SIAM J. CONTROL OPTIM. (© 2010 Society for Industrial and Applied Mathematics
Vol. 48, No. 8, pp. 5398-5443

FEEDBACK STABILIZATION OF A FLUID-STRUCTURE MODEL*

JEAN-PIERRE RAYMONDT

Abstract. We study a system coupling the incompressible Navier—Stokes equations in a 2D
rectangular-type domain with a damped Euler-Bernoulli beam equation, where the beam is a part
of the upper boundary of the domain occupied by the fluid. Due to the deformation of the beam, the
fluid domain depends on time. We prove that this system is exponentially stabilizable, locally about
the null solution, with any prescribed decay rate, by a feedback control corresponding to a force term
in the beam equation. The feedback is applied on the whole structure, and it is determined, via a
Riccati equation, by solving an infinite time horizon control problem for the linearized model. A
crucial step in this analysis consists of showing that this linearized system can be rewritten thanks
to an analytic semigroup of which the infinitesimal generator has a compact resolvent.
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1. Setting of the problem. Let €2 be the rectangular domain (0, L) x (0,1) C
R?, with boundary I'. Let us set I's = (0, L) x {1}, the upper part of the boundary of
Q, and T'o = '\ T's. For a given function 5 from I’y x (0, 00) into (—1, 00) we denote
by Q) and I'y ;) the sets

Qyry = {(9579) |z € (0,L), 0<y< 1+n(x,t)},

Conw) = {(x,y) |ze (0,L), y=1 +n(x,t)}.
For 0 < T < oo or T'= oo we also use the notation
> =Ty x (0,7), Ypr=Tx(0,T),
QT =0 x (OvT)v @T = Ute(O)T) Qn(t) X {t}v
% =T x (OvT)v E% = Ute(O,T) Psm(t) X {t}

We consider the following fluid-structure model coupling the Navier—Stokes equations
with a damped Euler-Bernoulli beam equation:

w4 (u-Viju—divo(u,p) =0, divu=0 in Qu,
u(z,1+n(z,t),t) = n(z,t)éx  for (z,t) € (0,L) x (0,00),
u=0 on Ego’ u(O) =u’in Qn(O) = Qﬂ?’

et — 6771z - 577159595 + ONggza = P1P + H(u, T]) + f on Eioa
n=0 and 7, =0 on {O,L} x (0, 00),
n(0) =7 and 7(0) =73 inTs,
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FEEDBACK STABILIZATION OF A FLUID-STRUCTURE MODEL 5399

with
H(u,n) = —pov(Vu+ Vu®) |r, | (—1a€1 + &) - €2,
o(w,p) =v(Vu+vul) —pI, & =(1,0), & =(0,1).

In this setting v > 0 is the fluid viscosity; « > 0, 8 > 0, and § > 0 are the adimen-
sional rigidity, stretching, and friction coefficients of the beam; p; and ps are positive
constants related to the density of the fluid and the density of the structure (see [3]);
and f is a control function. The vertical force F' exerted by the fluid on the beam
can be defined by the variational formulation

/ F(z,t) ¢(z, 1 +n(x,t)) = / ((plpn — pov(Vu + VuT) n) P, y)és,

s Ls )

for all regular functions ¢, where n = ( is the unit normal to

- \/rim% ot \/11+n2 @)
[s ) exterior to €2,). This leads to setting F' = py1p + H(u,n) in the right-hand
side of the equation satisfied by 1 (see (1.1)).

Our objective is to determine f in feedback form, able to stabilize the system (1.1)
(in an appropriate space) with a prescribed exponential decay rate —w < 0, locally
about (u,p,n,m:) = (0,0,0,0). For that we look for strong solutions to the closed loop
system associated with (1.1), that is, when f is replaced by a feedback law. Despite
its apparent simplicity (2D (two-dimensional) model, rectangular-type domain) very
few results are known about the existence of strong solutions to this type of system.
Existence of a local strong solution for system (1.1) with f = 0 has been proved in [3]
(with periodic boundary conditions on the lateral boundary of §2), under smallness
conditions on the data, while existence of Hopf solutions for a slightly different model
is proved in [13] (see also [7] and [12] for other models for the beam equation and for
existence results in the 3D case). To the author’s knowledge, nothing is known about
control and stabilization of such a system.

As already mentioned, system (1.1) suffers from several limitations. The model
is stated in two dimensions, the domain occupied by the fluid is of rectangular type,
the boundary condition

u(z, 1+ n(z,t),t) = n(z,t)é for (z,t) € (0,L) x (0,00)

is not necessarily the most relevant one for describing the interaction between the
fluid and the structure (see, e.g., [13] and section A.5), and the damping term —o0mzs
simplifies the analysis of the coupled system. In order to clarify why these limitations
are essential or not, we have indicated in the appendix what results can be extended
to other models. But we can state right now that the 2D setting plays a crucial role at
several stages of the paper. It is used in section 12 to prove the existence of a unique
strong solution to the closed loop system. Indeed the proof is based on a fixed point
argument, and there we use Sobolev imbeddings in one dimension for the structure.
The 2D setting is also used to prove the stabilizability result of the linearized model
in section 5 (a similar result is not known in three dimensions).

The technique used here to study the control system (1.1) is not new; it consists
first of stabilizing the linearized system with a feedback law obtained by solving a
linear quadratic optimal control problem with an infinite time horizon and next of
proving that the linear feedback law, applied in the nonlinear system, is able to
stabilize the nonlinear system, provided that the initial condition is small enough in
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an appropriate norm. However, the analysis that we do for the linearized system is
completely new for this type of fluid-structure system.

The paper is structured into three parts. In part 1 (sections 2-5) we analyze
the linearized model and its stabilizability. In part 2 (sections 6-9) we study two
feedback laws, their properties, and their relationships. These results are next used in
an essential way in part 3 (sections 10-12) to study the closed loop nonlinear system.
We end the paper with an appendix in which we analyze how assumptions made for
system (1.1) are essential.

Let us first describe how we obtain the linearized model. As in [3], we make a
change of variables in order to rewrite system (1.1) in the cylindrical domain Q x
(0,00), and we denote by (11, p) the image of (u,p) achieved by this transformation.
Since we are looking for solutions satisfying a prescribed exponential decay rate —w,
we rewrite the system as a first order system by setting n = n; and n; = 72, and
we study the control system satisfied by (@, p, 71, 72) = e** (@, p, m1,m2). We linearize
the system satisfied by (Q,p,71,72) about (0,0,0,0). The linearized model reads as
follows:

vy —divo(v,p) —wv =0,
divv=0 in Qoo,
v=r1pé onXi, v=0 onX%, v(0)=v"inQ,
(1.2) M ="mn2+wnm onXd,
N2t — WN2 — B gz — ON2,20 + AMeM zoae = Ms(pip+ f) on X3,
m=0 and m,=0 on{0,L} x (0,00),
m(0) =mn{ and n2(0) =n} inT,,

where M; is the orthogonal projection in L*(T's) onto L(I's) = {n € L*(Ts) | Jr.n=
0} (see section 2 and system (2.7)). In order to use the control theory, we need
to rewrite system (1.2) in the form of an evolution equation. For that, we have
to eliminate the pressure in the fluid and structure equations. The classical way
to eliminate the pressure in the fluid equation consists of using the so-called Leray
or Helmholtz projector P : L?(Q;R?) — VO(Q) = {y € L*(Q;R?) | divy =
0, y-n=0onT}. It can be shown (see Lemma 3.1) that the equation satisfied by
v in system (1.2) is equivalent to the system

Pv' = AgPv + (= Ag)PD(neéoxr,) in (0,7), v(0) =v" inQ,
(I = P)v(t) = (I = P)D(n2(t)éaxr,) in (0,T),

where Ay is the extension of the Stokes operator ¥ PA and D is the Dirichlet operator
associated with the stationary Stokes equation (Ag and its extensions to (D(Af))" and
D are precisely defined in section 3). This type of decomposition of velocity fields, into
Pv and (I — P)v, has already been introduced in [24] for the Navier—Stokes equations
with nonhomogeneous boundary conditions. Finding again this decomposition for
system (1.2) is not totally obvious because the pressure, which is eliminated in the
Navier—Stokes equations thanks to the projector P, also appears in the beam equation.
We also state in Lemma 3.1 that the pressure p in system (1.2) is equal to 7 — ¢,
where ¢ and 7 are the solutions of two Neumann problems (see Lemma 3.1). The
splitting of the pressure p into the two terms m and —¢; is crucial in our analysis.
It is used to eliminate the pressure in the structure equation. The term —¢; can be
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expressed in terms of 1 ¢, while the term 7 can be expressed in terms of Pv. This
allows us to write system (1.2) in the form

(1.3)
Pv Pv 0 Pv(0) PO
d
| m | =A| m | B0, 11(0) o
2 2 f 12(0) m

(I = P)v(t) = (I = P)D(n2(t) €2 xr.),

where A, and B are defined in section 4. This rewriting of the system satisfied by
(v,p,m1,m2) in the form (1.3) is crucial to proving the stabilizability of this system.
Indeed, we show that the operator (A, D(Ay)) is the infinitesimal generator of an
analytic semigroup on the space H = V2(Q) x (HZ(T's) N LE(Ts)) x LE(Ts) and
has a compact resolvent in this space. We show that the stabilizability of system
(1.3) reduces to proving an approximate controllability result for a projected system.
Such an approximate controllability result can be deduced from [21] in the case of a
rectangular domain (see also [22, 23] for supplementary approximate controllability
results). Let us emphasize the fact that, in order to use the approximate controllability
results from [21] or [22, 23], it is essential that the control f be applied on the whole
structure.

The plan of the paper is as follows. Section 2 is devoted to rewriting system (1.1)
in a fixed domain and to obtaining a linearized system. We study the semigroup of the
linearized system and properties of its infinitesimal generator in section 3. Existence
and regularity results for the linearized system are stated in section 4. We study the
stabilizability of the linearized system in section 5. Two feedback control laws for the
linearized system (1.3) are introduced in section 6: The first one is a feedback law
for system (1.2), and the second one is a feedback law obtained by solving a Riccati
equation of the form

MefH), M=0">0, A, + AL —IBBII+1 =0,

where H is the space H equipped with another inner product (see section 3.5),
At e L(H) is the adjoint of A, € L£(H), and B! € L£(H,L3(T,)) is the adjoint
of B € E(L%(FS),ﬁ). The main interest of this approach is that A% can be inter-
preted in terms of partial differential operators (which can be helpful for numerical
calculations). Moreover, we are able to establish the precise relationship between the
feedback operators obtained by the two approaches.

The optimal control problems corresponding to the first approach are studied
in detail in sections 7 and 8.1. However, the feedback law corresponding to the
first approach is expressed in terms of an operator II, which is not, at that stage,
characterized by a Riccati equation. This is why the second approach is helpful even
if in that case the representation of the state and adjoint systems via A, and A%
cannot be avoided.

To deal with the nonlinear closed loop system, we first study the nonhomogeneous
linearized closed loop system in section 9. The main results of the paper are stated
in section 10 (Theorems 10.2 and 10.3). Some Lipschitz properties of the nonlinear
terms in the nonlinear system are established in section 11. These properties are next
used in section 12 in the proofs of the main results.

Finally let us give some references which are connected to the present work.
The control of a channel flow with periodic boundary conditions has been studied
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in [4, 32, 33, 34]. We think that the results in those papers may be very useful in
studying the control of a channel flow coupled with a beam equation, with periodic
boundary conditions at the lateral boundary {0} x [0,L] U {L} x [0, L] (see section
A.4). Let us also mention some controllability results obtained for systems coupling
the Navier—Stokes equations with finite dimensional solid-structure models [5, 14, 28]
(see also [27] for a simplified model). These controllability results are mainly based
on results first obtained for the Navier-Stokes equations in [10]. In those models the
controls act in the fluid equation and not in the structure equation as in (1.1). Thus
the problems are quite different. The feedback stabilization of the Navier—Stokes
equations in the 3D case is studied in [26]; it can be a starting point for studying the
stabilization of systems similar to (1.1) in the 3D case (see also section A.3).

2. The linearized system. The solutions to system (1.1) obey

o[ () = / PRCRUE JRCEY ") da

s

since the unit normal to I', ;) exterior to €, is

VIH2(8) 1+ 2(t)

Thus we must choose 79 in the space

Ly(Ts) = {77 € L*(Ty) | /an = 0}-

Let us consider the system
Mt — ﬁnrr - 577trr + OMgrzxe = 0 on Zgo;
(2.1) n=0 and 7, =0 on {O,L} x (0, 00),
n(0) =7 and 7,(0) =73 inTy,

and, for t > 0, let S(t) be the mapping (n?,13) — (n(t),n:(t)), where (n,m;) is
the solution to (2.1). The family (S(¢))¢>0 is a strongly continuous semigroup on
HZ(Ts)x L3(T's). Since we look for solutions to system (1.1) such that 7;(t) belongs to
L3(Ts), we have to consider the restriction of (S(t)):>0 to (H3(Ts)NL3(Ts)) x L3(Ts),
which is actually a strongly continuous semigroup on (HZ(I's) N L3(Ts)) x L3(Ts).

