems ν, for all suboptimal arms a,

∀T 6
K ?

8kl(µa, µ?)
, Eν

[
Na(T )

]
>

T
2K .

Theorem
Under weak (symmetry, ...) assumptions on the strategy, for all bandit
problems ν,

∑
a 6=i?

Eν
[
Na(T )

]
> T

(
1− 1

K −
√
2T kl(µa, µ?)

K − 2T kl(µa, µ
?)

K

)
.
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Non-asymptotic bounds for large T

Theorem
For all reasonable strategies (refinement of consistence), for all bandit
problems ν, for all suboptimal arms a,

Eν
[
Na(T )

]
>

lnT
kl(µa, µ?)

−O
(
ln(lnT )

)
,

with a closed-form expression for the last term.
Where, for T large enough

O
(

ln(ln T )
)
=

1
(1− µ?)kl(µa, µ?)

(ln T )−3+Cψ,DH(ν)
ln(T )2

T
+ln
(

K Cψ,D(ln T )9
)
+

ln 2
kl(µa, µ?)

.
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General bandit problems

ν = (ν1, .., νK ) ,

νa ∈ D a probability distribution and a real number x , we introduce

Kinf(νa, x) = inf
{

KL(νa, ν
′
a) : ν ′a ∈ D and E (ν ′a) > x

}
;

by convention, the infimum of the empty set equals +∞.

→ replace kl(µa, µ
?) by Kinf(νa, µ

?)
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