Functional-input metamodeling: an application to coastal flood early warning

José Betancourt

Advisor: Prof. Thierry Klein Co-advisor: Prof. François Bachoc

PhD thesis defense - Applied Mathematics June 08, 2020

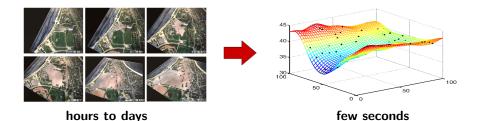
José Betancourt - PhD defense

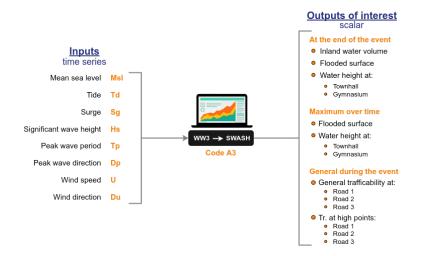
Outline

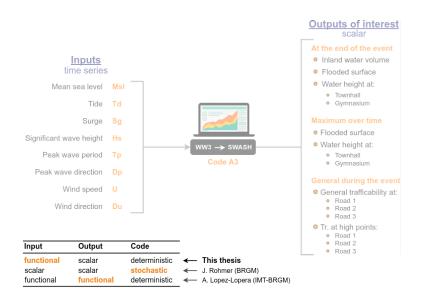
- Problem description
- Chapter 2. First metamodeling experiences
- Chapter 3. ACO based structural optimization
- Chapter 4. Consolidation of funGp R package
- Chapter 5. Structural optimization in RISCOPE
- Chapter 6. Asymptotics of trans-Gaussian Processes
- Perspectives and contributions

RISCOPE project framework: Coastal flooding early warning

 Objective: provide fast-running statistical models to replace the slow-running computer code → Metamodeling







Questions

Functional inputs

- what functional inputs are worth keeping active?
- what dimension reduction method is ideal?
- what is a suitable projection dimension?

Gaussian process metamodel

- what is a suitable kernel?
- what is a convenient distance to measure similarities between functional input points within the kernel function?

 \rightarrow We call these, $structural \ parameters$ of the metamodel

Reliability Engineering & System Safety Volume 198, June 2020, 106870

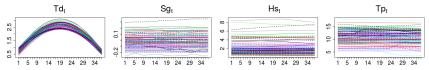
Gaussian process metamodeling of functionalinput code for coastal flood hazard assessment

José Betancourt 🎗 a, b 🛱, François Bachoc a, Thierry Klein a, b 🛱, Déborah Idier ° 🛱, Rodrigo Pedreros ° 🛱, Jérémy Rohmer ° 🛱

- First functional-input metamodeling attempts
- Proof of concept for goal-oriented structural optimization
- Development of first R routines

Ch.2 - Simplified numerical code

Inputs



Ch.2 - Metamodeling setting

- We split each functional input into a scalar and a functional representation, x and f, respectively.
- We observe a deterministic code of the form

 $(\boldsymbol{x}, \boldsymbol{f}) \mapsto f_{\mathsf{code}}\left(\boldsymbol{x}, \boldsymbol{f}\right)$

- $m{x}$ the vector of d_s scalar inputs $\left(x^{(i)}\in\mathbb{R},orall i=1,\ldots,d_s
 ight)$
- **f** the vector of d_f functional inputs $\left(f^{(i)}: T_i \subset \mathbb{R} \to \mathbb{R}, \forall i = 1, \dots, d_f\right)$

• We see f_{code} as a realization of a Gaussian process Y

 $Y \sim \mathcal{GP}(m,k),$

• *m* the mean function • *k* the covariance function.

José Betancourt - PhD defense

Funtional-input metamodeling

1. Dimension reduction: project $f^{(i)}: T_i \subset \mathbb{R} \to \mathbb{R}$ onto a space of lower dimension p_i .

$$f^{(i)}(t) \approx \Pi\left(f^{(i)}\right)(t) = \sum_{r=1}^{p} \alpha_r B_r(t)$$

• which projection method?

- B-splines (Muehlenstaedt, Fruth, & Roustant, 2017)
- PCA (Lataniotis, Marelli, & Sudret, 2018)
- Wavelets (Cohen, Daubechies, & Feauveau, 1992)
- PLS (Papaioannou, Ehre, & Straub, 2019)

which dimension?