Thus everywhere throughout the paper we shall choose 1Y in HZ(I's) N L3(Ts).
If we denote by M, the orthogonal projection in L?(T'y) onto L3(I's), the equation
satisfied by 7 in system (1.1) must be written in the form

Nt — Blze — 0Mtzz + AMs(Nozza) = Ms(p1p + H(u,n) + f) on X2..
Observe that due to the boundary conditions
n=0 and 7, =0 on {O,L} x (0, 00),

we have (for solutions regular enough and when 7{ and 13 belong to L3(Ts))

/ntt=0, /7711:07 and /mm=0,
r, r. r

s
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but in general st Nezze 18 different from zero. This is why, in the equation satisfied
by 7, we have to write Mg(Nzzzs) in place of Nygprr. But for simplicity we shall
skip writing M in the different equations, except if we want to stress the role of
the operator My (which is, for example, the case when we shall define the operator
(Aw, D(Aw)))-

For u € L%*(Q;R?), we shall denote by u; and us the components of u. We
consider system (1.1) for initial conditions u’ such that divu® = u%w + u%u =0and
obeying the compatibility condition '

(22) u’=0 onTy, u’(z,1+n(x,0)) =10z, 1+n)(2)) =nd(z)é: for z € (0,L).
As in [3], for a given function n : (0,L) x (0,7) — R satisfying n > —1, we consider

the changes of variables

(2.3) Ty (z,y,t) — (z,2,1) = (x, T%,t) and

T + (2,y) = (2,2) = (x ﬁ(“)) |

The mapping 7;7? is defined in a similar way. The mapping 7, transforms €2, into
Q=(0,L) x (0,1). Setting

u(z, z,t) = u(z,y,t), Pz, z,t) =px,yt),
the nonlinear system (1.1) is rewritten in the form
W+ (0-V)a—vAa—Vp=F(a,p,n), divi=G@,7n) in Qu,
a=mné onX, =0 onXl, w0)=1u"inQ,
(2.4) Mt = Blax — Otwa + Mpaaw = p1p + H(W,m) + f on B3,
n=0 and 7, =0 on {0,L} x (0,00
n(0) =7 and 7 (0) =73 inT,

where 0°(z, 2) = u®(z,y) = u®(z, 2(1+n(z,0))) = u’(z, 2(1+n)(z))) = u007;7§1(x, z),

1+7
2,2
N N z - N
+ 14 _2znzurz + nuzz + M u,,
1+7
+ 2Pz — nbz)e1 — (1 + )00, + (21,01 — G2)0,,

2
F(ﬁaﬁan):_nﬁt+<27h+l/z( T _nzz)>ﬁz

G(t,n) = —nly 5 + 2ng 0y, = div (W)  with W = —ni, €1 + 2n, 0,5,

and

o e . . 2413
H(a,n) = pav Uy, + nglo , — s,
(a,n) = p2 (1+77 Rt syl

Nz

147

2
X . My — 21
uj,z + N2 o — = u27z> .

= —2 0 2
pa2vug » + pav ( 1+
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Due to (2.2), we can see that
(2.5)
div(@® = w(0)) =0 inQ, @°—-w(0)=0 onTy, @’ —w(0)=nd¢ onTs,.

For —w < 0, we make the following change of variables:

~ wt ~ wt A ~ wt ~ wt
u=e“'a, p=e€p, m=e"n, 2=

The system (2.4) is transformed into
(2.6) ~
1~lt + e_Wt(ﬁ ’ v)ﬁ —vAu - Vﬁ —wu= e_WtF(ﬁvf)a 7717772)5

divia = e “'G(1,1) in Qoo,
U=17aey on i, u=0 on¥’, u(0)=1a"inQ,
Mt =T2+wi on X5,
2t — Wiz — Bl ee — 02,00 + il gses = p1P — 2vpatlz ; + e ' H(W,7i1) + f on T2,
=0 and 71, =0 on{0,L} x (0,00),
m(0)=n and 72(0) =nf inTy,
with

f=ef,
ewt + ﬁl

2~2 —wt
o . 220 , —e M
+v <_22n1,wumz + MUz + <€it——|-'f~]1> uzz)

~2
S . . 3 7 N .
F(Q,p, 7, 72) = =1 (0 —wi) + <z772 +vz (L - m,m>> a,

+ 2(N1,ePz — MP2)€1 — (L 4+ e i) ui, + (ze” 9 ;0 — Ug)Us,

G(M,0) = =M,z + 201,01, = div (=1 01€1 + 271 ;01€2)

= (o e 27,
If we linearize (2.6) about (0,0,0,0), we obtain the system
vy —dive(v,p) —wv =0,
divv =0 in Qu,
v=mé onX, v=0 onX?, v(0)=v"inQQ,
(2.7) mt=mn2+wnm on 33,
Mot — W2 — BN gz — N2,z + M zaze = Ms(p1p —2vva . + f) on X5,
m=0 and 1 ,=0 on {O,L} x (0, 00),
m(0) =n7 and n2(0) =79 inT,.

Since

divv=viz+ve.=0 in Qu,
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if v belongs to L2(0, 00; H?(Q2)), this identity holds to be true on I's x (0,00). Thus
we have (vi 4 + va .)|p, = 0. Due to the boundary condition vy =0 on I'y x (0, 00),
it follows that vq ,|r, = 0, which implies vs .|, = 0. This is why the term —2vv, ,
will be dropped out of the equation satisfied by 7. Let us notice that @ . cannot be
dropped out in system (2.6).

Remark 2.1. Let us notice that the regular solutions to system (2.7), with w = 0,
obey the following energy identity:

/ VP + v o / Vv 4 / I (1)2 + / I (1) 2
s
(8]
s [ ] el 8 [
0 JI'y s

p1 1 B o K
=—/|v°|2+—/ |773|2+—/ |n?,m|2+—/ In?,m|2+//fm,t-

2 Q 2 T 2 T 2 I's 0 I's

A similar result is established in the proof of Theorem 4.1 in the more general setting
where w > 0. This energy identity could be the starting point proving the existence
of weak solutions to system (2.7). But it cannot be used, at least in an easy way, to
establish regularity results for systems (2.7) and (9.1). (System (9.1) is a nonhomoge-
neous linear closed loop system in which the nonhomogeneous terms take the place of
the nonlinear terms of the closed loop nonlinear system.) For that we need to rewrite
system (2.7) as an evolution equation, and we have to show that the underlying semi-
group is analytic. Next it will be very easy to apply [1, Chapter 1, Theorem 3.1] in
order to prove Theorem 9.1.

3. Definition of an analytic semigroup.

3.1. Transformation of system (2.7). Let us recall that L?(Q) = L?(Q;R?)
admits the orthogonal decomposition

L%(Q) = V(Q) @ grad H(Q),
with
Ve(Q) = {yELZ(Q) | divy =0, y-n:OonF},

and let us recall that P : L2(Q) — V2(Q) is the so-called Leray or Helmholtz
projector. We also introduce the notation

VO@) = {y e 12@)| divy =0}, H(©Q) = HIQRY), H(Q)=H} (%R,
VI(Q) = HA(Q) N VOQ), VH©Q) = HY®) N VOQ), VHR) = (VAQ),
v ={y e 2w | [yn—of,

5@ = {p e 22@) / o}, H7(9) = HO(9) N IA(9),

Vo (Q) = H7(Q) N VO (Q

for 0 <0, H(® >—< (@),
(H=9(2))" is the dual of H~7(2) with LZ(Q2) as pivot space,

L3<r3>={neL2<rs>|/an=o}, 53 ={= e 220) | [ w=o}.
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Ho(Ts) = Ho(Ls) NLE(Ts) and  HO(I) = H(I)N L) for o >0,
for o <0:
H(T) = (H~o(T")), where (H=°(T))" is the dual of H=7(T") with L3(T") as pivot space,
HO(Ts) = (H°(Ts)), (H°(Ts)) is the dual of H=7(T'5) with L3(T;) as pivot space.
We also use notation similar to that introduced in [18]:
H%(Qr) = L(0,T; H7(Q; R?)) N H(0,T; L2(Q: R?)) for s, 0 > 0,
L*(Qr) = H*(Qr),
HO (335) = L2(0, T; H(Ty; R2)) N HO (0, T; L2(Ty; R?)) for s, o > 0.
We denote by Ag = vPA the Stokes operator in V() with domain
D(Ag) = V() NV(Q).

It is well known that, by the extrapolation method, the Stokes operator can be ex-
tended as an unbounded operator in (VZ(Q)N'V}(Q))’ with domain VI(Q) (see, e.g.,
[17]). This extension will be still denoted by Ay, and we shall see that it does not
lead to confusion. The operator P may also be extended to a bounded operator from
H1(Q) (the dual of H}(Q) with L?(Q) as pivot space) to V=1(Q) (the dual of V}(Q)
with V?(Q) as pivot space) by the formula

<Pu, ¢>V_1(Q)7Vé(ﬂ) = (u, ¢>H_1(Q),Hé(ﬂ) for all ® S Vcl)(Q)

In that case P is a projector in H~*(2) but no longer an orthogonal projector. Let
us introduce the operator D € L(V?(T), V°(2)) defined by Dg = w, where (w, q) is
the solution to the Dirichlet problem

—VvAw +Vqg=0 and divw=0 inQ, w=g onl.
We shall also set

Dgng = D(n2 €2 x1.),

where xr, denotes the characteristic function of I';.

To define the semigroup corresponding to system (2.7), we need only consider
this system in the case when w = 0. Following [24], it is convenient to rewrite the
equation satisfied by v in system (2.7) (for w = 0) as two equations, one satisfied by
Pv and the other by (I — P)v. More precisely we have the following result.

LEMMA 3.1. A pair (v,p) € H>Y(Qr) x L?(0,T;H'()) obeys the first two
equations of (2.7) with w = 0 if and only if

PV = AgPv + (—Ag)PD(naéaxr,) in (0,T), v(0)=v" inQ,
(I = P)v(t) = (I = P)D(n2(t)eaxr,) in (0,T),
P=T— G,

where ¢ € HY(0,T;HY()) is the solution to the Neumann problem
(3.1)

t
Ag(t) =0 inQ, ——==mt) onls, 2alt)

I 0 onTy, forallte(0,T),
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and 7 € L2(0,T; HY(Q)) is the solution of the other Neumann problem

(3.2) Am(t) =0 1nQ, ag—r(lt) =vAPv(t)-n onT, forallte(0,T).

For the proof we refer to [24, Proof of Proposition 2.2]. Let us explain why we
have p = m — ¢;. In Lemma 3.1, Ay is the Stokes operator in (V2(2) N V}(Q2))" with
domain VY (Q). By using the Leray projector, we have eliminated the pressure in the
equation satisfied by v. However, since the pressure p also appears in the equation
satisfied by 72, we need to express p in terms of Pv and (I — P)v. Observing that
(I — P)v = Vg, we are able to characterize ¢ by (3.1). The equation satisfied by
™ =p—vAq+ q = p+ ¢ follows from the equations (I — P)v = Vg and

%—I/APV—I—VW:O and divPv=0 in Qp.

Since APv belongs to L?(0,T;L?(Q)) and divAPv = 0 € L?(0,T;L?(Q2)), it fol-
lows that APv(:) - n is well defined in L?(0,T; H-Y/2(I')). Moreover, (APv(t) -
0, 1) g-1/2(ry, w2y = 0 (see [29, Chapter 1, Theorem 1.2]). Therefore if the solu-
tion to system (2.7) is such that Pv € L?(0,00; VZ(Q)), then the solution 7 to (3.2)
belongs to L2(0, 00; H(2)).

In the following, we denote by N, € L(L2(T), H3/?(R2)) the operator defined by
Nz (t) = q(t), and by No € L(H~Y/2(T'), H'(R2)) the operator defined by No(vAPv(t)-
n) = 7(t), when APv(t)-n € H/2(I).

We denote by 5 the modified trace operator on I'y defined by

1 1
vsp:Ms<p|ps>=pps—m/ p forallpe H(Q) witho > <.
s Iy

2
Thus we have
M(p(t)Ir,) = Ms((7(t) = qt(t))Ir,) = v ysNoAPV(t) - 11 = s Nyma 1 (¢)-
We can now rewrite the equation satisfied by 72 in (2.7) in the form
(I+p17sNs )2, —wn2— BN ze— 002,00 +OMM gooe = p1vYs NoAPV(t) n+Mf on X2.

LEMMA 3.2. The operator I + p1vsNs is an automorphism in L%(FS).
Proof. The operator v; Ny, considered as an operator belonging to £L(L3(Ts)), is
symmetric, positive, and compact. Indeed if ¢ = Nyn and ¢ = N7, we have

OZ/Aqq:/ TIWSstI—/ Vs N 7]
Q Iy T

s

for all n, ) € L3(T's). Thus 5N is symmetric. Moreover,

OZ/Aqqz—/ IVq|2+/ nvsNsn,
Q Q FS

from which we deduce that ;N is nonnegative. If

0=/ mstn:/ IVql?,
' Q
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we have ¢ = C = 0 and g—fl = n = 0, which proves that sV, is positive. Since

vs Ns € L(L3(T),H*(T)), it is clear that vsN, is a compact operator in L3(Ts).
Thus I + p17sNs is symmetric and positive and is an automorphism in L3(T). a

In order to write the system satisfied by (Pv,n1,72) as an evolution equation, we
introduce the unbounded operator (A, 5, D(Aa.5)) in L3(Ts) defined by

D(Aaﬁ) = H4(FS) N Hg(rs) N L(ZJ(Fs), Aa,Bn = anz - aMsnzzzz-

Let us notice that (A, 5, D(A4 ) is a self-adjoint operator in LZ(T's). Since A, g is
an isomorphism from D(A, ) to L3(I's), it can be extended as an isomorphism from
L3(Ts) to (D(Aa)) (the dual of D(As ) with L3(T's) as pivot space), and from
HZ(T,) N LE(Ts) into (HZ(Ts) N LE(Ts))’. The space

H =V} (Q) x (Hg(Ls) N L§(Ts)) x L(Ts)
will be equipped with the inner product
((Vﬂhﬂlz)v (w, (1, Cz))H = Pl(VaW)Vg(Q) + (m, Cl)Hg(FS) + (12, <2)L3(F5)

(where the inner product in V() is inherited from L?(2)) and

(Tllacl)Hg(Fs) = A (_Aaﬁ)l/zm (_Aa,ﬁ)l/zcl = /F (6771,r<1,r + anl,rr<1,zz) dz.
We define the unbounded operator (A, D(A)) in H by
D(A) = {(Pvamﬂh) € V() x (H* N Hg N L§)('s) x (Hg N LE)(Ls) |

Pv — PDyp € V()N Vg(Q)}

and
I 0 0 Ao 0 (—A)PD;
A=| o0 1 0 0 0 1 )
0 0 (I+piysN)™? p1vYsNo(A() -n)  Anp 04

where A, = 88—;. We define the unbounded operator (A, D(Ay)) in Hy = (HZ(Ts) N
L§(Ls)) x L3(T's) by

A = ! ! D(Ay) = (HYT,)NHZT,)NLET,)) x (HZ(Ts)NLA(T))
s Aaﬁ 5AS ) S s 0 S 0 S 0 s 0 s))-

It can be easily shown that A, is an isomorphism from D(A;) into Hs.
Now, it is clear that, for w = 0 and f = 0, we can rewrite system (2.7) in the
form

Pv Pv Pv(0) Pv°

d

— = 0 = 0

| m Al m |, m(0) Uit ,
72 72 12(0) 73

(I = P)v(t) = (I = P)D(n2(t) &2 xr.)-
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The rewriting of system (2.7) when w # 0 and f # 0 is done in (4.1).
ProprosITION 3.3. The norm

(Pv,m1,m2) — [[(Pvym1,m2)|la + [[AoPv + (= A0) PDsmallvo o) + [ As(m,m2) | 1,
is a norm on D(A) equivalent to the norm
(Pv,ni,m2) — |Pvllvz) + Imllaac.) + n2llmz .-

Proof. For A > 0, A\I — A, is an isomorphism from D(A;) to H, (see, e.g., section

3.4). Thus (n1,m2) = ||(n1,m2) || . + | As(n1,m2)| 1. is & norm equivalent to (ny,72) —
Imllzsr.) + l1m2llgz(r,)- Since (—=Ag) is an isomorphism from V*(Q) N V§(Q) to

VY(€), there exist positive constants C; and Cy such that

C1||Pv = PDsm2|[vz (o) < [[AoPv + (= Ao) PDsnzllvo () < C2l|Pv = PDsna|[vz (o)

Moreover, D, € L(HY?(T,),V2(Q)) (see Lemma 3.11) and A, € L(D(A,),H,):;
therefore we have

[(Pv,m,m2)llm + Ao PV + (= Ao) PDsnz2|lvo () + | As (1, m2) || 1,
< CO([|Pvlvz@) + [Imllzae,) + In2llmzer.))-

To prove the reverse inequality we write
[1PVvlvz ) + Imllmsw,) + [In2llmz .

