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IFPEN test case: an automotive NOx depollution system

European emission standards

Scalar outputs and thresholds
{

NOout
x ≤ 80 mg .km−1

NHout
3 ≤ 30 ppm
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The framework

f : X× V → R
(x, v) 7→ f (x, v)

where X ⊂ Rp is a compact and V functional space. For a fixed c ∈ R,

Γ∗ := {x ∈ X s.t. g(x) = E[f (x,V)] ≤ c} := g−1(C) ,where C = (−∞, c].

Objective
Estimate Γ∗, the excursion set of g below c.
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rough curves.
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The framework
Each evaluation f (x, v) is expensive-to-compute,
V is only known through N realizations Ξ = {v1, v2, ..., vN}.

Objective
Estimate Γ∗ := {x ∈ X s.t. g(x) = E[f (x,V)] ≤ c}, with a limited
budget of f simulations.

Approach I
Build a meta-model for g and
choose xn+1 ∈ X,
estimate E[f (xn+1,V)]
(requires l evaluations from Ξ).

Approach II
Build a meta-model for f ,
choose (xn+1, vn+1) ∈ X× Ξ (only one
evaluation of f is required).
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Outline

1. Data-driven stochastic inversion via functional quantization

2. Stochastic inversion via meta-modelling in the joint space

3. IFPEN test case

4. Conclusion and outlook
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Algorithm Data-driven stochastic inversion via functional quantization

1: Create an initial DoE Xn of n points in the control space X
2: Evaluate gXn = g(Xn)
3: Gaussian process regression from Xn and gXn

4: Vorob’ev estimation of Γ∗ : Qn
5: while Stopping criterion not met do
6: Choose xn+1 through a Stepwise Uncertainty Reduction (SUR) strategy
7: Evaluate g(xn+1) = E

(
f (xn+1,V)

)
8: Update DoE, Meta-model and estimation of Γ∗
9: Set n = n + 1

10: end while
11: end
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Bayesian framework

Assume: g is seen as one realization of a Gaussian Process (Zx)x∈X with prior
mean m and covariance kernel k.

Given the function evaluations gXn the posterior has a Gaussian distribution

Zx|ZXn = gXn

with mean and covariance kernel

mn(x) = m(x)− k(x,Xn)k(Xn,Xn)−1(gXn −m(Xn)),
kn(x, x′) = k(x, x′)− k(x ,Xn)k(Xn,Xn)−1k(Xn, x′).

Γ∗ is a realization of Γ := {x ∈ X : Zx|ZXn ≤ c}.
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Bayesian framework

Assume: g is realization of a Gaussian Process (Zx)x∈X

Prior: (Zx)x∈X with
a.s. continuous paths,
covariance kernel k,
constant mean function m.

Given n evaluations gXn at Xn

The closed form formulas for mn and kn
allow us to generate realizations of the
posterior GP.
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Distribution of excursion sets

The posterior GP induces a posterior distribution on excursion sets.

Z continuous paths,
(−∞, c] is a closed set.

The set Γ := {x ∈ X : Zx|ZXn ≤ c} is
a random closed set.
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Distribution of excursion sets

The posterior GP induces a posterior distribution on excursion sets.

Z continuous paths,
(−∞, c] is a closed set.

The set Γ := {x ∈ X : Zx|ZXn ≤ c} is
a random closed set.

How to summarize the distribution
on sets ?

Estimate for Γ∗ with Expectation
of random closed sets.
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Vorob’ev quantiles

The coverage function of Γ is given by

pn :

{
X → [0, 1]
x 7→ P(x ∈ Γ | ZXn = gXn ) = φ( c−mn(x)√

kn(x,x)
)

Creates a family of set
Qn,α = {x ∈ X : pn(x) ≥ α}.
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Vorob’ev quantiles

The coverage function of Γ is given by

pn :

{
X → [0, 1]
x 7→ P(x ∈ Γ | ZXn = gXn ) = φ( c−mn(x)√

kn(x,x)
)

Creates a family of set
Qn,α = {x ∈ X : pn(x) ≥ α}.

Expectation: Qn,α∗

α∗ : E[µ(Γ)] = µ(Qn,α∗)

Deviation: E[µ(Γ4Qn,α∗)] = Huncert
n

∀M s.t. µ(M) = E[µ(Γ)],
E[µ(Γ4Qn,α∗)] ≤ E[µ(Γ4M)].
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Sequential strategy for uncertainty reduction

Stepwise Uncertainty Reduction (SUR): find a sequence of evaluations
points xn+1, . . . , xn+r that optimally reduces the expected uncertainty on the
future estimate, i.e. given an initial design Xn, select

xn+1 ∈ arg min
x∈X

En,x[Huncert
n+1 (x)].