2. Covariance function

$$k(Y(\boldsymbol{x},\boldsymbol{f}),Y(\tilde{\boldsymbol{x}},\tilde{\boldsymbol{f}})) = \sigma^2 R\left(\|\boldsymbol{x}-\tilde{\boldsymbol{x}}\|_{L^2,\boldsymbol{\theta}_{\boldsymbol{s}}}\right) R\left(\|\boldsymbol{f}-\tilde{\boldsymbol{f}}\|_{L^2,\boldsymbol{\theta}_{\boldsymbol{f}}}\right)$$

Distance: measure the similarity between points

• For scalars: $\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|_{L^{2}, \boldsymbol{\theta}_{s}} = \sqrt{\sum_{i=1}^{ds} \frac{\|\boldsymbol{x}^{(i)} - \tilde{\boldsymbol{x}}^{(i)}\|^{2}}{\left(\theta_{s}^{(i)}\right)^{2}}}$ classical • For functions: $\|\Pi(\boldsymbol{f}) - \Pi(\tilde{\boldsymbol{f}})\|_{S, \boldsymbol{\theta}_{f}} := \sqrt{\sum_{i=1}^{df} \sum_{r=1}^{p_{i}} \frac{\left(\alpha_{r}^{(i)} - \tilde{\alpha}_{r}^{(i)}\right)^{2}}{\left(\dot{\theta}_{f, r}^{(i)}\right)^{2}}}$ Nanty et al. (2016) $\|\Pi(\boldsymbol{f}) - \Pi(\tilde{\boldsymbol{f}})\|_{D, \boldsymbol{\theta}_{f}} := \sqrt{\sum_{i=1}^{df} \frac{\int_{r=1}^{p_{i}} \left(\sum_{r=1}^{q_{i}} \left(\alpha_{r}^{(i)} - \tilde{\alpha}_{r}^{(i)}\right) B_{r}^{(i)}(t)\right)^{2} dt}}{\left(\theta_{f}^{(i)}\right)^{2}}}$

Muehlenstaedt et al. (2017)

Features to define:

- State of functional inputs
 - active
 inactive
- Projection dimension
 - $\{1, \ldots, 37\}$

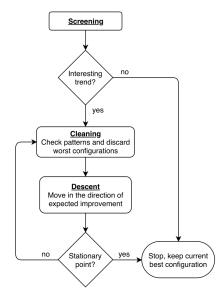
Features fixed:

- State of scalar inputs: active
- Kernel function: Matérn 5/2

- Projection method
 - B-splines PCA
- Distance for functions

•
$$\|\cdot\|_{S, \dot{\theta_f}}$$
 • $\|\cdot\|_{D, \theta_f}$

Ch.2 - First exploration approach



Based on Response Surface Methodology (Montgomery, 1997; Pulido et al., 2012)

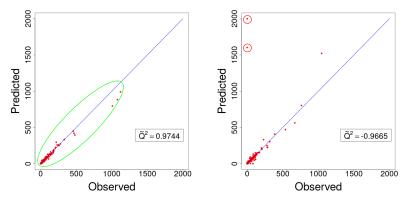
José Betancourt - PhD defense

Funtional-input metamodeling

June 08, 2020

Ch.2 - Results for RISCOPE

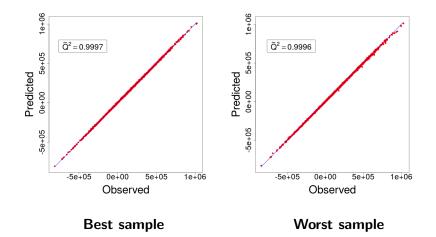
Best structural configuration found



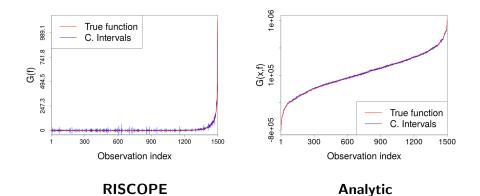
Best sample

Worst sample

Best structural configuration found



Fit of sorted output



José Betancourt - PhD defense

Results

- Outstanding metamodels in all the experiments
- Ideal projection method and dimension varied with the application
- $\|\cdot\|_{D, \theta_{f}}$ consistently outperformed $\|\cdot\|_{S, \dot{\theta_{f}}}$

Conclusions

- Effective tool for structural optimization
- The optimization must be performed each time
- Intensive exploration of more features and levels might lead to policies
- A more efficient exploration approach would be required

Ant Colony Based Model Selection for Functional-Input Gaussian Process Regression