1
< EHAO(PV — PDgn2)|vo () + [PDsnallvz @) + lImllas.) + Izl a2,

N

1
< EHAO(PV — PDsna)llvo () + mllaer.) + Clinzllgzr,)-

The proof is complete. O

THEOREM 3.4. The operator (A, D(A)) is the infinitesimal generator of an ana-
lytic semigroup on H, and the resolvent of A is compact.

To prove this theorem, we rewrite A in the form A = A; + By, with

Ao 0 (=Ag)PDy

and

0 0 0
By = 0 0 0 ,
p1v(I + p17sNs) "' ysNo(A(+) n) KsAap 0K A
with Ks = (I + p1ysNs) ™t — L.

THEOREM 3.5. The operator (Ay, D(A1)) is the infinitesimal generator of a
strongly continuous semigroup on H.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



5410 JEAN-PIERRE RAYMOND

Proof. Step 1. We first show that the unbounded operator (A;, D(A;)) in
V—Y(Q) x Hy, defined by

D(Ar) = {(Pv.mm) € VAQ) x (H* 0 H3 0 L)) x (HE 0 L)L)
| Pv — PDyips € Vé(Q)}

and

0 Aap  OA,

is the infinitesimal generator of a strongly continuous semigroup on V~1(Q) x H,.
We endow V~1(Q) with the norm

) 1/2
v'—>(<(—AO) V7V>vg(9)7v—1(ﬂ>) ’

and Hy with the norm || - [|g2(p,)x£23(r,)- For A > 0 we have

(A= ADPY ) (Py o))

— PVl () + (PDanz, P¥)yi gy — APVIZ gy = Al m) I, = 8lnelzae, -

Thus, for A > 0 large enough, (A, — A, D(A;)) is dissipative in V() X Hs.
It can also be shown that it is maximal. Thus, for A > 0 large enough, (A; —
AL, D(Ay)) is the infinitesimal generator of a semigroup of contractions on V1) x

H,, and (A, D(A;)) is the infinitesimal generator of a strongly continuous semigroup
on V71(Q) x H,.
Step 2. Let us consider the evolution equation

Pv Pv Pv(0) Pv°
d ~
(3.3) | m | =A m | m@©) (=1
772 o 12(0) 5

Let us recall that (A,, D(As)) is the infinitesimal generator of an analytic semigroup
on H; (see, e.g., [8, 30]). Let us notice that the solution (Pv,n1,72) to (3.3) can be
solved by determining first (11, 72) and next Pv. Thus, if (Pv®,7?,13) € V71(Q)x Hy,
the solution (Pv,n;,72) to (3.3) is such that n; € H33/2(X%) and ny € HYV/2(5%,)
for all T > 0 (see, e.g., [1, Chapter 3, Corollary 2.1]). From [24, Theorem 2.7
it follows that if (Pv°,79,79) € H, then Pv € H"Y/2(Qr) N C([0,T]; V2(Q)) and
(Pv,m1,m2) € C([0,T]; H). Therefore the restriction of the semigroup (e**t);cp+ to
H is a strongly continuous semigroup on H. It is easy to verify that its domain is
D(A;) = D(A). O

We are going to prove the following two theorems.

THEOREM 3.6. The operator (Ay, D(A1)), with D(A1) = D(A), is the infinitesi-
mal generator of an analytic semigroup on H = VO (Q) x (HZ(I's)NLE(Ts)) x L3(T'y).

THEOREM 3.7. The operator (B, D(A1)) is Ai-bounded with relative bound
zero.

The first claim in Theorem 3.4 clearly follows from Theorems 3.6 and 3.7 (see [15,
Chapter 9, Corollary 2.5]). The second claim is proved in section 3.4.
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3.2. Proof of Theorem 3.6. Now we are going to estimate the resolvent of A .

We have
M — A ( (M —Ag)™t 0 (M — Ag) "' (=Ag)PDy) (A — A,)~! )
—A) = ,

0 (A — A,)~ !

Since (A — Ag) ™' (=Ag)PDs = =AM — Ag) "' PDs + PDs, we obtain

— -1 _ _ 1 B .
(M_Al)_1:<(/\f Ayp) 0 (=AW = Ag)"'PD, + PD,) (M — Ay) )

0 (A — Ay)~!

From [8] (see also [30, section 2.2] and [9]), we know that there exist a € R and
m/2 < 0y < 7 such that

(3.4) I = A Mooy < ﬁ for all A € Sa.g,,

where

Sa,00 = {)\ eClA#a, |arg(A—a)|l< 90}.

For the Stokes resolvent we have

&0

(3.5) [(AT = Ag)~Hlvo o) < B

||®||V9L(Q) for all A € 50,01,

with 7/2 < 61 < m. We can choose 6y = #; and a > 0. Thus if (f,0) € V2(Q) x Hj,

we have

M — A f
wra ()

_ (ML = Ag) ™' = MAI — Ag) ' PD, (M — A,)7'©), + PD (M — A,)7'©),
(A — A,)"1@ '
From (3.4) and (3.5), it follows that

Cs
< -5
n < gl

Cpp Cs
Hy» HPD ((AI - As)_l(a)g ”VQ(Q) < °D

I—-A,)7 !t
|- 4,)7e) S

1®]

Hs

CoCpp Cs

INAL — Ag) 7' PD (M — A5)7'O©), [lvo o) < D

1©||z, forall A € Sy,
By combining the previous estimates, we obtain

f
(M — Ap)~H ( )
© VO(Q)xHyg

CoCpp Cs
WH@

Cpp Cs
A —al

Cs
Hs+m|\@|

o, + ]

C
< ﬁ”fHVZ(Q) + H,

for all A € S, ,6,, which proves the analyticity of the semigroup generated by A;.
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3.3. Proof of Theorem 3.7. We set

0 0 0 0 0 0
By = 0 0 0|, By=|0 0 0 |,
p1v (I 4 p17sN) 9 No(A(-) -n)) 0 0 0 KiAap O
and
0 0 0
B3 = 0 0 0
0 0 O0KsA,

LEMMA 3.8. The operator (Bi, D(A1)) is Ai-bounded with relative bound zero.
Proof. Let us prove that, for all € > 0, there exists C; > 0 such that

(3.6) [vsNo(Av - n)|[ 2,y < €llvlvz() + C:VIvo(a)

for all v € V2(Q). To prove (3.6), we argue by contradiction. We assume that there
exists a sequence (vi)r C V2(Q) such that

[vsNo(Avk - m)| L2,y =1, [[Villvo@) — 0, and |[[vi|lvz@ <M

for some M > 0. Therefore, without loss of generality, we can assume that there
exists v € V2(Q) such that

vi = 0in V2(Q), Av,-n—0in H-Y*T), and Avj,-n — 0 in H-Y/275(T")

for all 0 < ¢ < 1/2. From [6, Lemma A.5], we know that vsNp is bounded from
H=Y(Ty) to L(Ts). Thus

YsNo(Avy -n) — 0 in LE(T),
which is in contradiction with
|7sNo(Avy, 'n)HLg(FS) =1

Thus (3.6) is proved. The lemma is a direct consequence of (3.6), Lemma 3.2, and
Proposition 3.3. a

LEMMA 3.9. There exists 0 < 03 < 1 such that By is bounded from D((—A1)%)
into H.

Proof. Let (¢)x>1 be an orthonormal basis in L3(I',) constituted of eigenvectors
of the operator p1vsIN, and let Ay > 0 be the eigenvalue associated with ¢;. For all
f = Zl?;l /\kfk ¢k € Lg(l—‘s) we have

(I +p17s N f = (14 M) fie B

k=1

Thus

(I+pl’Yst)_1f:Z L o)
k=1

— 14+ X
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and

st = (I (I+p178 s Z
k=1

T G-
k

Since the operator A, g is an isomorphism from H*(I's)NH3(I's)NLE(Ts) into LE(Ts)
and from L3(T) into (H*(T's)NHZ(T's)NL3(T's))’, by interpolation it is also continuous
from H*=¢(Ts) N HZ(Ls) N LE(Ts) into H~5(T) for all 0 < e < 1.

Denoting by (Aa,sf)x the coefficient of A, gf in the basis (¢x)r>1, we have

oo )\2 oo
KsAoz 2 = 716 a Oz
|| ,ﬁf”L%(FS) ; (1 4 /\k) 5f Z ﬁf
= ||p1"/SN A ﬁf”p(p < CEHAa”@fHH—s(F HfHH4 (

forall f € H=¢(T'5)NHZ(Ts)NL3(Ts) and all 0 < ¢ < 1/2. Indeed, 5N is continuous
from H=°(Ls) into L3(Ts) if 0 < e < 1/2 (see, e.g., [6, Lemma A.5]). Since
H'5(T) N H(Ty) N L§(Ts) D D((— A==/

for all 0 < &’ < e < 1/2, the proof is complete. O

LEMMA 3.10. There exists 0 < 03 < 1 such that Bz is bounded from D((—.A1)%)
into H.

Proof. The proof is very similar to that of the previous lemma and is left to the
reader. d

Theorem 3.7 is a direct consequence of Lemmas 3.8, 3.9, and 3.10.

3.4. Resolvent of A. In this section we want to show that the resolvent of A
is compact. For that we study the stationary problem

A —divo(v,p) =f and divv=0 inQ,
v =€y only, v=0 only,
(3.7) A —mz =g inly,
N2 = BNze — N2 2z + M goae = Ms(p1p+h) in Ty,
m =0 and 71,=0 on {O,L},

where £ € VU(Q), g € H3(Ts) N L3(Ty), h € L(T's), X € R, and A > 0. This system
is equivalent to

A —divo(v,p) =f and divv=0 inQ,
v= (A —g)éa ony, v=0 on Ty,
(3.8) Am—m2=g inly,
— BN,we — O we + OM gawa = Ms(p1p + b+ Ag — 0Agze) in Ty,
m=0 and 7,=0 on{0,L}.

We denote by L the unbounded operator in L3(T's) with domain H*(T's) N HZ(T's) N
L3(Ts) defined by

L’I] - A277 - anw - 6)\7711 + aMsnmmmm'
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The operator L is also an isomorphism from H*(T's) N HZ(T's) N L3(T) into LZ(Ty)
and from HZ(T's) N LE(Ts) into (HZ(Ts) N L3(T's))’. Thus, we can rewrite the system
(3.8) in the form

Av —divo(v,p) =f and divv=0 inQ,
v =(AL"'My(p17sp+ h+ Ag — Agaz) —g)€2 on T, v =0 on Ty,
(39) Ap-m=g il
N1 = Bize — O wx + AM1 gzez = prysp + h+ Ag — 6Ages in T,
m=0 and m,=0 on{0,L}.
We consider the system
Av —divo(v,p) =f and divv=0 1inQ,
(3.10) v =M1 L7 (ysp)éa + fé&2 onTs, v =0 only,
where f € H3(T's) N L(T's) stands for AL~ Mg(h + Ag — 6Agzz) — g. We set
E= {w eVHQ) |v=0o0onTy, vi =0o0nTy, vo|r, € Hy(T) ﬂLg(I‘S)}.

The space E, equipped with the norm

) 1/2
rs L3(Ts) ’

is a Hilbert space because L'/? is an isomorphism from HZ(T',)NL3(T,) onto LZ(T).
Multiplying the first equation in (3.10) by w € E, after integration we obtain

/(x\V-W—i—VVV:VW)—i—/ pr:/fw.
Q T, Q

IVle = (V1 @ + 1212V

Using
Mp1Ysp = Lve — Lf in (HZ(T's) N LE(Ty)),
we obtain
1 1
/ (v -w+vVv:Vw) + —/ LY 2vy LY 3wy = / fw+ _/ LV2f [V 2,
Q Ap1 Jr, Q Aot Jr,

Next, we set

1
a(v,w) = / (Av-w+vVv:Vw) + /\—/ LY?vy LY ?wy
Q P1Jr,

and

1
é(w):/fw+— LY2f LY 2wy,
Q Ap1 Jr,

Thus system (3.10) is equivalent to
a(v,w) ={(w) forallweE,

(3.11)
Ap1ysp = Lva — Lf in (Hg (L) N LE(Ls))' .
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With the Lax—Milgram theorem, we can prove that the variational problem
(3.12) Find v € E such that a(v,w) =4(w) forallwecE

has a unique solution. Indeed, for all HZ(T's) N L3(T's), we have

/F L Ly = [ (Rl 4 Blnaf? + alnes ) = pllliigr,

s

for some p > 0.
The solution v € E to the above variational problem obeys

Ivlle < CUIEIvy @) + 1L 2fllra,))-
Since f = ALY M(h + \g — 0A\gzz) — g, we have

Ivle < CUflve@ + IL72hl 20, + 1L gl L2er,)
< C(Itllvy @) + 1Bl Lz, + 9l mzr.))-

Therefore

Ivalr, lzze.y < CUlEllvy @) + I1Blczr.) + l9llmz.))-

By taking w € V() in the variational problem, we prove that v € E is the unique
solution to the problem

Find v € E such that /(/\v~w—|—Vv:Vw):/fw for all w € V§(Q),
Q Q
v=0 only, v =vsa|r.€2 onlTy.