Huncert
n+1 can be computed quite easily,

an efficient implementation of the optimal SUR criteria relies on
closed-form formulas derived, again, from the kriging update formulas 1.

1Clément Chevalier (2013). “Fast uncertainty reduction strategies relying on Gaussian process
models”. PhD thesis. Citeseer
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Sequential strategy for uncertainty reduction

Stepwise Uncertainty Reduction (SUR): find a sequence of evaluations
points xn+1, . . . , xn+r that optimally reduces the expected uncertainty on the
future estimate, i.e. given an initial design Xn, select

xn+1 ∈ arg min
x∈X

En,x[Huncert
n+1 (x)].

Huncert
n+1 can be computed quite easily,

an efficient implementation of the optimal SUR criteria relies on
closed-form formulas derived, again, from the kriging update formulas 1.

Evaluate g(xn+1) = E[f (xn+1,V)]

1Clément Chevalier (2013). “Fast uncertainty reduction strategies relying on Gaussian process
models”. PhD thesis. Citeseer
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Sequential expectation estimation

Aim

E[f (.,V)] '
l∑

i=1
wi f (., v̂i ), where v̂i ∈ Ξ and wi the associated weight.
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Functional Quantization formulation

Let V be a stochastic process defined in the space H = L2(Ω,F ,P;V) such
that

||V||L2 =
(
E[||V||2]

)1/2 =
(
E
[ ∫ T

0
V2dt

])1/2

,

Objective: Replace V by a r.v. taking finite number of values, V̂l , such
that E||V− V̂l ||2 is minimum.
For a given ’grid’ Θl = {v̂1, . . . , v̂l} ⊂ V, the Voronöı quantizer associated
to Θl is

V̂l =
l∑

i=1

v̂i 1Cv̂i (Θl )(V)

The weight associated to each v̂i is

P(V̂l = v̂i ) = P(V ∈ Cv̂i (Θl )), i = 1 . . . , l

How to find the optimal quantizer, i.e. the best ’grid’ ?
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Numerical computation of quantizers

Vectorial case:
Lloyd’s algorithm, Competitive
Learning Vector Quantization
algorithm (Gradient based alg.),
Greedy vector quantization 2.

Functional case :
Centroidal Voronoi Tessellation
method (probabilistic approach
of Lloyd’s alg.)
Optimal quantization for
Gaussian processes (e.g.
Brownian motion) Available
online at quantize.maths-fi.com

Figure: Quantizers for N (0, I2) of
size l = 150.

2Harald Luschgy and Gilles Pagès (2015). “Greedy vector quantization”. In: Journal of
Approximation Theory 198
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The Karhunen-Loève expansion

Let V ∈ H be a random process with zero mean and continuous covariance
function C(t, s). Then

V(t) '
m∑

i=1

uiψi (t),

where {ψi}m
i=1 are orthogonal and normalized eigenfunctions of the integral

operator corresponding to C . The {ui}m
i=1 denotes a set of orthogonal random

variables with zero mean and variance λi , where λi is the eigenvalue
corresponding to the eigenfunction ψi .
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Greedy Functional Quantization: L2-error

D̂1 = {û1} where û1 is the optimal solution at step 1

∀l ≥ 2 , D̂l = D̂l−1 ∪ {ûl}

where ûl ∈ arg min
u∈G

(
E||U−Ul ||2

)1/2
,

where U ∼ UG and Ul is the l-quantization induced by {û1, ..., ûl−1} ∪ {u}.
17/37
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17/37



Data-driven stochastic inversion via functional quantization Stochastic inversion via meta-modelling in the joint space IFPEN test case Conclusion and outlook

Greedy Functional Quantization: L2-error
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Greedy Functional Quantization: Maximin criterion

Initialization: D̃1 = {ũ1} where ũ1 is randomly chosen
∀l ≥ 2 , D̃l = D̃l−1 ∪ {ũl}

where ũl ∈ arg max
u∈G

φMaximin

(
D̃l−1 ∪ {u}

)
.
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where ũl ∈ arg max
u∈G

φMaximin

(
D̃l−1 ∪ {u}

)
.

