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Résumé
Les inondations en général affectent plus de personnes que tout autre catastrophe. Au

cours de la dernière décennie du 20ème siècle, plus de 1.5 milliard de personnes ont été
affectées. Afin d’atténuer l’impact de ce type de catastrophe, un effort scientifique signifi-
catif a été consacré à la constitution de codes de simulation numériques pour la gestion des
risques. Les codes disponibles permettent désormais de modéliser correctement les événe-
ments d’inondation côtière à une résolution assez élevée. Malheureusement, leur utilisation
est fortement limitée pour l’alerte précoce, avec une simulation de quelques heures de dy-
namique maritime prenant plusieurs heures à plusieurs jours de temps de calcul. Cette thèse
fait partie du projet ANR RISCOPE, qui vise à remédier cette limitation en construisant des
métamodèles pour substituer les codes hydrodynamiques coûteux en temps de calcul.

En tant qu’exigence particulière de cette application, le métamodèle doit être capable de
traiter des entrées fonctionnelles correspondant à des conditions maritimes variant dans le
temps. À cette fin, nous nous sommes concentrés sur les métamodèles de processus Gaussiens,
développés à l’origine pour des entrées scalaires, mais maintenant disponibles aussi pour des
entrées fonctionnelles. La nature des entrées a donné lieu à un certain nombre de questions
sur la bonne façon de les représenter dans le métamodèle: (i) quelles entrées fonctionnelles
méritent d’être conservées en tant que prédicteurs, (ii) quelle méthode de réduction de di-
mension (e.g., B-splines, PCA, PLS) est idéale, (iii) quelle est une dimension de projection
appropriée, et (iv) quelle est une distance adéquate pour mesurer les similitudes entre les
points d’entrée fonctionnels dans la fonction de covariance. Certaines de ces caractéristiques
- appelées ici paramètres structurels - du modèle et d’autres telles que la famille de covari-
ance (e.g., Gaussien, Matérn 5/2) sont souvent arbitrairement choisies a priori. Comme
nous l’avons montré à travers des expériences, ces décisions peuvent avoir un fort impact
sur la capacité de prédiction du métamodèle. Ainsi, sans perdre de vue notre but de con-
tribuer à l’amélioration de l’alerte précoce des inondations côtières, nous avons entrepris la
construction d’une méthodologie efficace pour définir les paramètres structurels du modèle.

Comme première solution, nous avons proposé une approche d’exploration basée sur la
Méthodologie de Surface de Réponse. Elle a été utilisé efficacement pour configurer le méta-
modèle requis pour une fonction de test analytique, ainsi que pour une version simplifiée du
code étudié dans RISCOPE. Bien que relativement simple, la méthodologie proposée a pu
trouver des configurations de métamodèles de capacité de prédiction élevée avec des économies
allant jusqu’à 76.7% et 38.7% du temps de calcul utilisé par une approche d’exploration ex-
haustive dans les deux cas étudiés. La solution trouvée par notre méthodologie était optimale
dans la plupart des cas. Nous avons développé plus tard un deuxième prototype basé sur
l’Optimisation par Colonies de Fourmis. Cette nouvelle approche est supérieure en termes de
temps de solution et de flexibilité sur les configurations du modèle qu’elle permet d’explorer.
Cette méthode explore intelligemment l’espace de solution et converge progressivement vers
la configuration optimale. La collection d’outils statistiques utilisés dans cette thèse a mo-
tivé le développement d’un package R appelé funGp. Celui-ci est maintenant disponible dans
GitHub et sera soumis prochainement au CRAN.

Dans un travail indépendant, nous avons étudié l’estimation des paramètres de covariance
d’un processus Gaussien transformé par Maximum de Vraisemblance (MV) et Validation
Croisée. Nous avons montré la consistance et la normalité asymptotique des deux estimateurs.
Dans le cas du MV, ces résultats peuvent être interprétés comme une preuve de robustesse
du MV Gaussien dans le cas de processus non Gaussiens.

v



Abstract
Currently, floods in general affect more people than any other hazard. In just the last

decade of the 20th century, more than 1.5 billion were affected. In the seek to mitigate the
impact of this type of hazard, strong scientific effort has been devoted to the constitution of
computer codes that could be used as risk management tools. Available computer models now
allow properly modelling coastal flooding events at a fairly high resolution. Unfortunately,
their use is strongly prohibitive for early warning, with a simulation of few hours of maritime
dynamics taking several hours to days of processing time, even on multi-processor clusters.
This thesis is part of the ANR RISCOPE project, which aims at addressing this limitation
by means of surrogate modeling of the hydrodynamic computer codes.

As a particular requirement of this application, the metamodel should be able to deal with
functional inputs corresponding to time varying maritime conditions. To this end, we focused
on Gaussian process metamodels, originally developed for scalar inputs, but now available
also for functional inputs. The nature of the inputs gave rise to a number of questions about
the proper way to represent them in the metamodel: (i) which functional inputs are worth
keeping as predictors, (ii) which dimension reduction method (e.g., B-splines, PCA, PLS)
is ideal, (iii) which is a suitable projection dimension, and given our choice to work with
Gaussian process metamodels, also the question of (iv) which is a convenient distance to
measure similarities between functional input points within the kernel function. Some of
these characteristics - hereon called structural parameters - of the model and some others
such as the family of kernel (e.g., Gaussian, Matérn 5/2) are often arbitrarily chosen a priori.
Sometimes, those are selected based on other studies. As one may intuit and has been shown
by us through experiments, those decisions could have a strong impact on the prediction
capability of the resulting model. Thus, without losing sight of our final goal of contributing
to the improvement of coastal flooding early warning, we undertook the construction of an
efficient methodology to set up the structural parameters of the model.

As a first solution, we proposed an exploration approach based on the Response Surface
Methodology. It was effectively used to tune the metamodel for an analytic toy function,
as well as for a simplified version of the code studied in RISCOPE. While relatively simple,
the proposed methodology was able to find metamodel configurations of high prediction
capability with savings of up to 76.7% and 38.7% of the time spent by an exhaustive search
approach in the analytic case and coastal flooding case, respectively. The solution found
by our methodology was optimal in most cases. We developed later a second prototype
based on Ant Colony Optimization (ACO). This new approach is more powerful in terms of
solution time and flexibility in the features of the model allowed to be explored. The ACO
based method smartly samples the solution space and progressively converges towards the
optimal configuration. The collection of statistical tools used for metamodeling in this thesis
motivated the development of the funGp R package, which is now available in GitHub and
about to be submitted to CRAN.

In an independent work, we studied the estimation of the covariance parameters of a
Transformed Gaussian Process by Maximum Likelihood (ML) and Cross Validation. We
showed that both estimators are consistent and asymptotically normal. In the case of ML,
these results can be interpreted as a proof of robustness of Gaussian ML in the case of
non-Gaussian processes.
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Chapter 1

Introduction

1.1 Research context
In the early 20s, Ronald Fisher developed the base concepts of modern design of experiments
[1]. At the time, the only way to get data about a system of interest was to conduct a physical
experiment. The outstanding evolution of computer technology has took those concepts to
a whole new level, where in-field measurements can now be replaced by reliable and detailed
computer simulations. This possibility has enabled the study of a variety of complex systems
that otherwise would be too expensive or too difficult to observe. We refer, for instance,
to the optimal design of nuclear reactors [2] and space vehicles [3], or the modeling and
prediction of natural hazards [4]. Despite their advantages in terms of costs and control
over the experiment, computer codes for environmental and industrial applications often
happen to be too time-consuming for direct application (e.g., for uncertainty quantification
or fast prediction) [5]. This obstacle is typically circumvented by creating quick-to-evaluate
mathematical emulators of those numerical codes, based on a limited collection of runs (see
e.g., [6]); such emulators are often called surrogate models or metamodels. This thesis makes
part of the ANR RISCOPE project (https://perso.math.univ-toulouse.fr/riscope/ ), devoted
to the application of metamodeling techniques for the improvement of coastal flooding early
warning.

One of the particularities of the codes studied here, is that they receive multiple time
series as inputs. Those correspond to key maritime conditions such as the tide, atmospheric
storm surge, and significant wave height. The proper modeling of functional inputs has been
of main interest in the project since the beginning, and the manuscript makes strong emphasis
on this subject. In this regard, we have studied the possibility of implementing dimension
reduction techniques in order to simplify the input data structures and obtain lighter models.
Our work is focused on Gaussian process metamodels, featured by the degree of flexibility
they allow in the input-output relationship, their interpretability, and remarkable tractability.
The handling of functional inputs and our choice to work with Gaussian process models give
rise to a number of questions about the ideal model setup. Specifically, we aimed to decide:

1) the scalar and functional inputs to keep as predictors;
2) the dimension reduction method to use for each input;
3) the projection dimension for each input;
4) the kernel function of the model;
5) the distance used to measure similarity between functional input coordinates within

the kernel function.
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We call those features structural parameters of the model. Some of these characteris-
tics of the model are often arbitrarily fixed. Through a set of computer experiments, we show
that the structural parameters may have a strong impact on the prediction capability of the
resulting model. We further conclude that the ideal model setup will vary from one applica-
tion to the other, and thus it should be optimized each time a model is built, in order to get
the best results of it. This thesis introduces an algorithm to conduct such an optimization
task. We validate the algorithm in the RISCOPE case. All the obtained metamodels were
of outstanding prediction quality.

1.2 Contributions of the thesis
This thesis focuses on the construction of Gaussian process metamodels for the substitution
of complex hydrodynamic codes in the frame of coastal flood early warning. Our main
contributions in this regard are summarized below.

1. A set of metamodels for direct application in coastal flood early warning
The RISCOPE project works on a real life case study, focused on the coastal French
municipality of Gâvres. This region has experienced more than ten coastal flooding
events since 1864, two of the most dramatic ones during the 21st century. We have
worked in direct contact with the mayor, representatives of the fire department, and
other local authorities in order to make the results of the project as useful as possible
for them. The GeoHyd group, partner in the project, is in charge of the development of
a web-based decision support system for early warning. This tool is expected
to implement various of the metamodels obtained from this thesis.

2. An algorithm for model selection in the frame of Gaussian process models
As explained in the description of the research context, the types of inputs used by the
hydrodynamic computer codes, along with our decision to work with Gaussian process
models, result in a number of potential model structures, one of which will be the
optimal choice. We consider a total of five model features to calibrate, those being: (i)
the state of each input in the model (inactive or active), (ii) the dimension reduction
method to use for each input (e.g., B-splines, PCA), (iii) the projection dimension for
each input, (iv) the kernel function of the model (e.g., Gaussian, Matérn 5/2), and (v)
the distance to measure similarities between functional input coordinates. We develop
an Ant Colony based algorithm able to find, in a short time, a combination of
structural parameters leading to a model of superior predictability. We use this
algorithm to tune the models for the RISCOPE application.

3. An R package implementing the metamodeling techniques used here
This thesis gives rise to the R package funGp. This package tackles regression
problems involving scalar and/or functional inputs and a scalar output through the
fairly general Gaussian process model. Rather than imposing or requiring any particular
parametric input-output relationship in advance, it learns this information directly
from the data. The package offers built-in dimension reduction methods oriented
to simplify the representation of the functional inputs in order to get lighter models.
funGp also implements the Ant Colony algorithm developed here for the calibration
of the structural parameters of the model. Both the package and its manual have
been structured with the intention of them being usable for users within a wide range
of knowledge in mathematics or statistics. Therefore, all the functions offer default
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parameters, but great degree of customization is also offered for the more experienced
users. funGp has been made available in GitHub and CRAN .

In an excursion outside the coastal flooding application, we also worked on theoretical
aspects of Gaussian process metamodeling. In many applications the data presents some
signs of non-Gaussianity, such as boundary constraints or skewness. This study is motivated
by the question of what we can expect in those cases, if we still model the output as Gaussian.
Our contributions in this front are explained below.

4. Results on the asymptotics of ML and CV for trans-Gaussian processes
We study the estimation of the covariance parameters of transformed Gaussian pro-
cesses through Gaussian Maximum Likelihood (ML) and Cross Validation (CV). We
show that both estimators are consistent and asymptotically normal. These results can
be interpreted as a proof of robustness of Gaussian ML in the case of non-Gaussian
processes. We conclude that by modeling a random process as Gaussian, we can es-
timate well its covariance parameters, even if the process is not Gaussian in reality.
In the regression framework, this points out to the conclusion that we can remove the
assumption of Gaussianity of the data and still manage to build a Gaussian process
model well suited to the data.

1.3 Outline of the manuscript
The remaining of this manuscript is composed as follows:

Chapter 2: Gaussian process metamodeling of functional-input
code for coastal flood hazard assessment
This chapter presents our first approach to address the metamodeling problem studied in the
RISCOPE project. It is an exact copy of our article [7], published in Reliability Engineering
& System Safety. The chapter covers good part of the foundations of this thesis. It includes
a discussion on related literature, a description of RISCOPE dataset, a synthesis of modeling
through Gaussian processes, along with a detailed explanation of our metamodeling approach.
Hence, this chapter is fundamental for the effective comprehension of the others.

At the time of writing the article, the target hydrodynamic code was in calibration. There-
fore, we were using a simplified version of it, which ignored some of the hydrometeorological
forcing conditions. The simplified code was much quicker to evaluate but less detailed and
precise. This code, however, allowed us to generate a large number of observations, which
were of great importance for the stabilization and optimization of our metamodeling routines.
On the other hand, we were able to test various ways to include the functional inputs in the
model. Through a large number of computer experiments, we showed the potential impact
of the structural parameters in the predictability of the model. This article gave rise to our
first prototype of methodology for the calibration of the structural parameters of the model,
which was inspired by the Response Surface Methodology [8].

While relatively simple, the proposed methodology proved its effectiveness through an
analytical case study and our coastal flooding application. In both cases it led to metamodel
configurations of outstanding performance, able to accurately predict the output of the code.
We proved the efficiency of this methodology through comparison against an exhaustive
search approach. In most cases our methodology was able to find the optimal configuration,

3



and made time savings of up to 76.7% and 38.7% with respect to the time spent by the
exhaustive search in the analytic and the coastal flooding case, respectively. Despite such
positive results, we recognized the limitation of this approach to problems with few number
of structural parameters and levels of those. Having proved the pertinence of this research
line, we developed a second methodology able to explore the space in a more efficient manner.
Such a methodology is the topic of Chapter 3.

Chapter 3: Ant Colony based model selection for functional-input
Gaussian process regression
The previous chapter presents our first prototype of methodology for the calibration of struc-
tural parameters of the metamodel. We used that methodology to tune the metamodel for a
simplified version of our hydrodynamic code, which received only part of the variables used
by our target code. Athough the proposed methodology proved to be effective for such ap-
plication, we concluded the need for more sophisticated exploration techniques in order to
scale to bigger problems involving (i) a larger number of inputs, (ii) more structural param-
eters and (iii) more levels per structural parameter. In Chapter 3 we address this need by
introducing an Ant Colony based smart exploration algorithm.

Ant colony optimization (ACO) encompasses a large variety of optimization metaheuris-
tics derived from the seminal work of Dorigo et al. in the early 90s [9, 10]. Since then, ACO
based heurstics have been proved to give remarkable results in a wide range of optimization
problems, including DNA sequencing [11], scheduling [12], protein-ligand docking [13], assem-
bly line balancing [14] and packet-switched routing [15]. ACO has been recognized as one of
the most successful research lines in the area of swarm intelligence [16, 17], and always seats
beside evolutionary algorithms, iterated local search, simulated annealing, and tabu search
among the top metaheuristic techniques [18]. This chapter is an exact copy of our technical
report [19], which recalls the foundations of Ant Colony Optimization and elaborates on top
of them to make the algorithm suitable for our structural optimization problem. To the best
of our knowledge, this is the first algorithm addressing the structural optimization problem
for Gaussian process models.

We use the proposed algorithm to calibrate the metamodel for three analytic black-box
functions. The models obtained were in all cases of outstanding prediction quality. In
Chapter 5 we use the algorithm to calibrate the metamodel for the full hydrodynamic code
of the RISCOPE application.

Chapter 4: Gaussian process regression for scalar and functional
inputs with funGp: The in-depth tour
The two previous chapters led us to the creation of the R package called funGp [20], which is
oriented to the construction and smart selection of Gaussian process models with emphasis
on the treatment of functional inputs. Chapter 4 is an exact copy of its user manual [21].

What does funGp bring to the table?

• Flexible modeling of functional-input regression problems
A few R packages address regression with functional inputs (e.g., time series). The vast
majority of those packages rely on models limited by strong assumptions on the relation-
ship between inputs and outputs (e.g., Linear, Generalized Linear or Generalized Addi-
tive Models). funGp tackles regression problems involving scalar and/or functional inputs
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through the fairly general Gaussian process model, which removes any need to set a par-
ticular input-output parametric relationship in advance, and rather learns this information
directly from the data.

• Built-in dimension reduction
funGp is self-contained in the sense that it does not depend on other packages to perform
dimension reduction on the functional inputs. At this point, it offers projection onto B-
splines or PCA bases. The package was designed to enable a straightforward extension to
other bases in further versions.

• Heuristic model selection
The possibilities offered by a package often translate into alternative model structures.
Decision support is rarely offered in order to select a suitable configuration for the problem
at hand. We acknowledge the potential impact of such a decision in the performance of the
model [7, 22] and also the practical difficulties that arise from offering possibilities without
decision support. Therefore, funGp was equipped with a model selection functionality
which implements the Ant Colony based algorithm presented in 3. The user has the
possibility to decide to either build a model with an arbitrary structural configuration, or
call the model factory and let the ants do the work.

• All-level-user-friendly
We aim funGp to be a helpful tool for users within a wide range of knowledge in mathe-
matics or statistics. Thus, we have made an effort to make simple and intuitive the way
the package works. Most of the arguments in the functions have been provided default
values so that the user can start experimenting with them at its own pace. Once the user
gets ready, it will be able to start playing with the nugget effect, basis type, kernel type,
multi-start option, parallelization and even the parameters of the heuristic for structural
configuration. However, to have a first funGp model built, the only thing to do is to provide
the data.

funGp relies on a variety of concepts at a crossroad between mathematics, statistics and
optimization. As such, it merits a sufficiently wide documentation helping the user to shorten
its learning curve. It does not matter what a tool has to offer if people do not understand
well how to use it. The user manual presented in Chapter 4 explains all the functionalities
of the package through a set of short examples in the form of code snippets copy/pasteable
directly to R. We are confident that, with the help of this manual, the user will be able to
have its first funGp model working in a matter of just a few minutes.

Chapter 5 Structural parameter optimization in the coastal
flooding RISCOPE case
Chapters 2, 3 and 4 address the introduction to the RISCOPE coastal flooding application,
the development of an Ant Colony algorithm for the efficient optimization of the structural
parameters of the metamodel, and the consolidation of the R package funGp [20], respectively.
Chapter 5 is a follow up to the RISCOPE case. The description given in Chapter 2 for this
application remains mostly valid, except for the three following aspects:

1) Updated hydrodynamic code: at the time of writing Chapter 2, the target hydrody-
namic code was in calibration. Thus, we used a simplified version of it which was quicker
but less precise and detailed. At this time the target hydrodynamic code is complete.
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2) Significantly less observations: the new hydrodynamic code takes much more time
per computation (several hours to days) than the simplified version used in Chapter 2
(around 20 seconds). Thus, current developments are much more limited in the amount
of simulations that we can conduct.

3) Several output variables: the new hydrodynamic code enables the extraction of diverse
types of information of interest such as the maximum flooded area, the water height at
surveillance points and coefficients of trafficability of critical roads. In this chapter we
consider a total of 13 scalar outputs and we build a metamodel for each of them.

The Ant Colony algorithm proved its pertinency and effectiveness by finding high quality
structural configurations for all the 13 outputs under analysis. In all cases, the selected
configuration outperformed several others, including the default choices of using: (i) only
a scalar representation of each functional input; (ii) the full set of scalar and functional
representations of the inputs; and (iii) a scalar representation of each functional input, plus
the functional representation of some key input variables. Even for the variables the most
difficult to fit, our algorithm was able to find a configuration superior to the aforementioned
alternatives. All the analysis was conducted using our R package funGp [20].

Chapter 6: Asymptotic properties of the maximum likelihood and
cross validation estimators for transformed Gaussian processes
This chapter presents a theoretical study which is independent from the RISCOPE coastal
flooding application. The chapter is an exact copy of our article [23], published in Electronic
Journal of Statistics. There, we study the asymptotics of the maximum likelihood (ML)
and cross validation (CV) estimators for the covariance parameters of a non-Gaussian pro-
cess. We are motivated by the fact that many real applications involve output variables that
present certain markedly non-Gaussian characteristics such as nonnegativity (e.g., [24]) and
monotonicity (e.g., [25]), but they are still modeled as Gaussian without further consider-
ations. This gives rise to the questions of: what can we expect from the estimation of the
covariance parameters if we model a non-Gaussian process as Gaussian? in case of suspicion
of non-Gaussianity would it be beneficial to apply some transformation to the output before
implementing the Gaussian process model? Chapter 6 addresses the first question and gives
the bases to undertake the second one.

In particular, we consider the case where the non-Gaussian process results from an un-
known non-linear transformation of a Gaussian process. We further assume that the transfor-
mation is not modeled or estimated. We show that the ML and CV estimators are consistent
and asymptotically normal, although they are defined as if the process was Gaussian. Our
results can thus be interpreted as a robustness of (Gaussian) ML and CV towards non-
Gaussianity. This study could be extended to the case where the transformation parameters
are estimated along with the covariance parameters. We expect such an approach to be ben-
eficial at least for taking into account non-Gaussian characteristics of the process of interest
such as the aforementioned nonnegativity or more generally speaking, boundary constraints.

Chapter 7: Global conclusions and perspectives
This chapter summarizes the general conclusions of this thesis and presents some promising
research lines for future development.
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Chapter 2

Gaussian process metamodeling of
functional-input code for coastal flood
hazard assessment

The chapter in brief
This chapter presents our first approach to address the metamodeling problem studied in the
RISCOPE project. It is an exact copy of our article [7], published in Reliability Engineering
& System Safety. The chapter covers good part of the foundations of this thesis. It includes
a discussion on related literature, a description of RISCOPE dataset, a synthesis of modeling
through Gaussian processes, along with a detailed explanation of our metamodeling approach.
Hence, this chapter is fundamental for the effective comprehension of the others.

At the time of writing the article, the target hydrodynamic code was in calibration.
Therefore, we were using a simplified version of it, which ignored some of the inputs of the
target code. The simplified code was much quicker to evaluate but less detailed and precise.
This code, however, allowed us to generate a large number of observations, which were of
great importance for the stabilization and optimization of our metamodeling routines. On
the other hand, we were able to test various ways to include the functional inputs in the
model. Through a large number of computer experiments, we showed the potential impact
of the structural parameters in the predictability of the model. This article gave rise to our
first prototype of methodology for the calibration of the structural parameters of the model,
which was inspired by the Response Surface Methodology [8].

While relatively simple, the proposed methodology proved its effectiveness through an
analytical case study and our coastal flooding application. In both cases it led to metamodel
configurations of outstanding performance, able to accurately predict the output of the code.
We proved the efficiency of this methodology through comparison against an exhaustive
search approach. In most cases our methodology was able to find the optimal configuration,
and made time savings of up to 76.7% and 38.7% with respect to the time spent by the
exhaustive search in the analytic and the coastal flooding case, respectively.
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Abstract
This paper investigates the construction of a metamodel for coastal flooding early warning
at the peninsula of Gâvres, France. The code under study is an hydrodynamic model
which receives time-varying maritime conditions as inputs. We concentrate on Gaussian
process metamodels to emulate the behavior of the code. To model the inputs we make
a projection of them onto a space of lower dimension. This setting gives rise to a model
selection methodology which we use to calibrate four characteristics of our functional-input
metamodel: (i) the family of basis functions to project the inputs; (ii) the projection
dimension; (iii) the distance to measure similarity between functional input points; and
(iv) the set of functional predictors to keep active. The proposed methodology seeks to
optimize these parameters for metamodel predictability, at an affordable computational
cost. A comparison to a dimensionality reduction approach based on the projection error of
the input functions only showed that the latter may lead to unnecessarily large projection
dimensions. We also assessed the adaptability of our methodology to changes in the number
of training and validation points. The methodology proved its robustness by finding the
optimal solution for most of the instances, while being computationally efficient.

Keywords: Dimensionality reduction, Gaussian process, Metamodeling, Functional inputs,
Computer experiments

2.1 Introduction
The use of computer codes for the study of complex systems is, nowadays, a well extended
practice. On the one hand, they offer the possibility of simulating realizations of the system
under study at a lower resource expense/risk than if observations were taken from the real
system. On the other hand, they provide a solution for cases when the real system is a
natural process (e.g., volcanic activity) and some input-output conditions are rarely observed.
In the coastal flooding domain, for instance, by focusing on flooding on sites never or rarely
flooded, it is not possible to obtain a sufficient number of observations from historical registers
[26, 27, 28]. In those cases, computer codes can be used to produce the required observations
to complement historical data. Despite the aforementioned advantages, computer codes for
environmental and industrial applications often happen to be too time-consuming for direct
application (e.g., for uncertainty quantification or fast prediction within an early warning
system) [29, 30]. This difficulty is usually resolved by creating quick-to-evaluate mathematical
emulators of those numerical codes, based on a limited collection of runs [6, 31, 32]; such
emulators are often called surrogate models or metamodels. In this paper, we illustrate an
intermediate step in the development of a surrogate model of a complex hydrodynamic code
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used in the context of early warning for coastal flooding hazards. This work is said to be
an intermediate step as the target hydrodynamic code to emulate is still under calibration.
In the meantime, we use a simplified fast-running version of it which allows us to study the
dynamics of the system and the specificities of the metamodeling task at hand.

The simplified hydrodynamic code receives four inputs and delivers a single output, all
of them functions of time. As usual in practice, each function is supplied to and delivered
by the code in the format of a time series represented by a long vector. Even though, we
keep referring to them as functional inputs (resp. functional output) since the notions of
order and/or proximity between time points hold for them. The focus of this article is on the
modeling of functional inputs. Thus, we keep their full complexity into account, but we reduce
the problem by only considering a scalar representation of the output, which corresponds to
the cumulative sum of its values over time.

The main difficutly of functional-input regression is the large number of predictors that
one may end up dealing with. In our coastal flooding application, for instance, each input
variable is a time series with 37 time points. Some applications involve inputs with more then
1000 time points (see e.g., [30]). Such a large number of covariates naturally hampers the
tractability and processing speed of the metamodel while making it more prone to overfitting.
A common approach to overcome this problem is to make a projection of each functional input
onto a space of lower dimension while preserving the main statistical or geometric properties
of the variable [33, 34, 30, 29]. The projection is sometimes preceeded by time warping if an
input shows a cyclical pattern which is consistent among functions [35]. A suitable basis for
the projection space may come from a variety of families, including B-splines, PCA, Legendre
polynomials, wavelets, Fourier and many others. The ideal basis family seems to vary from
one application to the other. However, most studies set this feature a priori, leaving wide
margin for potential improvement of the metamodel.

The approach based on the projection of the inputs also requires the selection of the
projection dimension. Seeking for a balance between speed/tractability and prediction qual-
ity, the goal should be to set the new dimension considerably lower than the original one,
but still sufficiently large to allow for good predictions. Thus, for forecast purposes, dimen-
sionality reduction of the inputs should be primarily leaded by metamodel predictability.
However, the new dimension p is often chosen to retain certain amount of information on the
input. For instance, so that most information on its variability is concentrated on the first
p components [30] or by minimizing the projection error [36]. Some alternative techniques
better incorporate the idea of focusing on metamodel predictability. These include scalar-on-
function regression [37, 38, 39], methods in the field of active subspaces [40], as well as stack
models composed of a dimensionality reduction and a metamodeling technique put together
and trained using backpropagation [41, 42, 43, 44]. Despite the advantages of these methods
in terms of simplicity or predictablity, their application in this paper is prevented by a set
of factors. First of all, developments of scalar-on-function regression are mainly related to
the linear regression framework, whose scope is exceeded by the complexity of the coastal
flooding phenomenon. Secondly, active subspaces techniques often rely on the gradient of
the output w.r.t the inputs. This information is rarely available and has to be approximated
from data [45], a sometimes difficult task when inputs are structured objects such as time
series or spatial fields [22]. Finally, techniques relying on stacked models turn out to be
quite restrictive regarding the combination of components of the stack; most of the proposals
are limited to one specific combination of dimensionality reduction and metamodeling tech-
nique. Rather than restricting oneself to some particular dimensionality reduction method,
this paper aims to define a way to explore and select among available alternatives.
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Among all metamodel-based solutions (polynomials, splines, neural networks, etc.), we
focus on Gaussian processes [46, 47, 48]. These are one of the most popular metamodeling
alternatives, partly due to their ability to provide both an interpolation of the data and an
uncertainty quantification in the unexplored regions. Although Gaussian processes for scalar-
valued inputs and outputs have been studied for almost 30 years, the functional framework
is still a relatively new and much less developed research area [29]. The essence of extending
Gaussian process models to receive functional inputs lies in the adaption of the distance used
to measure similarity/proximity between pairs of input points. In the case of scalar inputs,
the standard is to use a weighted Euclidean distance where each input variable is assigned a
weight [48]. These weights are then optimized, typically through the Maximum Likelihood
or Cross Validation method [49]. When dealing with functional inputs, the selection of the
distance will strongly depend on the way of representing the inputs in the metamodel. For
projections, a popular approach is to use the projection coefficients as individual scalar inputs
of the model and proceed as described before [30]. In that case, each projection coefficient
would be assigned a weight. Another alternative is to aknowledge the fact that certain
coefficients correspond to the same input variable. Then, each set of projection coefficients,
corresponding to the same input variable, would be assigned a single weight [29]. These two
and any other suitable norm are valid choices and once again, the best option will likely
depend on the application.

The preceding discussion addresses some of the specificities of functional-input meta-
modeling; the last paragraph making emphasis on Gaussian processes which are the type of
metamodel studied here. In line with that discussion, our main contribution is a methodol-
ogy to simultaneously tune multiple characteristics of a functional-input metamodel. Here
we use it to calibrate: (i) the family of basis functions to project the functional inputs; (ii)
the projection dimension; (iii) the distance function to measure similarity between functional
input points; and (iv) the set of functional predictors to keep active. As mentioned earlier,
these types of metamodeling choices, herein called structural parameters of the metamodel,
are often fixed arbitrarily or based on results from other applications. However, as will be
shown in this paper through a set of computer experiments, the ideal metamodel configura-
tion depends on the particular application. Thus, this kind of setting should be optimized
each time a metamodel is to be built in order to get the best results from it [22]. Our pro-
posal is a staged exploration strategy which optimizes the set of structural parameters for
metamodel predictability. Although relatively simple, the methodology presented here seems
to be an effective tool to perform such an optimization task.

The remainder of this paper is organized as follows. Section 2.2 describes the coastal
flooding application case that motivates this study. The set of technical details concern-
ing the modeling of functional inputs within Gaussian process metamodels are provided in
Section 2.3. Section 2.4 describes the exploration approach proposed here to calibrate the
structural parameters of the metamodel. This section also presents an analytic case study
to illustrate the methodology. In Section 2.5, we apply the exploration strategy to setup the
metamodel for the coastal flooding application. In Section 2.6, we conduct an experiment to
assess the robustness of the proposed methodologies to changes in the training and validation
set size. A final section synthesizes the main results of this paper and proposes some future
research lines.
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2.2 Motivating case: coastal flooding prediction at
Gâvres, France

This study is motivated by the Gâvres coastal flooding case study extracted from the ANR
research project RISCOPE [50]. RISCOPE focuses on the development of risk-based methods
relying on metamodeling for forecasting, early warning and prevention of coastal flooding.
Our case study considers the coastal French municipality of Gâvres, located on a peninsula
at the Blavet river mouth, in the conurbation of Pays de Lorient (Morbihan). This region
is representative of a significant part of French mainland coasts in terms of variety and
complexity of flooding processes, as well as available offshore data. Since 1864, Gâvres has
had to deal with more than ten coastal flooding events, two of the most dramatic ones taking
place in the 21st century. Flooding processes at Gâvres are known to be complex enough (tide
influence and overtopping) to cover most of the flooding cases along the French mainland
coasts. This ensures the scalability of the methods presented here, to any coastal flooding
type.

2.2.1 Hydrodynamic code
Here we consider a simplified fast running code defined on a cross-shore transect model (see
Figure 2.1, and the next paragraph for the description). The code takes four variables with
physical interpretability as inputs. Those are the tide (Td), atmospheric storm surge (Sg),
significant wave height (Hs) and peak wave period (Tp). Each input should be provided to
the system in a time series format, so that Td = (Tdt)t=1,...,L, and similarly for the other
three inputs. The code outputs a time series of the same length of the inputs, with the
value at time t ∈ {1, . . . , L} indicating the overtopped and overflowed water volume during
a period equal to the time span between any pair of consecutive instants. From that series,
it is naturally possible to compute the cumulative overtopped and overflowed water volume
along this transect until time instant t. We denote that quantity by CVt. As explained in the
introduction of the article, here we focus on the management of functional inputs and try
to keep the output as simple as possible. Therefore, we study a scalar output instead of a
functional one. In particular, we consider as the output the total overtopped and overflowed
water volume during the span of an event. It corresponds to the last value of the CVt series,
CVL. From here on, we denote this quantity by FCV , which stands for final cumulative
volume.

Calculations in the computer code involve the statistical model SWAN [51] and the Eu-
rOtop equations [52], both described below.

Inputs → SWAN → EurOtop → Outputs

• SWAN is a spectral wave model which allows computing the wave conditions at the
coastal defence toe, accounting for water level variations induced by tide and surge.

• EurOtop refers to the use of the overtopping and overflow discharge formulas provided
in the Eurotop (2018) manual ([52], Eq. 5.11 and 5.20). These formulas require as input
the wave conditions at the coastal defence toe, the crest freeboard (water height above
the coastal defence crest, including the wave setup computed by SWAN plus the tide
and surge) and coastal defence characteristics. Based on the discharge, the overtopped
and overflowed water volume along the transect is finally computed.
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Figure 2.1 – Illustration of the cross-shore transect considered in the RISCOPE application.
Vertical location is referenced to the altimetric French system IGN69.

We are aware that the adoption of a cross shore configuration does not allow to properly
model all the complexities of the phenomenon under study. However, in the frame of the
RISCOPE project, the analysis presented here is considered an intermediate step in the
development of methodologies for functional metamodeling, that could be later implemented
for more realistic computer codes. The use of a simplified computer code at this stage
enables a wider exploration and understanding of the physical phenomenon, before dealing
with more detailed and more computationally time consuming models. We remark that in
this simplified code, FCV is equal to the sum over time of the overtopped and overflowed
water volume; this latter being estimated from scalar quantities. Thus, for this simplified
code, a metamodel based on a scalar representation of the inputs may provide relatively good
predictions. However, in a future stage of the RISCOPE project we will address intrinsically
functional problems such as the estimation of the water height at different points on land
(i.e., in the space between the back of the coastal defense and inland). At that point, we
expect the functional metamodels to be able to better reproduce the shape of the output
than the scalar ones.

2.2.2 Dataset
For purposes of training and validation of the metamodel, we rely on a dataset composed
of hindcasts of past conditions of Td, Sg, Hs and Tp. All registers are located offshore of
the study site over the period 1900-2016. The dataset is constituted by the concatenation of
hindcasts of different sources (see 2.A), with bias corrections between the hindcasts through
a quantile-quantile correction method (for more details, see [53]). The various hindcasts have
different time steps. As the main driver, Td, significantly changes in 10 minutes, the other
three inputs were also interpolated at a 10 min time step. Then, the long dataset was split
into a collection of tidal events, each covering a period of ± 3 hours around a high tide. A
time series of 37 elements (corresponding to a time lapse of 6 hours with the time step of 10
min) was used to represent each functional input at each event (see Figure 2.2). Only events
where the tide peak reached at least 2.342m (IGN69) were kept. This value corresponds to
the mean spring high tide level below which no flooding event ever happened in Gâvres. As
a result, a total of 20557 events were obtained.
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(a) 100 randomly sampled events.

(b) 3 sample events on independent plots.

Figure 2.2 – Illustration of functional inputs. Td, Sg and Hs are given in meters and Tp in
seconds.