Since v|r, = 0, vi|r, = 0, and va|r, € HZ([s) N L3(Ts), due to Lemma 3.11 below,
it follows that v € V2(Q) N E and

[vllva) < CUIEllve ) + I9llmzr,) + 1Rl Lzr,))-
From the equation satisfied by v we also deduce that p € H*(2) and

[pll22 ) < CUIEllvo ) + l9llaza.) + 1Rl Lzr.))-
Finally, with the equation satisfied by 71 and 72 in (3.9), we have shown that system
(3.7) admits a unique solution (v,p,n1,m2) € VZ(Q) x H1(Q) x (H*(T5) N HZ(Ts) N
L§(Ts)) x (Hg(T's) N L3(T's)) and

[vllvz() +pll#e @) +mllae @) +mellmz @,y < CUElIve @) + 19l mz. + IRl L2 r,))-

Thus the resolvent of A is compact in H.
LEMMA 3.11. If £ € VO(Q) and g € HY*(T,) N L3(T,) (with HY*(T,) =
[H{(Ds), HE(Ts)]1/2), then the solution v to

Aw—dive(v,p) =f and divv=0 inQ, v=0 only, v=géy onT,
belongs to V2(Q2) and

Ivllvec@ < ClEIve@ + gl gorar, )
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Proof. With a localization argument and the regularity results in [11], we can
show that v|(o,1)x(0,1—¢) belongs to VZ((0,L) x (0,1 — €)) and that V| 1—e)x(0,1)
belongs to V2((e, L —¢€) x (0,1)) for all 0 < ¢ < min(1, L). Thus the only difficulty is
at the corners (0,1) and (L, 1). To prove the lemma, we look for v = (v1,v2)T in the
form v = v + ¥, with v = (0,v2)T, where v is the solution to the Laplace equation

AVQ — Z/AVQ =0 in Q, VQ =0 on FQ, VQ =g on FS,
and ¥V is the solution to
AW —dive(v,p)=f and divv=—-Vy, in{, v=0 onT.

We set h = —V3,. We notice that v € H*(Q), h € H'(Q), h|{oyx(0,1) = 0, and
hlryx(0,1) = 0. We look for v in the form v = ¢ 4 w, where ¢ is the solution to

div(=h inQ, (=0 onl,
and w is the solution to
Aw —dive(w,p) =f —A(+vA( and divw=0 inQ, w=0 onl.

It is clear that if ¢ € H?(Q), then the lemma is proved (we can use a regularity result
from [16]). We have to study the regularity of ¢ at the corners (0,0), (0,1), (L, 1)
and (L,0). We study the regularity at the corners (0,0) and (0, 1); the others can
be studied in the same way. To study the regularity of ¢ = (¢1,{2)T, we extend the
equation satisfied by ¢ by using a symmetry argument. Let us set

5 = = z _ Ci(z,2) ifxze(0,L),
Q= (-L,L)x(0,1), T'=09(Q), G(z,2)= { —oi(—m.2) ifx e (-L,0),
= _ Co(z,z) ifze(0,L), = _ hz,z) ifze(0,L),
C(@,2) = { Co(—z,2) ifxe(—L,0), hiw,z) = h—=z,z) ifze (—L,0).

Since h|{o1x(0,1) = 0, then he H'(Q). Thus ¢ = (51, 62) is solution to the equation
divézﬁ in Q, C~:0 onT,

and C~|(,L+E7L,E)X(O)1) belongs to H2((—L + ¢, L —€) x (0,1)) for all 0 < € < L. This
completes the proof. O

3.5. Adjoint of (A, D(A)).

THEOREM 3.12. The adjoint of (A, D(A)) in H is defined by D(A*) = D(A)
and

Ag 0 (—Ao)PD; I 0 0
A* = 0 0 -1 0 I 0
p1vYsNo(A() -mn) —Aap YAV 0 0 (I+p1ysNs)™t

Remark 3.13. Let us notice that

0 -1 0 1
is the adjoint of
—Aap O0A Aap 04

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



FEEDBACK STABILIZATION OF A FLUID-STRUCTURE MODEL 5417

in (H2(Ts) N LE(Ts)) x L3(T's). Next, we have to consider the unbounded operator
(Af, D(Ay)) in VO(Q) x L3(T'y) defined by

D(A) = {(Pv,m2) € VA(@) x (H N L3)(T) | Pv = PDy € V() N V() }

and

) _< Ao (—AO)PDS>
"7\ v No(A() - m) 0 '

We expect that

p1 (Ao(Pv — PDyn2), Pq’)vg(g) + p1 (Vs No(A(PV) - n), k2)L2(r3)

(3.13)
= p1 (Pv, Ao(P® — PDsk2))yo () + p1 (v 1 No(A(P®) -1),12) p2p
for all (Pv,n2) € D(Ay) and all (P®,ks) € D(Ay), which means that (Af, D(Ay))
is self-adjoint in V9 (Q) x L3(Ts).
The reader must be careful. We may write that

Ao(Pv — PDgno) = v A(Pv — PDgno) =vAPv —vAPDgns,

because Pv — PDgns belongs to V2(Q) N V(). But we cannot write that Ag Pv =
v A Pvand Ay PDsny = v A PDgnsy separately, because Pv and PDgny do not belong
to V2(Q) N V(). The two terms Ay Pv and Ay PDsns have a meaning only in
(V2(2) N V()

To verify identity (3.13), we set f = —vPAPv € VI(Q), ® = —vPAP® €
V2(Q), ¢ = Nynma € LE(Q), and p = Nska € L3(Q2). We can verify that Vg =
(I—=P)Dsng and Vp = (I—P)Dsky. We define (I—P)v and (I—P)® by (I—-P)v = Vq
and (I — P)® = Vp. Thus v|r = Pv|r + (I — P)v|r = (PDsn2 + (I — P)Dsne)|r =
N2 €3 xr,. Similarly ®|r = ko€ xr,. Finally, we set p = No(vA(Pv) - n) and ¢ =
No(vA(P®) - n). We notice that Vp = v(I — P)APv and V¢ = v(I — P)AP®. We
have

—vAv = —vPAPv —v(I — P)APv—vA(I-P)v=£f—-Vp

because A(l — P)v = AVq =0 and v(I — P)APv = Vp. Thus v is the solution to
the boundary value problem
(3.14)

—vAv+Vp=f and divv=0 in, v=19ey only, v=0 onl,.

Similarly, ® is the solution to the boundary value problem
(3.15)
—VvAP+VyYy=0 and div®=0 inQ, D =koéy onT'y, ®=0 onIIy.

Since v = Dgno + (—Ag) " and ® = Dyky + (—Ag) 1O, we have Pv — PDyny =
(—Ap)~f and Ag(Pv — PDgny) = —f. In a similar way Ag(P® — PD.ky) = —©.
Thus (3.13) is nothing but

= (£, )2y + (0 k) p2ry) = = (V. Oy + (Vs m2) p2(r,y -
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This identity can be deduced by integrations by parts from (3.14) and (3.15).
Thus we have drawn a short proof of Theorem 3.12. We give below another proof,
which is based only on Green’s formula and in which the calculations are easier to
follow.

Proof. Let f belong to V2(Q2), g belong to HZ(I's) N LZ(Ts), and h belong to
L3(Ty). Let (v,p,m1,m2) be the solution to (3.7). Let ® belong to V2(Q), ¢ belong
to H3(I's) N LE(Ts), and £ belong to L(T's), and let (®,, k1, k2) be the solution to

A — divo(®,¢)=© and div® =0 in,
D =kocy onT'y, ® =0 on Iy,
(3.16) MNei+ke=C inT,,
Mg + Bkt g — 0ko ze — aMski groe = Ms(p1¢) + & in Ty,

kl =0 and kl,r =0 on {O,L}

With integration by parts we have

/Qf-fﬁz/g(/\v—diva(v,p))q)
:/QV(/\@—divo(@,w))—/ a(v,p)n-‘1>+/ o(®,Y)n-v

s Is

:/Qv-(a—i—/ p@g—/rsww

s

Z/V'®+/ Pk2—/ P,
Q I, s

/ C(~ A g = / (Mkx + ) (— Ao )

s s

(M—Aa,p)k1n + k2 (—Aa,5)m)

s

((_ﬁkl,zz + akl,zzzz)(ﬁQ + g) + kZ(_ﬁnl,zz + anl,rrrr))

Il
— —

s

and

J

(5 + Pl‘/’) N2 = / ()\kQ + ﬁkl,zz - 5k2,rr - akl,rrmr) 72

I's

s

()\kQ 72 + (ﬁkl,zz - 5k2,zz - akl,zzzz) 772)

s

(k2(ﬁnl,zz + 5772,rr - anl,rrrr + pP1P + h) + (ﬁkl,zz - 5k2,zz - akl,zzzz) 772)

s

I
S— S— 5—

(kZ(ﬁnl,wm - anl,wwww + pP1P + h) + (Bklww - akl,wwww) 772)

s
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By combining the three identities, we obtain

pl/f-‘I)—l—/ g(—Aa,B)kl—i—/ ko h
Q

s s

=P1/V'®+Pl/ pkz—m/ b2
Q s s

+ C (_Aa,B)nl + / ((ﬂkf‘lww - akl7a:x$w)772 - k?(_ﬂnlww + 047717a:x$w))
I's

s

+/ (5 + ,01¢) 72 + / (kZ(_ﬁnl,zz + O”]l,zzzz - Plp) - (ﬁkl,zz - akl,zzzz) 7]2)

:plfﬂv-®+ASC(—AQ,5)U1+/FS§U2-

To prove the theorem, we have to interpret the identity

an) o [ for [ gdunbis [ h=p [ ves [ Cdupms [ em
Q Iy Iy Q Ty Iy

For that we introduce the unbounded operator (A#, D(A")) in H defined by D(A*) =
D(A) and

I 0 0 Ay 0 (=Ao)PD;
At=1 0 I 0 0 0 1
0 0 (I+p1ysNs)! YsNo(p1vA() *n) —Aap 0A;

We first notice that (v, p,n1,72) is the solution to (3.7) if and only if it satisfies

Pv f I 0 0
(M — A) m = g , I,=| 0 I 0 ,
2 I+ pl"/sNS)ilh 00 (I+ pl’Yst)71

(I = P)v = (I = P)Ds(1p2)-

Similarly, we can show that (®,1), k1, ko) is the solution to system (3.16) if and only
if

P® e
=AY [ k| = ¢ ,  (I=P)®=(I—P)Ds(k2).
ka (I+9175NS)_1§

Thus, identity (3.17) is equivalent to
(()\I - A)(PV7 7713772)7 (q)v klv (I + pl'Yst)kZ))H
= ((/\I - Aﬁ)(Péa kla k2)7 (V7 m, (I + Pl"/st)%))H

for all (Pv,n1,12) € D(A) and all (P®, ky, ks) € D(A). Let us denote by H the space
H equipped with the inner product

(v m). (WO, ¢ 69))
=p1 (VO,WO)VQ(Q) =+ (77?, C?)HOQ(FS) + (nga (I + pl’ySNS)CS)Lg(FS)'

(3.18)
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Thus identity (3.18) means that (A%, D(A%)) is the adjoint of (A, D(A)) in H. We
can easily deduce the theorem from this result. O
4. Regularity of solutions to the linearized system.
4.1. Studying system (2.7). We introduce the operator (A, D(A,)) defined
by D(A,) = D(A) and
wl 0 0
A, = A+ 0 wl 0
0 0 w4+ p1ysNg)t

From calculations in section 3.1, it follows that, if f € L?(0, 00; L3(T's)), system (2.7)
can be rewritten in the following equivalent form:

Pv Pv Pv(0) Pv°
d
(4.1) Erll = A, m | +Bf, n(0) = 7y ;
72 72 12(0) 73

(I = P)v(t) = (I = P)D(n2(t)é2 xr.),
where B € L(LZ(Ts), H) is defined by

0
Bf = 0
(I + p1ysNs)~f

We have to study solutions to system (4.1) when (Pv°,n{,79) € [D(A),H]; 5. From
the definition of D(A) and H, we can deduce that

[D(A),H]1/2 = {(PV,Tllale) € V3 (Q) x (H? N Hg N L§)(Ts) x (Hg N Lg)(Ts) |
Pv— PD.p € Vg(ﬂ)}.

Equipped with the norm

/
(Pv,m,m2) — (HVH%}@(Q) + ||771||§{3(rs) + HUQH%P(FS)) 5

[D(A),H]; /5 is a Hilbert space.

If (Pv,n?,nY) belongs to H, no compatibility condition between Pv® and nJ is
needed to define weak solutions of the evolution equation (4.1). However, the mapping
t — (I — P)v(t), which satisfies the second equation in (4.1), will be continuous at
time t = 0 only if (I — P)v® and 79 satisfy (I — P)v?-n = nJ xr,. Notice that if
v0 € VO(Q), then div (I — P)v? = 0 and (I — P)v° - n is well defined in #~1/2(T").
We define a space of initial conditions, satisfying the compatibility condition needed
for the continuity of the mapping ¢t — (I — P)v(t), as follows:

B — {0, ) € V(@) x H. v n = e, .
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Recall that Hs = (HZ(T's) N L3(Ts)) x L3(Ts) (see section 3.2). We equip H,. with
the inner product
(v mis19), (W0, €05 63)) g = p1(v0s wo)re) + (17, (D) ma(ray + (19, 63) L2 ()
THEOREM 4.1. (i) If (Pv n8,m9) € [D(A),H]1 )2, (vO,n0,n9) € Hee, and f €
L?(0,T; LE(Ty)), then system (4.1) admits a unique strict solution satisfying
[Pvllaz1@r) + Imllaezss) + In2ll 2 (ss,)
< C(H(PV ,771a772)||[D(A),H]1/2 + HfHL2(O,T;L§(FS)))7

(I = P)vllz20,m5m200)) + |(1 — P)V||H1(0,T;H1/2(Q))
< CUI(PV,n?m) oy s + 120, 750200))-
(i) If (vO,n9,n9) € Hee and f € L*(0,T; L3(Ts)), then system (4.1) admits a
unique weak solution (in the sense of semigroup theory) satisfying
| Pvlwo,mvio),v-1@) + HanH?vl(EfF) + Im2llz20,7: 851 (1))
< OV, n? m) e + 11l L20.m:z2r.0)-

(I = P)vll - (0,T;H3/2(Q)) < C(”(PV Jhﬂlz)HH + HfHL2(0TL (Ts )))

(Here we use the terminology strict solution and weak solution in the sense of semi-
group theory for the evolution equation satisfied by (Pv,m1,n2) and not for the equation
satisfied by (I — P)v.)