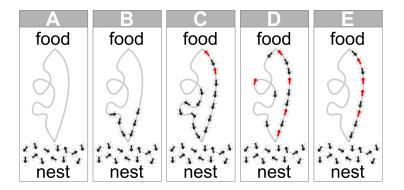
Technical Report - April 2020

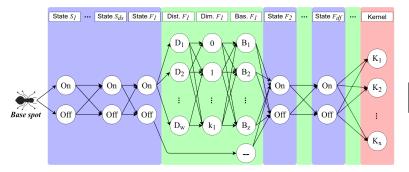
Deliverable: D3.b Reference: WP3.2

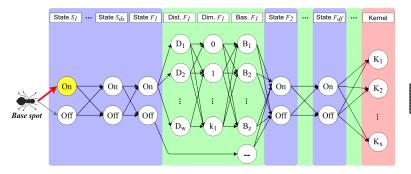
José Betancourt, François Bachoc, Thierry Klein, Fabrice Gamboa

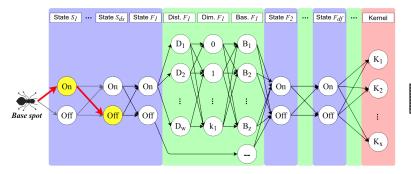
• More efficient exploration of the solution space

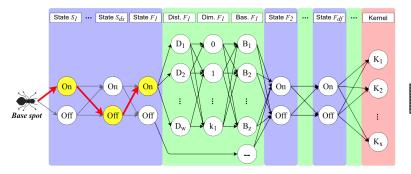
The double bridge experiment (Goss et al., 1989)

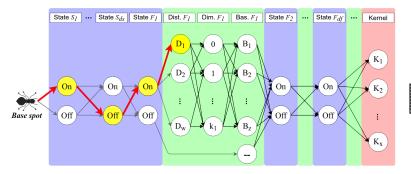


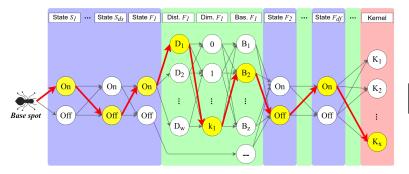




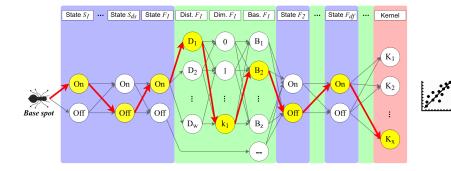








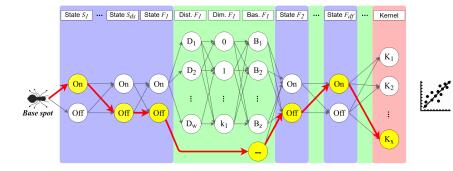
Ch.3 - Decision network for structural optimization



 $\textcolor{red}{local} \ pheromone \ update \rightarrow$

 \leftarrow global pheromone update

Ch.3 - Decision network for structural optimization

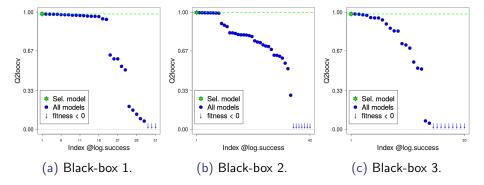


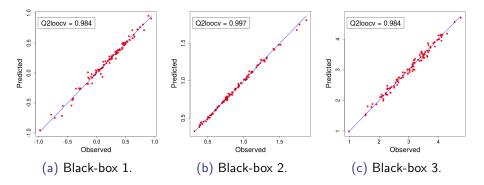
case of *inactive* functional input

Ch.3 - Evolution of the heuristic



Ch.3 - Relative quality of selected models



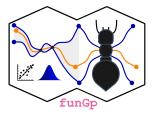


• What our algorithm does: smart selection of configurations to test What is doesn't do: faster evaluation of one configuration

Conclusions

- Better use the time based stopping condition
- The new algorithm allows for a wider exploration of features and levels
- Desirable to make this development publicly accessible (R package?)