18/37



Data-driven stochastic inversion via functional quantization Stochastic inversion via meta-modelling in the joint space IFPEN test case Conclusion and outlook

Greedy Functional Quantization: Maximin criterion
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Comparison of the two proposed constructions to the MC method:

f : (x, v) 7→ max
t

vt .|0.1 cos(x1 max
t

vt) sin(x2).(x1+x2 min
t

vt)2|.
∫ T

0
(30+vt)

x1.x2
20 dt,

x = (x1, x2) = (2.95, 3.97)
card(Ξ) = 200 (Brownian motion)

m = 2
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Algorithm Data-driven stochastic inversion via functional quantization

1: Create an initial DoE Xn of n points in the control space X
2: Gaussian process regression from Xn and gXn

3: Vorob’ev estimation of Γ∗ : Qn
4: while Stopping criterion not met (SUR) do
5: Choose xn+1 through a Stepwise Uncertainty Reduction (SUR) strategy
6: while Stopping criterion not met do
7: Θl+1 = {v̂1, . . . , v̂l} ∪ {v̂l+1} through GFQ
8: Approximate g(xn+1) = E

(
f (xn+1,V)

)
by E[f (xn+1, V̂l+1)]

9: Set l = l + 1
10: end while
11: Update DoE, Meta-model and estimation of Γ∗
12: Set n = n + 1
13: end while
14: end
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Analytical function with the Brownian motion

f : (x, v) 7→ max
t

vt .|0.1 cos(x1 max
t

vt) sin(x2).(x1+x2 min
t

vt)2|.
∫ T

0
(30+vt)

x1.x2
20 dt,

Γ∗ := {x ∈ [1.5, 5]× [3.5, 5] : g(x) = E[f (x,V)] ≤ c}.

Significant enhancement in term of precision in comparison with MC,
more efficient in term of number of calls to the simulator (MC ∼ 4000),
less sensitive to the truncation argument m.

L2-GFQ µ(Γ∗4Qnlast,α
∗
nlast

)/µ(Γ∗) Cumulative number of calls to f
m = 2 8.90 % (3.71) 1286 (26)
m = 3 7.72 % (3.38) 1139 (21)
m = 4 7.40 % (3.13) 1236 (20)
m = 5 7.05 % (5.09) 1214 (25)
m = 6 6.96 % (3.32) 1142 (21)

m 2 3 4 5 6
Explained variance 90.2 % 93.4 % 95.1 % 96 % 96.7%
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1. Data-driven stochastic inversion via functional quantization
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The framework
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Gaussian Process meta-modeling for f

We assume that f (x, v) is a realization of a Gaussian Process Z(x,u) defined on
X× Rm, where u = (< v, ψ1 >, . . . , < v, ψm >)>.

Let mZ be the mean function of Z(x,u) and kZ its covariance function.

Let us denote Z n, the GP Z conditioned on the set of n observations
(simulations) Zn = {f (x1, v1), . . . , f (xn, vn)} of Z at
Xn × Un = {(x1, u1), . . . , (xn, un)} where ui = (< vi , ψ1 >, . . . , < vi , ψm >)>

Z n
(x,u) = [Z(x,u)|ZXn×Un = Zn].

The conditional expectation and the conditional covariance are

E[Z n
(x,u)] = mZ (x, u)+kZ (x, u;Xn×Un)kZ (Xn×Un;Xn×Un)−1(Z−mZ (Xn×Un)).

Cov(Z n
(x,u),Z n

(x′,u′)) = kZ (x, u; x′, u′)
− kZ (x, u;Xn × Un)kZ (Xn × Un;Xn × Un)−1kZ (Xn × Un; x′, u′).
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Meta-modeling for g : integrated process
Recall that Γ∗ = {x ∈ X , g(x) = E[f (x,V)] ≤ c}. Therefore, to model the
function g , we introduce the integrated process

Y n
x = EU[Z n

(x,U)] =
∫
Rm

Z n
(x,u)dρ(u),

where dρ(u) is the probability distribution of U = (U1, . . . ,Um)T .
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function g , we introduce the integrated process

Y n
x = EU[Z n

(x,U)] =
∫
Rm

Z n
(x,u)dρ(u),

where dρ(u) is the probability distribution of U = (U1, . . . ,Um)T .