Proof. (i) If (Pv%,7?,7n9) € [D(A),H]y /2 and f € L*(0,T;L§(Ts)), the estimate
of (Pv,n1,1n2) follows from [1, Chapter 1, Theorem 3.1]. The estimate of (I — P)v in
L?(0,T;H%(Q2)) follows from Lemma 3.11 and from the estimate of 1y in H>1(%5.).
The estimate of (I — P)v in H'(0,T; H'/2(Q)) follows from the property of the oper-
ator D.

(i) If (Pv%,n9,7n9) € H and f € L?(0,T;L3(Ts)), we know that system (4.1)
admits a unique weak solution in L2?(0, T; H) satisfying

1PV, m1,m2) leqo,rmy < CUPYEnlsn)lle + 11 £l 220,722 (00)-
With this estimate and the equation 11 = 12 + wni, we obtain

mll e o,rsz2r,)) < CUI(PVO,nl,m)llu + £l 20,7 L2(r.)))-

To prove the other estimates, we have to write an energy estimate for strict solutions
to system (2.7). We substitute 72 by 11+ — wni in the equation of 7;:

Mt — 20014 + W1 — BN e — 0N tww + OWN 2z + O pwwe = P10+ f-

We multiply this equation by 71+ — w1, and by p1v the equation satisfied by v. After
integration and by adding the two identities, we obtain

/|v |2+up1/ Vv 4 /Imt—wm()l —w/ s — w2
s
2L I (B — fo / / al? + 6 / / It — w2
0 Iy 0 Iy

+35 frs |771,m(t)|2 - aw fg fps |7717M|2 + Wfot fFS mp

p1 B a 1
2 [ [+ 3 [ e+ 3 [ 8wt [ [ -
Q rs s Is
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We also have

t t
w//mp=w/ m(t)m,t(t)—w/ n?nS—w/ |m,t|2—w/ I (8)?
0 s Ty I's 0 I's Iy
t
)
mP s [ [ a5 [ P
0 T Ty

t t
t
0 o2 = 0? [1 fro lm.al? + as / / 1 mel? — 0 / / fom.
0 ' 0 Ty

From these identities and the previous estimates we deduce that

+w fo, 0P +w® [,

- %frs

HV”L2(07T;H1(Q)) + H772HL2(07T;H1(F5)) < C(H(VO, n?a Tlg)HHcc =+ ||f||L2(o,T-,Lg(Fs))),

not only for strict solutions but also for weak solutions. Next we obtain

(I = P)v|lp2(0,7:m2/2(0)) < CellnallL20,1m0 (r.))

from the properties of the operator D (see, e.g., [24]; we can also adapt the proof of
Lemma 3.11). Thus we have

1PV 2 0.7:v1 (@) H I (T=P)V| 20, 75115200y < CUE 00 1m9) e 1 1 20,7220, ) -
Finally, using that

d d
— | v-®=— [ Pv-®=—v [ Vv: VP +w [ v- P

for all ® € V}(Q2), we deduce that

1PV o.rv-1@) < Clvlizzorvi@) < CUG 0 m)a.. + 1 £l 20,7502000);

and the proof is complete. O

4.2. Another nonhomogeneous linear system. We now consider the system

vy —divo(v,p) —wv=F and divv=0 in Qu,
v=r1pé onXi, v=0 onX%, v(0)=v"inQ,
(42) Mt =72 +wm  on Xg,
N2t — whe — B za — ON2,30 + M zzoe = Ms(p1p+ f) on X2,
m=0 and m,=0 on{0,L} x (0,00),
m(0) =mn{ and n2(0) =7} inT,,

where F belongs to L2(0, 00; L%(€2)). We shall need to write this system in the form
(4.3)

Pv Pv Pv(0) Pv°

d

|l mo|= Ao | m | +Bf+CF, m@) | = 7y ,
72 72 12(0) 73

(I = P)v(t) = (I = P)D(n2(t)e2 xr, ),
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where C € L(L%(Q2),H) is to be determined. For that we decompose F = PF +
(I — P)F, and we denote by mr € L?(0,00; H'(Q)) the function defined by Vrp =
(I — P)F. We have

P=T—q +TF,

where ¢ is the solution to (3.1), 7 is the solution to (3.2), and 7 = 7 + 72 with

m € Hi(Q), Am =divFinQ and Am =0inQ, %:(F—le)-nonf‘.

If we set 11 = —(—=Ap)~1(divF), we have 1y = N((F+V(—Ap)~(divF))-n). Thus
the term M,p in the equation satisfied by 72 in system (4.2) is

Msp = vysNoAPv(t) - n — vsNgna, (t) + 7N (F +V ((—Ap)f1 (divF)) . n) .

Therefore

PF
CF = 0
pr(I+pr N~ (3N (F+ 9 ((~Ap) ™! (divF)) -n))
The rewriting of system (4.2) in the form (4.3) is needed in section 9 to prove Theorem
9.1.

5. Approximate controllability and stabilizability. In this section, we study
the approximate controllability of the system coupling the Stokes equation with the
beam equation. Next we prove that system (2.7) is exponentially stabilizable.

Recall that the linearized system is

vy —divo(v,p) =0 and divv=0 inQr,
v=1pé onX, v=0 on¥% v(0)=v"inQ,
m,t =12,
.t — Bnlww - 6772,wm + AN, zxzx = P1P + f on E’?"a
m=0 and m,=0 on{0,L}x(0,7),
m(0) =7ny and n2(0) =73 inTs.
THEOREM 5.1. System (5.1) is approximately controllable, in time T > 0, in the
space He. by controls f belonging to L*(0,T; L(Ls)).
Proof. To prove the above approximate controllability result in H.. we have to
show that if (v®,70,71) = (0,0,0), then the reachable set R(T') at time T, when the

control f describes L2(0,T; L3(T's)), is dense in H... To prove that result we assume
that (@7, k], kI) € R(T)*. We want to show that (®7 kT k1) =0.
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We introduce the adjoint system
—®, —divo(®,¢) =0 and div® =0 inQr,
&=k on¥s, ®=0 onXl, &T)=oTinQ,
—k1t = —ko,
—kot + Bki ze — 0k2 o — 0kl paee = p190 on X,
ky=0 and k;,=0 on {O,L} x (0, 00),
ky(T)=kT and ke(T)=kI inTs.

With an integration by parts we obtain
(5.3)

pl/QV(T)'¢T+/S(—Aa,ﬁ)1/27]1(T) (—Aa,ﬁ)l/zk{—F/

s

T
m(T)ic;f:/ fho.
0 I's

If (&7, k¥ k) € R(T)*, we deduce that

T
/ fka=0
o Jr,

for all f € L2(0,T;L3(Ts)); that is, ko = 0. Thus we must show that if ks = 0 and if
(®, k1, ko) is solution to (5.2), then (®T, kT k) = 0.
By taking the time derivative in the equation

k27t - ﬁkl,ww + 6k2,wm - aMskl,wwww = _lesdja
we deduce that ¥;|s, = C(¢t). Thus, using an expansion of the solution ® to
(5.4) —®; —divo(®,9) =0, div® =0 inQr,
' ®=0 onXp, ®(T)=®"inQ,

in terms of the eigenfunctions of the Stokes operator, as in Osses and Puel [21], the
approximate controllability problem reduces to showing that if

—vAv+Vp=pv, divv=0 in
v=0 onI', and p=C onTy,

with p € R, then v = 0. Therefore we can use results from [21, 22] to complete the
proof. (See also [18].) 0

THEOREM 5.2. For all w > 0 and all (v°,n9,19) € H,.., there exists f €
L2(0,00; L3(Ts)) such that the solution to system (2.7) obeys

(v, 715 m2) [ 22(0,00;H..) < 00

Proof. Without loss of generality, we can choose w in the resolvent set of A.
Due to Theorem 3.4, we know that the spectrum of —A is only a pointwise spectrum
constituted of a countable number of distinct eigenvalues, that we can order as follows:

3?/\123‘%/\22---2%/\N>—w>8?/\]v+12---.
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Moreover, the generalized eigenspace of each eigenvalue is of finite dimension (see
[15]). Let us denote by G(A;) the real generalized eigenspace associated with A; if
A € R and with the pair (A;, \;) if $\; # 0, and let us set H, = @~ , G()\;) and
H, = @,° 1 G(Xi). If E()\;) denotes the complex generalized eigenspace associated
with A; and if (€;(Ai))1<j<m(r,) is a basis of E(\;), then G();) is nothing else than
the space generated by the family {Re;();), Se;(A;) | 1 < j < m(X;)}. Let us observe
that H,, is the unstable subspace of system (2.7), while H; is the stable space. Let
us denote by P, the projection onto the finite dimensional unstable subspace H,
(parallel to the stable subspace Hy). If we project system (5.1) onto H,,, we obtain
(5.5)

Pv Pv Pv(0) Pv°
d
EPN m |=AP,| m |+ P.Bf, P,| m@©) |=PR, 7}
72 72 n2(0) 75

Due to Theorem 5.1, system (5.1) is approximately controllable in time 7" > 0. Thus
the projected system (5.5) is also approximately controllable. Since it is of finite
dimension, it is also controllable. Let fo € L?(0,T;L%(Ts)) be a control such that
P,(Pv,n1,m2)(T) = (0,0,0), and still denote by fy its extension by zero to (T, 0).
Now, we notice that P, (Pv,n1,72) is the solution of system (5.5) corresponding to f
if and only if P,(PV,#1,%2) = e“t P, (Pv,n1,12) is the solution of the system

(5.6)

Pv Pv Pv(0) PvO

d . . A R

Epw m =A, P, m + P.Bf, P, 7(0) =P, 77? )
2 72 712(0) 7

corresponding to the control f = e¥tf. Thus system (5.6) is stabilizable. System
(5.6) is the projection of system (2.7) onto its unstable subspace. Due to [31, 20],
system (2.7) is stabilizable by a control f belonging in L?(0, 00; L3(T's)) if and only if
its projection onto its finite dimensional unstable subspace is stabilizable. The proof
is complete. O

6. Feedback stabilization of system (2.7). In this section, we study the
feedback stabilization of system (2.7). There are several ways to do that. One way
consists of studying the infinite time horizon control problem

(Poo mo.mg)

inf{[(v,nl,ng,f) | (v,m1,m2, f) satisfies (2.7), f € L2(O,oo;L3(1"S))},

where

pr [ L[
Ivonone =" [ [ vPdsdsder 5 [ Iml d
0 Q 0
1 o0

1 oo
+—/ nZda;dtJr—/ F)32p dt
3/, p5|2| 3/, |fO|2r,)

and (see section 3)

Il = [ (-0l
T

s
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From Theorem 5.2 we know that system (2.7) is stabilizable in H... Thanks to this
stabilizability result, and following the approach in [25], the next theorem can be
proved.

THEOREM 6.1. For all (v°,19,19) € He., problem (Pg° 0 770) admits o unique
3 sT1 572

solution (Vyo 0 10,11 30 10 195 M2,v0 40 m9s fyo no no). There exists II € L(Hec), obeying
II =1II* > 0, such that the optimal cost is given by

1

5 (H(V07 77?7 778)7 (Voa T]?a T]S)) H
Theorem 6.1 will be proved in section 8.1.

The operator IT € L£L(H,..), which defines the value function of (P> ) through

0,v%,n9,n3
formula (6.1), is obtained as the limit of the operator II(T") € £L(H..) when T tends
to infinity, where II(T) € L(H,.) is the operator defining the value function of the
corresponding finite time horizon control problem
(Py.

7"0#7?#78)

inf{IoT(v,nl,n%f) | (v,m1,m2, f) satisfies (2.7), f € L2(0,T;L3(Fs))}a

(6.1) nf(P5S0 50 ng) =

ce

where

T P1 T 2 I 2
IO (anlan%f) = ? |V| dzdzdt + 5 H771(’5)HH§(F3) de
0 Q 0

L 2 dodt + - ' )32 dt
T3 ; FS|772| rdt 45 ; [f )2z, dt-

We are going to see in section 8.1 that the solution (Vvo)n?)ng,771)‘,07,7?7"8,7727\,0),7?)778,

fyo.m9.4) of problem ( g)ovgm?)ng) obeys the feedback law

fvo,n?mg (t) = —1l3 (Vvom?mg (t)77717v07n?7n8 (t)77727v07n?7n8 (t)) )

where I3 € £(H,., L3(T)) is the third component of the mapping II:

I1, II;; IIp I3
(6.2) =) Hz | =| o1 Ilp Tz [ € L(He).
15 II3; 1I3p Il33

We would like to find an equation characterizing the operator II. Because system (2.7)
is not an evolution equation (indeed, (I — P)v does not obey an evolution equation),
the operator II is not characterized by a classical algebraic Riccati equation. To
address this issue we introduce a second problem leading to another feedback law
that we can link with the one expressed with II. We consider the problem

(RS?PVO n3ns )
inf {f(Pv,nl,ng,f) | (Pv,m,mn, f) satisfies (4.1), f € LZ(O,oo;L%(I‘S))},

where

T _Mm 2 1 7 2
fpvomm =5 [ 1P g [ i

5
2Js

1
T+ prvdaml + 5 [ 167

s
oo

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



FEEDBACK STABILIZATION OF A FLUID-STRUCTURE MODEL 5427

Observe that

fpvomom. ) =3 [ 1Py m @) G+ [ 1

s
oo

(See end of section 3.5 for the definition of H.)

THEOREM 6.2. For all (Pv°,n%,19) € H, problem (R3pyo 0 n") admits a unique
5 UERYD

SOlUtiOn/\(PVivo)n?)ng,nl)on)n?)ng,ng)PVO)n?7ng,fPVOJI?J]g). There exists II € L(H),
obeying 11 = II* > 0, such that the optimal cost is given by

o 1/~
(R pyo 0.00) = 5 (TPVE 0, 8), (PV, 8, )

2 a

-~

Moreover, 11 is the solution to the algebraic Riccati equation
lecH), O=0>0 A, +ATT-TBBHI+I=0,

where (A%, D(AL)) is the adjoint of (Aw, D(A,)) in H and B € L(H, L3(T,)) is the
adjoint of B € L(L3(T,), H).

Proof. The theorem follows from [2, Part III, Chapter 1, Theorem 3.1] (see also
[17, Chapter 2]). Indeed, for the control system (4.1), the operator B is bounded from

the control space L(T's) into the state space H, and the observation operator in the

cost functional I is the identity in H. O
One can verify that D(A%) = D(A,) = D(A) and

wl 0 0
Ab = AF 4 0 wl 0
0 0 w(+p1ysNs)t
Moreover,

B*(f,g,h)" = h.