Chapter 4. Consolidation of funGp R package

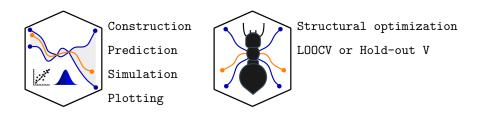


Gaussian Process Regression for Scalar and Functional Inputs with funGp The in-depth tour

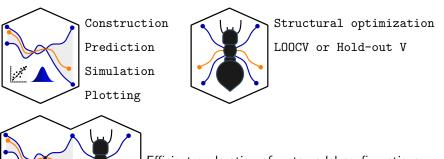
Authors: José Betancourt, François Bachoc, Thierry Klein. **Contributors:** Déborah Idier, Jérémy Rhomer.

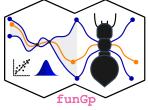
Official manual for funGp 0.1.0 (2020), downloadable from CRAN and GitHub.

• Scalar-, Functional-, and Hybrid-input Gaussian Process Regression



• Scalar-, Functional-, and Hybrid-input Gaussian Process Regression





Efficient exploration of metamodel configurations Selection of models with superior predictability

Ch.4 - funGp R package

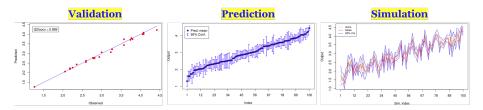
Metamodeling

- fgpm(sIn, fIn, sOut)
- fgpm(sIn, fIn, sOut, basis)
- fgpm(sIn, fIn, sOut, kernel)
- fgpm(sIn, fIn, sOut, basis, dimen, dist, kernel, n.strt, cl)

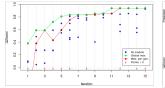
Structural optimization

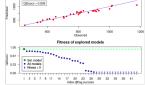
- fgpm_factory(sIn, fIn, sOut)
- fgpm_factory(sIn, fIn, sOut, constr, tlim, n.iter, ACOSetup, cl)

Ch.4 - funGp R package



Structural optimization

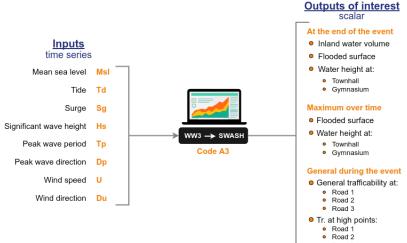




funGp in brief

- Regression with scalar and functional inputs based on a non-parametric model
- Built-in dimension reduction
- Boosted performance through parallelization
- Modular-oriented implementation for easy extension
- Comprehensive manual available as pre-print in HAL
- Open source, available from CRAN and GitHub

Chapter 5. Structural optimization in RISCOPE - an update

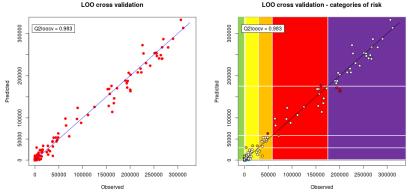


Road 3

Q^2_{loocv} for each of the 13 output variables

Output ID	All scalar	All scalar + all functional	All scalar + some functional	Ants selection	Ants active scalar	Ants active functional
Ysurf_max	0,959	0,957	0,962	0,980	$\{1,2,3,5,6,8\}$	$\{2,4\}$
Ysurf_fin		0,916	0,946	0,981	$\{1,2,3,5,6,7\}$	{7}
Yvol_fin	0,929	0,927	0,938	0,961	$\{1,2,3,5,6\}$	$\{3,4,5,7\}$
Ytr_ft1	0,927	0,929	0,928	0,963	$\{1,2,3,5,7,8\}$	{2}
Ytr_ft2	0,950	0,958	0,957	0,977	$\{1,3,5,7,8\}$	$\{2,5,6,7\}$
Ytr_ft3	0,533	0,655	0,469	0,764	$\{1,2,3,4,6,8\}$	$\{3,5,6\}$
Ytr_fh1		0,954	0,960	0,965	$\{1,2,3,5,7,8\}$	$\{2,4,5,6,7\}$
Ytr_fh2	0,941	0,862	0,959	0,974	$\{1,2,3,4,5,6,7,8\}$	{2}
Ytr_fh3	0,791	0,806	0,828	0,887	$\{1,3,4,5,7,8\}$	$\{2,4,5\}$
Yhcb_max1	0,576	0,499	0,443	0,900	$\{1,3,4,5,6\}$	$\{2,3,6,7,8\}$
Yhcb_max2	0,897	0,895	0,880	0,939	$\{1,3,4,6,7,8\}$	{2}
Yhcb_fin1		0,274	0,320	$0,\!625$	$\{1,2,4,6,7,8\}$	{3}
Yhcb_fin2	0,893	0,883	0,890	$0,\!926$	$\{1,3,5,6,7\}$	$\{2,4\}$