The Td series has a characteristic parabolic shape, which is consistent among events. In
fact, its peak (always located at time instant t = 19) is known to be highly influential on the
output of the code. In contrast, the majority of Sg, Hs and Tp curves are almost constant or
linear with small slope. It means that the range of variation of those three inputs within each
event is relatively small compared to their range of variation among events. Based on that,
one could presume that just one or two scalar parameters associated to the height and/or
slope would be enough to characterise those curves. However, beyond any conclusion that
we could reach by visual inspection, the ideal dimension to represent each input will depend
on the sensitivity of the output of the code to changes on it. Even quite small and visually
negligible changes on some input might cause important changes in the ouput depending on
the interactions that happen within the code.

2.3 Theoretical background

2.3.1 Scalar and functional inputs of computer codes
In this paper we study the emulation of an expensive-to-run computer model fcode by means
of a metamodel. Throughout our discussions, we discriminate between scalar and functional
inputs. For the sake of clarity, we stick to the following vocabulary and definitions:

(a) When the code is x 7→ fcode (x), with x =
(
x(1), . . . , x(ds)

)′
and x(k) ∈ R for k =

1, . . . , ds, we say that the code has ds ∈ N scalar inputs, we call x(k) for k = 1, . . . , ds a
scalar input, and we call x a vector of scalar inputs. For simplicity, we may also refer
to x as scalar inputs.
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(b) When the code is f 7→ fcode (f), with f =
(
f (1), . . . , f (df)

)′
and f (k) : Tk ⊂ R → R

for k = 1, . . . , df , we say that the code has df ∈ N functional inputs, we call f (k)

for k = 1, . . . , df a functional input, and we call f a vector of functional inputs. For
simplicity, we may also refer to f as functional inputs.

(c) When the code is (x,f) 7→ fcode (x,f), we say that the code has ds scalar inputs and
df functional inputs, and we use the same vocabulary as before for x and f .

2.3.2 Gaussian process metamodeling of scalar-input codes
Let us first consider the scalar-input setting where fcode models the relationship between a
vector of scalar inputs x =

(
x(1), . . . , x(ds)

)′
∈ Rds and an output variable of interest y ∈ R,

with y = fcode (x). As the evaluation of fcode is computationally costly, it is proposed to build
a light-to-run statistical model to approximate it. To this end, there is available a learning
set D = {(x1, y1), . . . , (xn, yn)}. In this context, Gaussian processes are nonparametric
regression models which treat the fixed function fcode as a realization of a Gaussian process
ξ, specified by its mean and covariance functions m and k. For any pair of input vectors
x, x̃ ∈ Rds, the Gaussian process model can be written as:

ξ(·) ∼ GP(m(·), k(·, ·)), (2.1)
with

m(x) = E[ξ(x)] and k(x, x̃) = E[(ξ(x)−m(x))(ξ(x̃)−m(x̃))]. (2.2)
Gaussian processes present diverse attributes that have contributed to their popularity in

many applications. They provide a mean estimate along with an indication of the uncertainty
attached to it. They are able to reproduce the observations exactly, but there is a simple
way to switch from interpolation to smoothing by means of a nugget effect, if required
(see [48] for more details). Furthermore, the Gaussian process model often has a very high
prediction power compared to other approaches [29]. In addition, the conditional distribution
of Gaussian processes, given observed values, is particularly tractable in practice and closed
form expressions exist for the conditional mean and variance. We discuss them below.

Let X = (x1, . . . ,xn)> be the n × ds inputs matrix extracted from the learning set
(where xi for i = 1, . . . , n is a column vector), and let y = (y1, . . . , yn)> be the vector of
corresponding output values. Similarly, let X∗ = (x∗,1, . . . ,x∗,n∗)> be a n∗ × ds inputs
matrix of prediction points. The Gaussian conditioning theorem (see e.g., [48]) implies that,
conditionally to y, ξ is a Gaussian process with mean and covariance functions mn and kn
defined by

mn(X∗) := E[ξ (X∗) |y] = K(X∗,X)K(X,X)−1y (2.3)
and

kn(X∗,X∗) := Cov[ξ (X∗) , ξ (X∗) |y]
= K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗), (2.4)

where K(X,X) denotes the n × n matrix of covariances (k(xi,xj))1≤i,j≤n among all pairs
of training input points, and similarly for the other entries K(X,X∗), K(X∗,X) and
K(X∗,X∗). We remark that mn(X∗) and kn(X∗,X∗) are of the form
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mn(X∗) = (E[ξ(x∗,i)|ξ(x1) = y1, . . . , ξ(xn) = yn])1≤i≤n∗ ,

kn(X∗,X∗) = (Cov[ξ(x∗,i), ξ(x∗,j)|ξ(x1) = y1, . . . , ξ(xn) = yn])1≤i,j≤n∗ .

In practice the conditional mean (2.3) is used as an estimation of the true function fcode
at the test points X∗, while the conditional variance (2.4) is often interpreted as a measure
of the local error of the prediction [32].

Gaussian process models are flexible by incorporating diverse types of covariance functions
(a.k.a. kernels), being aware that only functions that yield symmetric positive semidefinite
covariance matrices are valid choices [48]. The selection of the covariance function encodes
assumptions such as the degree of regularity of the underlying process [54]. A general ex-
pression for the covariance between any pair of scalar input points x, x̃ ∈ Rds is given by

k(x− x̃;σ2,θs) = σ2 R(x− x̃;θs), (2.5)

where σ2 is the variance of the stochastic process and R denotes the correlation function which
governs the degree of similitude between input points through the use of the vector of length-
scale parameters θs =

(
θ(1)
s , . . . , θ(ds)

s

)
. Together, σ2 and θs are the so-called hyperparameters

of the model which have to be estimated.
Examples of standard covariance functions are given for instance in [49] and [55]. Without

loss of generality, in this paper we make use of the Matérn 5/2 kernel defined in its anisotropic
form for scalar inputs as

k(τ ;σ2,θs) = σ2
(
1+
√

5 ‖τ‖L2,θs +
5 ‖τ‖2

L2,θs

3

)
exp

(
−
√

5 ‖τ‖L2,θs

)
, (2.6)

where τ = x− x̃ and ‖τ‖L2,θs denotes the anisotropic L2 norm of x− x̃ which can be written
as

‖x− x̃‖L2,θs =

√√√√√√ ds∑
k=1

∥∥∥x(k) − x̃(k)
∥∥∥2

(
θ

(k)
s

)2 . (2.7)

In the equation above, ‖·‖ is the Euclidean norm in R, which by definition is just the
absolute value of the quantity. Intuitively, if x = x̃, then the correlation is 1, whereas if the
distance between both vectors tends to infinity, then the correlation tends to 0.

2.3.3 Gaussian process metamodeling of functional-input codes
Let us now consider the functional-input setting where fcode models the relationship between
a vector of functional inputs f =

(
f (1), . . . , f (df)

)′
, with f (k) : Tk ⊂ R→ R for k = 1, . . . , df ,

and an output variable of interest y ∈ R, so that y = fcode (f). Similarly to the scalar-
input case, we assume that there is available a learning set D = {(f1, y1), . . . , (fn, yn)}. The
extension of Gaussian processes to functional inputs reduces to the selection of a suitable
distance for functions to be used within the correlation function. That is the topic of this
section.
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2.3.3.1 Three distances for functional inputs

Let us consider two functional data points f =
(
f (1), . . . , f (df)

)′
and f̃ =

(
f̃ (1), . . . , f̃ (df)

)′
.

The anisotropic L2 norm of f − f̃ can be written

‖f − f̃‖L2,θf =

√√√√√√ df∑
k=1

∥∥∥f (k) − f̃ (k)
∥∥∥2

(
θ

(k)
f

)2 , (2.8)

where θf =
(
θ

(1)
f , . . . , θ

(df)
f

)
is the vector of length-scale parameters for the df functional input

variables and ‖·‖ is any norm for functions.
Note that (2.8) is just the straightforward extension of (2.7) for functional inputs. How-

ever, the norm in each term is no longer as trivial as in the scalar case and different paths
can be followed from here. Most times in the literature, the norm is computed using one of
the three distances that we discuss now.

The first approach is to use the L2 norm for functions, under the mild assumption that
f (`) and f̃ (`) for ` = 1, . . . , df have finite L2 norm. In that case, (2.8) becomes

‖f − f̃‖F,θf :=

√√√√√√√√ df∑
k=1

∫
Tk

(
f (k)(t)− f̃ (k)(t)

)2
dt

(
θ

(k)
f

)2 , (2.9)

where Tk ⊂ R is the domain of the functions f (k) and f̃ (k).
The second approach is to make a projection of f (k) and f̃ (k) for k = 1, . . . , df onto a

subspace of finite, small or moderate dimension, and then use the L2 norm of the projections
in (2.8) instead of the L2 norm of the original functions. For illustration, let Π

(
f (k)

)
and

Π
(
f̃ (k)

)
denote the projections of f (k) and f̃ (k) onto the space generated by a basis B(k) ={

B
(k)
1 , . . . , B(k)

pk

}
. For k = 1, . . . , df , the expression to obtain Π

(
f (k)

)
and Π

(
f̃ (k)

)
can then

be written as

Π
(
f (k)

)
(t) =

pk∑
r=1

α(k)
r B(k)

r (t) and Π
(
f̃ (k)

)
(t) =

pk∑
r=1

α̃(k)
r B(k)

r (t), (2.10)

respectively. The projection dimension pk has to be chosen strategically so that the functions
are represented well enough and computations for the metamodel remain tractable. The
projection coefficients α(k) =

(
α

(k)
1 , . . . , α(k)

pk

)
and α̃(k) =

(
α̃

(k)
1 , . . . , α̃(k)

pk

)
are typically set

up to minimize the error of the projection with respect to the original input function. Diverse
methods such as B-splines, Fourier, PCA, kPCA or PLS can be used to generate the basis
functions for the projection of each input variable. The only requirement is that the projection
has the structure diplayed in (2.10).

Once the projection of each curve is made, the norm ‖f (k) − f̃ (k)‖L2 can be replaced by
its projection based approximation

∥∥∥Π(f (k)
)
− Π

(
f̃ (k)

)∥∥∥
L2

in (2.9) to obtain

∥∥∥Π(f)− Π
(
f̃
)∥∥∥

D,θf
:=

√√√√√√√√√ df∑
k=1

∫
Tk

( pk∑
r=1

(
α(k)
r − α̃(k)

r

)
B(k)
r (t)

)2

dt

(
θ

(k)
f

)2 . (2.11)
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As noted by [29], an efficient computation of
∥∥∥Π(f (k)

)
−Π

(
f̃ (k)

)∥∥∥
L2

is possible, by reduc-
tion to a norm in Rpk :

∥∥∥Π (
f (k)

)
− Π

(
f̃ (k)

)∥∥∥2

L2
=
∫
Tk

( pk∑
r=1

(
α(k)
r − α̃(k)

r

)
B(k)
r (t)

)2

dt

:=
∫
Tk

( pk∑
r=1

δ(k)
r B(k)

r (t)
)2

dt

=
(
δ(k)

)′
J (k)

(
δ(k)

)
=
∥∥∥δ(k)

∥∥∥2

J(k)
, (2.12)

where J (k) is the pk × pk Gram matrix
(∫
Tk
B

(k)
i (t)B(k)

j (t)dt
)

1≤i,j≤pk
. The interesting fact

about (2.12) is that J (k) does not depend on the coefficients of the decomposition, but only
on the set of basis functions. Thus, it can be stored and reused, saving processing time.
Moreover, when the projection basis is an orthonormal family of vectors (e.g., PCA basis),
J (k) is simply the identity matrix of dimension pk × pk.

The third approach is a variation of the second one, where the distance only considers
the coefficients of the decomposition and disregards the information in the basis functions.
In addition, this approach works with pk length-scale parameters for the k-th model input
instead of only one as in (2.9) and (2.11):

∥∥∥Π(f)− Π
(
f̃
)∥∥∥

S,θ̇f
:=

√√√√√√√ df∑
k=1

pk∑
r=1

(
α(k)
r − α̃(k)

r

)2

(
θ̇

(k)
f,r

)2 . (2.13)

Note that here we denote the vector of length-scale coefficients by θ̇f , with elements
(θ̇(k)
f,r )1≤r≤pk,1≤k≤df , to differentiate with the shorter vector θf , with elements (θ(k)

f )1≤k≤df used
in (2.9) and (2.11). Also note that (2.13) can be interpreted as if each projection coefficient
α(k)
r was taken as an individual scalar input of the model, since (2.13) matches the structure

of the anisotropic L2 norm for scalars shown in (2.7).
For applications of the three approaches, the reader is referred to [56], [29] and [30], in the

corresponding order. For the sake of theory, we expressed (2.9), (2.11) and (2.12) in terms
of infinite-dimensional inputs f (k) : Tk ⊂ R → R. However, in practice one typically does
not have access to the infinite-dimensional function, but to a vectorial representation of it(
f (k)

(
t
(k)
1

)
. . . , f (k)

(
t
(k)
Lk

))′
, with

{
t
(k)
1 , . . . , t

(k)
Lk

}
⊂ Tk, as is the case in our costal flooding

application. In (2.9), if a vectorial representation of the input is provided, the integral could
be computed by numerical approximation or substituted by the Euclidean norm of a vector.
A numerical approximation of the integral can be used in (2.11) and (2.12) as well.

To the best of our knowledge, up to now there is no evidence of the superiority of any of
the three methods over the others in terms of metamodel predictability. However, the two
distances based on the projection of the inputs are motivated by potential gains in speed
and tractability. The dimension of our inputs in the coastal flooding application case is large
enough (time series of length 37) to take this advantage into consideration. Therefore, in this
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paper we focus on the two approaches based on the functional decomposition of the inputs,
i.e., distances (2.11) and (2.13).

2.3.4 Gaussian process metamodeling with scalar and functional
inputs

Our coastal flooding application matches the functional-input setting f 7→ fcode (f), with
f = (Td, Sg,Hs, Tp)′. However, we want to provide the metamodel with some flexibility so
that if we find convenient to remove a functional input from the explanatory variables, we
can still keep active a scalar representation of it (e.g., its temporal mean). To do so, we
consider the hybrid-input setting where fcode models the relationship between a vector of
scalar inputs x =

(
x(1), . . . , x(ds)

)′
∈ Rds, a vector of functional inputs f =

(
f (1), . . . , f (df)

)′
,

with f (k) : Tk ⊂ R → R for k = 1, . . . , df , and an output variable of interest y ∈ R,
with y = fcode (x,f). We model the correlation between scalar points and the correlation
between functional points as described in Sections 2.3.2 and 2.3.3, respectively. To integrate
both types of inputs in the model, we follow the approach in [29] and adopt an anisotropic,
tensor-product kernel of the form

Cov(ξ(x,f), ξ(x̃, f̃)) = σ2 R(x−x̃;θs) R
(
f−f̃ ;θz

)
, (2.14)

with θz denoting either the vector θf or the vector θ̇f , depending on whether the distance
‖·‖D,θf or ‖·‖S,θ̇f is used. To illustrate, if we take our tensor-product kernel from the Matérn
5/2 family (2.6) and we use the distance ‖·‖D,θf for the functional inputs, we obtain:

Cov(ξ(x,f), ξ(x̃, f̃)) = σ2
(
1+
√

5 ‖x− x̃‖L2,θs +
5 ‖x− x̃‖2

L2,θs

3

)
exp

(
−
√

5 ‖x− x̃‖L2,θs

)
1+
√

5 ‖f − f̃‖D,θf +
5 ‖f − f̃‖2

D,θf

3


exp

(
−
√

5 ‖f − f̃‖D,θf
)
. (2.15)

2.4 Exploration strategy
The construction of a surrogate model requires making a series of decisions that may have
significant impact on its performance. The projection method and projection dimension, the
distance function to measure similarity between functional input points, as well as the set of
functional predictors to keep active make all part of those decisions. The ideal combination
of those parameters varies from one application to the other. In this section, we present an
exploration methodology designed to select a suitable combination of these or some other
structural parameters. A scheme of the proposed methodology is presented in Figure 2.3 and
its main steps are briefly described below.
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Figure 2.3 – Exploration strategy flowchart.

1. Screening. This step is intended to provide an overview of the effect that each parameter
has on the performance of the metamodel. The main objectives here are to:

• Identify patterns, as could be the dominance of certain levels of a given parameter
over its other levels. For intance, determine if some projection method clearly
outperforms the others.
• Detect trend in numerical parameters. For example, determine if the performance

of the metamodel improves by increasing or decreasing the projection dimension.
• Determine if the functional representation of each functional input variable adds

information to the metamodel or if a scalar representation of it is enough. To do
so, a metamodel using only a scalar representation of each functional input is used
as a benchmark.

Since one of the main purposes of the exploration methodology is to reduce the dimen-
sion of the inputs considerably, we start by exploring configurations with the lowest
possible dimension. For instance, configurations using projections of dimension 1, 2
and 3.

2. Cleaning. If the screening stage allows to detect a trend to better performance with
larger projection dimension, the exploration is extended in that direction. However,
depending on the number of structural parameters under study, the extension of the
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experiment could become too time consuming. Therefore, the cleaning stage consists
on discarding dominated levels of the parameters, identified in screening stage.

3. Descent. Once the dominated levels of the parameters have been discarded, greater
values of projection dimension are evaluated. To do so, a new factorial design of exper-
iments is built, considering only the non-dominated levels of the other parameters. We
call this stage descent as its purpose is to explore a new region in the domain of the
structural parameters, where the projection error will likely be reduced. Similarly to
the response surface methodology [8, 57], this stage is repeated until a stationary point
is identified.

2.4.1 Scope of the methodology
This section briefly discusses some of the concerns that users may have on the scope and
adaptability of the proposed methodology. This discussion seeks to provide an insight on the
possible uses of the methodology for a variety of modeling scenarios.

• Learning and validation sample size: generally speaking, the quality of a regression
model has direct correlation with the number of training points. On the other hand,
the robustness of the performance statistic used to assess its quality correlates with
the number of validation points. Hence, in the frame of this, or any other exploration
methodology, fewer training points will reduce the quality of every configuration and
fewer validation points will reduce the robustness of the measure used for comparison.
This cleared up, we could say that the proposed methodology is suitable for both, sce-
narios of relatively large or considerably short data availability (samples of the code).
This aspect is thoroughly discussed in Section 2.6. For cases of very limited data the per-
formance of each configuration could be assessed by means of cross-validation/bootstrap
methods [58]. These adopt resampling techniques to estimate the performance of a re-
gression model using training and validation sets of modest size. Efficient formulas
exist, e.g., for Gaussian processes [59, 60] and polynomial chaos expansions [35].

• Large number of features or levels: in the proposed method, the number of experimen-
tal conditions to test grows exponentially with the number of structural parameters.
The growth rate, in turn, increases with the number of levels of each parameter. A
convenient fact is that all configurations can be trained and validated using the same
set of samples of the expensive code. Nonetheless, we have to acknowledge that the
processing time to build all metamodel configurations may turn prohibitive for some
applications with several inputs and/or levels. A possible way to circumvent this in-
convenience, and a potential topic of future research, is to extend the methodology
towards a metaheuristic-based algorithm able to deal with wider solution spaces. In
this regard, Ant colony programming [61], Artificial bee colony programming [62] and
Genetic programming [63] could be suitable choices based on their recurrent usage to
solve symbolic regression and automatic programming problems whose nature is quite
close to that of the problem discussed here.

• Functional inputs in larger dimensions: in both case studies revised here, the functional
inputs are time series (functions in dimension one). However, the exploration strategy
is generic enough to account for inputs in larger dimensions such as fields or images
(functions in dimension two). To do so, tensorized finite dimensional projection spaces
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could be considered (see e.g., [64] or [24]). If the functional inputs are functions from
T ⊂ Rd → R, then for tensorized projection spaces, the projection dimension is of the
form p(1) × ... × p(d), where p(1), . . . , p(d) can be defined as structural parameters and
the already defined steps and rules will hold.

• Functional output: the exploration methodology can be used in case of both, scalar and
functional outputs. The latter can be handled in at least two ways which are described
in the following paragraphs.
The first way is to transform the problem to a scalar-output version of it. For instance,
if the original output is a time series, an individual metamodel can be used to predict
the output at each time instant or the time index can be taken as an input of the
metamodel, making the output scalar (see e.g., [65]). In both cases, our methodology
will proceed as illustrated in the case studies.
The second way is to project the output onto a space of lower dimension and then fit an
individual metamodel to predict each component of the projection (see e.g., [34] or [65]).
For each individual metamodel, our methodology will proceed as in the case studies.
It is worth mentioning that for this approach, the optimum projection dimension for
the output, in terms of projection error, will be the largest possible one. This value,
however, will not necessarily be the optimum in terms of metamodel predictability and
will likely be a highly expensive choice in terms of computational time. Thereby, a sound
approach would be to optimize the output projection dimension w.r.t the prediction
error of the metamodel and consider the processing time of the metamodel as a second
objective function or as a constraint (i.e., discard any configuration whose processing
time exceeds certain limit).

• Stochastic code: metamodeling with stochastic codes often reduces to multiple subprob-
lems consisting on estimating moments or quantiles of the output distribution given an
input value (see e.g., [66] and [67], respectively). All these are scalar-output problems
that can be addressed similarly to our case studies.
More advanced techniques predict the probability density function (pdf) [68] or the
quantile function [69] of the output given an input value. If the output is scalar, then
this case can be perceived and approached as the functional output problems described
in the previous item. If the output is functional, for instance a time series, a pdf could
be built for each observation at each time step. Then, one could put the time index as
an input and the problem will likewise reduce to the case of functional output already
discussed.

2.4.2 Analytic case
In this section we illustrate our exploration methodology by means of a toy case. It corre-
sponds to the second analytic case presented in [29], with a slight different domain for the
functional inputs. In [29], a functional-input Gaussian process metamodel is built using B-
spline projections of dimension 5 and order 4. Here, we use the exploration strategy presented
in previous section to find an attractive metamodel configuration.

Let F be the set of continuous functions from [0, 1] to R. Consider a black box computer
code receiving the scalar inputs x =

(
x(1), x(2)

)
∈ [0, 1]2 and the continous functional inputs

f = (f (1), f (2)) ∈ F2 defined as:
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G : [0, 1]2 ×F2 → R,

(x,f) 7→
(
x(2) − 5

4π2

(
x(1)

)2
+ 5
π
x(1) − 6

)2

+ 10
(

1− 1
8π

)
cos

(
x(1)

)
+ 10

+ 4
3π

(
42
∫ 1

0
15 f (1)(t) (1− t)− 5 dt

+ π

(
x(1) + 5

5 + 15
)∫ 1

0
15 t f (2)(t)dt

)
.

Note that G is an instrinstic functional code, since the integrals over the domain of the
inputs and the interactions between functional and scalar variables make it unfeasible to
recover the output by means of independent computations on scalar representations of the
input over its domain. This fact gives an insight on the type of metamodel that should be
used; at least, we expect functional metamodels to be an interesting alternative here.

2.4.2.1 Dataset

We started by creating a dataset with 5000 runs of the code that could be used later to
generate multiple independent training and validation sets. The coordinates of the 5000
scalar input points where uniformily sampled over their domain. For the functional part,
we followed the approach proposed in [29] by making the design over the coefficients of a
functional decomposition. To this end, we modeled each functional input as a B-spline of
dimension 5 and order 4. Then, we built a Latin Hypercube design [70] with 5000 points
taking the decomposition coefficients as coordinates. We remark that the order and dimension
used for the constitution of the dataset is independent of the order and dimension to be used
later for the representation of the inputs in the metamodel. As the focus of this paper is not
on the optimal design of experiments, we do not develop further this aspect and match the
5000 scalar coordinates to the 5000 functional coordinates using a random permutation. For
a more elaborated approach to perform this pairing, the reader is referred to [29]. The full
dataset and a set of 25 trajectories of the function f (1) are shown in Figures 2.4a and 2.4b,
respectively.

(a) Full dataset. (b) 25 sample functions.

Figure 2.4 – Illustration of the functional input f1.
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2.4.2.2 Screening

Once the dataset was obtained, we set up the screening experiment, which implies the
definition of a scalar metamodel to be used as a benchmark for the functional ones. Let
f̈ = (f̈ (1), f̈ (2)) be the vector of scalar representations of the functional inputs f (1) and f (2).
Different scalar parameters could be used to represent the inputs, depending on the geome-
try and/or the physical meaning of the curves. For simplicity, and as the functions in this
theoretical example do not have any physical meaning, here we set the average over [0, 1000]
of each function as its scalar representation. Then, we define the scalar metamodel as:

M00 : [0, 1]2 × [0, 1]2 →R,
(x, f̈) 7→M00(x, f̈). (2.16)

For the funtional metamodels, let us consider a shifted version of f , computed as f̃ =
f − f̈ . Then, let Π = (Π1,Π2) denote the vector of projections of the elements in f̃ onto
a space of dimension p. For every functional metamodel, we keep x and f̈ as inputs and
we add at least one element of Πp. This way, the difference in performance between the
scalar metamodel and any functional metamodel will be attributed to the addition of the
corresponding projections. As an example, metamodels with (a) only Π1 active, (b) only Π2
active, and (c) both, Π1 and Π2 active, are defined in (2.17), (2.18) and (2.19), respectively.

Mf0 : [0, 1]2 × [0, 1]2 × Rp →R,
(x, f̈ ,Π1) 7→Mf0(x, f̈ ,Π1). (2.17)

M0f : [0, 1]2 × [0, 1]2 × Rp →R,
(x, f̈ ,Π2) 7→M0f (x, f̈ ,Π2). (2.18)

Mff : [0, 1]2 × [0, 1]2 × (Rp)2 →R,
(x, f̈ ,Π) 7→Mff (x, f̈ ,Π). (2.19)

In this notation, the subscript indicates which functional decompositions are active. For
instance, inM00 both functional decompositions are inactive, while inM0f only Π2 is active.
However, the notation is generic in the sense that each of the metamodels, (2.17), (2.18) and
(2.19), might represent configurations involving diverse combinations of projection method,
projection dimension and distance measure.

A total of 37 experimental conditions were included in the screening experiment, result-
ing from the scalar metamodel M00, plus all combinations of the levels of the structural
parameters (see Table 2.1), except for those cases where both Π1 and Π2 are inactive. Those
correspond to redundant counts of the scalar metamodel. In the rest of the paper, for con-
cision, we write ‖·‖D,θf as ‖·‖D,θ and ‖·‖S,θ̇f as ‖·‖S,θ. For the numerical experiments, we
concentrate on the B-splines and PCA projection methods, which have consistently appeared
as effective ways to model functional data (see e.g., [29, 71, 33] for applications of B-splines
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and [30, 72] for applications of PCA). Both methods work with a projection of the form
(2.10) and thus, they are suitable choices in our framework. For a full derivation of B-splines
and PCA equations, the interested reader may refer to [71] and [73], respectively. Other pro-
jection methods such as PLS [74] or kPCA [22] are valid choices as well, and we encourage
the inclusion of multiple projection methods in the analysis for comparison. Furthermore,
we impose the projection dimension of every functional input to be the same, for simplicity
of exposition. That is, we let p1 = ... = pdf = p, with the notation of Section 2.3.

Parameter Levels
State of Π1 inactive, active
State of Π2 inactive, active
Projection method B-splines, PCA
Projection dimension 1, 2, 3
Distance ‖·‖D,θ, ‖·‖S,θ

Table 2.1 – Analytic case: parameters and levels for the screening stage.

In all cases, we set the projection coefficients α(k)
1 , . . . , α(k)

pk
using an ordinary least squares

formulation (see Appendix 2.B). We used the Matérn 5/2 kernel (2.6) and estimated the
hyperparameters of each metamodel by maximizing the joint likelihood of the data [75, 49]
in a similar way to the R package DiceKriging [76]. The optimization was done by the
R-function optim.

We assessed the quality of each configuration by means of the predictive squared corre-
lation coefficient Q2, which corresponds to the classical coefficient of determination R2 for a
test sample, i.e., for prediction residuals [77]. For a test set of n∗ output values y∗,1, . . . , y∗,n∗ ,
with average denoted by ȳ∗, and corresponding predictions ŷ∗,1, . . . , ŷ∗,n∗ , the Q2 is defined
as

Q2 = 1− σ2
E

σ2
T

, (2.20)

with

σ2
E =

n∗∑
i=1

(y∗,i − ŷ∗,i)2

n∗
and σ2

T =

n∗∑
i=1

(y∗,i − ȳ∗)2

n∗
.

The Q2 takes values in [−∞, 1] where 1 indicates perfect fitting to the test data. Thus, it
not only allows to make comparisons between configurations, but it also provides information
on the absolute quality of each configuration.

To account for the sampling noise, we used a total of 30 independent pairs of training and
validation sets for each of the 37 metamodel configurations. Thus, the statistic for comparison
between configurations, denoted by Q̃2, is obtained by computing (2.20) for each of the 30
samples and then taking the average of the results:

Q̃2 := 1
30

30∑
s=1

Q2
s. (2.21)
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The 30 pairs were kept fixed for all configurations in order to make the comparison fair.
We remark that the correlation between input and output is implicitly taken into account
when optimizing a predictability indicator such as the Q̃2, since the methodology will select a
projection dimension sufficiently large to retain the amount of temporal/spatial information
of the inputs necessary to accurately reproduce the output.

We let the exploration run until fulfilling one of the following convergence-oriented stop-
ping conditions:

(i) Stop if the slope of a linear least squares fitting to the best Q̃2 values of the screening
is lower than a reference value m∗;

(ii) Stop if a stationary point or plateau is reached. Each time the experiment is expanded
to a greater level ṗ of projection dimension, compute a new linear least squares fitting
to the best Q̃2 values among those corresponding to configurations based on projections
of dimension ṗ − 1 and ṗ. If the slope of such a fitting is lower than a reference value
m∗, count a flat step. Stop if z consecutive flat steps are registered.

The first rule seeks to prevent the extension of the experiment unless evidence of potential
improvement of the Q̃2 was found during screening. On the other hand, the second rule is
oriented to stop if a prospect local optimum is detected or the strategy reached certain degree
of convergence. Note that the slope of the linear least squares fitting is updated each time
the projection dimension is increased, and the fitting only takes into account the last two
projection dimensions. This seeks to obtain clear information on how the Q̃2 is behaving
locally. If other projection dimensions were considered in the fitting, one might end up
mistakenly thinking that the Q̃2 is still improving, when it is not. Also note that we do not
stop the search the first time we notice a flat step, but after z consecutive counts. This is
to prevent premature stops due to saddle points. Similar stopping rules are often used in
general for optimization, e.g., for gradient based methods [78] and heuristics [79].

Figure 2.5 illustrates the performance in terms of Q̃2 of the 37 metamodel configurations,
using 800 training points and 1500 validation points. Those results were obtained using
m∗ = 10−4 and z = 3 for the stopping conditions, which based on a set of preliminary tests
seem to provide a good balance between degree of exploration and convergence rate. For
convenience in the analysis, the plot classifies metamodel configurations into three groups
based on their performance:

(i) the scalar metamodelM00,

(ii) all metamodels with active functional representation of both functional inputsMff ,

(iii) all metamodels with at least one functional representation inactive (except for the scalar
metamodel).

For a detailed list of the experimental conditions and corresponding results of the screening
stage, the reader is referred to Appendix 2.C, Table 2.7.
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(a) Analytic case: all configurations of screening.

(b) Analytic case: zoom to best configurations of screening. The value of m in the box indicates
the slope of the linear least squares fitting of the points.

Figure 2.5 – Analytic case: results of the screening experiment. Points are labeled by
projection dimension p; the label 0 corresponds to the scalar metamodel.

As a first noticeable result, the scalar metamodel was the worst performing configuration,
closely followed by a metamodel with p = 1 (configuration 8). For p = 2 and 3, configurations
with both functional representations active (i.e., configurations 16+3i, i = 0 . . . , 7) performed
better than the others, while for p = 1 only those configurations with PCA representation of
both functional inputs (configurations 7 and 13) had outstanding performance. On the other
hand, it is visible that the Q̃2 tends to grow as the number of basis functions increases. In
fact, the best performing metamodel of the screening stage (configuration 37) was found for
p = 3, the largest value tested so far. Since the slope of the linear trend was larger than the
critical value m = 10−4, we proceed to cleaning and descent.

2.4.2.3 Cleaning and descent

Appart from a positive trend of the Q̃2 for increments in p, the screening stage revealed
that configurations with the functional representation of both inputs being active dominate
any other configuration. Therefore, only this type of metamodel is retained and we start
expanding the experiment by increasing p by steps of a unity. At each step, we inspect
again for patterns or changes in trend, and cleaning is performed if possible. The Q̃2 of the
new configurations is plotted in Figure 2.6. A detailed list of the experimental conditions
and corresponding results of this stage is provided in Appendix 2.C, Table 2.8. From p =
3 to p = 4, and also from p = 4 to p = 5, we registered a flat step. At p = 5, we
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removed the configurations using the scalar distance ‖·‖S,θ, as those were clearly dominated
by configurations using the decomposition-based distance ‖·‖D,θ. Then, p = 5 to p = 6 we
registered a third flat step, which fulfilled our secont stopping condition. Thus, at p = 6 we
stopped.

(a) Analytic case: all configurations of cleaning and descent.

(b) Analytic case: zoom to best configurations of cleaning and descent. The value of m in the box
indicates the slope of the linear least squares fitting of the points.

Figure 2.6 – Analytic case: results of cleaning and descent. Points are labeled by projection
dimension p. Configurations from the screening stage with p = 3 are also plotted here for
comparison against configurations with larger p.

The metamodel with an active B-splines representation of size p = 5 for both functional
inputs, using the decomposition-based distance ‖·‖D,θ (condition 44) is the most attractive
configuration found. As we do not know the shape of the Q̃2 surface, we cannot guarantee
that such a configuration provides the global optimum. However, we know that its Q̃2 is 18.8
times as large as the Q̃2 of the worst configuration assessed (condition 1). Considering that,
and based on the patterns found during the exploration, condition 44 is likely one of the best
metamodel configurations in terms of Q̃2 for this case study.

The fitting of the ordered true output for the best performing sample of the best config-
uration is illustrated in Figure 2.7. For this sample, the proportion of output values lying
within the confidence intervals at 99%, 95% and 90% was 89%, 77% and 68%, respectively.
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Figure 2.7 – Analytic case: fitting of the best performing sample of the best configuration.
Left-top subplot illustrates the whole set of 1500 output values in increasing order; this
subplot is then subdivided to generate the remaining 5 subplots by splitting the abscissa into
5 sections and zooming the resulting figures.

On the other hand, the calibration plot for the best and worst samples of the best config-
uration are presented in Figures 2.8a and 2.8b, respectively. Based on these results, we may
conclude that this metamodel provides good predictions with no evident fitting problems
(e.g., skewness, heavy tails).

(a) Analytic case: best sample. (b) Analytic case: worst sample.

Figure 2.8 – Analytic case: calibration plot with 1500 data points for the best and worst
samples of the best performing metamodel (configuration 44).

29



2.5 Coastal flooding case study
In this section, we address the application case introduced in Section 2.2. Similarly to the
analytic case, we implement our exploration methodology to tune the structural parameters
of the metamodel. Note that the computer code under study is actually a concatenation
of two blocks: (i) the spectral wave model SWAN; and (ii) the EurOtop overtopping and
overflow discharge formulas (see the system description in Section 2.2.1). A possible way to
handle problems involving multiple nested blocks is to use multiple metamodels, one for each
block of the system. In a recent work this method was compared to the classical approach
based on a single metamodel, using Gaussian processes in both cases [80, 81]. A set of
numerical experiments showed a superior prediction capacity when using multiple nested
metamodels instead of a single one, however no theoretical guarantees were provided. In the
present paper we preferred to keep the simpler yet powerful single metamodel approach and
focus on the modeling of functional inputs and optimization of structural parameters. We
outlook the comparison of the two approaches for our application case as an interesting topic
of future research.