We are able to prove the following relationship between II and 1I.
THEOREM 6.3. The operator Il € L(H..) can be expressed in terms of

I, My The T
M=| T = Oy Ty ﬁ23 € L(H)
I Oy Iy

as follows:
PIL (VO 09, 09) = T (PVO,00,n3),  TI(vO,n%,n3) = T (PO, nd,19),
H3(V0777?7778) = ﬁ3(PV077]§)7T]8)7 (I - P)Hl(vovn?ang) = (I - P)D5ﬁ3(PV0777?7778)

for all (v°,10,79) € Hee.

The main interest of problem (R, is that its optimality system is the

o )
0,Pvo,n?,n9

same as for problem (Pg< , e no) (see section 8.2).
) sT1 572
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7. Studying problem (ngo o nO)'
) 211572
THEOREM 7.1. For all (v°,n9,79) € He., Problem (PT

admits a unique
O,V‘)m?,ng) q

solution (V,11,M2, f), and the optimal control is
f=—ks,

where (P, k1, ka) is the solution of the following adjoint system:

—®, —divo(®,¢) —wP=v and div® =0 in Qr,

b =rkoey on X5, ®=0 on ¥%, S(T)=0 in Q,

—ki = —ko + wki + 71,

—kot — wka + BE1 zz — 0k2 0z — K1 gaoe = 1Y + T2 on X7,

ki=0 and kiz=0 on {O,L} x (0, 00),

ki(T)=0 and ko(T)=0 in Ts.
Conversely, the system

vi—dive(v,p) —wv=0 and divv=0 in Qr,

v=13pey on X5, v=0 on %%, v(0)=v" in Q

Mt = N2 + wn,

N2t — WN2 — BN az — ON2,02 + QN zaze = p1P — k2 on 35,

m=0 and ms=0 on {0,L} x (0,00),

m(0)=nY and n2(0)=n3 inTs,

—®;, —dive(®,¢) —w®=v and div®=0 in Qr,

D =koey on X5, ®=0 on X%, &(T)=0 in Q,

—kit = —ko + wki + 1,

—kot — wka + Bk1 2o — 0ko ze — Okt pyze = p1b+m2 on X7,

ki=0 and kiz=0 on {O,L} x (0, 00),

ki(T)=0 and ko(T)=0 in T
admits a unique solution (v,p,n1,m2, ®, ¢, k1,ks), and now the optimal solution to
(Pg,vgm?mg) is

f=—ko.

The operator II(T) € L(H,.) defined by

I(T)(v%, nY,m3) = (@(0), k1(0), k2(0))

is linear and continuous in He., it is symmetric and semidefinite positive, and the
optimal cost is given by

. 1
1nf(7)gjv0,n§’7ng) = D) (H(T) (V07 77(1J7 778)7 (VO’ 77?7 ng))HCC'

Proof. The proof is classical, and thus omitted for brevity. O
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8. Studying problems (Pc?fvomg,ng) and (RS?PV"m?mg)'
8.1. Problem ( c?fjvomg’,ng)'
Proof of Theorem 6.1. The existence of admissible controls follows from Theorem
5.2. Next the existence of an optimal control can be proved in a classical way. The
operator II is obtained as the limit of II(7") when T tends to infinity (see, e.g., [25,
Theorem 4.1]). O
Following the approach of [25, Lemma 4.2], we can obtain an optimality system
for problem (P((J),ovf)m?,ng) in the form
vi —divo(v,p) —wv=0 and divv=0 in Qu,
v=ney onX, v=0 onX%, v(0)=v"inQQ,
Nt = N2 + wni,
M2t — w2 — Bz — 02,00 + QN1 weze = p1P — k2 on B3,
m=0 and =0 on {O,L} x (0, 00),
m(0) =nY and n2(0) =73 inT,
—®, —dive(®,Y) —w®=v and div® =0 in Qu,
D =kyer onxs, ®=0 onXl, ®(c0)=0in,
—k1t = —ko +wky — 1,
_k27t — wko + Bklww - 6k2,wm - akl,wwww = PH/J + 72 on Eioa
k1(00) =0 and ko(oco) =0 in Ty,

(®(1), k1(t), k2(t)) = TL(v(£), (), m2(t))-

More precisely, the following theorem can be proved by adapting the proof of [25,
Lemma 4.2] to problem (P ).

O,VO,n?,ng
THEOREM 8.1. For all (v°,n9,nY) € He., system (8.1) admits a unique solution
(vaa n, 12, q’v 1/’7 kla kQ) n W(Oa 005 Vl (Q)7 Vﬁl(Q)) X L2(Oa 003 L(%(Q)) X H2)1(Ego) X
L2(0,00; HY(Ts)) x V2 Q) x L2(0,00; HL(2)) x HY2(25)) x HY(X5,), and the

optimal control to (P2 18
P (Povo.np.ng)
f=—ko.
y o0
Therefore the solution (Vo ;0 10,11 v0 19 10, M2,v0 19 505 fyo .m0 o) to problem (PONOW%WS)

obeys the feedback law

fvo,n(l’,ng (t) = —1II; (Vvo,n?,ng (t)v M1,v0,n9,m9 (t)v N2,v0,n9,n9 (t)) s

where Uz € L(Hee, L3(Ts)) is the third component of the operator 11 (see (6.2)) and
1T is the operator defined in Theorem 6.1.
TuEOREM 8.2. If (Pv%,n?,n9) € [D(A),H]i/2, (v',n).15) € He., then the

optimal solution to problem (Pg%. o0 o) belongs to H21(Qoo) x H2(25,)) x H21(23)

and
IVIiE21(Qu) + Imllzaecss,) + lIm2llm2a(ss,)
< C(|PVOlvs (o) + H77(1)||H3(F5)mHg(FS) + ||778HH5(F5))-

The proof of Theorem 8.2 is postponed to subsection 8.3.
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8.2. Problem (R5% o o n°)' In order to prove Theorem 6.3, we first need to
’ 37115712
compare the solutions to (P] 40.q0) and (R pyo J0.n0)» Where

T
(R(LPVO,’??,WS)

inf {IF (Pv, i, 12, £) | (PV,m, 2, f) satisfies (4.1), f € L3(0,T5 L3(T)}

and
fg(Pvanlan27f)

T
P1 2 1 2 1 2 1 2
= [PVl +—/ lm ()] +—/ (I + prysNo)mel™ + 5 | IfI%
2 Jor 2 /o HZ(r,) T 5 5 2 Jss

The following theorem is a classical result in control theory.
THEOREM 8.3. For all (Pv°,1{,19) € H, problem (R{ 1o 0 770) admits a unique
B 3111572

solution.

The system
(8.2
Pv Pv P® Pv(0) Pv°
d
Tl m o= Ao | m |[-BB| ki |, m) | = i ;
72 2 ko n2(0) 5
P® PP Pv P®(T) 0
d
— & kl = Ag) kl + m ) kl (T) = 0
k2 k2 72 ka(T) 0

admits a unique solution (Pv,ny,n2, P®,k1,k2), and now the optimal control to

(R pvoy9.n8) 8

f(t) = =B (P®(t), k1 (t), ka(t)) = —ka(t).
The operator II(T) € L(H), defined by
(T)(PV°, 17, 18) = (P®(0), k1(0), k2(0)),

is linear and continuous in ﬁ, it is symmetric and semidefinite positive, and the
optimal cost is given by

1
mag) =3

inf(R{ pyo (T(T) (P, Y, 19), (PY°,mi,m9)) -

Using the expression of A determined in section 3.5, it can be shown that the so-
lution (Pv,n1,n2, P®, k1, k2) to system (8.2) and the solution (v, p, 71, 2, ®, 1, k1, k2)
to system (7.2) obey

(Pvaﬁlafhvpéaklvl%Q) = (vanlvTIZvP‘}aklka)'

Therefore we have

~ — —

I(T)(Pv®,n,m5) = (P®(0), k1(0), k2(0)) = (P®(0), k1(0), k2(0))

P 0o
(8.3)
= 0 I 0o |ID)E°n,n) forall (v*,n),n9) € He.
00 I
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The following analogue of Theorem 8.1 can be proved for problem (RSOon-n‘f-nS)'

THEOREM 8.4. For all (Pv®,n?,18) € H we consider the system
(8.4)

Pv Pv P® Pv(0) Pv°
% m |=As | m |-BB| k |, m@© =1 = |,
72 72 ko 72(0) 3
P& P& Pv P& (o) 0
—% kq =AY kq +1 m |, k1(o0) =1 0 [,
ko ka 2 k2 (0c0) 0

~

(P(t), k1 (t), ka(t)) = TL(Pv(t), m(t), 12(t))-

System (8.4) admits a unique solution (Pv,n1,n2, P®, k1,ks) in W(0,00; V1(),
VHQ)) x H21(X5) x L?(0,00; H(Ty)) x V3(Qoo) x HM?(25.) x HZY(XS,), and

the optimal control to (RS?PvO,n%ng) is

f=—ks.

This theorem may be proved, as in [25], by passing to the limit in the optimality
system of the finite time horizon control problem (Rg R ng).
’ M52

Proof of Theorem 6.3. Since IT and II are defined as the respective limits of II(T)
and II(T') when T tends to infinity, with (8.3), we obtain

P
0
0

S N~ O

0
0 [ T(°, Y, n3) = TPV, 7Y, nY)
I

for all (VO, n?,ng) € H... This equality gives the expression for PIIy, IIs, and II3.
The expression for (I — P)II; follows from the equalities

(I_ P)Hl(vovn?vng) = (I_ P)‘I’(O) = (I_ P)Dst(O)
(I—P)Dsﬁ3(PVOa7I?a778)- o

8.3. Proof of Theorem 8.2. The proof is based on the fact that system (8.1) is
equivalent to system (8.4) with the additional equations (I—P)v = (I—P)D(n2€2xr.)
and (I — P)® = (I — P)D(ka€2xr,). Since we can use, for system (8.4), the maxi-
mal regularity result stated in [1, Chapter 1, Theorem 3.1], we can derive the same
estimates for the solution to system (8.1).

We already know that

[PVl L2(0,00v0 () + 1M1l 220,005 m2(r ) + 1721 L2(0,00:22(T.))
(8.5) + 1P| £2(0,00:v0 () + [1F1 ]l 22(0,00:2 (1)) + %2l 20,0052 (1)
< C(IPVOllvo ) + Im7ll g2,y + 181l L2 (r,))-
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We can rewrite the adjoint equation of (8.4) in the form

P® P® P® Pv
(8.6) —% Bv | =(AL =D | k& [ +x]| ke [+ m |,
ko ko ko M2
P& (o) 0
ki(oo) [=1] 0
ka(00) 0

We choose A > 0 such that (et(AL—A ))i>0 is exponentially stable. From [1, Chapter
1, Theorem 3.1], with estimate (8.5), it can be shown that the solution (P®, k1, k2)
of system (8.6) obeys

[Pl (o) + k1l ma2(ss) + [ R2ll 20 (5,
(8.7) < C([IP®]r2(0,00:v0 () + 1K1l 20,00, 2 (10)) + [1F2ll £2(0,00:22(7. )
< C(IPVllvo ) + Im 1z .y + 78]

L3(T,))-

Next, with estimates (8.5) and (8.7), still with [1, Chapter 1, Theorem 3.1], and with
[25], we can show that

[Pvlaz1 Qo) + Imllaezss,) + In2ll g2 =s)
(8.8) < C(IPVOllvi) + 1Ml aenmzyw.) + 1M1 aa ) + &2l 2css )
(I = P)vlaz1(.) = (I = P)Dsnzlla21(@u) < Clin2llmza(ss,)-
This completes the proof. a
9. Nonhomogeneous system. We now consider the nonhomogeneous linear
system
(9.1)
vi —divo(v,p) —wv=F and divv=G=divw in Qu,
v=r1pé onX{, v=0 onX%, v(0)=v"inQ,
M =mn2+wn on X3,
et — W2 — Bnlww - 6772,ww + QM zxxae = P1P — 21/p2V2,Z + H — H3(V7 n, 772) on Ego,
m=0 and m,=0 on {0,L} x (0,00),

m(0)=nY and 72(0) =719 inTy,

with w € H21(Qoo) N L2(0, 00; H(£2)). We can look for a solution to system (9.1) in
the form v = w + w, where (w,p,n) is the solution to
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(9.2)

—dive(w,p) —ww=F —w; + vVAw +vVdivw +ww and divw =0 in Qu,
w=1 onXi, w=0 onXl, w(0)=v"-w(0)in Q,
Mt =mne+wn on X,
7727t — W2 — Bnlww - 6772,11 + anl,wwww

= p1p = 2vp2(Waz + Wa o) + H —13(w,0,0) — Is(w, 71, 7m2) on X%,
m=0 and m,=0 on{0,L} x (0,00),
m(0)=nY and n:(0)=n3 inT..
Since divw = 0, the term 2vp,wsy . can be dropped out in the equation satisfied
by 72, but not the term 2vp,ws .. We introduce the operator unbounded operator
(A, 7, D(A, 7)) in H, defined by D(A ) = D(A) and

A=A, — BBIL

System (9.2) can be written in the form

Pw Pw PF
(9.3) % m | =A,a| m |+BH+| 0 [,
72 M2 0
Pw(0) P(v* — w(0))
m(0) | = Ui ;
12(0) 3

(I = P)w = (I — P)D(n2€2xT, ),
where
F=F —w; + vAw + vVdivw + ww,

H = —2Vp2‘7V2’z + H - H3 (W, 0, 0)
+p1(I + pl’YsNS)717sN((F+ v(_AD)ildiVF) ‘n).

We assume that w belongs to H*!(Q), F € L?(0,00;L*(Q)), and also H €
L?(0,00; L3(Ts)). Thus PF belongs to L?(0,00; V(Q)). Moreover, (F + V(—Ap)~!
div F) - n belongs to L?(0,00; H~'/*(T")), vsN((F + V(-Ap)~ 1d1vF) n) belongs to
L%(0,00; H'/2(T,)), and H belongs to L?(0,00; LZ(T's)). Since the semigroup gen-
erated by (A, g, D(A,, 7)) is exponentially stable on V7 (Q) x (H§(T's) N L§(Ts)) x
L3(T), system (9.3) admits a unique solution (Pw,n:,1m2) in L%(0,00; VO (Q)x
(HA(I's) N L3(TS)) x L3(Ty)).