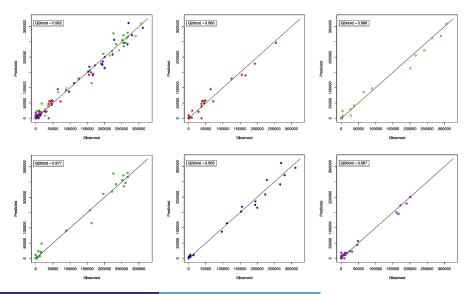
LOO cross-validation for Ysurf_max



LOO cross validation - categories of risk

Ch.5 - Full numerical code

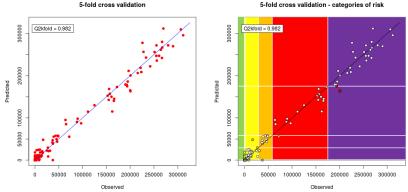
5-fold cross-validation for Ysurf_max



José Betancourt - PhD defense

Funtional-input metamodeling

5-fold cross-validation for Ysurf_max



5-fold cross validation - categories of risk

Chapter 5. Conclusions so far

- The ACO algorithm allowed to achieve superior results the 13 metamodels
 → robustness of the method to variations in the input-output relationship
- Promising results for most of the outputs
 → expected to improve when adding Ysurf_max as input for the other metas
- Results achieved with funGp in 10 minutes
 → expected to improve when allowed to run for more time
- The solutions found by ACO were non-trivial

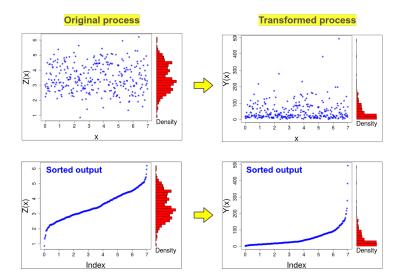
fgpm call delivered by ACO:

 \rightarrow potential loss of predictability when we make selections by hand \rightarrow better to optimize

Electronic Journal of Statistics Vol. 14 (2020) 1962–2008 ISSN: 1935-7524 https://doi.org/10.1214/20-EJS1712

Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes

François Bachoc 1, José Betancourt 2, Reinhard Furrer 3 and Thierry ${\rm Klein}^4$



Ch.6 - Objective of the study

- Two asymptotic frameworks for covariance parameter estimation
 - fixed-domain: observation points dense in a bounded domain
 - increasing-domain: number of observation points is proportional to domain volume \rightarrow unbounded observation domain
- Two estimators for covariance parameters estimation
 - Maximum likelihood (ML)
 - Cross validation (CV)
- Under increasing domain asymptotics
 - Assumption that observations come from Gaussian field: ML and CV consistent and asymptotically normal
 - Without the Gaussianity assumption: no results so far

• **Objective:** to extend the asymptotic results to observations from a non-Gaussian random field

Transformed Gaussian process

- \bullet Unobserved Gaussian process Z on $\mathbb{R}^d,$ with zero mean and covariance function k_Z
- Fixed (and unknown) non-linear transformation function T
- Observed transformed Gaussian process Y defined by Y(s) = T(Z(s)) for any $s \in \mathbb{R}^d$. Assumed zero mean. Covariance function k_Y
- Sequence of observation locations $(s_i)_{i\in\mathbb{N}}$, $s_i\in\mathbb{R}^d$, $i\in\mathbb{N}$
- Non-Gaussian observation vector $y = (Y(s_1), ..., Y(s_n))^\top$ with covariance matrix $R = (k_Y(s_i s_j))_{i,j=1,...,n}$, for $n \in \mathbb{N}$

Covariance parameters

- Parametric set of stationary covariance functions $\{k_{Y,\theta}; \theta \in \Theta\}$ on \mathbb{R}^d , with Θ a compact set of \mathbb{R}^p
- $\theta = (\sigma^2, \psi)$, with σ^2 and ψ the variance and correlation parameters, resp.
- $k_Y = k_{Y, \theta_0}$, with $\theta_0 \in \Theta$

• The maximum likelihood estimator of θ_0 is

$$\hat{\theta}_{\mathsf{ML}} \in \operatorname*{argmin}_{\theta \in \Theta} L_{\theta},$$

with
$$L_{\theta} = \frac{1}{n} \left(\log(\det(R_{\theta})) + y^{\top} R_{\theta}^{-1} y \right)$$