2.5.1 Screening
Following the exploration methodology described in Section 2.4, we start by the screening
stage oriented to identify patterns, detect trend and determine if the functional representation
of the inputs adds value to the metamodel. We denote by f = (Td,Sg,Hs,Tp) the vector of
functional inputs in a time series format (see Section 2.2) and correspondingly, we denote by
f̈ = (T̈d, S̈g, Ḧs, T̈p) the vector of shifted scalar representations of the elements in f . From
the physical perspective, the Td peak (its value at time 19) is the point in the series with the
most influence on the output. Thus, we use that quantity as its scalar representation. For
Sg, Hs and Tp we use the average of the series over 37 time points, given their smooth and
almost constant behavior in the historical dataset (see Figure 2.2). Using a similar notation
to that used for the analytic case, we define the scalar benchmark metamodel as:

M000 : R4 →R,
f̈ 7→M000(f̈). (2.22)

As before, the funtional metamodels require the definition of a shifted version of f com-
puted as f̃ = f − f̈ . However, the coastal flooding application has four functional inputs,
in contrast to the analytic case which had only two. As mentioned earlier, in the proposed
exploration method the number of experimental conditions grows exponentially with the
number of functional inputs, and so does the processing time. In Section 2.4.1 we proposed
an extension to deal with a larger number of structural parameters and levels. Such an ex-
tension would certainly be of service here. However, its development requires a considerable
amount of additional work which is out of the scope of this paper. Thus, in this section we
adopt the simpler approach of performing a classic principal component analysis to determine
if any shifted functional input could be discarded from exploration (see Figure 2.9). Note
that the plot is built for the shifted inputs as those are the ones that will potentially be used
as functional inputs of the metamodel (see the setup for the analytic case in Section 2.4.2).
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(a) PCA shifted Td. (b) PCA shifted Sg.

(c) PCA shifted Hs. (d) PCA shifted Tp.

Figure 2.9 – Coastal flooding case: PCA on the shifted inputs; the dotted lines indicate the
number of principal components required to explain at least the 99% of the data variability.

Based on the plots, H̃s is the input requiring fewer components to be well described,
while S̃g and T̃p require a considerable number of components. Hence, we discard H̃s as a
functional input of the metamodel, but keep its scalar representation Ḧs active as it does not
affect the number of experimental conditions to run, but may help to improve predictions.
Although T̃d is also well described by just a few components, the tide is known to be a primary
forcing factor of coastal flooding. Both, statistical and physical reasoning are relevant for
this filtering process. Thus, we decided to keep T̃d in the experiment.

Now we let Π = (Π1,Π2,Π3) denote the vector of projections of dimension p for T̃d, S̃g
and T̃p. For every functional metamodel, we keep all the elements in f̈ active and we add at
least one element of Π as a functional input. Functional metamodels are defined similarly to
the analytic case. For instance, metamodels with (a) only Π1 active, (b) Π2 and Π3 active,
and (c) all three projections active, are defined in (2.23), (2.24) and (2.25), respectively.

Mf00 : [0, 1]4 × Rp →R,
(f̈ ,Π1) 7→Mf00(f̈ ,Π1). (2.23)

M0ff : [0, 1]4 × Rp × Rp →R,
(f̈ ,Π2,Π3) 7→M0ff (f̈ ,Π2,Π3). (2.24)

Mfff : [0, 1]4 × (Rp)3 →R,
(f̈ ,Π) 7→Mfff (f̈ ,Π). (2.25)

The interpretation of this notation is analogous to that for the analytic case. The subscript
ofM indicates which functional decompositions are active. The notation remains generic in
the sense that (2.23), (2.24) and (2.25), might all represent configurations involving diverse
combinations of projection method, projection dimension and distance measure.
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A total of 85 experimental conditions were included in the screening experiment. Those
correspond to the scalar metamodel plus all combinations of the levels of the parameters listed
in Table 2.2, except for those where Π1, Π2 and Π3 are simultaneously inactive, which are
equivalent to the scalar metamodel. A detailed list of the 85 configurations and corresponding
results is provided in Appendix 2.D, Table 2.9.

Parameter Levels
State of Π1 inactive, active
State of Π2 inactive, active
State of Π3 inactive, active
Projection method B-splines, PCA
Projection dimension 1, 2, 3
Distance ‖·‖D,θ, ‖·‖S,θ

Table 2.2 – Coastal flooding case: parameters and levels for the screening stage.

In the analytical example, we used an ordinary least squares formulation to set the projec-
tion coefficients, given that all points in the input series were considered equally important.
For the RISCOPE application, the midpoint of the series is of particular relevance, as it cor-
responds to the moment of high tide. Therefore, in this case we used a weighted least squares
formulation instead (see Appendix 2.B). A constrained or weighted constrained formulation
could also be suitable choices here. Those are used for further analysis in Section 2.5.2.

For the weighted least squares formulation we denote the vector of weights by w =
(w1, . . . , wT ), with T = 37 and wt given by:

wt =


1 : if t = t∗

λ : if 0 < |t− t∗| ≤ δ

λ exp
(
−(|t− t∗| − δ)2

2σ2

)
: if |t− t∗| > δ,

(2.26)

with σ2 = −(ω2)/(2 ln(γ)) controlling the decay rate of the function. Models like (2.26)
are often used to represent the relevance of results for queries on search engines [82]. It
retains some interesting properties from the Gaussian pdf, such as the non-negativity and
the existence of at least one maximum located at the origin t∗.

Figure 2.10 – Weighting function for the coastal flooding case. The parameters λ, γ, ω and
δ, controling the shape of the curve, were set to 0.7, 0.5, 1.5 and 6, respectively.
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A particular shape can be given to the curve by setting the value of its parameters as
follows. First, δ should be choosen from [0, t∗]. Then, ω should be set in [0, t∗ − δ]. Finally,
λ and γ should be set, each in [0, 1]. This setting along with the first case of (2.26) ensure
that the greatest possible score in w is 1. The weighting curve produced by such a model is
illustrated in Figure 2.10 with the parameterization used for the coastal flooding case.

Figure 2.11 shows the Q̃2 of the 85 metamodel configurations, using 800 training points
and 1500 validation points. A total of 30 independent pairs of training and validation sets
were used and the Q̃2 for each was computed. We used the same stopping conditions and
parameters (m∗, z) as for the analytic case. That is m∗ = 10−4 and z = 3. For exposition,
Figure 2.11 classifies metamodel configurations into three groups based on their performance:

(i) the scalar metamodelM000,

(ii) all metamodels using a decomposition-based distance ‖·‖D,θ,

(iii) all metamodels using a scalar distance ‖·‖S,θ.

(a) Coastal flooding case: all configurations of screening.

(b) Coastal flooding case: zoom to best configurations of screening. The value of m in the box
indicates the slope of the linear least squares fitting of the points.

Figure 2.11 – Coastal flooding case: results of the screening experiment. Points are labeled
by basis size p; the label 0 corresponds to the scalar metamodel.
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The scalar metamodel and the functional ones using the decomposition-based distance
‖·‖D,θ performed similarly and outperformed almost every configuration using the scalar dis-
tance ‖·‖S,θ, except for a few ones with p = 1. Regarding the Q̃2 trend, here it seems that
lower p values work better. Since the slope of the linear fitting of the best configurations was
smaller than the critical value m = 10−4 during screening, we fulfill stopping condition num-
ber two. Thus, we stop the search and keep the current best configuration. Strictly speaking,
such a configuration corresponds to experimental condition number 18; a metamodel with
an active B-spline representation of size p = 1 for T̃d and S̃g, using the decomposition-based
distance ‖·‖D,θ. However, in practice any of the dominant configurations included in Fig-
ure 2.11b could be a good choice, since the Q̃2 of all that group of configurations was quite
similar and processing times were all reasonable (see Appendix 2.D, Table 2.9).

It is inquiring to see that the Q̃2 values reported in Figure 2.11 are quite moderate,
even for the best configurations. Operationally, the problem is that almost in each of the
30 samples of each configuration, there is at least one of the 1500 validation points, whose
prediction is significantly bad. To illustrate, in Figure 2.12 we report the squared error of
the 1500 validation points for each of the 30 samples of metamodel configuration 18 — the
best configuration of the coastal flooding case. In almost every sample a few points behave
as outliers, increasing the sum of squared errors and thus, decreasing the Q̃2.

Figure 2.12 – Coastal flooding case: squared errors for each of the 1500 validation points
in each of the 30 samples of configuration 18.

We think that the problem comes from a strong imbalance in the dataset between mild
events (leading to minor or no flooding) and strong events (leading to major flooding). In
fact, after simulating each of the 20557 available hindcast events (see Section 2.2), we found
90% of the output values below 4 m3 although the largest output value found was 3455 m3.
This proportion of mild events has total physical sense as most part of the time Gâvres is not
flooded. In that sense, strong events (like Johanna storm, which hit Gâvres in 2008) are rather
statistically uncommon. However, this natural bias impacts the efficiency of metamodel
training, as the majority of learning data will match mild events (see Figure 2.13). A possible
way to deal with this issue is to use sequential design techniques [83, 84] to dynamically add
events to the learning set, seeking to diminish the bias in the data. Further analysis on this
issue is out of the scope of this paper.
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(a) Coastal flooding: best sample. (b) Coastal flooding: worst sample.

Figure 2.13 – Coastal flooding case: calibration plot with 1500 data points for the best and
worst samples of the best performing metamodel (configuration 18).

One may say that one or two bad predictions over 1500 is not exactly a bad perfor-
mance. Here the issue is that the Q̃2 is overly affected by only these few very large errors.
Therefore, in this case, a more robust and appropriate way to assess the absolute quality
of each metamodel is to compute the Q̈2, which we define as the Q̃2 in (2.21), but using
σ̈2
E = median ({(y∗,i − ŷ∗,i)2}i=1,...,n∗) instead of σ2

E and σ̈2
T = median ({(y∗,i − ȳ∗)2}i=1,...,n∗)

instead of σ2
T . Here median ({u1, . . . , ua}) is the empirical median of u1, . . . , ua ∈ R. Con-

figurations 18 and 71, the best and worst metamodels of the screening, reported Q̃2 values
of 0.7247 and 0.6371, respectively. In contrast, if we compute their Q̈2, we obtain 0.9999857
and 0.9997, in the same order. Hence, the metamodel predictions are accurate for the large
majority of the elements in the testbase.

Figure 2.14 – Coastal flooding case: fitting of the best performing sample of the best
configuration. Left-top subplot illustrates the whole set of 1500 output values in increasing
order; this subplot is then subdivided to generate the remaining 5 subplots by splitting the
abscissa into 5 sections and zooming the resulting figures.
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The fitting of the ordered true output for the best performing sample of the best config-
uration is illustrated in Figure 2.14. For this sample, the proportion of output values lying
within confidence intervals at 99%, 95% and 90% was 92%, 91% and 89%, respectively. In
this case, the plot shows more variability in the confidence intervals than for the analytic
case. However, this is just a visual matter as the scale of each subplot is custom to the
range of the output values at each segment. Based on the results, we may conclude that the
selected metamodel provides good predictions for the majority of data and could be improved
by means of strategic sampling/sequential design techniques.

Interestingly, whilst the inputs of the code are time series of dimension 37, it was possible
to achieve quite good metamodel predictability just by using a scalar representation of them.
This result may be explained by the fact that, as commented in Section 2.2.1, the simplified
code considered here can be seen as the sum of independent scalar-to-scalar problems. Thus,
if we represent the functional inputs by a scalar related to a key time instant in the evolution
of the output, we may expect to have reasonable predictions. We would not expect this kind
of result if the code was intrinsically functional as in the analytic case studied in Section 2.4.2.
There, the best configuration found was a metamodel using a projection of dimension 5.

2.5.2 Dimension selection based on projection error
Earlier in the paper, we have commented the common practice in the literature to set up the
projection dimension p, which is using the accuracy of the projection itself as criterion. The
problem with this approach, as mentioned earlier, is that the projection dimension offering a
good fit of the input does not necessarily lead to a better performance of the metamodel. In
this section, we take advantage of the RISCOPE case study to illustrate such an inconsistency.
To do so, we first set p based on the projection error, and then we assess the performance of
the corresponding metamodels based on their Q̃2. Finally, we compare results with those of
the metamodels assessed in the frame of our exploration methodology.

2.5.2.1 Selecting the dimension for each input based on projection error

Here we follow an approach which consists in the definition of an error tolerance for each
input, and the posterior search of the lowest dimension for which the tolerance is reached.
Based on knowledge of the coastal flooding phenomenon, we set a maximum error of 1 cm,
1.5 cm, and 1 s, for the projections of Td, Sg and Tp, respectively. This tolerance should be
achieved within the critical time window t = {13, . . . , 25}, which corresponds to the moment
of maximum tide ± 1 hour. Hence, the procedure will point out to find the lowest projection
dimension, for which every curve of the hindcast dataset satisfies the stated tolerance. We also
use this experiment to compare the four least squares formulations presented in Appendix 2.B
to set the coefficients of the projection, those being: the ordinary, weighted, constrained and
weighted-constrained formulation. The last three, could be interesting choices here as the
points of the series lying in the critical time window have greater importance than the others;
in particular at point t19. Results are condensed in Figure 2.15.
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(a) Td - B-splines. (b) Td - PCA.

(c) Sg - B-splines. (d) Sg - PCA.

(e) Tp - B-splines. (f) Tp - PCA.

Figure 2.15 – Maximum projection error within the critical time window as a function of
the projection dimension p. Td and Sg error in centimeters and Tp error in seconds. In the
legends, the quantity in parenthesis indicates the value of p needed to meet the tolerance.

As suggested in Section 2.4, by focusing on the error of the projection one may end up
with an unnecessarily large projection dimension. For instance, the projection error for Td
using any of the formulations was already quite low at p = 6, however, the constrained and
weighted-constrained formulations required at least p = 13 to reach the tolerance. What
makes it even worst is that usually, there are only a couple of curves in the dataset that
require such a high projection dimension. For instance, in Figure 2.16 we show how for the
B-splines projection method and the constrained formulation, almost all the curves of Td
had already reached the tolerance at p = 6. However, seven additional dimensions where
required to be compliant for all the curves. Although the demanding constraint of perfect
fitting at t19 has part on such behavior, the problem is also present in the ordinary and
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weighted formulations, which do not implement the constraint. See for instance the curve of
the weighted formulation in Figure 2.15e. At p = 5 the error was considerably low, however,
it required p = 10 to meet the tolerance.

(a) p = 1. (b) p = 3.

(c) p = 5. (d) p = 6.

Figure 2.16 – Distribution of errors (in centimeters) for points in the critical window using
the constrained least quares optimization formulation and B-splines for the projection of Td.

2.5.2.2 Efficiency of configurations based on projection error

The weighted formulation was the best performing one in the experiment above. It required
the lowest dimension in all cases and its maximum error remained almost always below
that of all the other formulations. Therefore, in this section we assess the performance of
the metamodel using the projection dimension suggested by that formulation. Similarly to
the previous experiments, here we evaluate all the possible combinations of the following
structural parameters: state of each projection (inactive or active), projection method (B-
splines or PCA) and distance (‖·‖S,θ or ‖·‖D,θ). In this case the projection dimension p is
not taken as a factor of the experiment, as its values are taken from results of the selection
based on projection error. Those values are listed in Table 2.3 for each combination of input
and projection method. In addition, in this experiment we do not consider the case where all
functional decompositions are inactive, as it corresponds to the scalar metamodel, which we
already evaluated as part of the selection based on metamodel predictability in Section 2.5.1.

Td Sg Tp
B-splines 4 15 10
PCA 4 10 6

Table 2.3 – Selected dimension based on projection error.
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A total of 28 experimental conditions were evaluated this time. A detailed list of them and
their corresponding results is provided in Appendix 2.D, Table 2.10. The Q̃2 of each of these
experimental conditions is reported in Figure 2.17, along with that of the best configuration
found with the approach based on metamodel predictability. To recall, the latter corresponds
to configuration 18, which has an active B-spline representation of size p = 1 only for Td,
using the decomposition-based distance ‖·‖D,θ.

Figure 2.17 – Coastal flooding case: performance of metamodels with the projection di-
mension based on projection error. Points are labeled by projection dimension; as it varies
from one input to the other in the new experiment, those points are labeled using an alpha-
betic convention where each letter is matched to a triple of integers denoting the projection
dimension for each input in the order Td,Sg,Tp: a : (4, 0, 0), b : (0, 15, 0), c : (4, 15, 0),
d : (0, 0, 10), e : (4, 0, 10), f : (0, 15, 10), g : (4, 15, 10), h : (0, 10, 0), i : (4, 10, 0), j : (0, 0, 6),
k : (4, 0, 6), l : (0, 10, 6), m : (4, 10, 6).

Once again, results with the decomposition-based distance ‖·‖D,θ were better than those
with the scalar one. The former has consistently been showing better performance throughout
the paper. Its advantage over the scalar distance is presumably the fact that it keeps the
number of length-scale parameters controlled, which in turn maintains the learning problem
handy and so its resolution time. Conversely, the scalar distance implies in some cases many
more hyperparameters. To illustrate, the average training time of the fourteen configurations
reported in Figure 2.17 for the scalar distance was 384.7 s, which corresponds to 10 times the
average training time of configuration 18. In contrast, the same quantity for the fourteen
configurations using the decomposition-based distance was 56.7 s, or 1.5 times the average
training time of configuration 18.

None of the new metamodels outperformed the best configuration found by means of
our exploration methodology. Metamodels selected with the approach based on the projec-
tion error are in general more comptationally demanding. Our exploration strategy eludes
this problem by only increasing the projection dimension if there is evidence of potential
improvement in accuracy.
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2.6 Robustness to changes in the amount of
training/validation data

We close the experimental segment of the article with an analysis on the behavior of our
exploration methodology when different amounts of training and validation data are used.
In Sections 2.4.2 and 2.5.1, the exploration strategy was used to calibrate the structural
parameters of a metamodel for the analytic case study and the coastal flooding application,
respectively. In both cases, we used training sets of size 800 and validation sets of size 1500.
Those numbers were selected during a preliminary verification of functionality of our codes,
taking into consideration the numerical stability of the metamodel (e.g., when computing
inverse correlation matrices), its predictability and the stability of performance statistics for
it. However, the number of training and validation points are undoubtedly influential factors
in regression and also in model selection. If different numbers of training and validation sets
are chosen, the performance statistics of any metamodel previously assessed will most likely
change, so will the optimal choice of a metamodel configuration. Then, a critical question
is if the exploration methodology under use is robust to such changes. In other words, if it
is able to efficiently identify good metamodel configurations when we change the amount of
information available to train and validate. In this section we conduct an experiment to test
this attribute of our exploration methodology.

2.6.1 Experiment setting
The experiment is based on the two case studies previously addressed in the paper. For
each of them, we search the optimal metamodel configuration, given different amounts of
training and validation data. To do so, we use an exhaustive search (ES) approach, where
we evaluate all possible combinations of the structural parameters. Then, we use the data
generated by ES (Q̃2 of each configuration) and emulate the exploration process using our
search methodology, which we will refer to in this section as SS, standing for strategic search.
Finally, we assess the performance of SS by comparisson against ES.

To keep the experiment tractable, for each case study we consider a solution space in-
cluding all levels of the structural parameters already evaluated, except for the projection
dimension. For this latter, we only explore a range of levels large enough to cover all meta-
model configurations assessed in Sections 2.4.2 and 2.5. Thus, for the new experiment we
make the ES method explore all configurations with projections of dimension up to 8 for the
analytic case and up to 4 for the coastal flooding case. Conversely, we make the SS method
run until fulfilling one of the convergence-oriented stopping conditions used in Sections 2.4.2
and 2.5 (with m∗ = 10−4 and z = 3), or until reaching a corner of the solution space.

2.6.2 Performance statistics
In this paper we evaluate our exploration strategy in terms of solution quality and runtime.
To do so, we define the following two indicators:

1. Optimality gap. Relative difference between the Q̃2 of the optimal solution found by the
ES method and that of the solution found by our SS method:

∆Q̃2 := Q̃2
ES − Q̃2

SS

Q̃2
ES

× 100%, (2.27)
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with Q̃2
ES and Q̃2

SS denoting the Q̃2 of the best solution for the ES and the SS method,
respectively, computed with (2.21).

2. Time saving. Relative difference between the runtime of the ES method and that of our
SS method:

∆Time := TES − TSS

TES
× 100%, (2.28)

where TES denotes the sum of training and validation times of all the configurations eval-
uated by the ES method, and similarly for TSS.

The Q̃2 values, training times and validation times recovered by ES are recycled by SS
in order to have a fair comparisson among exploration methods. To preserve the legitimacy
of the results, the optimal configuration is kept unknown until SS has been run and formal
stopping conditions are used. Similarly as before, 30 pairs of training and validation points
are used to account for noise.

2.6.3 Analysis
Statistics for the analytic and the coastal flooding case are presented in Tables 2.4 and
2.5, respectively. The results suggest the following findings: (1) the number of training
points has greater impact on the optimal combination of structural parameters than the
number of validation points. Configurations tend to vary more between rows than between
columns; (2) greater number of training points leads to selection of configurations with larger
projection dimension when the problem is intrinsically functional, as in the analytic case;
(3) the decomposition-based distance ‖·‖D,θ could be in general a better choice than the
scalar distance ‖·‖S,θ. The former was the optimal choice in almost all cases except for two
instances for the coastal flooding application.

Regarding the performance of the exploration methodology proposed in this paper, re-
sults show that: (1) the methodology is robust to changes in both, the amount of training
and validation data. Its configuration choice was optimal in the vast majority of cases. In
the remaining ones, the optimality gap ∆Q̃2 was always negligible (worst case in the order
of 1e−2%); (2) our exploration strategy provides an efficient way to solve the problem of
structural parameter calibration. It caused time savings of at least 64.4% for the analytic
case and 28.7% for the coastal flooding case. We remark that the times reported in Tables 2.4
and 2.5 are the sums of training and validation times of the 30 samples of every configuration
evaluated by each exploration method (ES and SS). At each combination of number of train-
ing and validation points, ES evaluated 97 configurations in the analytic case and 113 in the
coastal flooding case. For the instance with 1000 training points and 2000 validation points,
SS evaluated 47 configurations in the analytic case and 85 in the coastal flooding case. This
gives average metamodel construction times (training and validation) for the analytic case of
2.19 min for ES and 1.42 min for SS. For the coastal flooding case, the average construction
times are 2.08 min for ES and 1.71 min for SS.
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Tr

Val
500 1000 1500 2000

B – 3 B – 3 B – 3 B – 3 B – 3 B – 3 B – 3 B – 3

Mff Mff Mff Mff Mff Mff Mff Mff

‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ
∆Q̃2: 0.0% ∆Q̃2: 0.0% ∆Q̃2: 0.0% ∆Q̃2: 0.0%

∆Time: 76.7% ∆Time: 75.4% ∆Time: 73.7% ∆Time: 73.1%

100

TES:
34.2 m

TSS:
8.0 m

TES:
47.1 m

TSS:
11.6 m

TES:
62.6 m

TSS:
16.5 m

TES:
81.1 m

TSS:
21.8 m

P – 4 P – 4 P – 8 P – 6 P – 4 P – 4 P – 8 P – 4

Mff Mff Mff Mff Mff Mff Mff Mff

‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ
∆Q̃2: 0.0% ∆Q̃2: 1.1e−7% ∆Q̃2: 0.0% ∆Q̃2: 6.4e−8%

∆Time: 66.2% ∆Time: 65.7% ∆Time: 65.1% ∆Time: 64.4%

400

TES: 8.4 h TSS: 2.8 h TES: 8.7 h TSS: 3.0 h TES: 9.1 h TSS: 3.2 h TES: 9.8 h TSS: 3.5 h

P – 5 P – 5 B – 6 B – 6 B – 6 B – 6 B – 6 B – 6

Mff Mff Mff Mff Mff Mff Mff Mff

‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ
∆Q̃2: 0.0% ∆Q̃2: 0.0% ∆Q̃2: 0.0% ∆Q̃2: 0.0%

∆Time: 68.0% ∆Time: 67.8% ∆Time: 67.5% ∆Time: 67.1%

700

TES:
36.9 h

TSS:
11.8 h

TES:
37.4 h

TSS:
12.1 h

TES:
38.3 h

TSS:
12.4 h

TES:
39.3 h

TSS:
13.0 h

B – 6 B – 6 B – 6 B – 6 B – 6 B – 6 B – 6 B – 6

Mff Mff Mff Mff Mff Mff Mff Mff

‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ
∆Q̃2: 0.0% ∆Q̃2: 0.0% ∆Q̃2: 0.0% ∆Q̃2: 0.0%

∆Time: 69.1% ∆Time: 69.0% ∆Time: 68.8% ∆Time: 68.5%

1000

TES:
4.3 d TSS: 1.3 d TES:

4.3 d TSS: 1.3 d TES:
4.4 d TSS: 1.4 d TES:

4.4 d TSS: 1.4 d

Table 2.4 – Analytic case: robustness to changes in the amount of training and validation
data. Each intersection contains the configuration selected by (i) the ES method (darker
colored cell ) and (ii) the SS method (lighter colored cell ), as well as the performance
statistics computed with (2.27) and (2.28). The convention used to denote a configuration
is to divide its components in three lines. First line contains the projection method (P:
PCA, B:B-splines) and dimension (1, . . . , 8) separated by a script. Second line indicates the
active functional inputs (M00, M0f , Mf0, Mff ). Finally, the third line indicates the type
of distance (‖·‖S,θ, ‖·‖D,θ). For example, the configuration selected by ES for 400 training
and 500 validation points is a metamodel with a B-splines projection of dimension 3 for both
functional inputs, using the distance ‖·‖D,θ. TES and TSS are provided in minutes (m), hours
(h) and days (d).
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Tr

Val
500 1000 1500 2000

NA NA NA NA NA NA NA NA

M000 M000 M000 M000 M000 M000 M000 M000

NA NA NA NA NA NA NA NA

∆Q̃2: 0.0% ∆Q̃2: 0.0% ∆Q̃2: 0.0% ∆Q̃2: 0.0%

∆Time: 30.7% ∆Time: 30.7% ∆Time: 30.3% ∆Time: 28.7%

100

TES:
31.8 m

TSS:
22.1 m

TES:
43.7 m

TSS:
30.3 m

TES:
61.4 m

TSS:
42.8 m

TES:
79.9 m

TSS:
56.9 m

B – 4 P – 3 B – 4 P – 3 B – 4 P – 3 B – 4 P – 3

M00f M00f M00f M00f M00f M00f M00f M00f

‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ
∆Q̃2: 4.0e−2% ∆Q̃2: 9.7e−5% ∆Q̃2: 9.7e−5% ∆Q̃2: 6.5e−3%

∆Time: 36.3% ∆Time: 35.3% ∆Time: 35.4% ∆Time: 34.8%

400

TES: 8.9 h TSS: 5.7 h TES: 9.9 h TSS: 6.4 h TES: 9.8 h TSS: 6.3 h TES:
10.6 h TSS: 6.9 h

P – 1 P – 1 P – 1 P – 1 P – 1 P – 1 P – 1 P – 1

M0f0 M0f0 Mf0f Mf0f Mf0f Mf0f Mf00 Mf00

‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ ‖·‖D,θ
∆Q̃2: 0.0% ∆Q̃2: 0.0% ∆Q̃2: 0.0% ∆Q̃2: 0.0%

∆Time: 34.6% ∆Time: 34.5% ∆Time: 34.2% ∆Time: 33.9%

700

TES:
39.7 h

TSS:
26.0 h

TES:
40.4 h

TSS:
26.5 h

TES:
41.4 h

TSS:
27.2 h

TES:
42.6 h

TSS:
28.1 h

P – 1 P – 1 B – 2 B – 2 P – 1 P – 1 B – 3 B – 3

M00f M00f M0f0 M0f0 Mf0f Mf0f M00f M00f

‖·‖D,θ ‖·‖D,θ ‖·‖S,θ ‖·‖S,θ ‖·‖D,θ ‖·‖D,θ ‖·‖S,θ ‖·‖S,θ
∆Q̃2: 0.0% ∆Q̃2: 0.0% ∆Q̃2: 0.0% ∆Q̃2: 0.0%

∆Time: 38.7% ∆Time: 38.6% ∆Time: 38.4% ∆Time: 38.4%

1000

TES: 4.7 d TSS: 2.9 d TES: 4.8 d TSS: 2.9 d TES: 4.8 d TSS: 3.0 d TES: 4.9 d TSS: 3.0 d

Table 2.5 – Coastal flooding case: robustness to changes in the amount of training and
validation data. Each intersection contains the configuration selected by (i) the ES method
(darker colored cell ) and (ii) the SS method (lighter colored cell ), as well as the perfor-
mance statistics computed with (2.27) and (2.28). The convention is analogous to that of
Table 2.4, except that the projection dimension takes values from (1, . . . , 4). TES and TSS are
provided in minutes (m), hours (h) and days (d).
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2.7 Conclusions
In this article we propose a methodology to simultaneously tune multiple characteristics of a
functional-input metamodel. Its construction is motivated by a coastal flooding application
where a surrogate of a functional-input hydrodynamic code is to be built for early warning.
The nature of the inputs gives rise to a number of questions about the proper way to rep-
resent them in the metamodel: which inputs should be kept as predictors, what is a good
method to reduce their dimension, which dimension is ideal, and given our choice to work
with Gaussian process metamodels which are kernel based methods, also the question of
which is a convenient distance to measure similarities between functional input points. The
proposed methodology is intended to find dominant combinations of these types of features
of the metamodel, which we call structural parameters. One of its main features is the possi-
bility to calibrate the projection of the inputs (method and dimension) based on metamodel
predictability, rather than projection error which is the common approach.

The proposed methodology works in a staged fashion. First it explores some low levels of
projection dimension with all possible combinations of the remaining structural parameters.
From there, the exploration evolves by detecting trends and patterns indicating the direction
of improvement on the performance of the metamodel. Dominated levels of the structural
parameters are discarded along the way to speed up the exploration. The exploration ends
when a potential local optimum is detected or the performance statistic reaches certain degree
of convergence.

While relatively simple, the proposed methodology proved its effectiveness through a the-
oretical case study and our coastal flooding application. In both cases it allowed to find
metamodel configurations of outstanding performance able to accurately predict the output
of the numerical model. The ideal projection method and projection dimension proved to
vary from one application to the other, and even for different instances of the same appli-
cation. For instance, for intrinsic functional problems where the output of the code cannot
be reconstructed by iterative scalar-input runs, greater number of training points seem to
lead to the selection of larger projection dimensions. Regarding the distance to measure sim-
ilarity among functional input points, the decomposition-based distance ‖·‖D,θ consistently
reported better results than the scalar distance ‖·‖S,θ throughout the experiments. Appar-
ently, decomposition-based distance is a useful alternative to integrate functional inputs in a
kernel-based model while keeping the complexity of the learning process manageable.

Interestingly, our application case made evident that even when the inputs of the code are
functional, it could be possible to obtain good predictions just by using a scalar representa-
tion of them. Whether this is the case will depend on the way the numerical model exploits
the inputs to produce the outputs. Therefore, our main premise throughout the article has
been that dimensionality reduction of the inputs should be mainly guided by metamodel
performance. Our comparison with an approach based on a tolerance of projection error il-
lustrated how this type of approach may lead to an unnecessarily large projection dimension.
Depending on other metamodeling choices, such as the type of distance used to measure sim-
ilarities between functional input points, large projection dimensions may imply a significant
increase in processing time, not justified by any improvement in prediction accuracy.

The proposed methodology showed its efficiency through an experiment where it was
compared to an exhaustive search approach. Our method was able to find an attractive
solution while saving up to 76.7% and 38.7% of the time spent by the exhaustive search in the
analytic case and coastal flooding case, respectively. The solution found by our methodology
was optimal in most cases. A critical factor on its efficiency is that it applies the principles
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of exploration and exploitation present in many classical meta-heuristics such as Genetic
Algorithms [85] and Ant Colony Optimization [86]. The first principle points out to start the
exploration with a screening of a wide variety of metamodel configurations. Then, the second
principle leads to concentrate around the best solutions so far and seek for local improvements.
Given the positive results obtained in this study, an interesting research avenue would be the
extension of the proposed methodology towards an heuristic-based optimization algorithm.
Other studies in the field of computer experiments have pointed out this possibility as well
[35].

Another potential direction of research is to develop one of the functional-input regres-
sion methods cited in the introduction. The extension of scalar-on-function techniques to
nonlinear settings could be achieved, for instance, by defining penalized likelihood and cross
validation formulations [37]. This would pave the road to the selection of the relevant com-
ponents of the inputs during the optimization of the hyperparameters for powerful non-linear
metamodels such as Gaussian processes.

As the two case studies presented here consider a discretized representation of the func-
tional inputs, it seems interesting to assess alternative distances adapted to time series [87]
or try to adapt the work of [88] where a Geodesic PCA for density functions is introduced.
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Appendix 2.A Dataset constitution
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Appendix 2.B Setting the projection coefficients
Here we discuss the calibration of the projection coefficients. For the sake of presentation,
let us consider a single functional input variable provided in a time series format over the
set t = {t1, . . . , tL}, with L ∈ N. Let F be a matrix of dimension L × n containing n ∈ N
observations of that input variable. By adapting the expression for projections provided in
(2.10) to discretized functions, and generalizing for the simultaneous projection of multiple
curves, we obtain

F ≈ Π(F ) = Bα,

where B is a L × p matrix containing p basis functions discretized into the L points in t
and α is a p × n matrix containing the p projection coefficients required to represent the n
input curves. Assuming that the matrix B is produced by means of a standard method such
as PLS, B-splines or PCA, the problem reduces to setting the values of the matrix α. This
task is often completed using standard least squares optimization formulations. Closed form
expressions for four variations of the problem are provided below. In the formulations we use
Ai,• to denote the i-th row of a matrix A and similarly A•,j to denote its j-th column. In
addition, the orientation of the elements holds so that Ai,• is a row vector whilst A•,j is a
column vector

• Weighted Least Squares (WLS)
Sometimes, certain points in the domain of the inputs are more important than others
or the information about the input is more reliable there. This can be taken into
account in the selection of the projection coefficients by introducing a diagonal weight
matrix W of dimension L × L indicating the importance of each point in t. Then,
the projection coefficients can be found by minimizing the weighted sum of squared
residuals. For j = 1, . . . , n, the optimization problem can be written:

min
α•,j∈Rp

(F•,j −Bα•,j)′W (F•,j −Bα•,j). (2.29)

The integrated solution by derivatives for the n problems yields:

α̂ = (B′WB)−1B′WF . (2.30)

• Ordinary Least Squares (OLS)
If all points in t are equaly important and the information at all points is equally
reliable, the matrix W can be replaced by the identity matrix of dimension L × L in
(2.29) and (2.30) or simply removed from the equations.

• Weighted-Constrained Least Squares (WCLS)
If in addition to a set of important points in the domain of the inputs, there is some
point ti∗ ∈ t of outstanding relevance, a weighted-constrained formulation could be
used. It allows to enforce the projection to interpolate exactly the true function at
ti∗, while keeping relatively good precision on the remaining critical points. In this
case, the coefficients of the projection can be found by solving (2.29), subject to the
constraint
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Bi∗,•α•,j − Fi∗,j = 0. (2.31)

To solve this problem we use the well known method of Lagrange multipliers [96] which
allows to include equality constraints as part of the objective function in order to solve
the problem by derivatives. For j = 1, . . . , n, the Lagrange function to minimize can
be writen as

L(α•,j , λj) = (F•,j −Bα•,j)′W (F•,j −Bα•,j)
+λj(Bi∗,•α•,j − Fi∗,j), (2.32)

with λj ∈ R denoting the Lagrange multiplier for the optimization problem j. If we
collect the values of the n Lagrange multipliers into a row vector λ, the integrated
solution by derivatives for the n optimization problems yields

α̂ = (B′WB)−1
(
B′WF − 1

2B
′
i∗,•λ̂

)
, (2.33)

with

λ̂ = 2 [Bi∗,•(B′WB)−1B′WF − Fi∗,•]
Bi∗,•(B′WB)−1B′i∗,•

. (2.34)

• Constrained Least Squares (CLS)
The WCLS formulation can be easily modified for cases where only the point ti∗ is of
particular relevance. It suffices to replace the matrix W in (2.33) and (2.34) by the
identity matrix of dimension L× L.

We remark that the closed form solutions provided in (2.30), (2.33) and (2.34) work as
vectorized expressions for multiple simultaneous projections (i.e., they do not require loops
in code if matrix oriented coding environments like R or Matlab are used).
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Appendix 2.C Conditions and results for analytic case

Conf.