THEOREM 9.1. If (Pv® — Pw(0),7?,7n9) € [D(A),H] /2, (v° —w(0),70,n9) €
H.., F € L?(0,00;L%(Q)), w € H>(Qw), and H € L*(0,00; L(T')), then system
(9.1) admits a unique solution, which belongs to H>'(Qs) x H*2(X3,) x H>1(X3,)
and

IVig2 1 (o) + Pl 20,081 )y + Imllga2 ) + Imllze sy + In2llg20(2,)
< CLIPVO vy + 108l ms oy + 1091 a r.y
L2 Qo) + 1 WllE21 (@) + 1 H [ L2(ss))-

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



5434 JEAN-PIERRE RAYMOND

Proof. We first consider system (9.3). We know that (Pv® — Pw(0),77,79) €
[D(A, 5):H]1/2, (PF,0,H) € L?(0,00; H), and that the semigroup generated by
(A, 1 D(A, 7)) is exponentially stable on H. Thus, arguing as for (8.6), with [1,
Chapter 1, Theorem 3.1] and the continuous imbedding H*?(35,) — L>(35,), we
obtain

Wiz (o) + Imllasese) + ImllLesy,) + lInellaza(ss)
< CLIPVO vy + 108l sy + ImS1 a .y
HIF L2 @u) + 1Wlla21 (@) + 1 Hll2s2,)-
Since v =w +w and w € H*!(Q), we recover the estimate for v. The estimate

for the pressure can be obtained from the estimate for v and from the first equation
of system (9.1). a

10. Stabilization of the coupled system. In this section we study the non-
linear closed loop system
(10.1) 3 3
u; — divo(a,p) —wa = e “'F(Q,p,q,72), diva=e “'G(,0) nQux,
U=17ey on %, u=0 on¥’, u(0)=1a"inQ,
e =12 +wn on X3,
772715 - wﬁZ - Bﬁl@w - 6772@1 + aﬁl,wwww
= p1p — 2vpatiz.; + e H (@, 1) — Hs(8, 71, 72) on 5,
m=0 and 7,=0 on {O,L} x (0, 00),
m(0)=n and 72(0) =nf inTy,

with
F(ﬁaﬁa ﬁla ﬁz)
i
= —n(as — u 7 oz _sz ~z_~'v~
(0 —wa) + | 272 + vz ot 4 7 m, u (a-V)a
(10.2)
-~ o~ -~ ZQTN]% xz e_wtﬁl ~
+v | 2201000, + e + | — 7= | Uz
et + 11
+ 2(M epz — MPz)€1 — (1 + e~ M) t, + (267,01 — )0,
(10.3)  G(@,71) = — iy + 201 00, = divw, W = 06 + 2771 401 6,
and
(10.4)

~ ~92 ~
S~ M -~ —wts Ma -~ m
H(a, =v —= 0y, +te ¥ U, — ———Uy,+ ———1u .
( 771) P2 <eu"t+7]1 1,z M,zu2 z 6"*’t+T]1 2,z 6“”—'—771 27z>

We want to show the following theorem.

THEOREM 10.1. There exist 0 < pg < 1 and an increasing function 0y from R*
into itself such that if pn € (0, po), (P(@°+nYade; —znf jades), nd,n3) € [D(A),H]; o,
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(@ + niajer — wn? 0ie)|r = ngéaxr,, and |PA°(|lvi) + 1791l msr)nmzr.)+
H778||H(%(F5) < O(p), then system (10.1) admits a unique solution in the set

Dy = {5,772 | 81121 + 1Bl 0.0st ()
+ il mzezss ) + Niillnee sy + 2l 2o ss ) < u}-

Let us recall that the imbedding from H*2(¥2 ) into L°°(X2) is continuous.
Thus an estimate of 7; in H*2(33,) also provides an estimate of 7j; in L%°(X%,).
But we look for solutions to system (10.1) such that —1 < 7; in order that 75, be a
diffeomorphism. This is why the condition ||| (55 ) < p# < pro < 1is added in the
definition of ZN)M.

Next we consider the system

W —dive(a,p) = B, p,n1,m2), divi= G, 0)  in Q,

=128 onXi, u=0 onXl, u(0)=u’inQ,
M, =12 on XS,
(10.5) o A
T2t — ﬁnl,zz - 5772,rr + AN zxxe = P1P + H(u7 771) - H3(u, M, 7]2) on Ego,
m =0 and 71,=0 on {O,L} x (0, 00),
m(0) =nY and 12(0) =79 in T,
where

2
A A ~ 77 x ~ ~ ~
B0, p,m1,m0) = =ty + | 2m0 + vz | —2— — 1 4o | | G2 — (0~ V)02
1+m

2,2
. N Mz — M\
+v _22771@“12 + muge + —r u;,
14+m
+2(MePz — MPa)€l — (14 71)01ls + (271,01 — G2) 0z,

G(Q,m) = —miiz + 201,01, = div (W), W = (—m e + 2n1,,01€5),

and

2
PN M,z ~ 2 + Mz o
H(qa, =v =01, + 1z U2 — o, | .
(a,m) p2<1+m L T eloe — 770 27>
From calculations in section 2 it follows that (Q, p, 71, 72) is a solution to system (10.1)
if and only if
a=e'a, p=eVp, m=e N, =Y
is a solution to system (10.5). Therefore from Theorem 10.1, we deduce the following
result.
THEOREM 10.2. There exist 0 < pg < 1 and an increasing function 0y from R
into itself such that if pn € (0, po), (P(@°+nYade; —znf jades), nd,n3) € [D(A),H]; o,
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(@0 + nafer — znf ,0fe)|r, = n3éaxr,, and [|PA°|vy) + 1091l gsr.)nmzr.)+
H778||H(%(F5) < O(p), then system (10.5) admits a unique solution in the set

Dy, = {(ﬁﬂﬁv nsne2) | e Qg2 (o) + 1€ BllL2(0,00;m1 () + € Ml ra2(2s,)

+He“ mllpoe (s ) + e n2llmza(ms,) < /L}-

Still, from calculations in section 2 we know that (@, p,m,72) is a solution to
system (10.5) if and only if (u,p,n,1:) = (0o Ty, po Tpy, 11, 72) is solution to system
(1.1) with u® =a°o0 Tno. Thus from Theorem 10.2, we deduce the next claim.

THEOREM 10.3. There exist 0 < pg < 1 and an increasing function 6y from R
into itself such that if p € (0, po), (P(@°+nYude; —zn? ,ules), nf,n3) € [D(A),H], o,
(@0 + nafer — 2] ,0fe)|r, = n3éaxr,, and [|PW°|vyq) + 1091l gs)nmzar.)+
M3l a e,y < Oo(p), where 0 = (4},43) = u’o 7;7?, then system (1.1) with the

feedback law f = —Tl3(uo T, (z, z,t),n,n:) admits a unique solution in the set
F}L = {(uapvna nt) | ||ew~u © 7;7_1||H2*1(Q00) + ||ew-p © 7:7_1||L2(0700;H1(Q))

+lle* nllgazss) + 1€ nllLe () + le“ el 21 (ss) < u},

where T, is defined in (2.3).

11. Some Lipschitz properties.
THEOREM 11.1. The mapping

(ﬁ7ﬁ7 ﬁ17ﬁ2) — (F(ﬁvﬁv ﬁl,ﬁg),W(ﬁ, ﬁl),H(ﬁ,ﬁl)),
where F, W, and H are respectively defined by (10.2), (10.3), and (10.4), is locally
Lipschitz from H*1(Qs) x L2(0,00; HY () x HY2(23,) x H>1(33,) into L?(Qu) X
belonging to H>1(Quo) x L2(0,00; HY(Q)) x HY3(X5,) x H?1(SS,) and such that
max(]| (1 + 771)_1||L°°~(12~;’Q)7||(1 + ﬁig_lllm(zgow 1A+ 7)) Hlewzy)) < 1 and
maX(||771,z||L°°(Ego)a ||TI1,1||L°°(EgO)a ||771,m||L°°(Ego)) <1, we have
IE(@, B, 771, 712) || L2 (0,00512 ()
(L1 < Co(p)(mllasz e l0llaz @u) + 12llm20 (=2 10l H20 (@)
7l 722 (25 ) 1Pl 2 0,001 () + [0l E121 (Quooy 10 21 (@0 ))

|F@t, 5yt ) — F02, 52,2, 78) || 12 (0,002 ()
(11.2) < Co(p) (@', pt it i) [wll (@4, B af, 73) — (0%, 22,7, 75) [ w
+(@2, 5%, 77, 7) [wll (@, 54, i, 33) — (02, 52, i3, ) [ w),
with W = H>'(Qo0) x L2(0,00; H(R)) x HY2(25,) x H>'(22,),
(11.3) W (@, 1)l (@) < Co(u) Ml a2 (e Ml 520 (@)

(11.4)
||\X/(ﬁl, 'F]%) - ‘7V(ﬁ27 77%)||H2’1(Qm)

< Colp) (Il ez 105 = 3l 520 (o) + 171 = T 132 s 103 521 ()5
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(11.5) 1 (@, 71)l|z2(ms,) < Colpn)l|[ iz @y il oz sy

and
(11.6)

|H (@, 31) — H@2, )| 225
< Colpn) ([ ]| 2 (@ 11} — 3| a2 ey + 10 — 03|21 (0o 1771 a2 2 y)-

(In these estimates the constant Ca depends in an explicit manner on pi.)
Proof. Step 1: Proof of (11.3) and (11.4). If (,71) € H>Y(Qus) x HH2(X3,),
then we have

71010 22(0,00;52(2)) + 171,201 22(0,00: 2 (02))
< Ol = (0,00:2 () 18111 22(0,00: 52 (2)) + 1711 L50(0,00: 13 (1)) Q1] 22(0,00: 2 (02)))
< Clill e (ss) Ml m21 (@) -
We also have
17100 || 20,0052 (22)) + 171,201 || E17 0,052 ()
< Ol 0,00; 250 (o)) 102l E2 0,00, 2(2)) + (72l 71 (0,00; 211 (o)) (101l 12 (0,005 22(02)) )
< Cliinllasz s )t a2 (..
In these estimates we have used that
||'F]1||H3/2(0700;H1(Fs)) < C||771||H4,2(zgo)-
Thus we have
[l z20(Qu) + 12l B2 Q) < Collill s (s Il a2 (u)-

Now, we assume that (@', 7}) € H>1(Qs) x H*2(33,) and (0%, 7?) € H>Y(Qoo) X
H*2(32). Let us estimate
Sl =1 =2 o2
M,zW1 — 11,5U1-
The other component, that is fial — 77a?, can be estimated in the same way. We
have
1 2

ﬁiwﬁi - ﬁ%,wﬁ% = 77]1_@ (ﬁi - ﬁ%) + (771@ - ﬁiw)ﬁl
As above, we estimate these terms as follows:
171 (81 = 8) | 21 Qo) + 100, — 71 2) 03 [ 21 (@)
< Colllmn | aae ey 0] = 03l g21 (o) + 171 = T lma2 o) 103 [ 220 (@)

Step 2: Proof of (11.1) and (11.2). To estimate the different terms in F, we first
write

710 |L2(Qu) < 1Tl (zs ) 1Tl L2 (@)
[wil|Lz(@.) < 1Ml ) lwtllLz(@.)

2720z |2 (o) < 1712l oo (2 ) 02 [[L2(Qu) < Cllfi2llLo (0,001 () 102 22(0,00;11 ()5

< CN 7)o o) 171,217 0 (22 102 L2 (@)
L2(Qoc)

zZ

=9

nl,r ~
Ve =
evt +m

< Ol allpo m2) 10 lL2 (@)

||Vz771,rrﬁZ||L2(Qoo) < OHﬁl,rr”L‘”(Z;) ||ﬁz||L2(ro)'
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In these estimates we have used that [[(1+ 71) " [pee(zs ) < p1s (1712l poe(zs ) <1
and that

e € HH(X3) < L(0,00; HY(T)) < L>=(35,)

because I' is of dimension one.
We continue as follows:

(71,2002 112 (Que) < 71,2l Loe(25) 102212 (Qu0)s

1 0zellLz Qo) < Ille(zs) 10 |lL2(@u) s

2~2
Mz - -\ - -
— <O+ 7) " pe e Il Eoe me ) 18222 (@)
e“t + 1M L2(Qu) o
e_wtﬁl B B B
O Tl < Ol llzoe (2, 10222 @)

712Dl 22(@) < e llLoese) 1Pzl L2(),
71Dl r2(@) < I llLee(se)lIPell2(@)
[(L+ e " )00 lL2(u.) < ClIL + i1l Los (s ) 101 ]| oo (0,001 () 18 | £2 (0,008 (2)) 5
e M2t |2 Qo) < ClliiellLoo (s 1 22(0,00,£2(02)).
020 [|L2(gu) < Clltz]lLoe (0,001 () 102 ]| 22(0,0011 (2))
[(@- V)illLz(g.) < Cllall Lo 0,001 () 18l 22 (0,001 (02))-
Thus
I1E (8, 5,71, 72) || L2 (0,001 (92))
< Co([1 a2 (zs ) 01l 520 (Quoy + 172l 22 (5o ) 101 | 201 (@)
70l 22 (29 [1D]] 20,0051 (02)) + [0l 221 (o) [Tl H21 (@)
Estimate (11.2) can be proved in the same way.
Step 3: Proof of (11.5) and (11.6). We have
e o

4 7 <O+ 7)o e 2l e o) 101 2l L22s ),

L2(2)

1,z

||7~71,zﬁ2,z||L2(2;°) < OHﬁl,mHLN(Z;)||ﬁ2,z||L2(Ego);

~2
Ma - S\ —_ -
ewt fllu < (1 + ) ||L°°(Eg°)||7717w||L°°(EgQ)||u2,2||L2(Eg°)a

L2(25,)

2,z

ﬁl ~ ~ 112 ~
—u SC 1 oo (s ug 2(s ).
et + i, Lo ) Il (zm)H =l (=5)

2,z

(We have used that [|(1 4 71) " ||pee(se ) < p1 and ||712]|pe(zs ) < 1.) With these
estimates we can show that

IH (@, 1) | 22 (s ) < Collt |l 2 g llin |l maz(ss)

and that
||H(ﬁ17 ﬁ%) - H(ﬁ27 ﬁ%)”LZ(EgQ)
< Co(llullmzr@uyllit — T llgsesey + ) — 6fllg2a @yl llgazs: ). O
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12. Proof of Theorem 10.1. To prove Theorem 10.1, we consider the nonho-

mogeneous closed loop linear system
(12.1)
vi —divo(v,p) —wv=e“F and divv=e “'G=e“divw in Q,

v=r1pey onXi, v=0 onX%, v(0)=u"inQ,
Mt =12 +wm  on X,

772,t — w2 — Bnlww - 6772,wm + anl,wwww
= p1p — 2vpava. + e H —T5(v,m1,m2) on T,

m =0 and 71,=0 on {O,L} x (0, 00),

m(0)=n{ and 72(0) =79 in Ty,

where F, G, and H stand, respectively, for the mappings F(ﬁl,ﬁg, a, Vp), é(ﬁl,ﬁ),
and H (1, p, 1) defined in (10.2), (10.3), and (10.4).