The process Y n
x is a Gaussian Process fully characterized by its mean and

covariance functions which are given by

E[Y n
x ] =

∫
Rm

mZ (x, u)+

kZ ((x, u);Xn × Un)kZ (Xn × Un;Xn × Un)−1(Z−mZ (Xn × Un))dρ(u),

and

Cov(Y n
x ,Y n

x′ ) =
∫
Rm

∫
Rm

kZ ((x, u); (x′, u′))

− kZ ((x, u);Xn × Un)kZ (Xn × Un;Xn × Un)−1kZ (Xn × Un; (x′, u′))dρ(u)dρ(u′).
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Infill strategy in the joint space

Estimate Γ∗ = {x ∈ X s.t. g(x) = E[f (x,V)] ≤ c}.

Step I: choose the control variable site

(Stepwise Uncertainty Reduction) x(n+1) = arg min
x∈X

En,x [Huncert
n+1 (x)].
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Infill strategy in the joint space

Estimate Γ∗ = {x ∈ X s.t. g(x) = E[f (x,V)] ≤ c}.

Step I: choose the control variable site

(Stepwise Uncertainty Reduction) x(n+1) = arg min
x∈X

En,x [Huncert
n+1 (x)].

Step II: choose the uncertain variable site

Choose the point in the uncertain space that reduces the most the
uncertainty of the estimated EU[g(x,U)] at the point x(n+1).

un+1 = argminũ∈RmVAR(Y n+1
xn+1 ),

with

VAR(Y n+1
xn+1 ) =

∫
Rm

∫
Rm

kZ ((xn+1, u); (xn+1, u′))− kZ ((xn+1, u);Xn+1 × Un+1)

kZ (Xn+1 × Un+1;Xn+1 × Un+1)−1kZ (Xn+1 × Un+1; (xn+1, u′))dρ(u)dρ(u′),

where Xn+1 × Un+1 = Xn × Un ∪ {(xn+1, ũ)}.
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Algorithm Stochastic inversion via joint space modelling

1: Create an initial DoE of n points in the joint space (X,Ξ)
2: Calculate simulator responses at the design points
3: while n ≤ budget do
4: Fit a GP model Z n

(x,u) of the simulator f
5: Induce a GP model Y n

x for the unobservable simulator g
6: x(n+1) ← SUR strategy
7: u(n+1) ← arg min

ũ∈G
VAR(Y n+1

x(n+1) )
8: Response at (x(n+1), v(n+1)); v(n+1) ∈ Ξ is the associated curve to u(n+1)
9: Update DoE

10: Set n = n + 1
11: end while
12: end
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Application of approach II

f : (x, v) 7→ max
t

vt .|0.1 cos(x1 max
t

vt) sin(x2).(x1+x2 min
t

vt)2|.
∫ T

0
(30+vt)

x1.x2
20 dt,

Γ∗ := {x ∈ [1.5, 5]× [3.5, 5] : g(x) = E[f (x,V)] ≤ c}.

Constant mean function m,
Matérn 5/2 covariance kernel,
n = 20 calls to f ,

threshold c = 1.2,
m = 2,
card(Ξ) = 200.
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Analytical function with Brownian motion
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Influence of the choice of v̂l : U(Ξ) versus VAR(Y n+1
x(n+1) )
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Influence of m
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Influence of m

Comparison of the computing time
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Sequential incrementation of m
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Comparison with approach I
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Summary of the approach II

Extend the concept of Gaussian Process modelling to the case where the
inputs contain a functional variable,

an infill strategy to deal with a stochastic inversion problem,
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Summary of the approach II

Extend the concept of Gaussian Process modelling to the case where the
inputs contain a functional variable,

an infill strategy to deal with a stochastic inversion problem,

computationally expensive: internal costs due to criterion calculation and
optimizations.

# calls to the simulator criterion calculation costs estimation error
I - + +
II + - -
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Outline

1. Data-driven stochastic inversion via functional quantization

2. Stochastic inversion via meta-modelling in the joint space

3. IFPEN test case

4. Conclusion and outlook
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IFPEN test case: control strategy for an automotive NOx depollution system

NHout
3 ≤ 30 ppm

2 control parameters in
X = [0, 0.6]× [0, 0.6],
V represented by 100 driving
cycles,

Approach 1 : initial DOE 8 points
in X ⊂ R2 (a mean of 23 calls to f
at each point)
Approach 2 : initial DOE 5*22 in
X ⊂ R2+20 (20 eigen functions for
80% explained variance)
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in X ⊂ R2 (a mean of 23 calls to f
at each point)
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n = 510 calls to f
Approach I versus Approach II

n = 1575 calls to f with approach I
Reference excursion set
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Conclusion

Dealing with functional uncertainties:
two greedy expectation estimation via functional quantization coupled with
a SUR strategy in control variable space,
sequential strategy to wisely choose the points in the joint space.