Functional
input Projection

method
Covariance
function

Projection
dimension

Results

f1 f2 Q̃2 CPU time (sec)
Train Pred

1 0 0 - - - 0.0533 14.2 2.0
2 1 0 B-splines ‖·‖S,θ 1 0.2914 23.2 2.0
3 0 1 B-splines ‖·‖S,θ 1 0.3425 15.6 2.0
4 1 1 B-splines ‖·‖S,θ 1 0.6367 17.6 2.0
5 1 0 PCA ‖·‖S,θ 1 0.1729 18.6 2.0
6 0 1 PCA ‖·‖S,θ 1 0.7814 19.0 2.0
7 1 1 PCA ‖·‖S,θ 1 0.9947 53.5 2.1
8 1 0 B-splines ‖·‖D,θ 1 0.0717 18.7 2.6
9 0 1 B-splines ‖·‖D,θ 1 0.3603 18.1 2.6
10 1 1 B-splines ‖·‖D,θ 1 0.4283 21.8 2.6
11 1 0 PCA ‖·‖D,θ 1 0.4544 25.9 2.6
12 0 1 PCA ‖·‖D,θ 1 0.5819 23.3 2.6
13 1 1 PCA ‖·‖D,θ 1 0.9899 86.1 2.7
14 1 0 B-splines ‖·‖S,θ 2 0.7262 17.3 2.2
15 0 1 B-splines ‖·‖S,θ 2 0.7959 16.9 2.2
16 1 1 B-splines ‖·‖S,θ 2 0.9994 32.4 2.3
17 1 0 PCA ‖·‖S,θ 2 0.7925 37.7 2.3
18 0 1 PCA ‖·‖S,θ 2 0.8442 38.8 2.3
19 1 1 PCA ‖·‖S,θ 2 0.9968 53.9 2.4
20 1 0 B-splines ‖·‖D,θ 2 0.5017 20.9 2.6
21 0 1 B-splines ‖·‖D,θ 2 0.6813 20.9 2.6
22 1 1 B-splines ‖·‖D,θ 2 0.9989 49.5 2.9
23 1 0 PCA ‖·‖D,θ 2 0.5788 33.4 2.6
24 0 1 PCA ‖·‖D,θ 2 0.7825 36.2 2.6
25 1 1 PCA ‖·‖D,θ 2 0.9953 89.5 2.9
26 1 0 B-splines ‖·‖S,θ 3 0.7901 56.6 2.4
27 0 1 B-splines ‖·‖S,θ 3 0.8452 59.5 2.4
28 1 1 B-splines ‖·‖S,θ 3 0.9991 27.6 2.4
29 1 0 PCA ‖·‖S,θ 3 0.8183 95.7 2.3
30 0 1 PCA ‖·‖S,θ 3 0.8687 91.7 2.1
31 1 1 PCA ‖·‖S,θ 3 0.9990 35.3 2.2
32 1 0 B-splines ‖·‖D,θ 3 0.7626 33.0 2.9
33 0 1 B-splines ‖·‖D,θ 3 0.8187 34.6 2.8
34 1 1 B-splines ‖·‖D,θ 3 0.9995 45.9 3.1
35 1 0 PCA ‖·‖D,θ 3 0.7904 43.5 2.8
36 0 1 PCA ‖·‖D,θ 3 0.8412 44.2 2.8
37 1 1 PCA ‖·‖D,θ 3 0.9997 42.4 3.1

Table 2.7 – Analytic case: experimental conditions and results from screening stage. For
training and prediction time, the value displayed is the average over 30 runs using independent
training and validation sets of size n = 800 and n∗ = 1500, respectively. For the functional
input, 1 denotes active and 0 denotes inactive.
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Conf.

Functional
input Projection

method
Covariance
function

Projection
dimension

Results

f1 f2 Q̃2 CPU time (sec)
Train Pred

38 1 1 B-splines ‖·‖S,θ 4 0.9981 43.2 2.2
39 1 1 PCA ‖·‖S,θ 4 0.9982 54.9 2.3
40 1 1 B-splines ‖·‖D,θ 4 0.9997 36.9 3.3
41 1 1 PCA ‖·‖D,θ 4 0.9997 49.0 3.3
42 1 1 B-splines ‖·‖S,θ 5 0.9959 52.8 2.5
43 1 1 PCA ‖·‖S,θ 5 0.9973 211.9 2.8
44 1 1 B-splines ‖·‖D,θ 5 0.9997 34.2 3.5
45 1 1 PCA ‖·‖D,θ 5 0.9997 48.3 3.5
46 1 1 B-splines ‖·‖S,θ 6 0.9959 62.1 2.6
47 1 1 PCA ‖·‖S,θ 6 0.9960 365.3 2.8
48 1 1 B-splines ‖·‖D,θ 6 0.9997 34.0 3.7
49 1 1 PCA ‖·‖D,θ 6 0.9997 43.0 3.7

Table 2.8 – Analytic case: experimental conditions and results from cleaning and descent
stages. The training and prediction times are computed as described in Table 2.7. For the
functional input, 1 denotes active and 0 denotes inactive.

Appendix 2.D Conditions and results for coastal
flooding case

Conf.

Functional
input Projection

method
Covariance
function

Projection
dimension

Results

Td Sg Tp Q̃2 CPU time (sec)
Train Pred

1 0 0 0 - - - 0.7209 27.7 2.0
2 1 0 0 B-splines ‖·‖S,θ 1 0.7214 32.0 2.0
3 0 1 0 B-splines ‖·‖S,θ 1 0.7226 31.2 2.1
4 1 0 0 B-splines ‖·‖S,θ 1 0.7146 36.3 2.1
5 0 0 1 B-splines ‖·‖S,θ 1 0.7211 29.0 2.0
6 1 1 1 B-splines ‖·‖S,θ 1 0.7201 34.8 2.1
7 0 1 1 B-splines ‖·‖S,θ 1 0.7213 33.9 2.1
8 1 1 1 PCA ‖·‖S,θ 1 0.7123 42.6 2.1
9 1 0 0 PCA ‖·‖S,θ 1 0.7198 29.1 2.1
10 0 1 0 PCA ‖·‖S,θ 1 0.7004 29.1 2.1
11 1 1 0 PCA ‖·‖S,θ 1 0.6948 30.6 2.1
12 0 0 1 PCA ‖·‖S,θ 1 0.7160 36.7 2.1
13 1 0 1 PCA ‖·‖S,θ 1 0.7074z 40.2 2.1
14 0 1 1 PCA ‖·‖S,θ 1 0.6958z 39.3 2.1
15 1 1 1 PCA ‖·‖S,θ 1 0.6864z 45.3 2.1
16 1 0 0 B-splines ‖·‖D,θ 1 0.7244 35.8 2.7
17 0 1 0 B-splines ‖·‖D,θ 1 0.7232 34.3 2.6
18 1 1 0 B-splines ‖·‖D,θ 1 0.7247 38.5 2.8
19 0 0 1 B-splines ‖·‖D,θ 1 0.7217 48.8 2.7
20 1 0 1 B-splines ‖·‖D,θ 1 0.7238 61.9 2.8
21 0 1 1 B-splines ‖·‖D,θ 1 0.7230 57.0 2.7
22 1 1 1 B-splines ‖·‖D,θ 1 0.7247 62.5 2.8
23 1 0 0 PCA ‖·‖D,θ 1 0.7234 33.5 2.6

Continued on next page
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Table 2.9 – Continued from previous page
24 0 1 0 PCA ‖·‖D,θ 1 0.7210 33.4 2.6
25 1 1 0 PCA ‖·‖D,θ 1 0.7218 37.7 2.7
26 0 0 1 PCA ‖·‖D,θ 1 0.7199 52.0 2.6
27 1 0 1 PCA ‖·‖D,θ 1 0.7216 62.4 2.7
28 0 1 1 PCA ‖·‖D,θ 1 0.7192 59.1 2.7
29 1 1 1 PCA ‖·‖D,θ 1 0.7204 64.9 2.8
30 1 0 0 B-splines ‖·‖S,θ 2 0.6967 32.0 2.3
31 0 1 0 B-splines ‖·‖S,θ 2 0.6915 33.2 2.3
32 1 0 0 B-splines ‖·‖S,θ 2 0.6592 42.3 2.4
33 0 0 1 B-splines ‖·‖S,θ 2 0.7137 37.8 2.3
34 1 1 1 B-splines ‖·‖S,θ 2 0.6866 48.1 2.4
35 0 1 1 B-splines ‖·‖S,θ 2 0.6869 48.3 2.4
36 1 1 1 PCA ‖·‖S,θ 2 0.6507 67.0 2.6
37 1 0 0 PCA ‖·‖S,θ 2 0.6973 31.4 2.3
38 0 1 0 PCA ‖·‖S,θ 2 0.7048 34.0 2.3
39 1 1 0 PCA ‖·‖S,θ 2 0.6653 44.4 2.4
40 0 0 1 PCA ‖·‖S,θ 2 0.7145 42.4 2.3
41 1 0 1 PCA ‖·‖S,θ 2 0.6875 60.5 2.5
42 0 1 1 PCA ‖·‖S,θ 2 0.6932 61.3 2.5
43 1 1 1 PCA ‖·‖S,θ 2 0.6532 95.1 2.6
44 1 0 0 B-splines ‖·‖D,θ 2 0.7215 33.9 2.7
45 0 1 0 B-splines ‖·‖D,θ 2 0.7211 35.7 2.7
46 1 1 0 B-splines ‖·‖D,θ 2 0.7195 38.4 2.8
47 0 0 1 B-splines ‖·‖D,θ 2 0.7199 55.0 2.8
48 1 0 1 B-splines ‖·‖D,θ 2 0.7203 60.8 2.9
49 0 1 1 B-splines ‖·‖D,θ 2 0.7190 61.2 2.9
50 1 1 1 B-splines ‖·‖D,θ 2 0.7187 65.8 3.0
51 1 0 0 PCA ‖·‖D,θ 2 0.7226 33.2 2.7
52 0 1 0 PCA ‖·‖D,θ 2 0.7211 37.2 2.7
53 1 1 0 PCA ‖·‖D,θ 2 0.7197 35.5 2.8
54 0 0 1 PCA ‖·‖D,θ 2 0.7199 52.0 2.7
55 1 0 1 PCA ‖·‖D,θ 2 0.7212 58.7 2.9
56 0 1 1 PCA ‖·‖D,θ 2 0.7196 59.5 2.9
57 1 1 1 PCA ‖·‖D,θ 2 0.7197 63.0 3.0
58 1 0 0 B-splines ‖·‖S,θ 3 0.7081 36.3 2.3
59 0 1 0 B-splines ‖·‖S,θ 3 0.7158 35.9 3.4
60 1 0 0 B-splines ‖·‖S,θ 3 0.6790 50.7 2.5
61 0 0 1 B-splines ‖·‖S,θ 3 0.7121 53.8 2.4
62 1 1 1 B-splines ‖·‖S,θ 3 0.6969 84.2 2.6
63 0 1 1 B-splines ‖·‖S,θ 3 0.6994 81.1 2.6
64 1 1 1 PCA ‖·‖S,θ 3 0.6699 130.6 2.7
65 1 0 0 PCA ‖·‖S,θ 3 0.6737 38.0 2.4
66 0 1 0 PCA ‖·‖S,θ 3 0.7014 37.0 2.4
67 1 1 0 PCA ‖·‖S,θ 3 0.6428 55.8 2.6
68 0 0 1 PCA ‖·‖S,θ 3 0.7117 56.5 2.4
69 1 0 1 PCA ‖·‖S,θ 3 0.6665 122.9 2.6
70 0 1 1 PCA ‖·‖S,θ 3 0.6956 94.4 2.6
71 1 1 1 PCA ‖·‖S,θ 3 0.6371 182.7 2.7
72 1 0 0 B-splines ‖·‖D,θ 3 0.7225 33.9 2.7
73 0 1 0 B-splines ‖·‖D,θ 3 0.7202 36.1 2.8
74 1 1 0 B-splines ‖·‖D,θ 3 0.7211 37.5 2.9
75 0 0 1 B-splines ‖·‖D,θ 3 0.7205 53.3 2.8
76 1 0 1 B-splines ‖·‖D,θ 3 0.7216 67.7 3.0
77 0 1 1 B-splines ‖·‖D,θ 3 0.7194 60.7 3.0
78 1 1 1 B-splines ‖·‖D,θ 3 0.7206 65.8 3.2
79 1 0 0 PCA ‖·‖D,θ 3 0.7231 31.5 2.7

Continued on next page
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Table 2.9 – Continued from previous page
80 0 1 0 PCA ‖·‖D,θ 3 0.7219 36.9 2.7
81 1 1 0 PCA ‖·‖D,θ 3 0.7225 35.7 2.9
82 0 0 1 PCA ‖·‖D,θ 3 0.7203 52.4 2.8
83 1 0 1 PCA ‖·‖D,θ 3 0.7218 58.0 3.0
84 0 1 1 PCA ‖·‖D,θ 3 0.7212 60.0 3.0
85 1 1 1 PCA ‖·‖D,θ 3 0.7212 63.3 3.2

Table 2.9 – Coastal flooding case: experimental conditions and results from screenig stage.
The training and prediction times are computed as described in Table 2.7. For the functional
input, 1 denotes active and 0 denotes inactive.

Conf.
Projection dimension Projection

method
Covariance
function

Results

Td Sg Tp Q̃2 CPU time (sec)
Train Pred

86 4 0 0 B-splines ‖·‖S,θ 0.6734 40.6 2.2
87 0 15 0 B-splines ‖·‖S,θ 0.6233 285.5 2.6
88 4 15 0 B-splines ‖·‖S,θ 0.5653 400.9 2.8
89 0 0 10 B-splines ‖·‖S,θ 0.7066 261.4 2.4
90 4 0 10 B-splines ‖·‖S,θ 0.6554 420.4 2.6
91 0 15 10 B-splines ‖·‖S,θ 0.6096 1055.3 3.0
92 4 15 10 B-splines ‖·‖S,θ 0.5562 1280.8 3.2
93 4 0 0 PCA ‖·‖S,θ 0.6651 44.9 2.1
94 0 10 0 PCA ‖·‖S,θ 0.6569 71.4 2.4
95 4 10 0 PCA ‖·‖S,θ 0.5871 120.5 2.6
96 0 0 6 PCA ‖·‖S,θ 0.7138 101.1 2.3
97 4 0 6 PCA ‖·‖S,θ 0.6546 265.6 2.4
98 0 10 6 PCA ‖·‖S,θ 0.6472 363.4 2.6
99 4 10 6 PCA ‖·‖S,θ 0.5830 674.1 3.1
100 4 0 0 B-splines ‖·‖D,θ 0.7228 35.8 2.8
101 0 15 0 B-splines ‖·‖D,θ 0.7230 50.0 3.6
102 4 15 0 B-splines ‖·‖D,θ 0.7221 54.1 3.7
103 0 0 10 B-splines ‖·‖D,θ 0.7218 61.4 3.3
104 4 0 10 B-splines ‖·‖D,θ 0.7223 65.7 3.5
105 0 15 10 B-splines ‖·‖D,θ 0.7222 85.3 4.1
106 4 15 10 B-splines ‖·‖D,θ 0.7220 98.2 4.3
107 4 0 0 PCA ‖·‖D,θ 0.7211 35.6 2.8
108 0 10 0 PCA ‖·‖D,θ 0.7235 32.8 3.2
109 4 10 0 PCA ‖·‖D,θ 0.7230 34.8 3.4
110 0 0 6 PCA ‖·‖D,θ 0.7207 53.5 2.6
111 4 0 6 PCA ‖·‖D,θ 0.7205 60.3 2.9
112 0 10 6 PCA ‖·‖D,θ 0.7234 59.1 3.2
113 4 10 6 PCA ‖·‖D,θ 0.7214 67.5 3.4

Table 2.10 – Coastal flooding case: evaluation of projection dimension selected based on
projection error. The training and prediction times are computed as described in Table 2.7.
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Chapter 3

Ant Colony based model selection for
functional-input Gaussian process
regression

The chapter in brief
Chapter 2 presented our first prototype of methodology for the calibration of structural
parameters of the metamodel. We used that methodology to tune the metamodel for a
simplified version of our hydrodynamic code, which received only part of the variables used
by our target code. Athough the proposed methodology proved to be effective for such
application, we concluded the need for more sophisticated exploration techniques in order
to scale to bigger problems involving (i) a larger number of inputs, (ii) more structural
parameters and (iii) more levels per structural parameter. In Chapter 3 we address this need
by introducing an Ant Colony based smart exploration algorithm.

Ant colony optimization (ACO) encompasses a large variety of optimization metaheuris-
tics derived from the seminal work of Dorigo et al. in the early 90s [9, 10]. Since then, ACO
based heuristics have been proved to give remarkable results in a wide range of optimization
problems, including DNA sequencing [11], scheduling [12], protein-ligand docking [13], assem-
bly line balancing [14] and packet-switched routing [15]. ACO has been recognized as one of
the most successful research lines in the area of swarm intelligence [16, 17], and always seats
beside evolutionary algorithms, iterated local search, simulated annealing, and tabu search
among the top metaheuristic techniques [18]. This chapter is an exact copy of our technical
report [19], which recalls the foundations of Ant Colony Optimization and elaborates on top
of them to make the algorithm suitable for our structural optimization problem. To the best
of our knowledge, this is the first algorithm addressing the structural optimization problem
for Gaussian process models.

We use the proposed algorithm to calibrate the metamodel for three analytic black-box
functions. The models obtained were in all cases of outstanding prediction quality. In
Chapter 5 we use the algorithm to calibrate the metamodel for the full hydrodynamic code
of the RISCOPE application.
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3.1 Introduction
Gaussian process models (a.k.a. Kriging models) are one of the preferred choices for meta-
modeling nowadays [75], competing with a few others like polynomials, splines, generalized
linear models and neural networks [97, 98]. While sometimes similar in prediction accuracy
to the other cited methods, Gaussian processes present among other advantages: (i) the ca-
pability to reproduce complex (and a priori unknown) nonlinear input-output relationships,
(ii) the ability to interpolate the observations, and (iii) the interpretability of predictions
which include an estimation of the uncertainty at each prediction point.

Gaussian process metamodels were originally developed for scalar inputs, but are now
also available for functional inputs. The extension to functional inputs gives rise to a number
of questions about the proper way to represent them in the metamodel: (i) which functional
inputs are worth keeping as predictors, (ii) which dimension reduction method (DR) is ideal
to use (e.g., B-splines, PCA, PLS), (iii) which is a suitable projection dimension, and given
our choice to work with Gaussian process metamodels, also the question of (iv) which is a
convenient distance to measure similarities between functional input points within the kernel
function. Some of these characteristics - hereon called structural parameters - of the model
and some others such as the family of kernel (e.g., Gaussian, Matérn 5/2) are often chosen a
priori, either based on the familiarity of the modeler with certain methods or in the results
of other metamodeling experiences. As one may intuit and has been shown by us through
experiments in [7], the configuration of the structural parameters of the model has a strong
impact on its prediction capability. In this report, we introduce an heuristic optimization
method for the selection of a convenient combination of structural parameters in the context
of functional-input Gaussian process models. The architecture of the algorithm was made
custom to the aforementioned problem, however, its principles are general enough and the
method can be easily extended to other model selection frameworks.

3.2 The ant colony system
Ant colony optimization (ACO) encompasses a large variety of optimization metaheuristics
derived from the seminal work of Dorigo et al. in the early 90s [9, 10]. Since then, ACO based
heurstics have been proved to give remarkable results in a wide range of optimization prob-
lems, including DNA sequencing [11], scheduling [12], protein-ligand docking [13], assembly
line balancing [14] and packet-switched routing [15]. ACO has been recognized as one of
the most successful research lines in the area of swarm intelligence [16, 17], and always seats
beside evolutionary algorithms, iterated local search, simulated annealing, and tabu search
among the top metaheuristic techniques [18].

3.2.1 Biological inspiration
ACO algorithms work based on stigmergy, a mechanism for indirect inter-agent communi-
cation through traces left in the environment. Ants employ this type of communication to
find efficient routes during foraging1. The way it works is traditionally explained through a
picture similar to the one displayed in Figure 3.1. The frame sequence in alphabetical order
illustrates the variant of the double bridge experiment performed by Goss et al. in the 80s
[99]. In the experiment, the nest of a colony of ants was connected to a food source by two

1Foraging: searching for wild food resources.
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paths, one significantly longer than the other (frame A). At first the ants began to explore
the environment by randomly distributing themselves in the two paths (frame B). Along its
way, each ant left pheromone trails noticeable by its mates. As expected, the ants that took
the shortest path met the food before (frame C). Most part of the ants that started first the
way back to the nest, perceived the larger load of pheromones in the shortest path and went
through it. The shortest path kept receiving pheromones at a incrementally higher rate than
the longer one, gradually reducing the chances of an ant taking this last (frame D). After
some time, the whole colony converged towards the use of the shortest path (frame E).

Figure 3.1 – Stigmergy used by ants to find efficient paths towards a food source. Red ants
represent the ones going back from the food source to the nest.

3.2.2 The optimization algorithm
In ACO algorithms, a colony of artificial ants evaluate solutions to the optimization problem
at hand. The quality of those solutions is informed to the colony through virtual pheromone
trails which help the algorithm to converge towards a high quality solution. To this day there
is more than a dozen ACO metaheuristics and probably hundreds of ACO based heuristics2.
The algorithm proposed here is inspired in the ant colony system (ACS), introduced by Dorigo
and Gambardella in the late 90s [100]. In this report we proceed directly with the explanation
of our heuristic for model selection. The aforementioned reference is recommended to the
reader interested in the original version of ACS.

The ACS operates over a decision network that must be defined in advance based on the
structure of the solution space. To start, each ant is located on a base spot and the pheromone
value of each link is initialized. Each ant generates a solution to the optimization problem
by adding nodes of the decision network to its path according to a pseudo-random system of
rules biased by the pheromone loads in the network. Each time an ant traverses a link, a local
pheromone update takes place; the pheromone load of the link is slightly reduced in order
to foment the diversification of solutions (principle of exploration). Once all ants have
made a complete solution, the quality of each solution is evaluated and a global pheromone

2Metaheuristic vs. heuristic: a metaheuristic is a generic solution technique that can be applied to a broad
set of problems; an heuristic is a solution technique designed to resolve a particular problem. An heuristic
might be an adaption of an metaheuristic to the particularities of the optimization task at hand.
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update occurs; the pheromone load of the links traversed by the best ants is increased in
proportion to the quality of their corresponding solutions, striving for convergence towards
high quality solutions (principle of exploitation). The process is then iterated until some
stopping conditions are reached. A pseudocode for the ACS is presented in Algorithm 1.

Algorithm 1 Generic ACS structure
1: while <stopping conditions remain unsatisfied> do
2: create a new population of ants
3: for <i=1:Psize> do
4: locate ant i at its base spot
5: tag ant i as partial
6: end for
7: while <there are still partial ants> do
8: randomly pick a partial ant
9: apply transition rule to select next node in its sequence
10: reduce pheromone load of chosen link
11: end while
12: evaluate the solution made by each ant
13: increase pheromone load of links in best solutions
14: P ∗ ← best solution so far
15: end while
16: return P ∗

3.2.3 Adaption to model selection

Decision network

Considering the framework described in Section 3.1 for a set of ds scalar inputs and df
functional inputs our optimization problem consists on making the following decisions:

• State of the i-th scalar input, from {inactive, active};

• State of the j-th functional input, from {inactive, active};

• Projection basis for the j-th functional input, from {B1, . . . , Bz};

• Projection dimension for the j-th functional input, from {0, . . . , kj};

• Distance for the j-th functional input, from {D1, . . . , Dw};

• Kernel type, from {K1, . . . , Kx},

with i ∈ {1, . . . ds}, j ∈ {1, . . . df} and kj the original dimension of input j. The sets
{B1, . . . , Bz}, {D1, . . . , Dw} and {K1, . . . , Kx} correspond to the basis, distance and kernel
families to be considered, in that order. The projection dimension 0 denotes no projection.
In order to find a suitable combination of the parameters listed above, we let our artificial
ants to move through a network with a structure similar to the one depicted in Figure 3.2.
Such a structure prevents the constitution of senseless solutions (e.g., an input being both,
inactive and active) and helps to keep the network data structures considerably simple by
only defining strictly necessary links.
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Figure 3.2 – Prototype of the network used in our ACO heuristic.

Transition rules

ACO is an iterative algorithm. At each iteration, a group of artificial ants are located at a
base spot. Each ant builds a feasible model structure by walking from node to node, always
respecting the direction of the links. At each step, an ant selects the next node based on a
pseudo-stochastic mechanism defined by (3.1):

rule =

Rule 1 if q ≤ q0,

Rule 2 otherwise,
(3.1)

with q0 a parameter ∈ [0, 1] and q a random value from U(0, 1). For ant r located at node
a, our transition rules are defined as follows:

Rule 1. Move to the feasible neighbor node with greatest pheromone load. Mathe-
matically, it is to move to the node s specified by

s = argmax
b∈Jr(a)

τab, (3.2)

with Jr(a) the set of feasible neighbor nodes for ant r located at node a, and τab the
pheromone load of link (a, b).

Rule 2. Pick the next node based on a probability distribution proportional to the
pheromone load of the feasible neighbor nodes. Formally, this can be expressed as
moving to node b with probability

P (b) = τab∑
b∈Jr(a)

τab
, (3.3)

with Jr(a) and τab interpreted as in rule 1.

Note that the proposed algorithm does not make use of the heuristic visibility value
considered in [100] and often present in ACO algorithms. The role of this value, typically
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denoted ηab for the link (a, b), is to introduce a priori information about the potential benefit
of including each link in the solution. For many optimization problems like routing-oriented
and scheduling-oriented ones, the visibility of a link is naturally set to be a function of
its inverse generalized cost (see e.g., [101] and [102]). For optimization problems involving
categorical variables (such as model selection problem at hand), this set up is often less
intuitive since the order of preferences over different levels of the same factor and the relative
degree of preference of each level are hard to estimate. For instance, consider the questions
of: (i) what would be the order of preference over a set of 5 types of basis families, and
(ii) how preferred each basis family should be. Since there is no published evidence of the
superiority of certain basis family over the others irrespective of the regression problem at
hand, it could be hard to answer these two questions. In order to include ηab in the algorithm,
the same two questions would have to be answered for the distance and the kernel family,
and every other feature of the regression model. Hence, we decided to remove the visibility
from our model, while keeping in mind that a priori information can also be introduced in
the algorithm through the initial pheromone load. This possibility will be discussed later, at
the end of this section.

Pheromone update

As explained in Section 3.2.2, ACS implements two pheromone update mechanisms – local
and global – responsible for the diversification of solutions and the exploitation of acquired
knowledge about the structure of high quality solutions. The local pheromone update is
triggered each time an ant adds a note to its sequence. The pheromone load of the traverse
link is slightly reduced and as a consequence, other ants are less motivated to use the same
link in further decisions. In the proposed algorithm, the local pheromone update operates
on the link (a, b) based on the assignment

τab ← (1− ρl) · τab + ρl · τ0, (3.4)

where τab is the current pheromone load of the link, τ0 is its initial pheromone load, and
ρl ∈ [0, 1] is a parameter that can be interpreted as the pheromone evaporation rate.

On the other hand, global pheromone update takes place each time that a colony becomes
complete, i.e., each time all ants in a colony complete a solution. This time, the pheromone
load of links belonging to the best ants is increased in proportion to the quality of the
corresponding solutions. For each high quality ant, the global pheromone operates on the
link (a, b) based on the assignment

τab ← (1− ρg) · τab + ρg · ψ, (3.5)

where τab is interpreted as in (3.4), ψ is a measure of the quality of the solution, and
ρg ∈ [0, 1] is a parameter that can be interpreted as the learning reinforcement rate. If
multiple ants are used in the global update, (3.4) is applied in an iterated manner over the
set of best ants.

Initial pheromone load

The ACS initiates with a base pheromone load on every link. This quantity is modified by the
virtual ants during the optimization to communicate actions and learning with their peers.
The initial pheromone load must be set with caution, since this value will be determinant on
the proper functioning of the algorithm;
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• If it is set too low, the heuristic will be prematurely and irreversibly biased towards the
best solution of the first iteration, breaking down the learning capability of the system.
In addition, the first iteration does not count with any learned information. Thus, the
solution at which the system would get stuck might be of regular quality.

• If it is conversely set too high, the system will struggle to converge (if it manages to do
so). High quality solutions will not drag the attention they deserve and ants will not
be able to focus their exploration around them.

In the proposed algorithm, pheromones are implicitly configured to take values exclusively
in [0, 1]. Thanks to the structure of the updating queries (3.4) and (3.5), this is easily achieved
by just setting the initial pheromone load of every link in the range [0, 1] and using a quality
measure ψ for the solutions in that same range. For the model selection problem, one can pick
for instance the Leave-one-out (LOO) cross-validated squared correlation coefficient Q2

loocv

(3.6), or alternatively its hold-out analogous, the predictive squared correlation coefficient
Q2
hout (see e.g., [77]).

Q2
loocv :=

1−

n.tr∑
i=1

(yi − ŷi,−i)2

n.tr∑
i=1

(yi − ȳ)2


0

, (3.6)

with (yi)i=1,...,n.tr the vector of observed output values, ȳ the average of that vector, ŷi,−i
the LOO estimation of yi, and the operator b·cl defined as:

bxcl =

x if x ≥ l,

l otherwise.

Several numerical trials allowed us to identify an initial pheromone load of 0.1, combined
with populations of size 10, as a suitable configuration taking into account the setup described
in the previous paragraphs. During those trials, we observed the affectation of the pheromone
level and the overall behavior of the algorithm along the iterations. In addition, we were able
to corroborate the drawbacks associated to excessively low or high τ0 values, explained in the
introductory paragraph of this subsection.

A special treatment for the assignment of the initial pheromone load was given to the
links connecting a distance type with a projection dimension (see Figure 3.2). The framework
presented here is general enough to account for any number and type of distance families,
however, for practical purposes we adopted the norms ‖·‖D,θf and ‖·‖S,θ̇f defined in [7] as
a baseline. The selection of one of these two norms not only might have a relevant impact
on the predictability of the model, but also on its tractability. The norm ‖·‖D,θf requires a
single length-scale parameter per functional input, indifferently of its projection dimension. In
contrast, for each functional input, the norm ‖·‖S,θ̇f requires as many length-scale coefficients
as projection terms. That means that the optimization of the hyperparameters of the model
will almost always involve a larger number of decisions variables when using the norm ‖·‖S,θ̇f .
This norm must be considered as an option as it could be the optimal choice in terms of
predictability. However, if the projection dimension is allowed to take too high values, the
norm ‖·‖S,θ̇f may imply substantially harder and more time consuming hyperparameters

62



learning sessions than the norm ‖·‖D,θf . As a mechanism of regularization, we set up the
initial pheromone load for the links pointing out to the norm ‖·‖S,θ̇f , based on a loss function
of the form

τf (x; kj, τ0, δj, wj) =



τ0 exp
(
−|kj − 1| − δj

2σ2

)
if x = 0,

τ0 if 0 < x ≤ δj,

τ0 exp
(
−|x− 1| − δj

2σ2

)
otherwise,

(3.7)

where kj is the original dimension of input j, x takes integer values corresponding to its
possible projection dimensions, τ0 denotes the general initial pheromone load of the heuristic,
and

σ2 = −
w2
j

2 log(.5) .

The parameters δj and wj draw the shape of the loss function by specifying the extension
of its flat section and the smoothness of its decreasing section (see Figure 3.3).

Figure 3.3 – Loss function used for regularization in dimension reduction for functional
inputs using the norm ‖·‖S,θ̇f . Built for an hypothetical functional input of dimension 10.

The first condition in (3.7) controls the case where the projection dimension is equal to
zero, which as stated earlier in the document denotes no projection. For every functional
input, the values of δj and wj can be tuned by observing the normalized loss curve with sum
equal to 1. This curve matches the values of the probability pie defined in transition rule 2
(see (3.3)), and will be used by the ants during the first iteration of the algorithm, each time
that this rule is implemented. Some examples of the normalized loss function are provided
in Figure 3.4, where we illustrate the effect of w and δ on the shape of the curve. Suitable
w and δ values will vary depending on particularities of the regression task. For instance, if
there are many candidate functional inputs, both values could be set relatively low in order
to prevent the heuristic from building too heavy models.

As a closing remark, the initial pheromone value can be used to induce preferences on the
behavior of the ants. Whenever there is some hint that one level of some feature will perform
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(a) Effect of δ on the normalized loss function. (b) Effect of w on the normalized loss function.

Figure 3.4 – Normalized loss function for hypothetical input of dimension 10.

better than the others, this information can be directly placed in the initial pheromone loads
of that feature. By doing so, the ants will be stimulated to test more often configurations
including the expected best performing level of the feature. The advantage of specifying this
information through the pheromones and not through a visibility value (see the discussion
on the transition rules) is that in case the induced bias was erroneous, the ants will be able
to systematically remove it through the local pheromone update. Conversely, the ants will
be able to reinforce the bias through the global pheromone update if they find it fruitful.

3.3 Analytic test cases
Let us now check the performance of the heuristic. We set ourselves in a metamodeling
framework where an expensive-to-evaluate computer code is to be substituted by a light-to-
run statistical model (see e.g., [103] or [7] for more details on the metamodeling problem). We
consider three analytic black-box functions and we undertake the model selection problem
for each of them. We proceed below with the definition of our black-box functions.

3.3.1 Black-box functions
Let F be the set of continuous functions from [0, 1] to R. Let x = (x1, x2) ∈ [0, 1]2 and
f = (f1, f2) ∈ F2 be the vectors of scalar and continuous functional inputs in that order.
Then, consider the black-box computer codes specified by the following analytic functions:

• Analytic black-box 1

G1 : [0, 1]2 ×F2 → R,

(x,f) 7→ x1 sin(x2) + x1

1∫
0

f1dt1 − x2
2

(
(max
T2

f2)− (min
T2

f2)
)
. (3.8)

• Analytic black-box 2

G2 : [0, 1]2 ×F2 → R,

(x,f) 7→ x1 sin(x2) +
1∫

0

exp(x1t1)f1dt1 − x2
2

1∫
0

f2t2dt1. (3.9)
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• Analytic black-box 3

G3 : [0, 1]2 ×F2 → R,

(x,f) 7→ x1 − 2x2 + 4
1∫

0

t1f1dt1 +
1∫

0

f2dt2. (3.10)

Note that the three functions above are totally independent and the only purpose of
resolving the model selection problem for all of them is to check the robustness of our proposed
algorithm to variations on the structure of the underlying input-output true model.

3.3.2 Data generation and heuristic setup
Here, we focus on the solution of the model selection problem and we keep the generation
of synthetic input data (the experimental design) very simple. For all the three analytic
functions we use the same input and output data. We generate the scalar part of the design
from a grid over [0, 1]2. We assume that the functional inputs f1 and f2 are represented by
vectors of size 10 and 22, respectively. We made this choice in order to include functional
inputs with heterogeneous discretization in the experiment. We sampled all the values of
each function randomly from U(0, 1). In total, we generated an arbitrary number of 100
input points. For each point, we computed the corresponding output values using (3.8), (3.9)
and (3.10).

As mentioned earlier in the discussion about the initial pheromone load (Section 3.2.3),
a series of numerical trials allowed us to identify the combination τ0 = 0.1 with a population
of size 10 to work properly for our application. During these tests, we also allowed the
decision probability boundary q0, the evaporation rate ρl and the learning reinforcement rate
ρg vary. More specifically, we tried values in the vicinity of (0.9, 0.1, 0.1), the values used for
those parameters (in the corresponding order) by Dorigo et al. in [100]. We found the triple
(0.95, 0.1, 0.1) to offer a good trade-off between solution discovery and convergence. Finally,
we fixed the regularization parameters δ and w at 2 and 1.4, respectively for both functional
inputs. This setup produces the normalized loss functions displayed in Figure 3.5.

Figure 3.5 – Normalized loss functions used for the analytic cases.
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3.3.3 Results
In this section we check the performance of our algorithm from three different perspectives:

1) the absolute quality of the selected model;
2) the relative quality of the selected model;
3) the evolution of the solutions found throughout the iterations.

Each of them is better described in the corresponding subsection. An ideal general number
of iterations that will work well for any model selection problem may likely not exist. Since
our purpose is merely to show the performance of the heuristic, we used and arbitrary number
of 20 iterations. For actual applications where the interest is to find the best possible solution
the algorithm can give, we recommend instead using a stopping condition based on processing
time. This way, we will have the best possible solution given our time constraints.