• The cross validation estimator of ψ_0 is

$$\hat{\psi}_{\mathsf{CV}} \in \operatorname*{argmin}_{\psi \in \mathcal{S}} CV_{\psi},$$

with
$$CV_{\psi} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_{i,\psi})^2$$

Bounds on the elements of inverse covariance matrices (Theorem 1)

- Let $(s_i)_{i\in\mathbb{N}}$ be the sequence of observation locations, with $s_i\in\mathbb{R}^d$
- Let ${\cal R}$ be the covariance matrix of the non-Gaussian observations Then we have

$$(R^{-1})_{i,j} \le \frac{C_{\sup}}{1+|s_i-s_j|^{d+\tau}},$$

with $C_{\sup} < \infty$, d the input dimension and $0 < \tau < \infty$

CLT for quadratic forms of trans-Gps (*Theorem 2*)

- Let y be the n-element vector of non-Gaussian observations.
- Let $(A_n)_{n \in \mathbb{N}}$ be a sequence of matrices (each $n \times n$). Assume

$$|(A_n)_{i,j}| \leq \frac{C_{\sup}}{1+|s_i-s_j|^{d+C_{\inf}}}, \quad \forall n \in \mathbb{N}, \quad \forall i,j=1,\dots,n$$

• Let $V_n = \frac{1}{n}y^{\top}A_ny$. Let \mathcal{L}_n be the distribution of $\sqrt{n}(V_n - \mathbb{E}[V_n])$

As $n \to \infty$, $d_w(\mathcal{L}_n, \mathcal{N}[0, n \operatorname{Var}(V_n)]) \to 0$

In addition, $(n \operatorname{Var}(V_n))_{n \in \mathbb{N}}$ is bounded

Maximum likelihood (Theorems 3 and 4, resp.)

• Consistency: $\hat{\theta}_{\mathsf{ML}} \xrightarrow{p} \theta_0$ as $n \to \infty$.

• Asymptotic normality:

Let $\mathcal{L}_{\theta_0,n}$ be the distribution of $\sqrt{n}(\hat{\theta}_{\mathsf{ML}} - \theta_0)$. Using Theorem 2,

as
$$n \to \infty$$
, $d_w \left(\mathcal{L}_{\theta_0, n}, \mathcal{N}[0, M_{\theta_0}^{-1} \Sigma_{\theta_0} M_{\theta_0}^{-1}] \right) \to 0$,

with
$$(M_{\theta_0})_{i,j} = (1/n) \operatorname{tr} \left(R_{\theta_0}^{-1} (\partial R_{\theta_0} / \partial \theta_i) R_{\theta_0}^{-1} (\partial R_{\theta_0} / \partial \theta_j) \right)$$

 $(\Sigma_{\theta_0})_{i,j} = \operatorname{Cov}(\sqrt{n} \ \partial L_{\theta_0} / \partial \theta_i, \sqrt{n} \ \partial L_{\theta_0} / \partial \theta_j), \qquad i, j = 1, \dots, p.$

Maximum likelihood (Proofs of Theorems 3 and 4, resp.)

• Steps for consistency:

- 1. Show that $\operatorname{Var}(L_{\theta}) \to 0$ as $n \to \infty$
- 2. Show that $\sup_{\theta \in \theta} \left| \frac{\partial L_{\theta}}{\partial \theta} \right| = O_p(1)$ by finding a suitable bound for it.
- 3. Proceed as in the proof of Proposition 3.1 in Bachoc (2014).

Steps for asymptotic normality:

- 1. Expand the first derivative of L_{θ} as a Taylor series around θ_0 .
- 2. Evaluate at $\hat{\theta}_{ML}$, equal to zero, solve for $(\hat{\theta}_{ML} \theta_0)$ and multiply by \sqrt{n} .
- 3. Apply Slutsky lemma.
 - 3.1 Check convergence in probability of $\sqrt{n} \left[-\partial^2 L_{\theta_0} / \partial \theta^2 \right]^{-1} V$.
 - 3.2 Check convergence in distribution of $\sqrt{n} \left[-\partial^2 L_{\theta 0} / \partial \theta^2 \right]^{-1} \partial L \theta_0 / \partial \theta$.
- 4. Show that the elements of the asymptotic covariance matrix are bounded.
 - 4.1 Show that elements of $M_{\theta_0}^{-1}$ and Σ_{θ_0} are bounded.
 - 4.2 Conclude that $\limsup_{n\to\infty} \lambda_1(M_{\theta_0}^{-1}\Sigma_{\theta_0}M_{\theta_0}^{-1}) < +\infty.$

Cross Validation (Theorems 5 and 6, resp.)