IFPEN test case:
application of the approach I to the case with control variables x ∈ X ⊂ R9

(not presented),
approach II can be applied directly to mixed functional and vectorial
uncertainties.

Other IFPEN applications of approaches I and II :
• Wave energy system (random waves), wind turbine (random winds).
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other functionals of the output distribution (e.g. quantiles).
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Conclusion

Dealing with functional uncertainties:
two greedy expectation estimation via functional quantization coupled with
a SUR strategy in control variable space,
sequential strategy to wisely choose the points in the joint space.

IFPEN test case:
application of the approach I to the case with control variables x ∈ X ⊂ R9

(not presented),
approach II can be applied directly to mixed functional and vectorial
uncertainties.

Other IFPEN applications of approaches I and II :
• Wave energy system (random waves), wind turbine (random winds).

Outlook

Extend the proposed methods to the case of correlated responses (e.g. for
bi-objective inversion),
other functionals of the output distribution (e.g. quantiles).

Thanks for your attention !
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Application 1

f : (x, v) 7→ max
t

vt .|0.1 cos(x1 max
t

vt) sin(x2).(x1+x2 min
t

vt)2|.
∫ T

0
(30+vt)

x1.x2
20 dt,

Γ∗ := {x ∈ [1.5, 5]× [3.5, 5] : g(x) = E[f (x,V)] ≤ c}.

Constant mean function m,
Matérn 5/2 covariance kernel,
n = 9 observations,

threshold c = 1.2,
m = 2,
card(Ξ) = 200.

µ(Γ∗4Qnlast,α
∗
nlast

)/µ(Γ∗)
(l0, ε) Crude MC Fpca L2-GFQ

(4,1.e-2) 9.53 % (4.12) 9.89 % (4.14) 7.50 %
(2,5.e-3) 9.84 % (3.24) 10.86 % (2.82) 7.93 %
(3,5.e-3) 9.54 % (3.81) 7.29 % (1.07) 6.87 %
(4,5.e-3) 8.98 % (2.62) 7.01 % (1.21) 6.79 %
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Application 1

f : (x, v) 7→ max
t

vt .|0.1 cos(x1 max
t

vt) sin(x2).(x1+x2 min
t

vt)2|.
∫ T

0
(30+vt)

x1.x2
20 dt,

Γ∗ := {x ∈ [1.5, 5]× [3.5, 5] : g(x) = E[f (x,V)] ≤ c}.

Constant mean function m,
Matérn 5/2 covariance kernel,
n = 9 observations,

threshold c = 1.2,
m = 2,
card(Ξ) = 200.

Cumulative number of calls to the function f
(l0, ε) Crude MC Fpca L2-GFQ

(4,1.e-2) 2849 (27) 2805 (24) 1225 (42)
(2,5.e-3) 2393 (26) 2670 (23) 978 (22)
(3,5.e-3) 3537 (23) 3661 (20) 1096 (21)
(4,5.e-3) 4400 (23) 4278 (20) 1489 (26)
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Application 1

f : (x, v) 7→ max
t

vt .|0.1 cos(x1 max
t

vt) sin(x2).(x1+x2 min
t

vt)2|.
∫ T

0
(30+vt)

x1.x2
20 dt,

Γ∗ := {x ∈ [1.5, 5]× [3.5, 5] : g(x) = E[f (x,V)] ≤ c}.

Constant mean function m,
Matérn 5/2 covariance kernel,
n = 9 observations,

threshold c = 1.2,
m = {2, 3, 4, 5, 6},
card(Ξ) = 200.

µ(Γ∗4Qnlast,α
∗
nlast

)/µ(Γ∗) Cumulative number of calls to f
Fpca L2-GFQ Fpca L2-GFQ

m = 2 11.43 % (3.70) 8.90 % (3.71) 3855 (18) 1286 (26)
m = 3 10.70 % (3.38) 7.72 % (3.38) 4418 (24) 1139 (21)
m = 4 9.24 % (3.18) 7.40 % (3.13) 4438 (21) 1236 (20)
m = 5 8.94 % (2.66) 7.05 % (5.09) 4542 (21) 1214 (25)
m = 6 8.27 % (1.67) 6.96 % (3.32) 4955 (19) 1142 (21)
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