Absolute model quality

The absolute quality of the model refers to its predictability, regardless of the quality of
the other explored models. This dimension of quality can be assessed, for instance, by
means of the Q2

loocv or Q2
hout statistics (see the discussion about the initial pheromone load in

Section 3.2.3). Those are conveniently interpretable measures thanks to the fact that they
get values in [0, 1] (for any worthwhile model), with a value of 1 indicating perfect fitting and
0 indicating a very poor one. Here we optimize the model structure in terms of the Q2

loocv.
Figure 3.6 displays the calibration plot and the Q2

loocv for the model selected for each of the
black-box functions.

(a) Black-box 1. (b) Black-box 2. (c) Black-box 3.

Figure 3.6 – Calibration plot for selected models.

Based on the calibration plots, all the models are good in terms of accuracy and precision.
No evident fitting problems (e.g., skewness, heavy tails) are present in any of the models.

Relative model quality

The relative quality of the selected model is assessed by comparing it to the other explored
models. This dimension of quality allows to see how special our model is. For instance, a
Q2
loocv of 0.95 is not that especial if the vast majority of models had a metrics over 0.92, and

similarly, a Q2
loocv of 0.58 is not that bad if most of the models had metrics below 0.35. In
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Figure 3.7 we display the Q2
loocv of all the models explored during the optimization for each

of the black-box functions.

(a) Black-box 1. (b) Black-box 2. (c) Black-box 3.

Figure 3.7 – Relative quality of selected models.

In the three cases an important portion of the explored models reported a Q2
loocv that fell

well below that of the selected model. Two important takeaways from these plots are:

• the arbitrary selection of the structural parameters is an unsafe move that may be the
difference between a poorly performing model and a model of high prediction quality;

• even if there are multiple relatively good models (as for black-boxes 1 and 2), the
proposed heuristic will go one step forward and deliver simply the best one.

Evolution

Finally, the analysis of the evolution of the solutions found by the algorithm along the
iterations helps to verify that its learning mechanism is working properly. In Figure 3.8 we
plot theQ2

loocv of the models explored at each iteration of the heuristic during the optimization
for each black-box function, along with the per-iteration maximum and median Q2

loocv values.

(a) Black-box 1. (b) Black-box 2. (c) Black-box 3.

Figure 3.8 – Evolution of the heuristic.

In all cases, the maximum and median Q2
loocv progressively improve, and the models

gradually converge towards the best solution found. The sporadic drops of the median are
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just an effect of the randomness and the degree of exploration requested via the parameter
q0 (see (3.1)). This phenomenon is by no means a bad thing, since it prevents the algorithm
from getting trapped in local optima and allows it to keep improving the best solution as
we see in the plots. The optimizations presented here ran in 77.7, 30.4 and 25.8 seconds, for
black-boxes 1, 2 and 3, respectively.

3.4 Conclusions
This technical report introduces an ant colony based algorithm for model selection, specially
oriented to the treatment of functional inputs. After almost 30 decades of their introduction
to the scientific community, the ant colony algorithms remain as powerful optimization tools
for concurrent research problems of notable relevance. In this report, we validated the ability
of our algorithm to develop high quality regression models through three analytic test cases.
In all of them the results were satisfactory. It is important to note that the absence of a smart
exploration tool like this, does not leave one exposed to the possibility of selecting exclusively
one of the other high quality model structures. As evidenced through the plots on the relative
quality of the models, in all the three test cases, a large number of models had regular to
bad quality. Thus, the absence of this type of tool actually leaves one vulnerable to end up
with a low quality model, or at least one much inferior to the one that a smart method could
have found. We have already done some tests with the RISCOPE data (see [7] and [104] for
more details on the data) and the results seem promising as well. An R package for Gaussian
process regression with scalar and functional inputs is currently under implementation in the
frame of the RISCOPE project. The proposed ant colony based algorithm is expected to be
one of the main components of the package, allowing the user not only to make individual
particular models, but also to find high quality model structures.
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Chapter 4

Gaussian process regression for scalar
and functional inputs with funGp:
The in-depth tour

The chapter in brief
The two previous chapters led us to the creation of the R package called funGp [20], which is
oriented to the construction and smart selection of Gaussian process models with emphasis
on the treatment of functional inputs. This chapter is an exact copy of its user manual [21].
funGp relies on a variety of concepts at a crossroad between mathematics, statistics and
optimization. As such, it merits a sufficiently wide documentation helping the user to shorten
its learning curve. It does not matter what a tool has to offer if people do not understand
well how to use it. The user manual presented in this chapter explains all the functionalities
of the package through a set of short examples in the form of code snippets copy/pasteable
directly to R. We are confident that, with the help of this manual, the user will be able to
have its first funGp model working in a matter of just a few minutes.
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Gaussian Process Regression for Scalar and
Functional Inputs with funGp

The in-depth tour

This is a comprehensive guide to creating and manipulating Gaussian process regression mod-
els using the R package funGp. It illustrates through examples, the usage of every function
in the package and each example is accompanied by a code snippet to shorten the learning
curve through direct usage of the functions.

Authors: José Betancourt, François Bachoc, Thierry Klein.
Contributors: Déborah Idier, Jérémy Rhomer.

This manual is for funGp, version 0.1.0 (2020), downloadable from CRAN and GitHub.
Recommended citation: Betancourt, J., Bachoc, F., Klein, T. (2020). R Package Manual:
Gaussian Process Regression for Scalar and Functional Inputs with funGp - The in-depth tour.
RISCOPE project.

funGp was first developed in the frame of the RISCOPE research project, funded by the
French Agence Nationale de la Recherche (ANR) for the period 2017-2021 (ANR project No.
16CE04-0011, RISCOPE.fr), and certified by SAFE Cluster.
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What does funGp bring to the table?
• Flexible modeling of functional-input regression problems

A narrow class of R packages address regression with functional inputs (e.g., time
series). The vast majority of those packages rely on models limited by strong assump-
tions on the relationship between inputs and outputs (e.g., Linear, Generalized Linear
or Generalized Additive Models). The few ones that suppress these limitations through
more general models (e.g., Kernel Smoothing) often require the output to be a function
defined over the same domain as the functional inputs, which is frequently not the case
and leaves the scalar-output problem unresolved. funGp tackles regression problems
involving scalar and/or functional inputs and a scalar output through the fairly general
Gaussian process model. This is a non-parametric type of model which removes any
need to set a particular input-output parametric relationship in advance, and learns
this information directly from the data.

• Built-in dimension reduction
A common practice when working with functional data is to start by making a projec-
tion of it onto a space of lower dimension, a procedure known as dimension reduction
(DR). This allows to reduce the complexity of the model while preserving the main
statistical or geometric characteristics of the functions. funGp is self-contained in the
sense that it does not depend on other packages to perform DR on the functional in-
puts. At this point, we provide projection onto B-splines or PCA bases. The package
was designed to enable a straightforward extension to other bases in further versions.

• Heuristic model selection
The possibilities offered by a package often translate into alternative model structures.
Just to give an example, most packages that support Gaussian process models allow to
select the kernel function from a set of standard families (e.g., Gaussian, Matérn 5/2,
Matérn 3/2). However, decision support is rarely offered in order to select a suitable
configuration for the problem at hand. We acknowledge the potential impact of such a
decision in the performance of the model [7, 22] and also the practical difficulties that
arise from offering possibilities without decision support. Thus, funGp was equipped
with a model selection functionality that allows the user to automatically search for a
good combination of the so-called structural parameters of the model. At this point,
an Ant-Colony-based algorithm is implemented to perform this task.

• All-level-user-friendly
We aim funGp to be a helpful tool for users within a wide range of knowledge in
mathematics or statistics. Thus, we have made an effort to make simple and intuitive
the way the package work. Most of the arguments in the functions have been provided
default values so that the user can start experimenting with them at its own pace.
Once you get ready, you will be able to start playing with the nugget effect, basis type,
kernel type, multi-start option, parallelization and even the parameters of the heuristic
for model selection. However, to have your first model built by funGp, the only thing
you need to provide is your data.
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In-code notation

n.tot Number of points used for prediction

n.tr Number of points using for learning of hyperparameters

n.pr Number of prediction points

n.sm Number of simulation points

ds Number of scalar inputs

df Number of functional inputs

k Array of dimensions for the df functional inputs

p Array of projection dimensions for the functional inputs

K.tt Training auto-covariance matrix

K.pp prediction auto-covariance matrix

K.tp Training-prediction cross-covariance matrix

L Lower diagonal matrix of a Cholesky decomposition
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4.1 Base functionalities
This section starts from the bottom with the fundamental tasks implemented in funGp.
Those are: (i) creation of regression models, (ii) prediction of the output at unobserved
input points, (iii) simulation of trajectories from the underlying Gaussian process linked to
any funGp model, and (iv) updating an existing model.
The workflow for each of the four functionalities listed above is illustrated through a follow-
along example based on the analytic black-box function

G1 : [0, 1]2 ×F2 → R,

(x,f) 7→ x(1) + 2x(2) + 4
∫ 1

0
tf (1)(t) dt+

∫ 1

0
f (2)(t) dt,

with x =
(
x(1), x(2), x(3), x(4), x(5)

)
the scalar inputs, f =

(
f (1), f (2)

)
the functional inputs,

and F the set of continuous functions from [0, 1] to R. This function corresponds to the first
analytic example presented in [29], and is accessible in funGp through the black-box function
fgp_BB3.
All code snippets are copy/paste-able directly to R.

4.1.1 Create a funGp model
Let us start by creating a model. To do so, we must first put the input and output data in
a suitable format. The scalar inputs should be provided as a matrix or data.frame. The
functional inputs should be provided as a list of matrices, one per functional input. The
output should be provided as an array or single-colum matrix. In the case of the inputs, each
row of a matrix must correspond to an input point. Here, we will use synthetic data based
on the analytic case defined in the introductory paragraph of this section, which involves two
scalar inputs and two functional inputs. To generate the input data, we took the scalar input
points from a factorial design over [0, 1]. For the functional inputs we assumed that those
were measured at 10 and 22 time instants. This, just to emphasize the fact that functional
inputs with heterogeneous discretization are valid funGp inputs. Just to have some data to
work with, we sampled all the values of each function randomly from U(0, 1). We also picked
an arbitrary number of 25 training points.

�
# generating input data for training
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))

# generating output data for training
sOut <- fgp_BB3(sIn, fIn, n.tr)

# creating a funGp model
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

R output:
** Presampling...
** Optimising...
final value 2.841058 # loglikelihood value
converged� �
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The output of the fgpm function is an object of class fgpm. A calibration plot based on the
Leave-one-out (LOO) predictions.

�
# plotting the model
plotLOO(m1)� �

For a design with n.tr points, LOO consists of removing one observation from the design
at a time, each time training the model using the remaining n.tr − 1 points and computing
the prediction at the ignored point. In its basic version, LOO results expensive as it requires
training n.tr models using almost all the data each time. For Gaussian processes, the LOO
predictions are often approximated based on the virtual LOO formulas [59, 105], which require
a single model training.

The model diagnostic plot also displays a measure of the external prediction capability of
the model. It corresponds to the LOO cross-validated squared correlation coefficient Q2

loocv,
defined as:

Q2
loocv := 1−

n.tr∑
i=1

(yi − ŷi,−i)2

n.tr∑
i=1

(yi − ȳ)2
,

with (yi)i=1,...,n.tr the vector of observed output values, ȳ the average of that vector and ŷi,−i
the LOO prediction of yi.
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Main features of the model are printed when calling the show function on the model:

�
# printing the model
m1 # equivalent to show(m1)

R output:
Gaussian Process Model____________________________________

* Scalar inputs: 2
* Functional inputs: 2

| Input | Orig. dim | Proj. dim | Basis | Distance |
|:-----:|:---------:|:---------:|:---------:|:----------:|
| F1 | 10 | 3 | B-splines | L2_bygroup |
| F2 | 22 | 3 | B-splines | L2_bygroup |

* Total data points: 25
* Trained with: 25

* Kernel type: matern5_2
* Hyperparameters:

-> variance: 1.6404
-> length-scale:

ls(X1): 2.0000
ls(X2): 2.0000
ls(F1): 2.5804
ls(F2): 3.0370

__________________________________________________________� �
The field Proj. dim is related to the possibility of requesting DR1 for the functional inputs.
DR allows to project a functional input of dimension ki onto a space of lower dimension pi
while preserving the main statistical or geometric properties of the variable [33, 34]. This
process often leads to pi << ki, which improves the tractability and processing speed of
the model. By default, the fgpm function sets pi = 3 for all the functional inputs. The user
is allowed to pick a custom projection dimension for each input and also not to project
some of them. Different projection methods (basis families) are also available. The projection
method used for each input is indicated under the field Basis. The manipulation of the
projection dimension and projection method are discussed in more detail in Section 4.2.2 and
Section 4.2.3, respectively.

4.1.2 Predict using a funGp model
Now let us use our model to make predictions. To do so, we must prepare the input data
corresponding to the coordinates at which the output is to be estimated. The inputs should
have the same format as used for creating the model with the fgpm function in Section 4.1.1.
The scalar inputs should be provided as a matrix or data.frame and the functional inputs
should be provided as a list of matrices, one per functional input. This time, each row of
an input matrix must correspond to a prediction point.
For the example, we generated the input points in a similar way as for training, i.e., the scalar
inputs from a factorial design over [0, 1] and the functional values randomly from U(0, 1).

1DR: dimension reduction.
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�
# building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

# generating input data for prediction
n.pr <- 100
sIn.pr <- as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.pr)), x2 = seq(0,1,length = sqrt(n.pr))))
fIn.pr <- list(f1 = matrix(runif(n.pr*10), ncol = 10), matrix(runif(n.pr*22), ncol = 22))

# making predictions
m1.preds <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr)

# checking content of the list
summary(m1.preds)

R output:
Length Class Mode

mean 100 -none- numeric
sd 100 -none- numeric
lower95 100 -none- numeric
upper95 100 -none- numeric� �
The output of predict is a list containing the estimated mean and standard deviation,
along with the lower and upper limits of the 95% confidence intervals for the output at the
prediction points. In practice, the estimated mean of a Gaussian process model is used as
the prediction of the output while the standard deviation is often interpreted as a measure
of the local error of the prediction. Predictions of a funGp model can be easily plotted by
calling the plotPreds function on the list returned by predict. Note that the model must
also be sent in the function call.

�
# plotting predictions
plotPreds(m1, preds = m1.preds)� �
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With functional inputs, the simple Out-vs-In scatter plots are no longer an option. Thus,
plotPreds displays the increasingly sorted mean and corresponding confidence intervals in-
stead. This plot can be used as a diagnostic tool for identifying potential problems related
to the hyperparameters optimization, for instance:

• Excessively wide confidence intervals could indicate a far-from-optimal hyperparame-
ters’ estimation, especially if it happens for all or a large number of prediction points;

• When a prediction point is included in the training set, the model interpolates the
output and no confidence interval is displayed for that point. In any other case, missing
confidence intervals may be indicative of far-from-optimal hyperparameters’ estimation.

Figures illustrating the two aforementioned potential scenarios are displayed below.

The plotPreds function can also be used to compare predictions against true output values.
In that case, an observed-vs-predicted calibration plot will be added on top of the sorted-
output plot shown before.�
# validating against true output
sOut.pr <- fgp_BB3(sIn.pr, fIn.pr, n.pr)
plotPreds(m1, m1.preds, sOut.pr)� �
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The calibration plot made by plotPreds will display the predictive squared correlation co-
efficient Q2

hout, which corresponds to the classical coefficient of determination R2 for a test
sample, i.e., for prediction residuals [77]. On the other hand, the ordering in the sorted-output
plot will be lead by the true output vector instead of the predicted mean vector. This way
of sorting is convenient for comparing results of different models fitting the same data. Ei-
ther the calibration plot or the sorted-output plot can be displayed alone by specifying the
argument sortp = FALSE or calib = FALSE, respectively, when calling plotPreds.
Note: by default the predict function in funGp returns so-called light predictions, which in-
clude the predicted mean, standard deviation and limits of the 95% confidence intervals. Some
users might be interested in full predictions, which also include the training-prediction cross-
covariance matrix K.tp and the prediction auto-covariance matrix K.pp. To make full predic-
tions, it suffices to set detail = "full" when calling predict. The behavior of plotPreds
is not affected by this selection.

�
# making full predictions
m1.preds_f <- predict(m1, sIn.pr = sIn.pr, fIn.pr = fIn.pr, detail = "full")

# checking content of the list
summary(m1.preds_f)

R output:
Length Class Mode

mean 100 -none- numeric
sd 100 -none- numeric
K.tp 2500 -none- numeric
K.pp 10000 -none- numeric
lower95 100 -none- numeric
upper95 100 -none- numeric� �
4.1.3 Simulate from a funGp model
Simulations in funGp are requested through the simulate function, in a similar way to pre-
dictions. The scalar inputs should be provided as a matrix or data.frame and the functional
inputs should be provided as a list of matrices, one per functional input. Each row of an
input matrix will be interpreted as a point at which to provide simulations. By default,
simulate will perform so-called light simulations, returning a n.rep × n.sm matrix, with
n.rep the number of replications to produce at each input point and n.sm the number of
input points. For the example we took the scalar inputs from a factorial design over [0,1] and
the functional values randomly from U(0, 1).

�
# building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)

# generating input data for simulation
n.sm <- 100
sIn.sm <- as.matrix(expand.grid(x1 = seq(0,1,length = sqrt(n.sm)), x2 = seq(0,1,length = sqrt(n.sm))))
fIn.sm <- list(f1 = matrix(runif(n.sm*10), ncol = 10), matrix(runif(n.sm*22), ncol = 22))

# making light simulations
m1.sims_l <- simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm)� �

79



Simulations in funGp are plotted by the plotSims function. In contrast to prediction plots,
simulation plots do not have the output sorted in increasing order, but instead, the simulation
index corresponding to the input coordinates specified by the user is set in the abscissa.

�
# plotting light simulations
plotSims(m1, m1.sims_l)� �

If requested, simulate will return a list containing the simulated output, predicted mean,
standard deviation and limits of the 95% confidence intervals at the specified input coordi-
nates. This corresponds to a full simulation, available through the option detail = "full".

�
# making full simulations
m1.sims_f <- simulate(m1, nsim = 10, sIn.sm = sIn.sm, fIn.sm = fIn.sm, detail = "full")

# checking content of the list
summary(m1.sims_f)

R output:
Length Class Mode

sims 1000 -none- numeric
mean 100 -none- numeric
sd 100 -none- numeric
lower95 100 -none- numeric
upper95 100 -none- numeric� �
Full simulations can also be plotted using the plotSims function. By default, the plot of full
simulations will include the predicted mean and limits of the confidence intervals.

�
# plotting full simulations in full mode
plotSims(m1, m1.sims_f)� �
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A light plot without the mean and confidence intervals is also available for full simulations
by setting detail = "light" when calling plotSims.

4.1.4 Update a funGp model
As simple as it might appear, the update function allows to perform nine different updating
tasks on a funGp model:

• Operations over the @sIn, @fIn and @sOut slots

1. Deletion of data points
2. Substitution of data points
3. Addition of data points

• Operations over the @kern@varHyp, @kern@s_lsHyps and @kern@s_lsHyps slots

4. Substitution of the variance hyperparameter
5. Substitution of the vector of scalar length-scale hyperparameters
6. Substitution of the vector of functional length-scale hyperparameters
7. Re-estimation of the variance hyperparameter
8. Re-estimation of the vector of scalar length-scale hyperparameters
9. Re-estimation of the vector of functional length-scale hyperparameters

There are many reasons why you might want to modify an existing model; new observations
became available, some of those used for training became obsolete, transcription or typing
errors were found in the training data, you want to experiment with different values of the
hyperparameters, just to mention some. In most cases, part of the work done during the
construction of the original model can be exploited to make the updating process much
faster than building a new model from zero. The request of the different updating tasks is
illustrated in the code snippets below. If you have not built a model yet using the code
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provided in previous sections, you can use the following one to obtain a model on which to
perform the update tasks of the upcoming examples.

�
# building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)� �
• Deletion and addition of data points�

# deleting two points
ind.dl <- sample(1:m1@n.tot, 2)
m1up <- update(m1, ind.dl = ind.dl)

R output:
* Complete tasks:

- data deletion

# adding five points
n.nw <- 5
sIn.nw <- matrix(runif(n.nw * m1@ds), nrow = n.nw)
fIn.nw <- list(f1 = matrix(runif(n.nw*10), ncol = 10), f2 = matrix(runif(n.nw*22), ncol = 22))
sOut.nw <- fgp_BB3(sIn.nw, fIn.nw, n.nw)
m1up <- update(m1, sIn.nw = sIn.nw, fIn.nw = fIn.nw, sOut.nw = sOut.nw)

R output:
* Complete tasks:

- data addition� �
• substitution of data points�

# generating substituting input data for updating
n.sb <- 2
sIn.sb <- matrix(runif(n.sb * m1@ds), nrow = n.sb)
fIn.sb <- list(f1 = matrix(runif(n.sb*10), ncol = 10), f2 = matrix(runif(n.sb*22), ncol = 22))

# generating substituting output data for updating
sOut.sb <- fgp_BB3(sIn.sb, fIn.sb, n.sb)

# generating indices for substitution
ind.sb <- sample(1:(m1@n.tot), n.sb)

# updating all, the scalar inputs, functional inputs and the output
m1up <- update(m1, sIn.sb = sIn.sb, fIn.sb = fIn.sb, sOut.sb = sOut.sb, ind.sb = ind.sb)

R output:
* Complete tasks:

- data substitution� �
Substituting points only from some of the data structures is also possible.�
# substituting some data structures
m1up1 <- update(m1, sIn.sb = sIn.sb, ind.sb = ind.sb) # only the scalar inputs
m1up2 <- update(m1, sOut.sb = sOut.sb, ind.sb = ind.sb) # only the output
m1up3 <- update(m1, sIn.sb = sIn.sb, sOut.sb = sOut.sb, ind.sb = ind.sb) # the scalar inputs and the output

R output:
* Complete tasks:

- data substitution� �
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• Substitution of hyperparameters�
# defining hyperparameters for substitution
var.sb <- 3
ls_s.sb <- c(2.44, 1.15)
ls_f.sb <- c(5.83, 4.12)

# updating the model
m1up <- update(m1, var.sb = var.sb, ls_s.sb = ls_s.sb, ls_f.sb = ls_f.sb)

R output:
* Complete tasks:

- var substitution
- scalar length-scale substitution
- functional length-scale substitution� �

Substituting only one of the three data structures is possible as well.�
# updating the model
m1up <- update(m1, var.sb = var.sb) # only the variance
m1up <- update(m1, ls_f.sb = ls_f.sb) # only the functional length-scale parameters
m1up <- update(m1, var.sb = var.sb, ls_s.sb = ls_s.sb) # only the variance and the scalar ls. parameters� �
• Re-estimation of hyperparameters�

# re-estimating the hyperparameters
m1up <- update(m1, var.re = TRUE) # only the variance
m1up <- update(m1, ls_s.re = TRUE) # only the scalar length-scale parameters
m1up <- update(m1, ls_s.re = TRUE, ls_f.re = TRUE) # all length-scale parameters
m1up <- update(m1, var.re = TRUE, ls_s.re = TRUE, ls_f.re = TRUE) # all hyperparameters

R output:
* Complete tasks:

- var re-estimation
- scalar length-scale re-estimation
- functional length-scale re-estimation� �

It is possible to request multiple tasks from the different categories listed above in a single
call to update. When doing so, it is convenient to keep in mind that tasks will be performed
in the following order:

data deletion/substitution → data addition → hypers substitution/re-estimation

It is also good to remember that the following two combinations are unfeasible:

• Data points deletion and substitution;

• Substitution and re-estimation of the same hyperparameter.

4.2 Model customizations
There are multiple things we can do in order to improve the tractability and predictability of
a funGp model. In this section we discuss the customization of the model through its so-called
structural parameters. It refers to a set of categorical features such as the kernel function or
the projection basis, whose levels could be alternated in order to generate different models
departing from the same input-output data. Without going too deep into the technical details,
this section explains how to start working on these features within funGp and the interested
reader is referred to [7] for a formal and more detailed explanation of the underlying theory.

83



4.2.1 Kernel family
The selection of a suitable kernel function is something that naturally comes to mind when
working with Gaussian process models. At this point, funGp offers the possibility to choose
among the Gaussian, Matérn 5/2 and Matérn 3/2 kernels. This selection can be specified when
calling the fgpm function, through the parameter kertype. Valid values for this attribute
are "gauss", "matern5_2" and "matern3_2". See for instance the example below with the
Gaussian kernel.�
# building the model
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, kerType = "gauss")� �
By default, fgpm uses the Matérn 5/2 function, which is a popular choice in the Machine
Learning (ML) community.

4.2.2 Projection basis
In earlier sections of the manual we talked about DR2, the process of reducing the dimension
of your data structures in such a way and extent that the model becomes significantly more
tractable and the loss in terms of predictability is negligible, if some. A common DR approach
when dealing with functional inputs is to project each functional-input matrix onto a space of
lower dimension. This method requires the construction of a set of basis vectors on which the
original curves are projected. Those vectors (typically referred to as basis functions) may come
from diverse families, including among the most popular ones the B-splines [71], PCA [73],
PLS [74], wavelets [106] and kPCA [107]. The suitability of a given basis type might depend
on the regression instance at hand. The B-splines and PCA bases are currently implemented
in funGp for the projection of functional inputs. This option is accessible in the fgpm function
through the parameter f_basType, which can be set to the values "B-splines" or "PCA".
When multiple functional inputs are provided, a custom basis can be selected for each of
them, by passing an array with the selection for each input. If multiple functional inputs are
provided, but a single f_basType value is specified, that selection is used for all the inputs.
Both cases are illustrated below. By default, all functional inputs use a B-splines basis.�
# generating input and output data
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)

# building the model
# different basis for each functional input
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_basType = c("B-splines", "PCA"))

# same basis for both functional inputs
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_basType = "PCA")� �

2DR: dimension reduction.
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4.2.3 Projection dimension
This parameter is highly influential in both, the predication quality and the tractability of
the model. Ideally, one wants to set the projection dimension considerably lower than the
original one, but not so low that significant prediction power is lost. In the fgpm function,
you can specify the projection dimension for each input by setting the argument f_pdims.
Valid inputs are all the integer numbers from 0 to the original dimension of the curves. The
value 0 is used to request to not perform the projection of an input. If there are multiple
functional inputs, an array can be provided instead of a single value in order to specify
custom projection dimensions. If a single value is specified and multiple functional inputs are
identified, the value is used as projection dimension for all the functional inputs. By default,
all functional inputs are projected onto a space of dimension 3.�
# generating input and output data
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)

# building the model
# the first input not projected, the second one projected in dimension 7
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0, 7))

# both inputs projected in dimension 5
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = 5)� �
4.2.4 Distance for functions
Many regression models require the computation of the distance between the design points in
order to determine which ones are the most influential in a given prediction. This is the case
of Gaussian process models, which use such distances to compute the correlation between
pairs of observations. A set of scaling factors called length-scale coefficients are normally used
to quantify the rate of change of the output in terms of each input. For scenarios with only
scalar inputs, the rule is simply to use one length-scale parameter per input, which yields the
distance

‖x− x̃‖L2,θs :=

√√√√√√ ds∑
k=1

∥∥∥x(k) − x̃(k)
∥∥∥2

(
θ

(k)
s

)2 , (4.1)

with x =
(
x(1), . . . , x(ds)

)
and x̃ =

(
x̃(1), . . . , x̃(ds)

)
two scalar input points, ds the number

of scalar inputs in the model, ‖·‖ the L2 norm for scalars (just the absolute value), and
θs =

(
θ(1)
s , . . . , θ(ds)

s

)
the vector of length-scale parameters for the scalar inputs.

In an instance with functional inputs, the norm ‖·‖ needs to be replaced by a norm suitable
for functions. Two options are currently implemented in funGp, both based on a projection
of each functional inputs of the form

Π
(
f (k)

)
(t) =

pk∑
r=1

α(k)
r B(k)

r (t), (4.2)
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with f (k) a curve of the k-th functional input, B(k)
r the r-th basis function used for its

projection, α(k)
r the corresponding projection coefficient, and pk the projection dimension.

The first type of distance implemented for functions considers each curve as a whole and uses
a single length-scale parameter per functional input. This distance is defined as

∥∥∥Π(f)− Π
(
f̃
)∥∥∥

D,θf
:=

√√√√√√√√√ df∑
k=1

∫
Tk

( pk∑
r=1

(
α(k)
r − α̃(k)

r

)
B(k)
r (t)

)2

dt

(
θ

(k)
f

)2 , (4.3)

with f =
(
f (1), . . . , f (df)

)
and f̃ =

(
f̃ (1), . . . , f̃ (df)

)
two functional input points, df the number

of scalar inputs in the model, Tk ⊂ R the domain of f (k), and θf =
(
θ

(1)
f , . . . , θ

(df)
f

)
the vector

of length-scale parameters for the functional inputs. This distance is identified in the package
as L2_bygroup, since it uses a single length-scale parameter for the group of projection terms
corresponding to one functional input. funGp implements an efficient computation of (4.3),
introduced in [29] and further studied in [7].

The second type of distance works only with the projection coefficients and disregards the
basis functions. The distance is defined as

∥∥∥Π(f)− Π
(
f̃
)∥∥∥

S,θ̇f
:=

√√√√√√√ df∑
k=1

pk∑
r=1

(
α(k)
r − α̃(k)

r

)2

(
θ̇

(k)
f,r

)2 , (4.4)

where θ̇f = (θ̇(k)
f,r )1≤r≤pk,1≤k≤df denotes the vector of functional length-scale coefficients. Note

that this distance uses one length-scale coefficient per projection term. This might enable a
better modeling of the input-output relationship, but in turn it implies a larger number of
decision variables involved in the learning process, which makes it a harder/longer task. This
distance is identified in the package as L2_byindex since it involves a length-scale parameter
per projection index. It corresponds to the most common approach nowadays, which is to
perform the projection of the inputs and then use each projection coefficient as an individual
scalar input of the model.

In the case that no projection is requested for some input, both distances (4.3) and (4.4) use
the original function values instead of the projection coefficients, and the identity is used in
(4.3) as the matrix of basis functions. Our aim is to keep this manual friendly with users not
expert in statistics. Thus, we leave at this point the technical discussion on the distances,
and we refer the interested user to [7], where this aspect is discussed formally and in more
detail. Below, there are some examples on the selection of the distance through fgpm.�
# generating input and output data
set.seed(100)
n.tr <- 25
sIn <- expand.grid(x1 = seq(0,1,length = sqrt(n.tr)), x2 = seq(0,1,length = sqrt(n.tr)))
fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB3(sIn, fIn, n.tr)� �
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�
# original dimensions
# f1: 10
# f2: 22

# building the model
# the first f. input using by-index distance and no projection -> 10 length-scale parameters
# the second f. input using by-group distance -> 1 length-scale parameter
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0,5), f_disType = c("L2_byindex", "L2_bygroup"))

# both f. inputs using by-group distance -> 2 length-scale parameters
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0,5), f_disType = "L2_bygroup")

# both f. inputs using by-index distance -> (10+5) = 15 length-scale parameters
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, f_pdims = c(0,5), f_disType = "L2_byindex")� �
4.3 Heuristic model selection
In the previous section, we covered the base functionalities of funGp. Now, we present a
boosting feature that takes funGp models one step further: the funGp model factory.

4.3.1 Concept
The fgpm function, explored in Section 4.1.1, allows to specify through its arguments a num-
ber of characteristics of the model, oriented to make it adaptive to the particularities of the
regression problem at hand. In Section 4.2 we catalogued those features under the name of
structural parameters of the model, and we illustrated through examples the way of speci-
fying the required configuration of them to the fgpm function. In its current version, funGp
includes the kernel family, the projection basis, the projection dimension and the distance for
functions as structural parameters modifiable by the user. But, which combination of struc-
tural parameters should you use? If you have strong evidence to think that some level of one
of these features will perform better than the others, then you are good to go. Otherwise, it
would be better to make some tests in order to make such a decision. As shown by us through
a set of computer experiments in [7], the ideal model configuration might likely depend on
the particular regression task. Through the fgpm_factory function we enable the user to
conduct a smart exploration of the solution space composed of all the possible structural
parameter configurations. Variable selection is embedded in the optimization through the
definition of structural parameters related to the state of each scalar and functional input in
the model (active or inactive).

At this point, funGp performs heuristic optimization of structural parameters (model selec-
tion) by means of the ant colony based algorithm introduced by us in [19] (find online ).
For a set of ds scalar inputs and df functional inputs, the optimization problem addressed
by our algorithm consists in making the following decisions:

• State of the i-th scalar input (inactive, active);
• State of the j-th functional input (inactive, active);
• Projection basis for the j-th functional input (B1, . . . , Bz);
• Projection dimension for the j-th functional input (0, . . . , kj);
• Distance for the j-th functional input (D1, . . . , Dw);
• Kernel type (K1, . . . , Kx),
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with i ∈ {1, . . . ds}, j ∈ {1, . . . df} and kj the original dimension of input j. The sets
{B1, . . . , Bz}, {D1, . . . , Dw} and {K1, . . . , Kx} correspond to the basis, distance and kernel
families to be considered, in that order. The projection dimension 0 denotes no projection.
In order to find a suitable combination of the parameters listed above, we let our artificial
ants to move through a network with a structure similar to the one depicted in Figure 4.1.
Such a structure prevents the constitution of senseless solutions (e.g., an input being both,
inactive and active) and helps to keep the network data structures considerably simple by
only defining strictly necessary links.

Figure 4.1 – Decision network used by the ant colony based heuristic for model selection.
One end-to-end path over the network provides a feasible set of structural parameters.

The implementation of the algorithm in funGp strictly considers the levels of kernel function,
projection basis and distance type, listed in Sections 4.2.1, 4.2.2 and 4.2.4, respectively.
However, both the foundations of the approach and the code implementations are general
enough to be easily extended to other levels in future versions of the package. This manual
does not go further into the methodological details of the algorithm, however, a detailed
explanation of it is offered in [19] for the interested reader.

4.3.2 Using the model factory in funGp

In this section we explain how to manipulate the fgpm_factory function in order to get
optimized model structures. The examples in this section are based on the analytic black-
box function

G2 : [0, 1]5 ×F2 → R,

(x,f) 7→
(
x(2) + 4x(3) − 5

4π2
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)2
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with x =
(
x(1), x(2), x(3), x(4), x(5)

)
the scalar inputs, f =

(
f (1), f (2)

)
the functional inputs,

and F the set of continuous functions from [0, 1] to R. This function is inspired by the
second analytic example studied in [29], with three additional scalar inputs allocated over
the different terms of the equations to increase a bit its complexity. This function is accessible
in funGp through the black-box function fgp_BB7. Here we generate the scalar and functional
input values in a similar way to how we did in the previous sections.

• Getting started
Let us open this section with a basic call to the factory using its default attribute values.�
# generating input and output data
set.seed(100)
n.tr <- 32
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),

x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))

fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)

# calling the funGp factory
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut) # (~10 seconds)� �
The output of fgpm_factory is an object of class Xfgpm. It includes a variety of information
on it that we will be explored later in detail, towards the end of this section. For now, let
us concentrate on the @model slot, which contains the selected regression model. This is an
object of type fgpm, which can be plotted using the plotLOO function. Just to illustrate, let us
compare our optimized model with that obtained if we arbitrarily use the default argument
values in the fgpm function, i.e., using fgpm(sIn = sIn, fIn = fIn, sOut = sOut).�
# plotting the optimized model
plotLOO(xm@model)

# plotting the model of default fgpm structural configuration
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut)
plotLOO(m1)� �

Figure 4.2 – Calibration plot of two structural configurations for the same input and output
data. Left panel: optimized configuration. Right panel: unoptimized, arbitrary configuration.
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Right away, just by calling fgpm_factory with its default arguments, we were able to find a
model of greater quality. Some key points in the light of this first result are:

• Firstly, the superiority of the optimized model does not imply that the default argument
values of the fgpm function are bad. They are just not tailored to this specific regression
instance, contrarily to the structural parameters selected by fgpm_factory. That is
the purpose of having fgpm_factory in the package, to be able to find good structural
parameters for any regression instance that fgpm could handle.

• Secondly, the result does not mean that funGp models should always be made through
fgpm_factory. In this example we see how the unoptimized model still presents a high
Q2
loocv. However, if there is time, we strongly recommend to perform the optimization.

• Finally, the superiority of the model delivered by fgpm_factory is exclusively fostered
by the optimization of the structural parameter configuration, and has nothing to do
with the mechanism for the optimization of the hyperparameters. Each model evaluated
by fgpm_factory is internally created by a call to fgpm. Thus, the same mechanism of
hyperparameter optimization is used by both functions.