• Consistency: $\hat{\psi}_{CV} \xrightarrow{p} \psi_0$ as $n \to \infty$.

• Asymptotic normality:

Let $\mathcal{Q}_{\psi_0,n}$ be the distribution of $\sqrt{n}(\hat{\psi}_{\mathsf{CV}}-\psi_0).$ Using Theorem 2,

as
$$n o\infty$$
, $d_w\left(\mathcal{Q}_{\psi_0,n},\mathcal{N}[0,N_{\psi_0}^{-1}\Gamma_{\psi_0}N_{\psi_0}^{-1}]
ight) o 0,$

with $(N_{\theta_0})_{i,j} =$ a long to write expression (provided in the manuscript) $(\Gamma_{\psi_0})_{i,j} = \operatorname{Cov}(\sqrt{n} \ \partial CV_{\psi_0}/\partial \psi_i, \sqrt{n} \ \partial CV_{\psi_0}/\partial \psi_j), \qquad i, j = 1, \dots, p.$

Joint estimator (Theorem 7)

- Consistency: follows from Theorems 3 and 5.
- Asymptotic normality:

Let $Q_{\theta_0,n}$ be the distribution of $\sqrt{n} \begin{pmatrix} \hat{\theta}_{\mathsf{ML}} - \theta_0 \\ \hat{\psi}_{\mathsf{CV}} - \psi_0 \end{pmatrix}$. Using Theorem 2,

as
$$n o \infty$$
, $d_w \left(\mathcal{Q}_{ heta_0,n}, \mathcal{N}[0, D_{ heta_0}^{-1} \Psi_{ heta_0} D_{ heta_0}^{-1}]
ight) o 0$,

with $D_{\theta_0} =$ a long to write expression depending on M_{θ_0} and N_{ψ_0} (provided in the manuscript)

$$\Sigma_{\theta_0} = \operatorname{Cov}(\sqrt{n} \ \partial L_{\theta_0} / \partial \theta, \partial C V_{\psi_0} / \partial \psi).$$

Conclusions

- Covariance parameters of transformed Gaussian processes can be properly estimated by ML and CV
 - Both consistent and asymptotically normal
- Same rate of convergence \sqrt{n} for ML and CV
- Same rate of convergence \sqrt{n} as for Gaussian processes
- Explicit expressions for the asymptotic covariance matrix

Foreseen extension

- Same questions but estimating the transform parameters
 - potential improvement in predictions
 - possibility to account for boundary constraints

Perspectives and contributions

RISCOPE till 2021! (José till August) - short term perspectives

- Metamodels for the Decision Support System
 - \rightarrow ACO allowed to run for a longer period
 - \rightarrow <code>Ysurf_max</code> as input for the other metamodels

- Analysis of patterns in the record of explored metamodels
- $\bullet\,$ More levels of structural parameters $\rightarrow\,$ other projection methods

Beyond RISCOPE - long term perspectives

- ACO extensions
 - More levels of structural parameters \rightarrow other distances, kernels
 - $\bullet\,$ Other structural parameters $\to\,$ type of mean function
 - Functional inputs in larger dimensions \rightarrow fields or images
 - $\bullet\,$ Functional outputs $\rightarrow\,$ time as input, ensamble of metas, cokriging
- Strongly skewed data \rightarrow corrective DOE, transformed Gp

Scientific production

Published papers

- Gaussian process metamodeling of functional-input code for coastal flood hazard assessment, Reliability Engineering & System Safety, 2020.
 Betancourt, Bachoc, Klein, Idier, Pedreros & Rohmer (2020)
- Asymptotic properties of the maximum likelihood and cross validation estimators for transformed Gaussian processes, *Electronic Journal of Statistics*. Bachoc, Betancourt, Furrer, & Klein (2020)

Conference paper

 Toward a user-based, robust and fast running method for coastal flooding forecast, early warning, and risk prevention, *Journal of coastal research, proceedings from the International Coastal Symposium (ICS) 2020.* Idier, Aurouet, Bachoc, Baills, Betancourt, Durand, Mouche, Rohmer, Gamboa, Klein, Lambert, Le Cozannet, Le Roy, Louisor, Pedreros & Véron (2020)

Software

- R package funGp, Available on CRAN and GitHub since 2020. Authors: Betancourt, Bachoc, Klein Contributors: Idier, Rohmer
- funGp user manual: Gaussian process regression for scalar and functional inputs with funGp The in-depth tour. Available as pre-print from HAL (2020).