We first choose 1 < p1. Without loss of generality, we can assume that C; > 1
and Cy(p1) > 1. We set

. 1 1 I
tp = min (601 Gl Nl) and  6p(p) e

Let us notice that if (@, p, 71, 72) belongs to D,,, then [|(1 + 1) Hlpeo(se ) < ﬁ <
ﬁ < p1 and |71,z ||poe(zs,) < < 1. Thus estimates of Theorem 11.1 may be used

for elements in D,,.
We are going to prove that the mapping

F o (ﬁvﬁaﬁlvﬁQ)'—)(vapvnlver)a
where (v, p,m1,72) is the solution to system (12.1), and in which F, G, and ﬁ~are the

functions of (@, p, N1, 72) defined by (10.2), (10.3), (10.4), is a contraction in D,,.
If (v,p,m,m2) = F(Q,p,71,72), due to Theorems 9.1 and 11.1, we have

IVIE21(Qu) + 1Pl L2 (0,001 () + Ml 2225,y + (Ml oo (ms,) + (M2l 20 (25,
< Ci([IPYOllvi) + Il e ynmz o) + 1081 me .y

Fllem " Fllraigu) + lle™ " Wllaza ) + lle™ Hl|12(s,))

1
< — 2) < pu.
<y (2clu+302u ) <pu

Thus F is a mapping from Du into itself.
Let (a',p',71,n3) and (8%, 5%, 7, 73) belong to E,. Fori=1,2, weset (v',p’,ni,
ns) = F(al, p*, 7, m5). Due to Theorems 9.1 and 11.1, we also have
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v =2 llmz1 () + 19" = P2l 20,0011 () + 08 = W2l 225
+Int = nillzoemey + 103 — B3l a2 (s
< Ci(le™H(F" = F?)||L2(u) + le™ (W = W) [[m21 (o) + lle ™ (H — H?)| L2(ss.))
<3C1Cou(Iv! = VP2 Qo) + IP" = PPl 22(0,00im1 () + 101 — 02l 22 (s,
+ 2 =l 2o ss,))
< 5V = V2l gu) + 19" = P2l 200,005 (92))

+ [In1 — 77%||H4’2(Ego) + I3 — 7]§||H2’1(Ego))-

Thus F is a contraction in bu, and the proof is complete. a

Appendix. In this section we analyze what results can be extended to models
slightly different from system (1.1).

A.1. The case when § = 0. In that case Theorem 3.4 is replaced by the
following.

THEOREM A.l. The operator (A, D(A)), with 6 =0, is the infinitesimal genera-
tor of a strongly continuous semigroup on H, and the resolvent of A is compact.

Theorem 5.1 is still valid, but we cannot deduce the stabilizability of system
(5.1) from the approximate controllability result stated in Theorem 5.1 because the
semigroup generated by (A, D(A)) is no longer analytic. Therefore the assumption
0 > 0 is essential in sections 6-12.

Of course, since the control acts everywhere in the structure, if we want to control
system (1.1) in the case when § = 0, we can artificially add a viscous term —§ 1944, in
the model, determine the corresponding feedback, and take the sum of this feedback
and of § 7y, as feedback for the original system. In that case the total feedback law
is no longer a bounded operator from H into Hj.

A.2. The case when (2 is not a rectangular domain. We can consider 2D
domains Q of class C? for which I'y = (0, L) x {1} C T, where I is the boundary of
). We may assume in addition that (0,L) x (0,1) C Q. In that case Theorem 3.4
is still valid. But we do not know whether Theorem 5.1 is still valid. The unique
continuation property, which is the main argument in the proof of Theorem 5.1, is
in that case an open problem. (See, e.g., [22] to see for which domains the unique
continuation property is established.)

Using results in [22], it is possible to extend results of the present paper to domains
Q which are not necessarily of rectangular type but which have a corner at the junction
between the structure and the rigid part of the boundary I' of 2. In that case if
(Pv,m1,n2) belongs to D(A), Pv does not necessarily belong to V2 (Q). It is necessary
to analyze the loss of regularity for Pv, due to the presence of the corner at the
boundary of 2, and the loss of regularity for the associated pressure, to see whether we
still have (n1,72) € (HZ(Ts) N L3(T)) x L3(T's) when (Pv,n1,n2) € D(A). Therefore
this loss of regularity of elements belonging to D(.A) implies that the regularity results
of Theorem 9.1 have to be weakened. Therefore, it may happen that the analysis of
the nonlinear closed loop system made in section 10-12 fails.

A.3. 3D models. If we want to extend some results of the paper to 3D models,
we have to replace the beam equation by a plate equation with a damping of the
form —§Amn;. Let us notice that this damping is different from that considered in [7].
We can consider either the case when €2 is the parallelepiped (0, L1) x (0, L2) x (0, 1)
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and Ty, the reference configuration for the plate, is (0, L1) x (0, La) X {1} or the case
when Q is a domain of class C? and the reference configuration for the plate is a 2D
domain with a boundary of class C2. The analogue of Theorem 3.4 can be established
in those cases, but it is out of the scope of the paper to give a precise definition of
the corresponding operator A and its domain D(.A). As mentioned in section A.2, no
approximate controllability result is known in those cases.

A.4. Periodic boundary conditions. As mentioned in the introduction, some
results can be extended to systems of the form (1.1) in which the boundary conditions
u=0on {0} x (0,1)U{1} x (0,1) are replaced by periodic boundary conditions as in
[3]. Using the stabilizability results from [4] for a channel flow problem, it is possible to
extend the results of our paper to these models. For that we have to consider a model
with two beams, one beam occupying the upper part of the boundary of the rectangle
Q = (0,L)x(0,1) and the other occupying the lower part. The complete stabilizability
results that we obtain in section 5 may be replaced, using [4], by stabilizability for
some exponential decay rate. And therefore we have to adapt results that are stated
for an arbitrary exponential decay rate —w to the case where the decay rate is the
one obtained in the paper by Barbu [4].

A.5. Other boundary conditions. It may be more relevant, from the physical
viewpoint, to replace the boundary condition

u(z,1+n(x,t),t) = n(z,t)éex  for (z,t) € (0,L) x (0,00)
by the following (see [13, 1.1¢]):
(A1) u(z, 14n(z,t),t) oz, t) (1+n2)Y2 =n(x,t) for (z,t) € (0,L) x (0,00).

In that case this boundary condition may be completed by a condition on the tan-
gential component of the normal stress at the boundary,

(A.2)

(o(u(z, 1 +n(z,t),t),p(x,1 +n(z,t), t))n(z,t)-7(x,t) =0 for (z,t) € (0, L)x(0,00),

where

VIEni(t) V1+m3()
(Such a model is considered in [13].) Due to (A.1) and (A.2), in the linearized model
(1.2) the boundary condition
v =126y on X5
has to be replaced by
(A.3) v-éy =12 and (o(v,p)éz)-€1 =0 onXi.

We think that the results of sections 2—4 can be extended to that case. However,
the regularity results that we use in section 3 for the Stokes equation with Dirichlet
boundary conditions have to be recovered if the linearized model is written with the
boundary conditions (A.3). This has to be done very carefully, and it is out of the
scope of the present paper. The approximate controllability result of section 5 is
an open problem in that case. In particular the unique continuation result for the
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Stokes equation proved in [21] for Dirichlet boundary conditions is not known when
the Dirichlet condition on I'y is replaced by

[1]

2]

[24]

[25]

v-éy=0 and (o(v,p)éz)-é1 =0 onls.

REFERENCES

A. BENSOUSSAN, G. Da Prato, M. C. DELFOUR, AND S. K. MITTER, Representation and
Control of Infinite Dimensional Systems, Vol. 1, Birkhaduser, Boston, Cambridge, MA,
1992.

A. BENSOUSSAN, G. Da Prato, M. C. DELFOUR, AND S. K. MITTER, Representation and
Control of Infinite Dimensional Systems, Vol. 2, Birkhauser, Boston, Cambridge, MA,
1993.

H. BEIRAO DA VEIGA, On the existence of strong solutions to a coupled fluid-structure evolution
system, J. Math. Fluid Mech., 6 (2004), pp. 21-52.

V. BARBU, Stabilization of a plane channel flow by wall normal controllers, Nonlinear Anal.,
67 (2007), pp. 2573-2588.

M. BourLaAkiA AND A. Ossgs, Local null controllability of a two-dimensional fluid-structure
interaction problem, ESAIM Control Optim. Calc. Var., 14 (2008), pp. 1-42.

E. Casas, M. MATEOS, AND J.-P. RAYMOND, Penalization of Dirichlet optimal control prob-
lems, ESAIM Control Optim. Calc. Var., 15 (2009), pp. 782-809.

A. CHAMBOLLE, B. DESJARDINS, M. J. ESTEBAN, AND C. GRANDMONT, FEzxistence of weak
solutions for unsteady fluid-plate interaction problem, J. Math. Fluid Mech., 7 (2005), pp.
368-404.

S. CHEN AND R. TRIGGIANI, Proof of extensions of two conjectures on structural damping
arising for elastic systems, Pacific J. Math., 136 (1989), pp. 15-55.

S. CHEN AND R. TRIGGIANI, Characterization of fractional powers of certain operators arising
in elastic systems and applications, J. Differential Equations, 88 (1990), pp. 279-293.

E. FERNANDEZ-CARA, S. GUERRERO, O. YUu. IMANUVILOV, AND J.-P. PUEL, Local exact con-
trollability of the Navier-Stokes system, J. Math. Pures Appl., 83 (2004), pp. 1501-1542.

G. P. GALDI, An Introduction to the Mathematical Theory of the Navier-Stokes Equations,
Vol. 1, Springer—Verlag, Berlin, 1994.

C. GRANDMONT, FEzistence of weak solutions for the unsteady interaction of a viscous fluid
with an elastic plate, STAM J. Math. Anal., 40 (2008), pp. 716-737.

M. GuibORz1, M. PApuLA, AND P. I. PLOTNIKOV, Hopf solutions to a fluid-elastic interaction
model, Math. Models Methods Appl. Sci., 18 (2008), pp. 215-269.

O. ImMANUVILOV AND T. TAKAHASHI, Exact controllability of a fluid-rigid body system, J. Math.
Pures Appl., 87 (2007), pp. 408-437.

T. KaTo, Perturbation Theory for Linear Operators, Springer—Verlag, Berlin, 1995.

R. B. KELLOG AND J. E. OSBORN, A reqularity result for the Stokes problem in a convex
polygon, J. Funct. Anal., 21 (1976), pp. 397-431.

I. LASiIECKA AND R. TRIGGIANI, Control Theory for Partial Differential Equations, Vol. 1,
Cambridge University Press, London, 2000.

J.-L. Lions AND E. MAGENES, Problémes aux limites non homogénes, Vol. 2, Dunod, Paris,
1968.

J.-L. Lions AND E. Zuazua, Approzimate controllability of a hydro-elastic coupled system,
ESAIM Control Optim. Calc. Var., 1 (1995), pp. 1-15.

A. MANITIUS AND R. TRIGGIANI, Function space controllability of linear retarded systems: A
derivation from abstract operator conditions, SIAM J. Control Optim., 16 (1978), pp.
599-645.

A. Osses AND J.-P. PUEL, Approzimate controllability for a hydro-elastic model in a rectangular
domain, Int. Ser. Numer. Math., 133 (1999), pp. 231-243.

A. Osses AND J.-P. PUEL, Approzimate controllability of a linear model in solid-fluid interac-
tion, ESAIM Control Optim. Calc. Var., 4 (1999), pp. 497-513.

A. Osses AND J.-P. PuUEL, Unique continuation property near a corner and its fluid-
structure controllability consequences, ESAIM Control Optim. Calc. Var., DOI: 10.1051/
cocv:2008024.

J.-P. RAYMOND, Stokes and Navier-Stokes equations with nonhomogeneous boundary condi-
tions, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), pp. 921-951.

J.-P. RAYMOND, Feedback boundary stabilization of the two dimensional Navier—Stokes equa-
tions, STAM J. Control Optim., 45 (2006), pp. 790-828.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



FEEDBACK STABILIZATION OF A FLUID-STRUCTURE MODEL 5443

[26] J.-P. RAYMOND, Feedback boundary stabilization of the three-dimensional incompressible
Navier-Stokes equations, J. Math. Pures Appl., 87 (2007), pp. 627-669.
[27] J.-P. RAYMOND AND M. VANNINATHAN, Null controllability of a heat-solid structure model,
Appl. Math. Optim., 59 (2009), pp. 247-273.
(28] J.-P. RAYMOND AND M. VANNINATHAN, Null controllability of a fluid-solid structure model, J.
Differential Equations, 248 (2010), pp. 1826-1865.
[29] R. TEMAM, Navier-Stokes Equations, Theory, and Numerical Analysis, AMS Chelsea Publish-
ing, Providence, RI, 2001.
[30] R. TRIGGIANI, Regularity of some structurally damped problems with point control and with
boundary control, J. Math. Anal. Appl., 161 (1991), pp. 299-331.
[31] R. TRIGGIANI, On the stabilizability problem in Banach space, J. Math. Anal. Appl., 32 (1975),
pp. 383-403.
R. VAzZQUEZ AND M. KRSTIC, A closed-loop feedback controller for stabilization of the linearized
2-D Navier-Stokes Poiseuille system, IEEE Trans. Automat. Control, 52 (2007), pp. 2298—
2312.
[33] R. VAzZQUEz AND M. KRrstic, Control of Turbulent and Magnetohydrodynamic Channel Flows,
Boundary Stabilization, and Estimation, Birkhduser Boston, Cambridge, MA, 2008.
[34] R. VAzQUEZ, E. TRELAT, AND J.-M. CoRON, Control for fast and stable laminar-to-high-
Reynolds-numbers transfer in a 2D Navier-Stokes channel flow, Discrete Contin. Dyn.
Syst. Ser. B, 10 (2008), pp. 925-956.

32]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