Let us move on with the explanation of the usage of fgpm_factory. The outputs of this
function can be plotted by either the plotX or the plotEvol function. The former one
provides a notion of the absolute and relative quality of the selected model, and the second
one illustrates the evolution of the quality of the explored models along the iterations.�
# displaying plots on the quality of the selected model
plotX(xm)� �

�
# plotting the evolution of the objective function
plotEvol(xm)� �
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Even after multiple iterations, some points still fall relatively far from the maximum. This
happens mainly because we have multiple categorical features, whose alteration might change
the performance statistic in a nonsmooth way. Nonetheless, the median stays close to the
maximum, which confirms that the exploration is converging towards the best known solu-
tions. On the other hand, the points that fall bellow zero usually correspond to models whose
hyperparameters were hard to optimize. This occurs sporadically during the log-likelihood
optimization for Gaussian processes, due to the non-linearity of the objective function.
An easy way to improve the quality of the selected model is just to let the algorithm complete
more iterations. This can be done through the argument setup, as below.�
# calling the funGp factory
set.seed(100)
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = list(n.iter = 30)) # (~6.5 seconds)� �
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In the examples above, fgpm_factory optimized the model structure for Q2
loocv. Optimizing

for Q2
hout (i.e., validating against external observations) is also possible. This type of opti-

mization can be requested by specifying the indices that should be used for training and
validation. For instance, assume that we have the same data as in the previous example,
but now we want to use about 85% of the points for training and the remaining ones for
validation. This can be specified to fgpm_factory through the ind.vl argument as follows.�
# generating validation indices
ind.vl <- sample(seq_len(n.tr), 5) # about 15% of points for validation

# calling the funGp factory
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ind.vl = ind.vl) # (~2 seconds)� �
With this call, the factory trains each model using all the data except for the points specified
by ind.vl. Once built, each model is used to predict the output at the points ignored
during training, and the predictive squared correlation coefficient Q2

hout [77] is computed.
This procedure ensures fairness in the comparison, since all the models use the same training
and validation sets. In order to account for the sampling noise, the user may want to use
multiple training-validation pairs of sets. This option is easily requested to the factory by
passing a matrix instead of an array through the argument ind.vl. Such a matrix should
have the indices for one training set on each column. This means, that the matrix should
have as many rows as validation points, and as many columns as replicates.�
# generating validation indices
ind.vl <- replicate(30, sample(seq_len(n.tr), 5)) # about 15% of points for validation, 30 replicates

# calling the funGp factory
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ind.vl = ind.vl) # (~4 minutes)� �
The larger the number of replicates, the longer the optimization will be, but also the less
noise will appear on the statistics used to compare the models. Section 4.4 addresses the
reduction of processing time through parallelization.

Note that the calibration plot produced by plotX will always report the Q2
loocv statistic,

regardless of whether this or the Q2
hout was used for the optimization of the structural pa-

rameters. In contrast, the bottom frame will always display the statistic used during the
optimization. When validation indices are provided, the model stored in the @model slot
of the Xfgpm object will be one trained with as many points as remain once the specified
validation points are removed. When multiple validation sets are specified, the model stored
in the @model slot of the Xfgpm object will be selected in two steps by: (i) identifying the
structural configuration of higher average Q2

hout; and (ii) pick the replicate of best structural
configuration with higher Q2

hout.

• Setting up the parameters of the heuristic

Our model selection algorithm relies on a set of parameters typical of any ant colony based
method. Roughly speaking, those parameters control the number of individuals and iterations,
the degree of exploration and rate of convergence, along with the learning-reinforcement
mechanism in the algorithm. The default values of those parameters in funGp were selected
based on the values used by Dorigo et al. in the introductory paper of the Ant Colony
System [100]. We validated the suitability of that setting for our model selection problem
through a large set of trials involving different black-box functions like the one defined at
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the beginning of this manual (Section 4.1), and more than 10 others that raised in the frame
of the RISCOPE research project [50] (see [19] for more details). Here we explain how to
modify the parameters of the heuristic in case the user wants to experiment with them. Our
algorithm performs based on the following list of parameters:

Initial pheromone load

• tao0: initial pheromone load on links pointing out to the selection of a distance type,
a projection basis or a kernel type. Default: 0.1.
• dop.s: factor to control how likely it is to activate a scalar input. It operates on a

relation of the type A = dop.s * I, where A is the initial pheromone load of links
pointing out to the activation of scalar inputs and I is the initial pheromone load of
links pointing out to their inactivation. Default: 1.
• dop.f: analogous to dop.s for functional inputs. Default: 1.
• delta.f and dispr.f: shape parameters for the regularization function that determines

the initial pheromone values on the links connecting the L2_byindex distance (see
Section 4.2.4) with the projection dimension*. Default: 2 and 1.4, respectively.

Local pheromone update

• rho.l: pheromone evaporation rate*. Default: 0.1.

Global pheromone update

• u.gbest: the algorithm works in an iterative fashion; should the pheromone load on
the links of the best ant so far over all the iterations be reinforced? Default: FALSE.
• n.ibest: the algorithm always reinforces the links of the best n.ibest ants of each

iteration; how many ants should be considered for reinforcement? Default: 1.
• rho.g: learning reinforcement rate*. Default: 0.1.

Population factors

• n.iter: number of iterations. Each iteration involves the exploration of the solution
space, constitution of a set of model configurations, evaluation of their performance in
prediction and system feedback. Default: 15.
• n.pop: number of ants per iteration; each ant corresponds to one solution to the prob-

lem, in this case, a structural configuration for the model. Default: 10.

Bias strength

• q0: ants use one of two rules to select their next node at each step. The first rule leads
the ant through the link with higher pheromone load; the second rule works based on
probabilities which are proportional to the pheromone load on the feasible links. The
ants will randomly chose one of the two rules at each time. They will opt for rule 1 with
probabilityq0 *. Default: 0.95. For larger number of input variables, we recommend
to slightly reduce it to e.g., 0.90. This might facilitate the testing of each input in at
least a few models.

The parameters marked with an asterisk (*) are explained more thoroughly in [19]. All the
parameters listed above can be accessed in a fgpm_factory call through the argument setup,
which should be a list. Below an example using arbitrary setup values.
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�
# calling the funGp factory with an arbitrary setup
mysup <- list(tao0 = .15, dop.s = 1.2, dop.f = 1.3, delta.f = 4, dispr.f = 1.1, rho.l = .2,

u.gbest = TRUE, n.ibest = 2, rho.g = .08, n.iter = 30, n.pop = 12, q0 = .85)
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = mysup) # (~18 seconds)� �
• Defining the solution space

By default, fgpm_factory considers feasible all possible combinations of: inputs state, dis-
tance type, projection dimension, basis family, and kernel family. However, the user is allowed
to modify the solution space by imposing a system of constraints. This is achieved through
the ctraints argument, which should be provided as a list. Below an example.�
# generating input and output data
set.seed(100)
n.tr <- 32
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),

x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))

fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)

# setting up the constraints
myctr <- list(s_keepOn = c(1,2), # keep both scalar inputs always on

f_keepOn = c(2), # keep f2 always active
f_disTypes = list("2" = c("L2_byindex")), # only use L2_byindex distance for f2
f_fixDims = matrix(c(2,4), ncol = 1), # f2 should be projected onto a space of dimension 4
f_maxDims = matrix(c(1,5), ncol = 1), # f1 should be projected onto a space of dimension max 5
f_basTypes = list("1" = c("B-splines")), # only use B-splines projection for f1
kerTypes = c("matern5_2", "gauss")) # test only Matern 5/2 and Gaussian kernels

# calling the funGp factory with specific constraints
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, ctraints = myctr) # (~15 seconds)� �
This call to the factory will exclusively explore models that fulfill the constraints passed
through ctraints. This can be verified by inspecting the @log.success@sols slot of the
Xfgpm object returned by fgpm_factory.�
# checking log of some successfully built models
cbind(xm@log.success@sols, "Q2" = xm@log.success@fitness)� ��
R output:

State_X1 State_X2 State_X3 State_X4 State_X5 State_F1 Distance_F1 Dim_F1 Prj_basis_F1 State_F2 Distance_F2 Dim_F2 Prj_basis_F2 Kernel Q2
1 On On Off On Off Off -- - -- On L2_byindex 4 B-splines matern5_2 0.77
2 On On Off On Off On L2_byindex 3 B-splines On L2_byindex 4 B-splines matern5_2 0.74
3 On On Off On On Off -- - -- On L2_byindex 4 B-splines matern5_2 0.64
4 On On Off On On On L2_byindex 3 B-splines On L2_byindex 4 B-splines matern5_2 0.47
5 On On On On Off Off -- - -- On L2_byindex 4 B-splines matern5_2 0.43
6 On On Off Off On Off -- - -- On L2_byindex 4 B-splines gauss 0.43
7 On On Off Off Off Off -- - -- On L2_byindex 4 B-splines matern5_2 0.42
8 On On On On On On L2_byindex 1 B-splines On L2_byindex 4 B-splines matern5_2 0.38
9 On On On On On Off -- - -- On L2_byindex 4 B-splines matern5_2 0.27
10 On On On On On Off -- - -- On L2_byindex 4 PCA gauss 0.26
11 On On On On On Off -- - -- On L2_byindex 4 PCA matern5_2 0.12
12 On On On Off On Off -- - -- On L2_byindex 4 B-splines matern5_2 0.10
13 On On Off Off On On L2_byindex 1 B-splines On L2_byindex 4 B-splines gauss 0.02
14 On On Off Off On On L2_byindex 2 B-splines On L2_byindex 4 B-splines matern5_2 -0.05
15 On On Off On Off Off -- - -- On L2_byindex 4 PCA matern5_2 -0.07
16 On On Off On Off Off -- - -- On L2_byindex 4 PCA gauss -0.10
17 On On Off Off On On L2_byindex 3 B-splines On L2_byindex 4 B-splines matern5_2 -0.16
18 On On On Off On On L2_bygroup 3 B-splines On L2_byindex 4 PCA gauss -0.27� �
• Time based stopping condition

The basic stopping condition for any ant colony based algorithm is the number of iterations.
This type of stopping condition is often useful during the development stage of the algorithm.

94



However, in the wild it is hard to know in advance which number of iterations will be suitable
for the problem at hand, and even if one had an idea, it would still be difficult to estimate
how much processing time that would suppose. In practice we recommend to use instead a
time based stopping condition. It works by defining a time budget for structural optimization,
and then letting the heuristic run until the budget is exhausted. This possibility has been
implemented in fgpm_factory, and is accessible through the time.lim argument.�
# setting up a sufficiently large number of iterations
mysup <- list(n.iter = 2000)

# defining time limit
mytlim <- 60

# calling the funGp factory with time based stopping condition
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, setup = mysup, time.lim = mytlim)

R output:
** Time limit reached, exploration stopped after 60.01 seconds. # 163 iterations done� �
When using the time based stopping condition, the number of iterations should be set suf-
ficiently large so that it does not cause a premature stop of the exploration. The argument
time.lim should always be provided in seconds. Once the time limit is reached, the algorithm
will attempt to stop as soon as possible, however, the ongoing training process of a model
will never be interrupted. Thus, the actual processing time will normally exceed the specified
time budget for a bit. This discrepancy might be more noticeable for problems involving
heavier model configurations with larger number of inputs or a larger amount of data.

• Further exploring the Xfgpm object
After checking different things that can be done through a fgpm_factory call, it is good
time to dedicate some attention to the information contained in the object delivered by the
function. The object is of class Xfgpm, which includes diverse information about the selected
model and also about the model selection process carried on. Below a list of the slots of the
object with a short description of each.
Selected model

• @model: selected model delivered by the fgpm function.

• @structure: data.frame with the selected structural configuration.

• @stat and @fitness: type and value of the performance statistic used for the opti-
mization of the structural parameters. Currently, the type of performance statistic can
be either Q2

loocv or Q2
hout (see Sections 4.1.1 and 4.1.2 for details on these measures).

Record of explored models

• @log.success: object of class antsLog with the structure, function calls and perfor-
mance statistic of all models successfully made during the optimization, organized in
decreasing order of performance.

• @log.crashes: object of class antsLog with the structure and function calls of all
models whose fgpm function call crashed.
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Exploration extent

• @n.solspace: total number of structural configurations that could be made, based on
the specified solution space.

• @n.explored: total number of structural configurations successfully built and evaluated
during the exploration.

Further information

• @details: a list containing: (i) the set of heuristic parameters used; and (ii) the series
of fitness vectors over the iterations of the heuristic.

• @factoryCall: a reminder of the expression used in the fgpm_factory call.

By conducting the structural optimization through fgpm_factory, one obtains not only one
but a set of high quality models. Those are accessible through the @log.success@sols and
@log.success@args slots. The former contains a data frame with all the levels of structural
parameters selected for each explored model. This data structure could be useful to make a
posterior analysis on patterns that lead to high quality models. The @log.success@args slot
contains exactly the same information, but in a format that allows the easy reconstruction
of any of the explored models. We illustrate this possibility with the following example. We
start by performing a structural optimization.�
# generating input and output data
set.seed(100)
n.tr <- 32
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),

x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))

fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)

# calling the funGp factory
xm <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut) # (~10 seconds)� �
After some time we update our dataset. Now we have 243 points instead of 32. Then, we
rebuild the best three models using the new data.�
# generating new data
n.tr <- 243 # more points!
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),

x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))

fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)

# re-building the three best models based on the new data (one model at a time)
# m1 <- eval(parse(text = xm@log.success@args[[1]]@string)[[1]])
# m2 <- eval(parse(text = xm@log.success@args[[2]]@string)[[1]])
# m3 <- eval(parse(text = xm@log.success@args[[3]]@string)[[1]])

# re-building the three best models based on the new data (compact code with all 3 calls)
modStack <- lapply(1:3, function(i) eval(parse(text = xm@log.success@args[[i]]@string)[[1]]))� �
Finally, we use each model for prediction. Here, the format4pred function will generate a
list with the scalar and functional inputs to use for each model. If any of the two types of
inputs is not present in the model, format4pred will set it to NULL, which will be properly
interpreted by the fgpm function.
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�
# extracting the fgpm arguments of the three best models
argStack <- xm@log.success@args[1:3]

# generating input data for prediction
n.pr <- 32
sIn.pr <- expand.grid(x1 = seq(0,1,length = n.pr^(1/5)), x2 = seq(0,1,length = n.pr^(1/5)),

x3 = seq(0,1,length = n.pr^(1/5)), x4 = seq(0,1,length = n.pr^(1/5)),
x5 = seq(0,1,length = n.pr^(1/5)))

fIn.pr <- list(f1 = matrix(runif(n.pr*10), ncol = 10), matrix(runif(n.pr*22), ncol = 22))

# making predictions based on the three best models (compact code with all 3 calls)
preds <- do.call(cbind, Map(function(model, args) {

in4matted <- format4pred(sIn.pr = sIn.pr, fIn.pr = fIn.pr, args)
predict(model, sIn.pr = in4matted$sIn.pr, fIn.pr = in4matted$fIn.pr)$mean

}, modStack, argStack))

# plotting predictions made by the three models
require(plyr) # for conciseness
plot(1, xlim = c(1,nrow(preds)), ylim = range(preds), xaxt = "n",

xlab = "Prediction point index", ylab = "Output",
main = "Predictions with best 3 structural configurations")

axis(1, 1:nrow(preds))
l_ply(seq_len(n.pr), function(i) lines(rep(i,2), range(preds[i,1:3]), col = "grey35", lty = 3))
points(preds[,1], pch = 21, bg = "black")
points(preds[,2], pch = 23, bg = "red")
points(preds[,3], pch = 24, bg = "green")
legend("bottomleft", legend = c("Model 1", "Model 2", "Model 3"),

pch = c(21, 23, 24), pt.bg = c("black", "red", "green"), inset = c(.02,.08))� �

4.4 Parallelization in funGp

Sections 4.1, 4.2 and 4.3 made a good description of funGp from the perspective of func-
tionality. This last section focuses on efficiency. Both, the fgpm and fgpm_factory functions
have been equipped with the ability to exploit the existence of parallel environments. Below
we explain how to use this feature.
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4.4.1 Parallelized hyperparameters optimization
Let us start with the fgpm function, used to create regression models (see Section 4.1.1). In
funGp, the selection of the hyperparameters of the model is made by likelihood maximization.
For Gaussian processes, this corresponds to a nonlinear optimization problem, sometimes
strongly affected by the selection of the starting points. A common way to deal with this
issue is to start the optimization multiple times from different points, which prevents the
stagnation in local optima. This can be requested to fgpm through the argument n.starts,
which should be assigned an integer value corresponding to the number of starting points to
use. Below an example using 10 starting points.�
# generating input data for training
set.seed(100)
n.tr <- 243
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),

x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))

fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))

# generating output data for training
sOut <- fgp_BB7(sIn, fIn, n.tr)

# calling fgpm with multistart in sequence
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, n.starts = 10) # (~22 seconds)� �
Since each starting point triggers an independent optimization process, the requested task
can be performed in parallel. To do so, the user must define a parallel processing cluster and
then pass it to fgpm through the par.clust argument.�
# calling fgpm with multistart in parallel
cl <- parallel::makeCluster(3)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, n.starts = 10, par.clust = cl) # (~14 seconds)
parallel::stopCluster(cl)� �
As a good practice, the cluster must be stopped right after finishing the requested task in
order to prevent memory issues.

Remark: in order to provide progress bars for the monitoring of time consuming processes ran
in parallel, funGp relies on the doFuture [108] and future [109] R packages. Unfortunately,
under this setting, parallel processes suddenly interrupted tend to leave corrupt connections
that will show up as an error next time you try to perform the parallelized task. To make it
clear, if you launch fgpm in parallel and you stop the process by hand, before it ends, and
then you try to repeat the call in parallel, you may likely find and error indicating that ...
the connection to the worker is corrupt.... If that happens to you, the following
workaround will help to regain control of parallel processing. Once you get the error, repeat
the function call using a different number of nodes. For instance, let us assume that you had
run with 3 nodes in the call that produced the error. We can make the new function call, for
instance with 2 nodes.�
# repeating the call with different number of nodes
cl <- parallel::makeCluster(2)
m1 <- fgpm(sIn = sIn, fIn = fIn, sOut = sOut, n.starts = 10, par.clust = cl)
parallel::stopCluster(cl)� �
There is no need to let this process become complete, you can stop it by hand a couple
seconds after making the function call. That is it. Now you can launch again the process
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in parallel with the number of nodes that you were originally using. We acknowledge that
this is more a trick than an ideal way to resolve this types of issues. However, this problem
is originated outside funGp, which limits our control over it. We find the approach shown
above a pragmatic solution for most users. We will remain attentive in case it appears a
more elegant solution to this problem. All this discussion also applies for parallelized calls to
fgpm_factory, which will be discussed in the next section.

4.4.2 Parallelized model selection
Parallelization is also present in the model factory. Each ant in our heuristic algorithm repre-
sents a structural configuration, and eventually translates into a regression model. Each ant
influence on the decisions made by the others since they share a common decision network
and all of them affect the pheromone load in the links. Nonetheless, each time all the ants
of one iteration complete a model structure, each of the models is built and evaluated for
performance in an independent fashion. Thus, once all the structural configurations of one
iteration are complete, the construction of the corresponding models is a task that can be
performed in parallel. The way to do that is identical to how it is done in the fgpm function.
For this, the user must define a parallel processing cluster and then pass it to fgpm_factory
through the par.clust argument, as below.�
# generating input and output data
set.seed(100)
n.tr <- 243
sIn <- expand.grid(x1 = seq(0,1,length = n.tr^(1/5)), x2 = seq(0,1,length = n.tr^(1/5)),

x3 = seq(0,1,length = n.tr^(1/5)), x4 = seq(0,1,length = n.tr^(1/5)),
x5 = seq(0,1,length = n.tr^(1/5)))

fIn <- list(f1 = matrix(runif(n.tr*10), ncol = 10), f2 = matrix(runif(n.tr*22), ncol = 22))
sOut <- fgp_BB7(sIn, fIn, n.tr)

# calling fgpm_factory in parallel
cl <- parallel::makeCluster(3)
xm.par <- fgpm_factory(sIn = sIn, fIn = fIn, sOut = sOut, par.clust = cl) # (~200 seconds)
parallel::stopCluster(cl)� �
The advice given when explaining the parallelization in the fgpm function applies here; the
cluster must be stopped right after finishing the requested task in order to prevent memory
issues. In addition, we clarify that parallelized processing should be reserved for cases where
each individual process (call to fgpm) takes a significant amount of time. If the call in sequence
is already long due to the large number of processes it involves, but each process runs almost
immediately, the benefit of parallelization might become null. Thus, we prescribe the use of
this feature for problems where the evaluation of a single model takes several seconds or more.
In such a context, parallelization will allow the evaluation of a larger number of structural
configurations in the same amount of time.

Closing discussion
funGp started as a set of scripts enabling to include functional inputs in a regression model.
What we present in this tutorial is that and much more. We have done our best to provide
a powerful regression tool for all-level users. No impositions on the type of relationship
between inputs and outputs, no need of pre-processing of the functional inputs, no need for
complex data structures. You put the data and we put the power of the Gaussian process
models in order to efficiently extract the underlying information from it. The more expertise
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the user has in statistics and also in the usage of the package, the more it will be able to
discover new possibilities and features. We make strong emphasis on the model selection
functionality, which takes models’ construction to a whole new level. Any regression package
gives you a model in response for your data. Some packages return different types of models
depending on your specifications. Not very often a package helps you to choose the good
model, and this is what funGp does. During the implementation, we kept present at all time
the need for efficiency, and we made an effort to make everything run fast and smooth.
Parallelization in the fgpm and fgpm_factory functions is a valuable commodity in this
regard. We envisage the extension of the package in multiple different aspects, and therefore,
we made the implementations with scalability in mind. All the structural parameters are
modifiable in order to include additional levels or even other structural parameters than
those currently available. The heuristic model selection algorithm was also designed to be
easily adaptable to this type of extension. Going further, the fgpm_factory function was
structured in such a way that other model selection methods could be added later. Being
funGp a piece of open source, we encourage the community to make contributions in any line
found pertinent.
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Chapter 5

Structural parameter optimization in
the coastal flooding RISCOPE case

The chapter in brief
The previous three chapters addressed the introduction to the RISCOPE coastal flooding
application, the development of an Ant Colony algorithm for the efficient optimization of
the structural parameters of the metamodel, and the consolidation of the R package funGp
[20], respectively. Chapter 5 is a follow up to the RISCOPE case. The description given in
Chapter 2 for this application remains mostly valid, except for the three following aspects:
1) Updated hydrodynamic code: at the time of writing Chapter 2, the target hydrody-

namic code was in calibration. Thus, we used a simplified version of it which was quicker
but less precise and detailed. At this time the target hydrodynamic code is complete.

2) Significantly less observations: the new hydrodynamic code takes much more time
per computation (several hours to days) than the simplified version used in Chapter 2
(around 20 seconds). Thus, current developments are much more limited in the amount
of simulations that we can conduct. Up to now, we have completed a total of 135 simula-
tions. The (functional) input coordinates for those simulations were selected by means of
an adaption of Extreme Value Analysis (see e.g., [110]) to functional data. Such a method-
ology is intended to produce input conditions leading (more often) to significative flooding
events, while preserving the main statistical properties of each input variable. We reserve
the details of this methodology for future dissemination to the scientific community.

3) Several output variables: the new hydrodynamic code enables the extraction of diverse
types of information of interest such as the maximum flooded area, the water height at
surveillance points and coefficients of trafficability of critical roads. In this chapter we
consider a total of 13 scalar outputs and we build a metamodel for each of them.
The Ant Colony algorithm proved its pertinency and effectiveness by finding high quality

structural configurations for all the 13 outputs under analysis. In all cases, the selected
configuration outperformed several others, including the default choices of using: (i) only
a scalar representation of each functional input; (ii) the full set of scalar and functional
representations of the inputs; and (iii) a scalar representation of each functional input, plus
the functional representation of some key input variables. Even for the variables the most
difficult to fit, our algorithm was able to find a configuration superior to the aforementioned
alternatives. All the analysis was conducted using our R package funGp [20].
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5.1 Introduction
This chapter is a brief update of the RISCOPE application based on the developments made
in the previous chapters, and also on the evolution of the hydrodynamic computer code. The
new hydrodynamic code allows us to retrieve a variety of useful information. Here we use
our Ant Colony algorithm (see Chapter 3) for the structural parameter optimization of the
metamodel built for 13 scalar output variables. Rather than constituting a document in the
form of a research paper (as Chapter 2 and Chapter 6, for instance), this chapter is intended
to concisely show for the first time in the manuscript the performance of our algorithm in
the RISCOPE application.

5.2 The new hydrodynamic code
The hydrodynamic code used in Chapter 2 received four variables with physical interpretabil-
ity as inputs. Those were the tide (Td), atmospheric storm surge (Sg), significant wave height
(Hs) and peak wave period (Tp). In addition to those, the new code receives the peak wave
direction (Dp), the wind speed (U) and the wind direction (Du). Moreover, in Chapter 2
we were considering a version of (Td) which had integrated the mean sea level (Msl). In
the new analysis we consider both inputs separately. This makes a total of eight functional
inputs for the new code. Each of them should be provided to the system in a time series
format, similarly as in Chapter 2. All the input time series should be of dimension 37. The
code delivers several output variables, also in the form of time series and spatial maps. For
now, we focus on scalar quantities representing those outputs. In particular, we consider the
following list of scalar output variables:

• Ysurf_max: largest area flooded during the event, in m2;
• Ysurf_fin: extension of land flooded at the end of the event, in m2;
• Yvol_fin: total amount of water entered in land during the event, in m3;
• Ytr_ft1 and Ytr_fh1: indices of trafficability for main road 1;
• Ytr_ft2 and Ytr_fh2: indices of trafficability for main road 2;
• Ytr_ft3 and Ytr_fh3: indices of trafficability for main road 3;
• Yhcb_max1 and Yhcb_max2: maximum water height at surveillance points 1 and 2;

• Yhcb_fin1 and Yhcb_fin2: water height at the end of the event at points 1 and 2.

The three main roads and the two surveillance points are shown in the aerial views of Gâvres
displayed in Figure 5.1.
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Figure 5.1 – Aerial view of Gâvres: main roads and surveillance points.

5.3 Structural parameter optimization
For the purpose of metamodeling we are decomposing each functional input into a scalar and a
functional representation, similarly to what we did in Sections 2.4.2.2 and 2.5.1 of Chapter 2.
A shifted functional input is one whose scalar representation has been subtracted. This,
with the aim of letting the algorithm the possibility to decide separately if either the scalar
representation, the shifted functional representation, or both parts of an input should be
kept active in the model. For Td we used the maximum value of the series as the scalar
representation. For all the other inputs except Msl, we used the average value of the series.
The Msl is the only input variable for which only the scalar representation is considered,
and it comes from the fact that this input is almost always a constant function during a six
hour event like the ones we are considering. This setup results in a total of 8 scalar inputs
and 7 shifted functional inputs with the potential of being included in the metamodel. In
addition to the active scalar and functional inputs, in this section we also use our Ant
Colony algorithm to set:

1) the dimension reduction method to use for each input;
2) the projection dimension for each input;
3) the kernel function of the model;
4) the distance used to measure similarity between functional input coordinates within

the kernel function.

For the sake of comparison, we also build the metamodel with some arbitrary structural
configurations that one may choose in the absence of an algorithm like ours. Specifically, we
consider metamodels with:

a) all the scalar inputs, but no functional inputs active;
b) all the scalar and functional inputs active;
c) all the scalar inputs, plus the main functional inputs from the physical perspective. For

this experiment we keep active the functional representations of Td, Sg, Hs and Tp.
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For the remaining structural parameters of the benchmark configurations, we keep fixed:

1) the dimension reduction method for all functional inputs at B-splines;
2) the projection dimension for each input at 3;
3) the Matérn 5/2 kernel;
4) the ‖·‖D,θf distance defined in (2.11) (Chapter 2), referred to as the L2_bygroup dis-

tance in funGp. We recall that this corresponds to the distance that uses a single
length-scale coefficient per functional input, in contrast to the ‖·‖S,θ̇f defined in (2.13),
which uses as many length-scale coefficients as effective dimensions the input has.

For every output, we fitted a metamodel using each of the benchmark structural configu-
rations, and we also ran our Ant Colony algorithm to pick an optimized one. In each case, we
looked at the calibration plot and the Q2

hout statistic, corresponding to the classical coefficient
of determination R2 for a test sample, i.e., for prediction residuals [77]. An example for the
output variable Ysurf_max is given in Figure 5.2.

(a) All scalar, no functional (b) All scalar, all functional

(c) All scalar, Td, Sg, Hs, Tp functional (d) Configuration selected by the ants

Figure 5.2 – Ants vs. 3 benchmak configurations for one output of the RISCOPE case.
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Table 5.1 summarizes our experiment. In all cases we ran the Ant Colony algorithm with
the default parameters loaded in funGp, except for the exploration coefficient q0 (see Sec-
tion 4.3.2, Chapter 4), which we set to 0.9 instead of 0.95 to allow more diversification in the
solutions built by the ants. We let the algorithm run for 10 minutes in each instance.

Output ID All scalar All scalar +
all functional

All scalar +
some functional Ants selection Ants

active scalar
Ants

active functional
Ysurf_max 0,959 0,957 0,962 0,980 {1,2,3,5,6,8} {2,4}
Ysurf_fin 0,942 0,916 0,946 0,981 {1,2,3,5,6,7} {7}
Yvol_fin 0,929 0,927 0,938 0,961 {1,2,3,5,6} {3,4,5,7}
Ytr_ft1 0,927 0,929 0,928 0,963 {1,2,3,5,7,8} {2}
Ytr_ft2 0,950 0,958 0,957 0,977 {1,3,5,7,8} {2,5,6,7}
Ytr_ft3 0,533 0,655 0,469 0,764 {1,2,3,4,6,8} {3,5,6}
Ytr_fh1 0,961 0,954 0,960 0,965 {1,2,3,5,7,8} {2,4,5,6,7}
Ytr_fh2 0,941 0,862 0,959 0,974 {1,2,3,4,5,6,7,8} {2}
Ytr_fh3 0,791 0,806 0,828 0,887 {1,3,4,5,7,8} {2,4,5}
Yhcb_max1 0,576 0,499 0,443 0,900 {1,3,4,5,6} {2,3,6,7,8}
Yhcb_max2 0,897 0,895 0,880 0,939 {1,3,4,6,7,8} {2}
Yhcb_fin1 0,424 0,274 0,320 0,625 {1,2,4,6,7,8} {3}
Yhcb_fin2 0,893 0,883 0,890 0,926 {1,3,5,6,7} {2,4}

Table 5.1 – Comparison of Ant Colony algorithm to three default benchmark structural
configurations for 13 metamodels required in the RISCOPE coastal flooding application.
The Q2

hout obtained by each benchmark configuration, as well as that for the configuration
delivered by our algorithm are reported in the table. The darker colored cells are those
related to a better prediction quality. The active scalar and functional inputs kept active
in the configuration delivered by the Ant Colony algorithm are displayed as well in the two
columns at the right side of the table. The numbers 1 to 8 correspond to the inputs Msl, Td,
Sg, Hs, Tp, Dp, U , Du, in that order.

The configuration found by our Ant Colony algorithm outperformed the three benchmark
configurations in all the instances. Even in the cases were the output was relatively hard to fit
(e.g., for Ytr_ft3), the algorithm was able to build a model of considerably higher Q2

hout. The
improvement should not be undervaluated in the cases where the other configurations give
similar Q2

hout values (e.g., for Ytr_fh2). On the one hand, the algorithm is already coded
and made available in an R package. The only price we paid in order to obtain a better
configuration was just 10 minutes of computation, which in most metamodeling contexts
(involving numerical simulations lasting for hours and days) is negligible. On the other
hand, RISCOPE deals with an application involving human lifes at risk. Any improvement
we could have in prediction, is therefore highly valuable.

5.4 Conclusions
This chapter presented the application of the Ant Colony algorithm for the calibration of
the structural configuration of 13 different metamodels required in the RISCOPE case study.
We let the algorithm run for a relatively short period of just 10 minutes. This time was
enough for it to find a structural configuration of relatively high prediction quality in all
cases. The selected configuration outperformed 3 benchmark structural configurations that
one may choose in the absence of an automated selection tool like this. The results obtained
prove the robustness of the algorithm to changes in the input-output relationship. Moreover,
the instances resolved in this chapter involved 8 scalar and 7 functional inputs, which shows
the suitability of the algorithm for problems of larger size than those used for illustration in
Chapters 3 and 4.
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Chapter 6

Asymptotic properties of the
maximum likelihood and cross
validation estimators for transformed
Gaussian processes

The chapter in brief
This chapter presents a theoretical study which is independent from the RISCOPE coastal
flooding application. The chapter is an exact copy of our article [23], published in Electronic
Journal of Statistics. There, we study the asymptotics of the maximum likelihood (ML)
and cross validation (CV) estimators for the covariance parameters of a non-Gaussian pro-
cess. We are motivated by the fact that many real applications involve output variables that
present certain markedly non-Gaussian characteristics such as nonnegativity (e.g., [24]) and
monotonicity (e.g., [25]), but they are still modeled as Gaussian without further consider-
ations. This gives rise to the questions of: what can we expect from the estimation of the
covariance parameters if we model a non-Gaussian process as Gaussian? In case of suspicion
of non-Gaussianity would it be beneficial to apply some transformation to the output before
implementing the Gaussian process model? Chapter 6 addresses the first question and gives
the bases to undertake the second one.

In particular, we consider the case where the non-Gaussian process results from an un-
known non-linear transformation of a Gaussian process. We further assume that the transfor-
mation is not modeled or estimated. We show that the ML and CV estimators are consistent
and asymptotically normal, although they are defined as if the process was Gaussian. Our
results can thus be interpreted as a robustness of (Gaussian) ML and CV towards non-
Gaussianity. This study could be extended to the case where the transformation parameters
are estimated along with the covariance parameters. We expect such an approach to be ben-
eficial at least for taking into account non-Gaussian characteristics of the process of interest
such as the aforementioned nonnegativity or more generally speaking, boundary constraints.
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Abstract
The asymptotic analysis of covariance parameter estimation of Gaussian processes has
been subject to intensive investigation. However, this asymptotic analysis is very scarce
for non-Gaussian processes. In this paper, we study a class of non-Gaussian processes
obtained by regular non-linear transformations of Gaussian processes. We provide the
increasing-domain asymptotic properties of the (Gaussian) maximum likelihood and cross
validation estimators of the covariance parameters of a non-Gaussian process of this class.
We show that these estimators are consistent and asymptotically normal, although they
are defined as if the process was Gaussian. They do not need to model or estimate the
non-linear transformation. Our results can thus be interpreted as a robustness of (Gaussian)
maximum likelihood and cross validation towards non-Gaussianity. Our proofs rely on
two technical results that are of independent interest for the increasing-domain asymptotic
literature of spatial processes. First, we show that, under mild assumptions, coefficients of
inverses of large covariance matrices decay at an inverse polynomial rate as a function of
the corresponding observation location distances. Second, we provide a general central limit
theorem for quadratic forms obtained from transformed Gaussian processes. Finally, our
asymptotic results are illustrated by numerical simulations.

Keywords: covariance parameters, asymptotic normality, consistency, weak dependence, ran-
dom fields, increasing-domain asymptotics

6.1 Introduction
Kriging [111, 112] consists of inferring the values of a (Gaussian) random field given ob-
servations at a finite set of points. It has become a popular method for a large range of
applications, such as geostatistics [113], numerical code approximation [114, 115, 116], cali-
bration [117, 118], global optimization [119], and machine learning [112].

When considering a Gaussian process, one has to deal with the estimation of its covariance
function. Usually, it is assumed that the covariance function belongs to a given parametric
family (see [120] for a review of classical families). In this case, the estimation boils down
to estimating the corresponding covariance parameters. Nowadays, the main estimation
techniques are based on maximum likelihood [111, 112], cross-validation [121, 60, 122, 123]
and variation estimators [124, 125, 126].

The asymptotic properties of estimators of the covariance parameters have been widely
studied in the two following frameworks. The fixed-domain asymptotic framework, some-
times called infill asymptotics [111, 127], corresponds to the case where more and more data
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are observed in some fixed bounded sampling domain. The increasing-domain asymptotic
framework corresponds to the case where the sampling domain increases with the number of
observed data.