Summary of contributions

- Metamodels for Decision Support System in coastal flood early warning
 - Most of them promising

- Novel approach for optimization of structural parameters
 - Pertinency made evident for all the 13 output variables

• R package integrating the metamodeling techniques used in RISCOPE

• Extends the state of the art in various ways

- First asymptotic results for transformed Gaussian processes
 - Properties of ML and CV in a common yet unexplored setting

Functional-input metamodeling: an application to coastal flood early warning

José Betancourt

Advisor: Prof. Thierry Klein Co-advisor: Prof. François Bachoc

PhD thesis defense - Applied Mathematics June 08, 2020

José Betancourt - PhD defense

- Bachoc, F. (2014). Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes. *Journal of Multivariate Analysis*, 125, 1-35.
- Bachoc, F., Betancourt, J., Furrer, R., Klein, T., et al. (2020). Asymptotic properties of the maximum likelihood and cross validation estimators for transformed gaussian processes. *Electronic Journal of Statistics*, 14(1), 1962–2008.
- Betancourt, J., Bachoc, F., & Klein, T. (2020a). funGp: Gaussian process models for scalar and functional inputs. https://github.com/djbetancourt-gh/funGp. GitHub.
- Betancourt, J., Bachoc, F., & Klein, T. (2020b, April). fungp: Gaussian process models for scalar and functional inputs. https://CRAN.R-project.org/package=funGp. (R package version 0.1.0)
- Betancourt, J., Bachoc, F., & Klein, T. (2020c, April). Gaussian process regression for scalar and functional inputs with fungp - the in-depth tour. RISCOPE project. https://hal.archives-ouvertes.fr/hal-02536624. (hal-02536624)
- Betancourt, J., Bachoc, F., Klein, T., & Gamboa. (2020, April). Technical report: Ant colony based model selection for functional-input gaussian process regression. Ref. D3.b (WP3.2), RISCOPE project. https://hal.archives-ouvertes.fr/hal-02532713. (hal-02532713)
- Betancourt, J., Bachoc, F., Klein, T., Idier, D., Pedreros, R., & Rohmer, J. (2020). Gaussian process metamodeling of functional-input code for coastal flood hazard assessment. *Reliability Engineering & System Safety*, 198, 106870.

Bibliography II

- Cohen, A., Daubechies, I., & Feauveau, J.-C. (1992). Biorthogonal bases of compactly supported wavelets. *Communications on pure and applied mathematics*, *45*(5), 485–560.
- Goss, S., Aron, S., Deneubourg, J.-L., & Pasteels, J. M. (1989). Self-organized shortcuts in the argentine ant. Naturwissenschaften, 76(12), 579–581.
- Idier, D., Aurouet, A., Bachoc, F., Baills, A., Betancourt, J., Durand, J., ... Vron, A. (2020). Toward a user-based, robust and fast running method for coastal flooding forecast, early warning, and risk prevention. *Journal of coastal research*, 95, 11–15.
- Lataniotis, C., Marelli, S., & Sudret, B. (2018). Extending classical surrogate modelling to ultrahigh dimensional problems through supervised dimensionality reduction: a data-driven approach. arXiv preprint arXiv:1812.06309.
- Montgomery, D. C. (1997). Response surface methods and other approaches to process optimization. *Design and analysis of experiments.*
- Muehlenstaedt, T., Fruth, J., & Roustant, O. (2017). Computer experiments with functional inputs and scalar outputs by a norm-based approach. *Statistics and Computing*, 27(4), 1083–1097.
- Nanty, S., Helbert, C., Marrel, A., Pérot, N., & Prieur, C. (2016). Sampling, metamodeling, and sensitivity analysis of numerical simulators with functional stochastic inputs. *SIAM/ASA Journal on Uncertainty Quantification*, 4(1), 636–659.
- Papaioannou, I., Ehre, M., & Straub, D. (2019). Pls-based adaptation for efficient pce representation in high dimensions. *Journal of Computational Physics*, 387, 186–204.
- Pulido, H. G., De la Vara Salazar, R., González, P. G., Martínez, C. T., & Pérez, M. d. C. T. (2012). Análisis y diseño de experimentos. New York: McGraw-Hill.