Under fixed-domain asymptotics, and particularly in low dimensional settings, not all
covariance parameters can be estimated consistently (see [128, 111]). Hence, the distinction
is made between microergodic and non-microergodic covariance parameters [128, 111]. Al-
though non-microergodic parameters cannot be estimated consistently, they have an asymp-
totically negligible impact on prediction [129, 130, 131, 132]. There is, however, a fair
amount of literature on the consistent estimation of microergodic parameters (see for in-
stance [132, 133, 134, 135, 136, 137]).

This paper focuses on the increasing-domain asymptotic framework. Indeed, generally
speaking, increasing-domain asymptotic results hold for significantly more general families
of covariance functions than fixed-domain ones. Under increasing-domain asymptotics, the
maximum likelihood and cross validation estimators of the covariance parameters are consis-
tent and asymptotically normal under mild regularity conditions [138, 139, 122, 140].

All the asymptotic results discussed above are based on the assumption that the data
come from a Gaussian random field. This assumption is indeed theoretically convenient but
might be unrealistic for real applications. When the data stem from a non-Gaussian random
field, it is still relevant to estimate the covariance function of this random field. Hence,
it would be valuable to extend the asymptotic results discussed above to the problem of
estimating the covariance parameters of a non-Gaussian random field.

In this paper, we provide such an extension, in the special case where the non-Gaussian
random field is a deterministic (unknown) transformation of a Gaussian random field. Models
of transformed Gaussian random fields have been used extensively in practice (for example
in [141, 142, 143, 144]).

We provide various asymptotic results, under reasonable regularity assumptions. In par-
ticular, our assumptions on the transformation function are mild. For most of our results,
only sub-exponentiality is required.

We prove that applying the (Gaussian) maximum likelihood estimator to data from a
transformed Gaussian random field yields a consistent and asymptotically normal estimator
of the covariance parameters of the transformed random field. This (Gaussian) maximum
likelihood estimator corresponds to what would typically be done in practice when applying
a Gaussian process model to a non-Gaussian spatial process. This estimator does not need
to know the existence of the non-linear transformation function and is not based on the exact
density of the non-Gaussian data. We refer to Remark 5 for further details and discussion
on this point.

We then obtain the same consistency and asymptotic normality result when considering
a cross validation estimator. In addition, we establish the joint asymptotic normality of
both these estimators, which provides the asymptotic distribution of a large family of aggre-
gated estimators. Our asymptotic results on maximum likelihood and cross validation are
illustrated by numerical simulations.

To the best of our knowledge, our results (Theorems 3, 4, 5, 6 and 7) provide the first
increasing-domain asymptotic analysis of Gaussian maximum likelihood and cross validation
for non-Gaussian random fields. Our proofs intensively rely on Theorems 1 and 2. Theorem 1
shows that the components of inverse covariance matrices are bounded by inverse polynomial
functions of the corresponding distance between observation locations. Theorem 2 provides
a generic central limit theorem for quadratic forms constructed from transformed Gaussian
processes. These two theorems have an interest in themselves.
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The rest of the paper is organized as follows. In Section 6.2, general properties of trans-
formed Gaussian processes are provided. In Section 6.3, Theorems 1 and 2 are stated. In
Section 6.4, an application of these two theorems is given to the case of estimating a single
variance parameter. In Section 6.5, the consistency and asymptotic normality results for gen-
eral covariance parameters are given. The joint asymptotic normality result is also given in
this section. Section 6.6 discusses some extensions of the results of the previous sections. The
simulation results are provided in Section 6.7. All the proofs are provided in the appendix.

6.2 General properties of transformed Gaussian
processes

In applications, the use of Gaussian process models may be too restrictive. One possibility
for obtaining larger and more flexible classes of random fields is to consider transformations
of Gaussian processes. In this section, we now introduce the family of transformed Gaussian
processes that we will study asymptotically in this paper. This family is determined by
regularity conditions on the covariance function of the original Gaussian process and on the
transformation function.

Let us first introduce some notation. Throughout the paper, Cinf > 0 (resp. Csup < ∞)
denotes a generic strictly positive (resp. finite) constant. This constant never depends on the
number of observations n, or on the covariance parameters (see Section 6.5), but is allowed
to depend on other variables. We mention these dependences explicitly in cases of ambiguity.
The values of Cinf and Csup may change across different occurrences.

For a vector x of dimension d we let |x| = maxi=1,...,d |xi|. Further, the Euclidean and
operator norms are denoted by ||x|| and by ||M ||op = sup{||Mx|| : ||x|| ≤ 1}, for any matrix
M . We let λ1(B) ≥ . . . ≥ λr(B) be the r eigenvalues of a r× r symmetric matrix B. We let
ρ1(B) ≥ . . . ≥ ρr(B) ≥ 0 be the r singular values of a r × r matrix B. We let N be the set
of non-zero natural numbers.

Further, we define the Fourier transform of a function h : Rd → R by

ĥ(f) = (2π)−d
∫
Rd
h(t)e−if>tdt,

where i2 = −1, for f ∈ Rd. When mentioning the Fourier transform of a function h,
we implicitly assume that Fourier inversion holds, that is ĥ is summable and, for s ∈ Rd,
h(s) =

∫
Rd ĥ(f)eis>fdf .

For a sequence of observation locations, the next condition ensures that a fixed distance
between any two observation locations exists. This condition is classical [122, 145].

Condition 1. We say that a sequence of observation locations, (xi)i∈N, xi ∈ Rd, is asymp-
totically well-separated if we have infi,j∈N,i 6=j |xi − xj| > 0.

The next condition on a stationary covariance function is classical under increasing-
domain asymptotics. This condition provides asymptotic decorrelation for pairs of distant ob-
servation locations and implies that covariance matrices are asymptotically well-conditioned
when a minimal distance between any two distinct observation locations exists [138, 122].

Condition 2. We say that a stationary covariance function k on Rd is sub-exponential and
asymptotically positive if:
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i) Csup and Cinf exist such that, for all s ∈ Rd, we have

|k(s)| ≤ Csup exp (−Cinf |s|); (6.1)

ii) For any sequence (xi)i∈N satisfying Condition 1, we have infn∈N λn(Σ) > 0, where Σ is
the n× n matrix (k(xi − xj))i,j=1,...,n.

In Condition 2, we remark that k : Rd → R is called a stationary covariance function in
the sense that (x1, x2) → k(x1 − x2) is a covariance function. We use this slight language
abuse for convenience.

We also remark that, when non-transformed Gaussian processes are considered, a poly-
nomial decay of the covariance function in Condition 2 i) is sufficient to obtain asymptotic
results [122, 146]. Here an exponential decay is needed in the proofs to deal with the non-
Gaussian case. Nevertheless, most classical covariance functions satisfy inequality (6.1). In
particular, the Matérn covariance functions [111], the generalized Wendland covariance func-
tions [147] and some of the power exponential covariance functions [115] satisfy inequality
(6.1). On the other hand, for instance, the covariance functions in the Cauchy class [148] do
not satisfy inequality (6.1).

When considering a transformed Gaussian process, we will consider a transformation sat-
isfying the following regularity condition, which enables us to subsequently obtain regularity
conditions on the covariance function of the transformed Gaussian process.

Condition 3. Let F : R → R be a fixed non-constant continuously differentiable function,
with derivative F ′. We say that F is sub-exponential and non-decreasing if:

i) For all t ∈ R, we have |F (t)| ≤ Csup exp (Csup|t|) and |F ′(t)| ≤ Csup exp (Csup|t|);

ii) The function F is non-decreasing on R.

Regarding Condition 3 ii), we point out that many transformations of Gaussian processes
considered in the literature are indeed non-decreasing, for instance the Tukey’s g-and-h trans-
formation in [142] and the exponential transformation for log-Gaussian processes. Further-
more, Condition 3 ii) need not always be assumed for the results of the present paper to hold,
see Remarks 4 and 9.

In the following lemma, we show that the covariance function of a transformed Gaussian
process satisfies Condition 2, when Conditions 2 and 3 are satisfied, for the original process
and for the transformation.

Lemma 1. Assume that the stationary covariance function k satisfies Condition 2 and that
the transformation F satisfies Condition 3. Let X be a zero-mean Gaussian process with
covariance function k and let k′ be the stationary covariance function of F (X(·)). Then, k′
satisfies Condition 2.

In the next lemma, we show that we can replace the condition of an increasing trans-
formation by the condition of a monomial transformation of even degree (with an additive
constant).

Lemma 2. If a covariance function k satisfies Condition 2 i) and if the Fourier transform k̂
of k is strictly positive on Rd, then k satisfies Condition 2 ii). Furthermore, in this case, in
Lemma 1, Condition 3 ii) can be replaced by the condition F (x) = x2r + u for r ∈ N, u ∈ R
and x ∈ R.
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6.3 Two main technical results

6.3.1 Transformed Gaussian process framework
In the rest of the paper, we will consider an unobserved Gaussian process Z on Rd with
d ∈ N fixed. Assume that Z has zero-mean and stationary covariance function kZ . We
assume throughout that kZ satisfies Condition 2.

We consider a fixed transformation function T satisfying Condition 3. We assume that
we observe the transformed Gaussian process Y , defined by Y (s) = T (Z(s)) for any s ∈ Rd.

We assume throughout that the random field Y has zero-mean. We remark that, for a
non-linear transformation F : R→ R, for s ∈ Rd, the fact that Z(s) has zero-mean does not
imply that the random variable F (Z(s)) has zero-mean. Hence, we implicitly assume that
T is of the form F − E[F (Z(x))], where F satisfies Condition 3 and x ∈ Rd is arbitrary.
Note that E[F (Z(x))] is constant in x by stationarity and that, if F satisfies Condition 3 or
the condition specified in Lemma 2, then F − E[F (Z(x))] also satisfies these conditions. We
remark that the assumption of zero-mean (or equivalently of a known mean function for Y )
is common in the literature. We provide a further discussion of this assumption in Section
6.6.2.

We let kY be the covariance function of Y . We remark that, from Lemma 1 (applied with
F = T and X = Z and thus k′ = kY ), kY also satisfies Condition 2.

We let (si)i∈N be the sequence of observation locations, with si ∈ Rd for i ∈ N. We assume
that (si)i∈N satisfies Condition 1.

For n ∈ N, we let y = (y1, . . . , yn)> = (Y (s1), . . . , Y (sn))> be the (non-Gaussian) obser-
vation vector and R = (kY (si − sj))i,j=1,...,n be its covariance matrix.

The problem of estimating the covariance function kY from the observation vector y is
crucial and has been extensively studied in the Gaussian case (when T is a linear function).
Classically, we assume that kY belongs to a parametric family of covariance functions. We
will provide the asymptotic properties of two of the most popular estimators of the covari-
ance parameters: the one based on the (Gaussian) maximum likelihood [112, 111] and the
one based on cross validation [123, 60, 121]. To our knowledge, such properties are cur-
rently known only for Gaussian processes, and we will provide analogous properties in the
transformed Gaussian framework.

6.3.2 Bounds on the elements of inverse covariance matrices
In the case of (non-transformed) Gaussian processes, one important argument for establishing
the asymptotic properties of the maximum likelihood and cross validation estimators is to
bound the largest eigenvalue of the inverse covariance matrix R−1. Unfortunately, due to the
non-linearity of the transformation T , such a bound on the largest eigenvalue is no longer
sufficient in our setting.

To circumvent this issue, we obtain in the following theorem stronger control over the
matrix R−1: we show that its coefficients decrease polynomially quickly with respect to the
corresponding distance between observation locations. This theorem may have an interest in
itself.

Theorem 1. Consider the setting of Section 6.3.1. For all fixed 0 < τ < ∞, we have, for
all n ∈ N and i, j = 1, . . . , n
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∣∣∣∣(R−1
)
i,j

∣∣∣∣ ≤ Csup

1 + |si − sj|d+τ ,

where Csup depends on τ but does not depend on n, i, j.

6.3.3 Central limit theorem for quadratic forms of transformed
Gaussian processes

In the proofs on covariance parameter estimation of Gaussian processes, a central step is to
show the asymptotic normality of quadratic forms of large Gaussian vectors. This asymp-
totic normality is established by diagonalizing the matrices of the quadratic forms. This
diagonalization provides sums of squares of decorrelated Gaussian variables and thus sums
of independent variables [124, 122].

In the transformed Gaussian case, one has to deal with quadratic forms involving trans-
formations of Gaussian vectors. Hence, the previous arguments are not longer valid. To
overcome this issue, we provide below a general central limit theorem for quadratic forms of
transformed Gaussian vectors. This theorem may have an interest in itself.

This asymptotic normality result is established by considering a metric dw generating
the topology of weak convergence on the set of Borel probability measures on Euclidean
spaces (see, e.g., [149] p. 393). We prove that the distance between the sequence of the
standardized distributions of the quadratic forms and Gaussian distributions decreases to
zero when n increases. The introduction of the metric dw enables us to formulate asymptotic
normality results in cases when the sequence of standardized variances of the quadratic forms
does not necessarily converge as n→∞.

Theorem 2. Consider the setting of Section 6.3.1. Let (An)n∈N be a sequence of matrices
such that An has dimension n × n for any n ∈ N. Let A = An for concision. Assume that
for all n ∈ N and for all i, j = 1, . . . , n,

|Ai,j| ≤
Csup

1 + |si − sj|d+Cinf
,

where Csup does not depend on i, j. Let

Vn = 1
n
y>Ay. (6.2)

Let Ln be the distribution of
√
n(Vn − E[Vn]). Then, as n→∞,

dw
(
Ln,N [0, nVar(Vn)]

)
→ 0.

In addition, the sequence (nVar(Vn))n∈N is bounded.

Remark 1. In the case where limits E∞ and σ∞ exist, such that

E[Vn]− E∞ = o(n−1/2)
and the sequence (nVar(Vn))n∈N converges to a fixed variance σ2

∞, the result of Theorem 2
can be written in the classical form

√
n (Vn − E∞) L→ N [0, σ2

∞],
as n→∞.
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Remark 2. Throughout Section 6.3, we assume that kZ satisfies Condition 2. Note that this
condition does not impose kZ to be continuous at zero. Hence, Theorems 1 and 2 allow for
a decomposition kZ(s) = k̄Z(s) + η1s=0, for s ∈ Rd, where k̄Z : Rd → R is a continuous
stationary covariance function and η ≥ 0. Hence, Theorems 1 and 2 allow for an additive
nugget effect, with variance η, on the unobserved Gaussian process Z. Furthermore, we
remark that in this case, when η > 0, kZ automatically satisfies Condition 2 ii), as the
eigenvalues of covariance matrices obtained from kZ are larger than η.

Remark 3. One can check that in the proofs of Theorems 1 and 2, it is not necessary that
kZ satisfies Condition 2 ii). Hence, these two theorems hold whenever T satisfies Condition
3, kY satisfies Condition 2 i) and ii) and kZ satisfies Condition 2 i). There are various
assumptions that can be made, in order to guarantee that kY satisfies Condition 2 ii).

First, if a nugget effect as described in Remark 2 is assumed on the covariance function
kZ, then kZ automatically satisfies Condition 2 ii) and thus, from Lemma 1, kY satisfies
Condition 2 ii).

Second, it would be possible to assume that for s ∈ Rd, we have Y (s) = T (Z(s)) + Ň(s),
where Y and Z still have zero-mean and where Ň is a centered stationary random field on
Rd, independent of Z, with Cov(Ň(u), Ň(v)) = η1u=v, for u, v ∈ Rd, with η > 0. In this
case, the covariance function kY of Y satisfies Condition 2 ii), similarly as in Remark 2.
Furthermore, consider the case where there exists Ť : R → R satisfying Condition 3, such
that, for s ∈ Rd, Ň(s) = Ť (ζ(s)), where ζ is a centered Gaussian random field, independent
of Z, with Cov(ζ(u), ζ(v)) = κ1u=v for u, v ∈ Rd, with κ > 0. In this case, one can check
that Theorems 1 and 2 hold in this modified setting for Y , with proofs that are minor but
straightforward modifications of those given in the appendix (see also the proof of Proposition
1 in the appendix). Note that this modified setting is equivalent to letting the observation
vector y be defined by yi = T (Z(si)) + ξi, i = 1, . . . , n, where ξ1, . . . , ξn are i.i.d, independent
of Z, with zero-mean and variance η, since s1, . . . , sn are two-by-two distinct.

Third, in the case where kY and kZ are continuous, we have shown in Lemma 1 that if
kZ satisfies Condition 2 ii), then kY satisfies Condition 2 ii). In Sections 6.3 and 6.4, we
thus simply assume that kZ satisfies Condition 2 ii). A classical assumption that guarantees
kZ to satisfy Condition 2 ii) is that kZ has a strictly positive Fourier transform [122, 145]
(see also the proof of Lemma 2).

Finally, when kY is continuous, one could also assume that its Fourier transform is strictly
positive to guarantee that kY satisfies Condition 2 ii). In fact, this is what we do in Section
6.5, see Condition 5.

6.4 Estimation of a single variance parameter

We let σ2
0 be the marginal variance of Y , that is Var(Y (s)) = σ2

0 for any s ∈ Rd. We let
kY = σ2

0cY be the stationary covariance function of Y , where cY is a correlation function.
We assume that the same conditions as in Section 6.3 hold. Then, the standard Gaussian
maximum likelihood estimator of the variance parameter is

σ̂2
ML = 1

n
y>C−1y,

where C = (cY (si − sj))1≤i,j≤n. One can simply show that E[σ̂2
ML] = σ2

0 even though
y is not a Gaussian vector, since y has mean vector 0 and covariance matrix σ2

0C. Hence,
a direct consequence of Theorems 1 and 2 is then that the maximum likelihood estimator
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is asymptotically Gaussian, with a n1/2 rate of convergence, even though the transformed
process Y is not a Gaussian process.

Corollary 1. Let Ln be the distribution of
√
n(σ̂2

ML − σ2
0).

Then, as n→∞,

dw
(
Ln,N [0, nVar(σ̂2

ML − σ2
0)]
)
→ 0.

In addition, the sequence
(
nVar(σ̂2

ML − σ2
0)
)
n∈N

is bounded.

The proof of Theorem 2 actually allows us to study another estimator of the variance σ2
0

of the form

σ̂2
ML,K = 1

n
y>C−1

K y,

where (C−1
K )i,j = (C−1)i,j1|si−sj |≤K . The proof of Theorem 2 then directly implies the

following.

Corollary 2. Let Kn be any sequence of positive numbers tending to infinity. Let LKn,n be
the distribution of

√
n(σ̂2

ML,Kn − σ
2
0).

Then, as n→∞,

dw
(
LKn,n,N [0, nVar(σ̂2

ML,Kn − σ
2
0)]
)
→ 0.

In addition, we have

nVar(σ̂2
ML,Kn − σ

2
0)− nVar(σ̂2

ML − σ2
0)→ 0.

The above corollary shows that one can taper the elements of C−1 when estimating the
variance parameter, and obtain the same asymptotic distribution of the error, as long as the
taper range goes to infinity, with no rate assumption. This result may have an interest in
itself, in view of the existing literature on covariance tapering for Gaussian processes under
increasing-domain asymptotics [140, 139]. We also remark that the computation costs of
σ̂2

ML,K and σ̂2
ML have the same orders of magnitude because C−1 needs to be computed in

both cases.

Remark 4. In the results of this section, the condition that F is non-decreasing in Condition
3 ii) can be replaced by the condition that C has its smallest eigenvalue bounded away from
zero. This can be checked in the corresponding proofs.

6.5 General covariance

6.5.1 Framework
As in Section 6.3.1, we consider a zero-mean Gaussian process Z defined on Rd with covariance
function kZ satisfying Condition 2. Let Y be the random field defined for any s ∈ Rd by
Y (s) = T (Z(s)), where T is a fixed function satisfying Condition 3. Furthermore we assume
that Y has zero-mean function and we recall that from Lemma 1, its covariance function
kY also satisfies Condition 2. Finally, the sequence of observation locations (si)i∈N satisfies
Condition 1.
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Let {kY,θ; θ ∈ Θ} be a parametric set of stationary covariance functions on Rd, with Θ a
compact set of Rp. We consider the following condition on this parametric set of covariance
functions.

Condition 4. For all s ∈ Rd, kY,θ(s) is three times continuously differentiable with respect
to θ, and we have

sup
θ∈Θ
|kY,θ(s)| ≤ Csup exp (−Cinf |s|), (6.3)

sup
θ∈Θ
`=1,2,3

i1,...,i`=1,...,p

∣∣∣∣∣ ∂kY,θ(s)
∂θi1 , . . . , ∂θi`

∣∣∣∣∣ ≤ Csup

1 + |s|d+Cinf
. (6.4)

The smoothness condition in (6.4) is classical and is assumed for instance in [122]. As
discussed after Condition 2, milder versions of (6.3) can be assumed for non-transformed
Gaussian processes, but (6.3) is satisfied by most classical families of covariance functions
nonetheless.

The next condition, on the Fourier transforms of the covariance functions in the model,
is standard.

Condition 5. We let k̂Y,θ be the Fourier transform of kY,θ. Then k̂Y,θ(f) is jointly continuous
with respect to θ and f and is strictly positive on Θ× Rd.

We remark that Condition 5 does not automatically follow from Condition 4 (nor from
Conditions 6 to 10 below). For instance, in the case d = 1, the family of triangular covariance
functions {σ2cY ;σ2 ∈ [σ2

inf , σ
2
sup]}, with 0 < σ2

inf < σ2
sup <∞ and with cY (x) = (1− |x|)+ for

x ∈ R, satisfies Condition 4 but not Condition 5 [145].
Finally, the next condition means that we address the well-specified case [60, 146], where

the family of covariance functions does contain the true covariance function of Y . The well-
specified case is considered in the majority of the literature on Gaussian processes.

Condition 6. There exists θ0 in the interior of Θ such that kY = kY,θ0.

In the next two subsections, we study the asymptotic properties of two classical estimators
(maximum likelihood and cross validation) for the covariance parameter θ0. The asymptotic
properties of these estimators are already known for Gaussian processes and we extend them
to the non-Gaussian process Y .

6.5.2 Maximum Likelihood

For n ∈ N, let Rθ be the n× n matrix
(
kY,θ(si − sj)

)
i,j=1,...,n

, and let

θ̂ML ∈ argmin
θ∈Θ

Lθ (6.5)

with

Lθ = 1
n

(
log(det(Rθ)) + y>R−1

θ y
)

be a maximum likelihood estimator. We will provide its consistency under the following
condition.
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Condition 7. For all χ > 0 we have

lim inf
n→∞

inf
||θ−θ0||≥χ

1
n

n∑
i,j=1

(
kY,θ(si − sj)− kY,θ0(si − sj)

)2
> 0.

Condition 7 can be interpreted as a global indentifiability condition. It implies in partic-
ular that two different covariance parameters yield two different distributions for the obser-
vation vector. It is used in several studies, for instance [122].

Theorem 3. Consider the setting of Section 6.5.1 for Z, T , Y and (si)i∈N.
Assume that Conditions 4, 5, 6 and 7 hold. Then, as n→∞,

θ̂ML
p→ θ0.

Remark 5. Let us discuss and interpret Theorem 3. In Theorem 3, there is a Gaussian
process Z with zero-mean (see Section 6.6.2 for a discussion of the case where Z has non-zero
mean) and covariance function kZ. Consider for the sake of interpretation that the covariance
function kZ belongs to a set of covariance functions {kZ,α, α ∈ A}, with kZ = kZ,α0, α0 ∈ A.

In Theorem 3 there is a transformation T : R → R that is fixed and unknown. The
aim of this paper is not to estimate T , and in particular we do not assume that T belongs
to a known parametric set of transformation functions. This transformation T then defines
the non-Gaussian process Y = T (Z). We also assume that Y has zero-mean, the case of
a non-zero mean also being discussed in Section 6.6.2. In Theorem 3, we assume that the
covariance function kY of Y belongs to the set of covariance functions {kY,θ; θ ∈ Θ}, with
kY = kY,θ0 for θ0 ∈ Θ.

Assume for the sake of interpretation that, for α ∈ A, if the covariance function of Z
was kZ,α, then the covariance function of Y would belong to {kY,θ; θ ∈ Θ}. Assume also for
the sake of discussion that θ 7→ kY,θ is injective (which is an extension of the requirement
in Condition 7). Then, there exists a fixed mapping τ : A → Θ such that, if the covariance
function of Z was kZ,α, then the covariance function of Y would be kY,τ(α). The mapping τ
is uniquely defined because θ 7→ kY,θ is assumed to be injective.

The process Y is observed at s1, . . . , sn, yielding the observation vector y and then the
(Gaussian) maximum likelihood estimator θ̂ML in Theorem 3. This estimator is based on
the false assumption that Y is a Gaussian process but on the correct assumption that the
covariance function of Y belongs to {kY,θ; θ ∈ Θ}. This estimator is thus misspecified from a
likelihood point of view but well-specified from a covariance function point of view. Theorem
3 shows that this estimator is consistent and Theorem 4 below will show that this estimator
is asymptotically unbiased with an asymptotic covariance matrix of sandwich form, see (6.6).
We remark that this form is typical in misspecified models [150, 151, 152].

If the transformation T was known and injective, one could recover the values Z(s1), . . . , Z(sn)
from Y (s1), . . . , Y (sn) and thus compute the (well-specified) Gaussian maximum likelihood es-
timator α̂ML of α0. Note that we have θ̂ML 6= τ(α̂ML) in general. We remark that one can
expect α̂ML to satisfy some type of statistical efficiency principle, as an estimator of α0, since
it is a well-specified maximum likelihood estimator. Nevertheless, while there is a fair amount
of work on efficiency of estimators in the case of i.i.d. data [153], almost no counterparts
exist, to the best of our knowledge, for the efficiency of estimators of covariance parameters
of Gaussian processes. One of the few examples is [154], in the special case of the exponential
covariance functions. If an efficiency property could be proved for α̂ML, then one could also
expect that τ(α̂ML) satisfies a similar efficiency property, as an estimator of θ0 (for instance,
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in the spirit of Theorem 25.47 in [153]). In particular, one can expect τ(α̂ML) to be asymptot-
ically a better estimator of θ0 than θ̂ML. Nevertheless, we emphasize that when T is unknown,
τ(α̂ML) can not be computed but θ̂ML can.

Finally, let us explicit the mapping τ in a special case. Consider that the transformation
function is given by T (x) = x2−E[Z(0)2] for x ∈ R. Consider also that the covariance models
{kY,θ; θ ∈ Θ} and {kZ,α;α ∈ A} are {σ2e−ρ||·||; (σ2, ρ) ∈ Θ} and {σ2e−ρ||·||; (σ2, ρ) ∈ A}, with
Θ,A ⊂ (0,∞)2. Then if α0 = (σ2

0, ρ0), by Mehler’s formula [155], for u, v ∈ Rd,

Cov(Y (u), Y (v)) = 2 Cov(Z(u), Z(v))2 = 2σ4
0e
−2ρ0||u−v||

and thus we have, for α = (α1, α2), τ(α) = (2α2
1, 2α2).

Condition 8. For any (χ1, . . . , χp) 6= (0, . . . , 0), we have

lim inf
n→∞

1
n

n∑
i,j=1

 p∑
`=1

χ`
∂kY,θ0(si − sj)

∂θ`

2

> 0.

Condition 8 can be interpreted as a regularity condition and as a local indentifiability
condition around θ0. In the next theorem, we provide the asymptotic normality of the
maximum likelihood estimator. In this theorem, the matrices Mθ0 and Σθ0 depend on the
number of observation locations.

Theorem 4. Consider the setting of Section 6.5.1 for Z, T , Y and (si)i∈N. Assume that
Conditions 4, 5, 6, 7 and 8 hold. Let Mθ0 be the p× p matrix defined by

(Mθ0)i,j = 1
n

tr
(
R−1
θ0

∂Rθ0

∂θi
R−1
θ0

∂Rθ0

∂θj

)
.

Let Σθ0 be the p×p covariance matrix defined by (Σθ0)i,j = Cov(n1/2∂Lθ0/∂θi, n
1/2∂Lθ0/∂θj).

Let Lθ0,n be the distribution of
√
n(θ̂ML − θ0).

Then, as n→∞,

dw
(
Lθ0,n,N [0,M−1

θ0 Σθ0M
−1
θ0 ]

)
→ 0. (6.6)

In addition,

lim sup
n→∞

λ1(M−1
θ0 Σθ0M

−1
θ0 ) < +∞. (6.7)

Remark 6. If the sequences of matrices Mθ0 and Σθ0 converge as n → ∞, then
√
n(θ̂ML −

θ0) converges in distribution to a fixed centered Gaussian distribution where the limiting
covariance matrix is given by

lim
n→∞

M−1
θ0 Σθ0M

−1
θ0 .

Conditions 7 and 8 involve the model of covariance functions {kY,θ; θ ∈ Θ} and the
sequence of observation locations (si)i∈N but not the transformation T . They are further
discussed, in a different context, in [156]. We believe that these conditions are mild. For
instance, Conditions 7 and 8 hold when the sequence of observation locations (si)i∈N is a
randomly perturbed regular grid, as in [122].
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Lemma 3 (see [122]). For i ∈ N, let si = gi+εi, where (gi)i∈N is a sequence with, for N ∈ N,
{g1, . . . , gNd} = {(i1, . . . , id); i1 = 1, . . . , N, . . . , id = 1, . . . , N} and where (εi)i∈N is a sequence
of i.i.d. random variables with distribution on [−1/2 + δ, 1/2− δ]d with 0 < δ < 1/2. Then,
Condition 7 holds almost surely, provided that, for θ 6= θ0, there exists i ∈ Zd\{0} for which
kY,θ(i+ ε1 − ε2) and kY,θ0(i+ ε1 − ε2) are not almost surely equal.

Furthermore, Condition 8 holds almost surely, provided that for (χ1, . . . , χp) 6= (0, . . . , 0),
there exists i ∈ Zd\{0} for which ∑p

`=1 χ`∂kY,θ0(i+ ε1 − ε2)/∂θ` is not almost surely equal to
zero.

6.5.3 Cross Validation
We consider the cross validation estimator consisting of minimizing the average of the leave-
one-out square errors.

Since the leave-one-out errors do not depend on the variance kY,θ(0), we introduce some
additional notation. In Sections 6.5.3 and 6.5.4, we let Θ = [σ2

inf , σ
2
sup]× S where 0 < σ2

inf <
σ2

sup <∞ are fixed and where S is compact in Rp−1. We let θ = (σ2, ψ) with σ2
inf ≤ σ2 ≤ σ2

sup
and ψ ∈ S. We assume that for θ ∈ Θ, kY,θ = σ2cY,ψ, with cY,ψ a stationary correlation
function. Similarly, we let θ0 = (σ2

0, ψ0). For ψ ∈ S, we let Cψ =
(
cY,ψ(si − sj)

)
i,j=1,...,n

.
Cross validation is defined for n ∈ N by

ψ̂CV ∈ argmin
ψ∈S

CVψ, (6.8)

with

CVψ = 1
n
y>C−1

ψ diag(C−1
ψ )−2C−1

ψ y,

where diag(M) is obtained by setting the off-diagonal elements of a square matrix M to
zero. The criterion CVψ is the average of the leave-one-out square errors, as is shown for
instance in [157, 60]. More precisely, if we let ŷi,ψ be the best linear predictor of yi based on
(y1, . . . , yi−1, yi+1, . . . , yn), assuming that Y has covariance function σ2cY,ψ, for any choice of
σ2 ∈ [σ2

inf , σ
2
sup], then we have

CVψ = 1
n

n∑
i=1

(yi − ŷi,ψ)2 .

In particular, we point out that ŷi,ψ does not depend on σ2, because the best linear
predictors from the two covariance functions σ2

1cY,ψ and σ2
2cY,ψ are the same, for any σ2

1, σ
2
2 ∈

[σ2
inf , σ

2
sup].

Let us insist on the fact that we consider here a cross validation estimator of the correlation
parameter ψ0 but that we do not consider a cross validation estimator of σ2

0. Indeed, we
consider a cross validation estimator obtained by minimizing the average of the leave-one-out
square errors, that depends only on ψ, not on σ2.

The asymptotic behaviour of ψ̂CV was studied in the Gaussian framework in [122] and
under increasing-domain asymptotics.

The next identifiability condition is also made in [122].

Condition 9. For all χ > 0, we have

lim inf
n→∞

inf
||ψ−ψ0||≥χ

1
n

n∑
i,j=1

(cY,ψ(si − sj)− cY,ψ0(si − sj))2 > 0.

120



The next theorem provides the consistency of the cross validation estimator.

Theorem 5. Consider the setting of Section 6.5.1 for Z, T , Y and (si)i∈N. Assume that
Conditions 4, 5, 6 and 9 hold. Then, as n→∞,

ψ̂CV
p→ ψ0.

The next condition is a local identifiability condition.

Condition 10. For any (χ1, . . . , χp−1) 6= (0, . . . , 0), we have

lim inf
n→∞

1
n

n∑
i,j=1

p−1∑
`=1

χ`
∂

∂ψ`
(cY,ψ0(si − sj))

2

> 0.

In the next theorem, we provide the asymptotic normality of the cross validation esti-
mator. In this theorem, the matrices Nψ0 and Γψ0 depend on the number of observation
locations.

Theorem 6. Consider the setting of Section 6.5.1 for Z, T , Y and (si)i∈N. Assume that
Conditions 4, 5, 6, 9 and 10 hold. Let Nψ0 be the (p− 1)× (p− 1) matrix defined by

(Nψ0)i,j =− 8
n

tr
(
∂Cψ0

∂ψj
C−1
ψ0 diag(C−1

ψ0 )−3 diag
(
C−1
ψ0

∂Cψ0

∂ψi
C−1
ψ0

)
C−1
ψ0

)
+ 2
n

tr
(
∂Cψ0

∂ψj
C−1
ψ0 diag(C−1

ψ0 )−2C−1
ψ0

∂Cψ0

∂ψi
C−1
ψ0

)
+ 6
n

tr
(

diag(C−1
ψ0 )−4 diag

(
C−1
ψ0

∂Cψ0

∂ψi
C−1
ψ0

)
diag

(
C−1
ψ0

∂Cψ0

∂ψj
C−1
ψ0

)
C−1
ψ0

)
.

Let Γψ0 be the (p−1)×(p−1) covariance matrix defined by (Γψ0)i,j = Cov(n1/2∂CVψ0/∂ψi,

n1/2∂CVψ0/∂ψj). Let Qψ0,n be the distribution of
√
n(ψ̂CV − ψ0).

Then, as n→∞,

dw
(
Qψ0,n,N [0, N−1

ψ0 Γψ0N
−1
ψ0 ]

)
→ 0. (6.9)

In addition,

lim sup
n→∞

λ1(N−1
ψ0 Γψ0N

−1
ψ0 ) < +∞. (6.10)

Similarly as for maximum likelihood, Condition 9 is a global identifiability condition for
the correlation function. In the same way, Condition 10 is a local identifiability condition for
the correlation function around ψ0.

We remark that the conditions for cross validation imply those for maximum likelihood.

Lemma 4. Condition 9 implies Condition 7 and Condition 10 implies Condition 8.

Finally, similarly as for maximum likelihood, we point out that Conditions 9 and 10 hold
in the case of a randomly perturbed regular grid, as in [122].

Lemma 5 (see [122]). Let (si)i∈N and (εi)i∈N be as in Lemma 3. Then, Condition 9 holds
almost surely, provided that, for ψ 6= ψ0, there exists i ∈ Zd\{0} for which cY,ψ(i + ε1 −
ε2) and cY,ψ0(i + ε1 − ε2) are not almost surely equal. Furthermore, Condition 10 holds
almost surely, provided that for (χ1, . . . , χp−1) 6= (0, . . . , 0), there exists i ∈ Zd\{0} for which∑p−1
`=1 χ`∂cY,ψ0(i+ ε1 − ε2)/∂ψ` is not almost surely equal to zero.
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Remark 7. Here we have provided the asymptotic properties of cross validation by minimiza-
tion of the average of the square leave-one-out errors for estimating ψ0. This corresponds to
an extension of [122] to the transformed Gaussian framework. We remark that there exist
other cross validation methods that provide estimators of both ψ0 and σ2

0 [60, 123, 112, 121]
but their asymptotic properties are not established under increasing-domain asymptotics, even
for Gaussian processes (note that [123] provides the fixed-domain asymptotic properties of one
of these other cross validation methods for the exponential covariance function in dimension
one). It would be interesting to extend the results of Section 6.5.3 to these other cross vali-
dation methods in future work.

6.5.4 Joint asymptotic normality
From Theorems 4 and 6, both the maximum likelihood and cross validation estimators con-
verge at the standard parametric rate n1/2. Let us write θ̂ML = (σ̂2

ML, ψ̂ML). In the case
where T is the identity function (that is, where we observe Gaussian processes instead of
transformed Gaussian processes), numerical experiments tend to show that ψ̂ML is more ac-
curate than ψ̂CV [122]. Indeed, when T is the identity function, maximum likelihood is based
on the Gaussian probability density function of the observation vector.

In contrast, when T is not the identity function, ψ̂ML is an M-estimator based on a
criterion which does not coincide with the observation probability density function anymore.
Hence, it is conceivable that ψ̂CV could become more accurate than ψ̂ML. Furthermore, it is
possible that using linear combinations of these two estimators could result in a third one
with improved accuracy [158, 159].

Motivated by this discussion, we now provide a joint central limit theorem for the maxi-
mum likelihood and cross validation estimators.
Theorem 7. Consider the setting of Section 6.5.1 for Z, T , Y and (si)i∈N. Assume that
Conditions 4, 5, 6, 9 and 10 hold. Let Dθ0 be the (2p − 1) × (2p − 1) block diagonal matrix
with first p × p block equal to Mθ0 and second (p − 1) × (p − 1) block equal to Nψ0, with the
notation of Theorems 4 and 6. Also let Ψθ0 be the (2p − 1) × (2p − 1) covariance matrix of
the vector n1/2(∂Lθ0/∂θ, ∂CVψ0/∂ψ).

Let Qθ0,n be the distribution of

√
n

(
θ̂ML − θ0

ψ̂CV − ψ0

)
.

Then, as n→∞,

dw
(
Qθ0,n,N [0, D−1

θ0 Ψθ0D
−1
θ0 ]
)
→ 0. (6.11)

In addition,

lim sup
n→∞

λ1(D−1
θ0 Ψθ0D

−1
θ0 ) < +∞. (6.12)

Remark 8. From Theorem 7, considering any C1 function f from S2 → S such that
f(ψ, ψ) = ψ for any ψ ∈ S, and applying the classical delta method, we obtain the asymp-
totic normality of the new estimator f(ψ̂ML, ψ̂CV). A classical choice for f is f(ψ1, ψ2) =
λψ1 + (1 − λ)ψ2, which leads to linear aggregation [158, 159]. We remark that selecting an
optimal λ leading to the smallest asymptotic covariance matrix necessitates an estimation of
the asymptotic covariance matrix in Theorem 7. We leave this as an open problem for further
research.
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Remark 9. In all the results of Section 6.5, the condition that F is non-decreasing in Con-
dition 3 ii) is actually not needed. It can indeed be verified that all the proofs for Section 6.5
do not use this condition. In fact, Condition 3 ii) is used in Lemma 1 to show that covariance
matrices have their smallest eigenvalues bounded away from zero. This is already the case in
Section 6.5, thanks to Condition 5.

Remark 10. The results and proofs in Section 6.5 rely significantly on the assumption that
the set of covariance parameters Θ is compact. This is a common assumption in the literature
[122, 133, 139]. Nevertheless, this assumption is, in some aspects, unnatural. For instance,
the domain of allowed values of estimators of the (constant) variance of a stationary random
field is often [0,∞).

An extension of the results of this paper to non-compact sets Θ of covariance parameters,
while valuable, could turn out to be very challenging, and would definitely require new proof
arguments. For instance, we remark that letting correlation length parameters go to zero or
infinity may yield asymptotic situations and techniques that are qualitatively different from
the ones tackled in this paper, see for instance [160, 161].

6.6 Discussions of extensions

6.6.1 Nugget effect
In Section 6.5, Condition 5 implies that the covariance function kY,θ is continuous for any
θ ∈ Θ. Furthermore the true covariance function kY = kY,θ0 of Y is also continuous. Hence,
the results of Section 6.5 hold for models of continuous covariance functions and with error-
free observations of continuous transformed Gaussian processes.

Here, we provide an extension of the results of Section 6.5 to a nugget effect on the
covariance function kY,θ. We assume that for θ ∈ Θ, the covariance function kY,θ is of the
form kY,θ(s) = k̄Y,θ(s) + ηθ1s=0, s ∈ Rd, where k̄Y,θ is a continuous stationary covariance
function on Rd and ηθ ≥ 0. In this case, Condition 5 does not hold, but it can be replaced
by the following condition.
Condition 11. We have infθ∈Θ ηθ > 0.

We also assume that, for s ∈ Rd, Y (s) = T (Z(s)) + Ň(s), where Y and Z still have
zero-mean and where there exists Ť : R → R satisfying Condition 3, such that, for s ∈
Rd, Ň(s) = Ť (ζ(s)), where ζ is a centered Gaussian random field, independent of Z, with
Cov(ζ(u), ζ(v)) = κ1u=v for u, v ∈ Rd, with κ > 0. We also assume that Ň has zero-mean.
We still assume that kZ satisfies Condition 2. Note that kZ is thus not necessarily continuous
and can also include a nugget effect as described in Remark 2.

In this setting, the results of Section 6.5 can be extended in a relatively straightforward
way.
Proposition 1. Consider the setting of Section 6.6.1. Let Condition 5 be replaced by Con-
dition 11. Let Conditions 4, 6, 7, 8, 9 and 10 be unchanged and applied to the new form of
kY,θ given in this section. Then Theorems 3, 4, 5, 6 and 7 still hold.

We remark that in Proposition 1 we still address the well-specified case. In particular,
there exists θ0 ∈ Θ such that kY,θ0(0) = k̄Y,θ0(0) + ηθ0 = Var(T (Z(s))) + Var(Ť (ζ(s))), for
all s ∈ Rd. We also remark that the setting considered here is equivalent to additive i.i.d.
observation errors on a transformed Gaussian process, since the observation points are two-
by-two distinct.
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6.6.2 Unknown mean
Throughout Section 6.5, we assume that the mean function of Y is constant, known and equal
to zero (in particular, the maximum likelihood estimator in (6.5) is based on the density of a
centered Gaussian vector). The results of Section 6.5 also apply to the case of any constant
known mean ν0 ∈ R for Y , since one can then also observe the centered process Y − ν0.
However, the results of Section 6.5 do not apply to the case of a constant unknown mean ν0
for Y .

In fact, even for (non-transformed) Gaussian processes, there exist very few results on the
joint estimation of a constant mean and of covariance parameters by maximum likelihood
or cross validation. For instance, the reference [122], that we extend from the Gaussian to
transformed Gaussian case, considers a constant known mean. Among these few results, one
can mention [162, 138], but the conditions there are more difficult to check and to interpret
that those given in [122].

In future work, it would be interesting to extend the results of Section 6.5 to transformed
Gaussian processes with constant unknown mean. For instance, one may consider a likelihood
criterion to minimize of the form

1
n

(
log(det(Rθ)) + (y − vν)>R−1

θ (y − vν)
)
,

where θ is still the covariance parameter, ν is the mean parameter and vν = (ν, . . . , ν)> is
of size n. In this case a first task is to extend the results of [122] to show the consistency and
asymptotic normality of the maximum likelihood estimators θ̂ML and ν̂ML when Y is Gaussian.
A second task is to further extend these results to the case where Y is transformed Gaussian.

Finally, in the case where Z or Y has non-zero constant mean, Theorem 2 can be extended
as follows.

Corollary 3. Consider the setting of Theorem 2, with the only modification that the Gaussian
process Z has a constant mean function µ0 ∈ R and that the transformed process Y = T (Z)
has a constant mean function ν0 ∈ R. Then the conclusion of Theorem 2 holds, with y
replaced by y − vν0.

This extension of Theorem 2 can be relevant and useful to the question of extending the
results of Section 6.5, as discussed above.

6.7 Illustration
In this section we numerically illustrate the convergence of different estimators as stated in
Corollary 1 and Theorems 4, 6 and 7. We use the following simulation setup in dimension
d = 2. For n = 4(m + 1/2)2 we define the grid {−m, . . . ,m}2 and add i.i.d. variables with
uniform distribution on [−0.4, 0.4]2 to obtain n observation points. Thus, we have a distance
of at least ∆ = 0.2 between the individual observation locations. The zero-mean Gaussian
process Z has stationary covariance function kZ(s) = σ2

0 exp(−||s||/ρ0), s ∈ R2 and we will
denote this reference case as the Gaussian case throughout. We define the zero-mean process
Y = T (Z) = Z2 − σ2

0 and we will denote this case as the non-Gaussian case. Recall that
kY (s) = 2kZ(2s) = 2σ4

0 exp(−2||s||/ρ0) (see Remark 5). We set the marginal variance to
σ2

0 = 1.5 and the range to ρ0 = 2. Hence, in the non-Gaussian case, the marginal variance of
Y is 2σ4

0 = 4.5 with a range of ρ0/2 which is equal to a half of that of Z.
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To start, we consider the maximum likelihood estimates of the marginal variance parame-
ters, when the range of Y or Z is assumed to be known, i.e., Corollary 1. Figure 6.1 illustrates
the empirical densities of Ln in Corollary 1 for n = 100, 400 and 900 observation locations
based on N = 2500 replicates. For moderate n sizes and in the non-Gaussian case, the
asymptotic variance σ2

∞ := nVar(σ̂2
ML− 2σ4

0) (Corollary 1) can be calculated based on (6.26)
and using

Cov(yiyj, ykyl) = 4(k2
i,kk

2
j,l + k2

i,lk
2
j,k)

+ 16(ki,kki,lkj,kkj,l + ki,jki,lkj,kkk,l + ki,jki,kkj,lkk,l),

with ki,j = kZ(si − sj). The above display follows from tedious computations based on
Isserlis’ theorem. The densities in red in Figure 6.1 are based on the asymptotic distribution
N [0, σ2

∞]. In the non-Gaussian case and for n ≥ 400, the calculation of σ2
∞ is computationally

prohibitive, so σ2
∞ has instead been approximated by the empirical variance with the corre-

sponding densities indicated in green. As expected, the convergence for the Gaussian case is
faster than for the non Gaussian case. But in both situations, the results behave nicely.

Standardized variance

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Standardized variance

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

Standardized variance

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Studentized variance

−2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Standardized variance

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Studentized variance

−2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 6.1 – Histograms of standardized and studentized variance maximum likelihood
estimates. Blue: empirical density (kernel density estimates), red: asymptotic density, green:
asymptotic density based on the empirical variance. The top row shows results for the process
Z (Gaussian case), the bottom row for the transformed process Y = Z2 − σ2

0 (non-Gaussian
case). The columns are for n = 100, 400, 900. All panels are based on N = 2500 replicates.

We now turn to Theorem 4 and consider the bivariate variance and range maximum like-
lihood estimation. That is, we consider the two-dimensional maximum likelihood estimates
of (σ2

0, ρ0) in the Gaussian case and of (2σ4
0, ρ0/2) in the non-Gaussian case. Again, we do not

observe many surprises. Skewness of the empirical distribution is slightly higher compared to
the single variance parameter estimation, and convergence is slightly slower, as is illustrated
in Figure 6.2.
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7 points outside plotting area

Range

V
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e

1.0 1.5 2.0 2.5 3.0 3.5
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3 points outside plotting area
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Figure 6.2 – Scatter plots of variance and range maximum likelihood estimates. Blue:
contour lines of kernel density estimates; green: contour lines of asymptotic density based on
the empirical bivariate covariance matrix; red cross: true mean (true parameter values). The
top row shows results for the process Z (Gaussian case), the bottom row for the transformed
process Y = Z2− σ2

0 (non-Gaussian case). The columns are for n = 100, 400, 900. All panels
are based on N = 2500 replicates.

For the general setting, when estimating jointly the variance and range parameter, the
asymptotic bivariate covariance matrix is challenging to compute (see Theorem 4) and thus
Figure 6.2 illustrates the empirical densities and densities based on the empirical bivariate
covariance matrix.

We now consider not only maximum likelihood estimation of the variance and range, but
also cross validation estimation of the range (see the beginning of Section 6.5.3). We have
observed that the range estimates based on cross validation are much more variable, and in
many situations the maximum was attained at the (imposed) boundary. Here we used the
bound [2/15, 12], i.e., smaller than the minimal distance between two observation locations
and 6 (resp. 12) times the diameter of the observation points of Z (resp. Y ). Estimates
at or close to the boundary indicate convergence issues and would imply a second, possibly
manual, inspection. For the reported results, we eliminated all cross validation cases that
yielded estimates outside [0.14, 11.4].

Figure 6.3 shows the mean squared error, squared bias and variance of σ̂2
ML, ρ̂ML and

ρ̂CV under different settings. For maximum likelihood, we consider the univariate case (one
parameter is estimated while the other is known) and the bivariate case (both parameters
are jointly estimated). For cross validation, only the range parameter is estimated (see the
beginning of Section 6.5.3), and thus only the univariate case is considered. The mean squared
error is dominated by the variance component. Univariate maximum likelihood estimation
for Gaussian cases have low bias and the lowest variance (top left and right panel). Joint
maximum likelihood estimation has a somewhat larger variance than individual estimation.
Surprisingly, cross validation for Gaussian cases has a higher variance compared to cross
validation for non-Gaussian cases.
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Figure 6.3 – Mean squared error (top left), squared bias (middle column) and variance
(right column) as a function of n for different settings in log-scale. The variance parameter is
represented in dashed lines, the range parameter in solid lines. Process Z is shown by reddish
colors (Gaussian case), transformed process Y = Z2 − σ2

0 in blueish colors (non-Gaussian
case). The panels are based on N = 250 replicates that did not reveal any convergence
issues.

Recall that Theorems 4, 6 and 7 show that, as n increases, the distribution of the stan-
dardized estimation error is close to a Gaussian distribution in terms of the metric dw. In
Figure 6.4, we illustrate this by computing one-dimensional Wasserstein distances between
the empirical distribution of the standardized estimation errors and Gaussian distributions.
The figure shows the Wasserstein distance (p = 1) as a function of the number of obser-
vation locations n for individual parameters and for specific bivariate settings (similarly as
for Figure 6.3). In each case, the samples have been centered around the true mean (true
parameter values) and standardized by an empirical standard deviation (n-weighted average
over all the samples). Their empirical distribution is compared to the standardized Gaussian
distribution. The top left panel shows that the densities of the cross validation parameters
are converging slowest whereas their mean squared error is comparable (see Figure 6.3); the
densities are highly skewed and thus lead to much larger Wasserstein distances compared to
the distributions of the maximum likelihood derived parameters. For the bivariate maximum
likelihood estimation the marginal distributions have very similar Wasserstein distances; in
the center panels: the dashed and solid colored lines are visually hardly separable. As sug-
gested by the individual panels of Figures 6.1 and 6.2, convergence in the Gaussian case is
much faster compared to the non-Gaussian case. The right column of Figure 6.4 illustrates
the joint asymptotic normality of the range parameter estimators by maximum likelihood
and cross validation. The gray lines there illustrate Theorem 7 and are Wasserstein distances
for linear combinations of the range estimates by maximum likelihood and cross validation,
i.e., λρ̂ML +(1−λ)ρ̂CV for λ = j/10, j = 1, . . . , 9. The highly skewed distribution of the cross
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validation-estimated range parameter for Gaussian processes is clearly visible. In the non
Gaussian case, the effect of the skewness is less pronounced since the maximum likelihood is
skewed as well.
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Figure 6.4 – Wasserstein distance (p = 1). Top left: marginal for each parameter. Center
panels: bivariate estimation of range and variance by maximum likelihood as in Theorem 4
and linear combinations thereof; right panels: univariate estimation of the range parameter by
maximum likelihood and cross validation and with linear combinations of these two estimators
as in Theorem 7. Top middle and right panels: Gaussian cases. Lower row panels: non-
Gaussian case. The colors and line styles follow those in Figure 6.3. The gray lines are
Wasserstein distances for estimates based on linear combinations of maximum likelihood
(center column) and of maximum likelihood and cross validation (right column). The panels
are based on N = 250 replicates that did not reveal any convergence issues. The small
boxplot on the right in each panel shows the Wasserstein distance for sample size n = 250 of
10000 realizations of N [0, 1]; the horizontal dotted line shows the median thereof.

6.8 Conclusion
We have shown that the covariance parameters of transformed Gaussian processes can be
estimated by cross validation and Gaussian maximum likelihood, with the same rate of
convergence as in the case of non-transformed Gaussian processes. In particular, Gaussian
maximum likelihood works well asymptotically, despite the fact that the observations do
not have a Gaussian distribution. Hence Gaussian maximum likelihood is here robust with
respect to non-Gaussian data. This provides the first step of a theoretical validation of the
use of Gaussian maximum likelihood in frequent cases where the data are non-Gaussian.

In future research, it would be interesting to extend the results of this paper to other
classes of non-Gaussian random fields rather than only transformed Gaussian processes. In
addition, the asymptotic analysis of estimators of the transformation of transformed Gaussian
processes is of great interest.
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Appendix 6.A Proofs

6.A.1 Technical results
Lemma 6. Let q ∈ N be fixed. Let g : Rq → R+ be fixed and satisfy g(x) ≤ Csup exp(Csup|x|).
Let W be a Gaussian vector of dimension q. Then E[g(W )] <∞.

Proof. Without loss of generality, we can assume that Wi has variance 1 for i = 1, . . . , q. We
let wi be the mean of Wi for i = 1, . . . , q. We have, for t > 1,

P(g(W ) ≥ t) ≤ P(Csup exp(Csup max
i=1,...,q

|Wi|) ≥ t)

≤
q∑
i=1

P(Csup exp(Csup|Wi|) ≥ t)

=
q∑
i=1

P(|Wi| ≥ (1/Csup) log(t/Csup))

≤ 2
q∑
i=1

P(W ≥ (1/Csup) log(t/Csup)− |wi|),

where W ∼ N [0, 1]. From the Gaussian tail inequality, we obtain, for

t ≥ Csup exp(Csup( max
i=1,...,q

|wi|+ 1)),

that

P(g(W ) ≥ t) ≤ 2q√
2π

exp
(
−(1/2)

(
(1/Csup) log(t/Csup)− max

i=1,...,q
|wi|

)2
)
.

The function of t above is clearly summable as t → +∞. Hence, we have E[g(W )] =∫∞
0 P(g(W ) ≥ t) < +∞.

Lemma 7. Let X be a centered Gaussian process with covariance function kX satisfying
Condition 2. Let F satisfy Condition 3. Let W be the spatial process F (X(·)) and assume
that W is centered. Let (xi)i∈N satisfy Condition 1.

Then, we have, for any r1, r2 ∈ N and ∆ ≥ 0,

sup
i1,...,ir1∈N
j1,...,jr2∈N

mina=1,...,r1,b=1,...,r2 |xia−xjb |≥∆

∣∣∣Cov(W (xi1) . . .W (xir1 ),W (xj1) . . .W (xjr2 ))
∣∣∣ ≤ Csupe

−Cinf∆,

where Csup and Cinf depend on r1, r2 but not on ∆.
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Proof. Let ∆ ≥ 0, i1, . . . , ir1 ∈ N and j1, . . . , jr2 ∈ N such that mina=1,...,r1,b=1,...,r2 |xia−xjb| ≥
∆.

Let ε3 ∼ N [0, Ir1 ] and ε4 ∼ N [0, Ir2 ], ε3 and ε4 being independent. Let R be the r2 × r1
matrix (kX(xja , xib))a,b, let C1 be the r1× r1 matrix (kX(xia , xib))a,b and let C2 be the r2× r2
matrix (kX(xja , xjb))a,b. Let M = RC−1

1 . Let K be a matrix square root of C2 − RC−1
1 R>.

Let K1 be the unique symmetric matrix square root of C1.
Then the vector ((K1ε3)>, (MK1ε3 +Kε4)>) has the same distribution as(

X(xi1), . . . , X(xir1 ), X(xj1), . . . , X(xjr2 )
)
.

For i = 1, 2, for x = (x1, . . . , xri) ∈ Rri , let fi(x) = F (x1) · · ·F (xri) ∈ R.
Then we have

Cov(W (xi1) · · ·W (xir1 ),W (xj1) · · ·W (xjr2 )) = Cov (f1(K1ε3), f2(MK1ε3 +Kε4)) .

By a Taylor expansion, there exists a random vector ε5 belonging to the segment with
endpoints Kε4 and MK1ε3 +Kε4 such that, with G2(ε5) the gradient column vector of f2 at
ε5, we have

f2(MK1ε3 +Kε4) = f2(Kε4) + (MK1ε3)>G2(ε5).
This yields

∣∣∣Cov(W (xi1) . . .W (xir1 ),W (xj1) . . .W (xjr2 ))
∣∣∣ =

∣∣∣Cov(f1(K1ε3), ε>3 K>1 M>G2(ε5))
∣∣∣

≤
√
E[f 2

1 (K1ε3)]
√
E[(ε>3 K>1 M>G2(ε5))2].

From Condition 2 ii) and from the equivalence of norms, we obtain ||M ||op ≤ Csupe
−Cinf∆

and ||K1||op ≤ Csup, where Csup and Cinf do not depend on i1, . . . , ir1 , j1, . . . , jr2 ,∆. By equiv-
alence of norms, we then obtain, with Csup and Cinf not depending on i1, . . . , ir1 , j1, . . . , jr2 ,∆,

∣∣∣Cov(W (xi1) . . .W (xir1 ),W (xj1) . . .W (xjr2 ))
∣∣∣ ≤ Csupe

−Cinf∆
√
E[f 2

1 (K1ε3)]E[(||ε3|| ||G2(ε5)||)2].

Now,

||ε5|| ≤ ||MK1ε3||+ ||Kε4|| ≤ Csup (||ε3||+ ||ε4||) ,
from Condition 2 ii), where, again, Csup does not depend on i1, . . . , ir1 , j1, . . . , jr2 ,∆.

Furthermore, ||K1ε3|| ≤ Csup||ε3||. Eventually, we have

∣∣∣Cov(W (xi1) · · ·W (xir1 ),W (xj1) · · ·W (xjr2 ))
∣∣∣

≤ Csup exp(−Cinf∆)
√
E[f 2

1 (K1ε3)]
√√√√E

[(
||ε3|| sup

||x||≤Csup(||ε3||+||ε4||)
||G2(x)||

)2
]
.

From Condition 3 i), we have |f1(K1x)| ≤ Csupe
Csup||x|| and ||G2(x)|| ≤ Csupe

Csup||x|| where
Csup does not depend on x and i1, . . . , ir1 , j1, . . . , jr2 ,∆. Hence the above square roots are
finite from Lemma 6 and do not depend on i1, . . . , ir1 , j1, . . . , jr2 and ∆. This concludes the
proof.
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Lemma 8. Consider the setting of Section 6.3.1, that is kZ satisfies Condition 2 and T
satisfies Condition 3. For n ∈ N and i, j = 1, . . . , n we have

∑
k,l=1,...,n

|Cov (yiyj, ykyl)| ≤ Csup,

where Csup does not depend on n, i, j.

Proof. We let d(a, (b, c)) = min(|a− b|, |a− c|) for a, b, c ∈ Rd. It is enough to show that

|Cov(yiyj, ykyl)| ≤ Csup exp
(
− Cinf max

(
d(sk, (si, sj)), d(sl, (si, sj))

))
. (6.13)

Indeed, let, for t ≥ 0, Ni,j,t be the number of pairs (k, l), with 1 ≤ k, l ≤ n such that

t ≤ max(d(sk, (si, sj)), d(sl, (si, sj))) ≤ t+ 1.

From Condition 1, we can show that we have supn∈N,i,j=1,...,nNi,j,t ≤ Csupt
2d. Hence, we

have

n∑
i,j=1

exp
(
−Cinf max

(
d(sk, (si, sj)), d(sl, (si, sj))

))
≤

+∞∑
k=0

Csup(k + 1)2d exp (−Cinfk) < +∞.

Thus, (6.13) implies the result of the lemma and it suffices to prove (6.13).
Let i, j, k, l ∈ {1, . . . , n} and let ∆ = max(d(sk, (si, sj)), d(sl, (si, sj))). By symmetry, we

can consider that d(sk, (si, sj)) = ∆.
If |sk−sl| ≤ |si−sl| and |sk−sl| ≤ |sj−sl|, then |si−sl| ≥ ∆/2 and |sj−sl| ≥ ∆/2. Hence,

we can apply Lemma 7 with distance ∆/2 to obtain |Cov(ykyl, yiyj)| ≤ Csup exp(−Cinf∆/2),
where Csup and Cinf do not depend on n, i, j, k, l,∆.

If |si − sl| ≤ |sk − sl| and |si − sl| ≤ |sj − sl|, then |sk − sl| ≥ ∆/2. We then have

Cov(yiyj, ykyl) = E[yiyjykyl]− E[yiyj]E[ykyl]
= Cov(yiyjyl, yk)− Cov(yi, yj) Cov(yk, yl) (6.14)

since it is assumed that Y has zero-mean. In (6.14), the first and third covariances are
bounded in absolute value by Csup exp(−Cinf∆/2) from Lemma 7, because |sk − sl| ≥ ∆/2,
|sk − si| ≥ ∆/2 and |sk − sj| ≥ ∆/2. Hence we have |Cov(ykyl, yiyj)| ≤ Csup exp(−Cinf∆/2),
where Csup and Cinf do not depend on n, i, j, k, l,∆.

If |sj − sl| ≤ |sk − sl| and |sj − sl| ≤ |si − sl|, we obtain the same bound by symmetry.
We have thus considered all possible cases and the proof of (6.13) is concluded.

In the context of Theorem 2, the following lemma provides an approximation of Vn, based
on replacing A by a sparse matrix. We remark that a similar approximation was shown in a
time series context in [163]. Nevertheless, we find that our assumptions on the random field
Y are more transparent and interpretable than the assumptions in [163], where cumulants are
used. Because of these differences of assumptions, our proof of the following lemma differs
from that in [163].
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Lemma 9. Let, for K,n ∈ N, A(K) be the n× n matrix defined by

A
(K)
i,j = Ai,j1|si−sj |≤K .

Then, under the same assumptions as in Lemma 8, we have

sup
n∈N

nVar
( 1
n
y>Ay − 1

n
y>A(K)y

)
→K→∞ 0.

Proof. For any K,n ∈ N we have

nVar
( 1
n
y>Ay − 1

n
y>A(K)y

)
= 1
n

n∑
i,j,k,l=1

(A− A(K))i,j(A− A(K))k,l Cov(yiyj, ykyk)

We observe that |(A − A(K))k,l| is equal to 0 or is smaller than Csup/(1 + Kd+Cinf ) by
assumption. Hence we have

nVar
( 1
n
y>Ay − 1

n
y>A(K)y

)
≤ Csup

1
1 +Kd+Cinf

1
n

n∑
i,j,k,l=1

|(A− A(K))i,j||Cov(yiyj, ykyk)|

≤ Csup
1

1 +Kd+Cinf

1
n

n∑
i,j=1
|(A− A(K))i,j|

≤ Csup
1

1 +Kd+Cinf
max
i=1,...,n

n∑
j=1

1
1 + |si − sj|d+Cinf

≤ Csup
1

1 +Kd+Cinf
,

where we have used Lemma 8 and where we have observed that |(A − A(K))i,j| is equal
to 0 or is smaller than Csup/

(
1 + |si− sj|d+Cinf

)
. We have also used Lemma 4 in [140] for the

last inequality above. All the above constants Csup and Cinf naturally do not depend on n,
so the lemma is proved.

Lemma 10. Consider the setting of Section 6.3.1, that is kZ satisfies Condition 2 and T
satisfies Condition 3. Let a, b ∈ N. For i ∈ {1, . . . , a}, let αi ∈ N and let I(i, 1), . . . , I(i, αi) ∈
{1, . . . , n}. For j ∈ {1, . . . , b}, let βj ∈ N and let J(j, 1), . . . , J(j, βj) ∈ {1, . . . , n}. For
i = 1, . . . , a, let fi be a function from Rαi to R. For j = 1, . . . , b, let gj be a function
from Rβj to R. For i = 1, . . . , a, let v(i) = fi(Z(sI(i,1)), . . . , Z(sI(i,αi))). For j = 1, . . . , b, let
w(j) = gj(Z(sJ(j,1)), . . . , Z(sJ(j,βj))). Let

α
(
{v(1), . . . , v(a)}, {w(1), . . . , w(b)}

)
= sup

{∣∣∣P(A ∩B)− P(A)P(B)
∣∣∣;A ∈ σ({v(1), . . . , v(a)}), B ∈ σ({w(1), . . . , w(b)})

}
,

(6.15)

where, for any set of random variables {ε1, . . . , εr}, σ({ε1, . . . , εr}) is the sigma algebra
generated by the random variables {ε1, . . . , εr}.

Let

∆ = inf
i∈{1,...,a}
j∈{1,...,b}
ĩ∈{1,...,αi}
j̃∈{1,...,βj}

|sI(i,̃i) − sJ(j,j̃)|.
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Then, we have

α({v(1), . . . , v(a)}, {w(1), . . . , w(b)}) ≤ Csupe
−Cinf∆,

where Csup and Cinf may depend on a, α1, . . . , αa but do not depend on b, (J(j, j̃))j=1,...,b,j̃=1,...,βj
and ∆.

Proof. Let I = {I(i, ĩ); i = 1, . . . , a, ĩ = 1, . . . , αi} and let J = {J(j, j̃); j = 1, . . . , b, j̃ =
1, . . . , βj}. In (6.15), any of the events A (resp. B) is an event defined on the set of random
variables {Z(si)}i∈I (resp. {Z(sj)}j∈J ). We thus obtain

α
(
{v(1), . . . , v(a)}, {w(1), . . . , w(b)}

)
≤ α

(
{Z(si)}i∈I , {Z(sj)}j∈J

)
:= sup

{∣∣∣P(A ∩B)− P(A)P(B)
∣∣∣;A ∈ σ({Z(si)}i∈I), B ∈ σ({Z(sj)}j∈J )

}
.

Let I1 < · · · < Iᾱ be such that {I1, . . . , Iᾱ} = I and let vZ = (Z(sI1), . . . , Z(sIᾱ))>. Let
J1 < · · · < Jβ̄ be such that {J1, . . . , Jβ̄} = J and let wZ = (Z(sJ1), . . . , Z(sJβ̄))>. From
Lemma 1 in Section 2.1 of [164], we have

α
(
{Z(si)}i∈I ,{Z(sj)}j∈J

)
≤ sup

{∣∣∣Cov(v>vZ , w>wZ)
∣∣∣; Var(v>vZ) = 1,Var(w>wZ) = 1

}
.

(6.16)

Let v and w be vectors belonging to the set in (6.16). The smallest eigenvalues of the
covariance matrices of vZ and wZ are larger that a constant Cinf , not depending on I and J ,
since kZ satisfies Condition 2. Thus we have

1 = Var(v>vZ) = v>Cov(vZ)v ≥ Cinf ||v||2.

It follows that ||v||2 ≤ Csup, where Csup does not depend on I, J and ∆. Similarly
||w||2 ≤ Csup.

We have

Cov2(v>vZ , w>wZ) ≤ ||Cov(v>vZ , wZ)||2||w||2

≤ Csup
∑

j=1,...,β̄
Cov(v>vZ , Z(sJj))2

≤ Csup||v||2
∑

i=1,...,ᾱ

∑
j=1,...,β̄

Cov(Z(sIi), Z(sJj))2

≤ Csup
∑

i=1,...,ᾱ

∑
j=1,...,n
|sj−si|≥∆

e−Cinf |sIi−sj |,

by definition of ∆, since kZ satisfies Condition 2 and where Csup and Cinf do not depend
on b, J and ∆. For any i ∈ {1, . . . , n}, the number of indices j ∈ {1, . . . , n} such that
∆̃ ≤ |si− sj| ≤ ∆̃ + 1 is smaller than Csup∆̃d, from Condition 1 and where Csup only depends
on d. This yields
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Cov2(v>vZ , w>wZ) ≤ Csup(α1 + . . .+ αa)
+∞∑
k=0

Csup(∆ + k)de−Cinf |∆+k|

≤ Csupe
−Cinf |∆|/2(α1 + . . .+ αa)

+∞∑
k=1

(∆ + k)de−Cinf |∆+k|/2

≤ Csupe
−Cinf |∆|

where the different Csup and Cinf do not depend on b, J and ∆. This concludes the proof
from (6.16).

Lemma 11. Consider a sequence (xi)i∈N of points in Rd satisfying Condition 1. Let τ > 0
be fixed. For n ∈ N, let (Aθ)θ∈Θ and (Bθ)θ∈Θ be families of n× n matrices. Assume that for
all n ∈ N, i, j = 1, . . . , n and θ ∈ Θ,

|(Aθ)i,j| ≤
Csup

1 + |xi − xj|d+τ and |(Bθ)i,j| ≤
Csup

1 + |xi − xj|d+τ

where Csup does not depend on n, i, j, θ. Then we have for all n ∈ N, i, j = 1, . . . , n and
θ ∈ Θ,

|(AθBθ)i,j| ≤
Csup

1 + |xi − xj|d+τ

where Csup does not depend on n, i, j, θ.

Proof. We have,

|(AθBθ)i,j| =
∣∣∣∣∣
n∑
`=1

(Aθ)i,`(Bθ)`,j
∣∣∣∣∣

≤
n∑
`=1

Csup

1 + |xi − x`|d+τ
Csup

1 + |xj − x`|d+τ

≤
∑

`=1,...,n
|xi−x`|≤|xj−x`|

Csup

1 + |xi − x`|d+τ
Csup

1 + (|xi − xj|/2)d+τ

+
∑

`=1,...,n
|xj−x`|≤|xi−x`|

Csup

1 + (|xi − xj|/2)d+τ
Csup

1 + |xj − x`|d+τ

≤ Csup
Csup

1 + |xi − xj|d+τ max
a=1,...,n

n∑
b=1

1
1 + |xa − xb|d+τ

≤ Csup

1 + |xi − xj|d+τ

from Lemma 4 in [140].

Lemma 12. Consider the setting of Section 6.5.1. Under Conditions 4 and 5, we have

sup
θ∈Θ

λ1(R−1
θ ) ≤ Csup, (6.17)
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sup
θ∈Θ

λ1(Rθ) ≤ Csup, (6.18)

and

sup
θ∈Θ
`=1,2,3

i1,...,i`=1,...,p

λ1

(
∂Rθ

∂θi1 . . . ∂θi`

)
≤ Csup. (6.19)

Proof. Conditions 1, 4 and 5 imply (6.17) from Theorem 5 in [145]. Conditions 1 and 4 imply
(6.18) and (6.19) from Lemma 6 in [140].

Lemma 13. Consider the setting of Section 6.5.1. Under Conditions 4 and 5, we have, for
n ∈ N and i, j ∈ {1, . . . , n},

sup
θ∈Θ

∣∣∣(R−1
θ )i,j

∣∣∣ ≤ Csup

1 + |si − sj|d+Cinf
,

where Csup and Cinf do not depend on n, i, j, θ.

Proof. One can show that the proof of Theorem 1 can be made uniform over θ ∈ Θ, thus
yielding Lemma 13.

Lemma 14. Consider the setting of Section 6.5.1. Under Conditions 4 and 5, we have,

inf
θ∈Θ

λn(Rθ) ≥ Cinf , (6.20)

inf
θ∈Θ

λn(diag(R−1
θ )) ≥ Cinf . (6.21)

Proof. Equation (6.20) holds from (6.17). Then, (6.21) follows from (6.20) as in Lemma D.6
in [122].

6.A.2 Proofs of the main results
Proof of Lemma 1. As a special case of Lemma 7, k′ satisfies Condition 2 i).

Let us now show that k′ satisfies Condition 2 ii). Let (xi) satisfy Condition 1. Let n ∈ N
be fixed and let R be the n× n covariance matrix k(xi− xj)i,j=1,...,n. Let a1, . . . , an ∈ R. We
have

n∑
i,j=1

aiajRi,j = Var
( n∑
i=1

aiF (X(xi))
)
.

We now let z = (X(x1), . . . , X(xn))> and g : Rn → R be defined by g(t) = ∑n
i=1 aiF (ti). The

gradient of g at t is ∇g(t) = (a1F
′(t1), . . . , anF ′(tn))>. We use the inequality in Theorem 3.7

in [165]. This yields
n∑

i,j=1
aiajRi,j ≥ E [∇g(z)]>Cov(z)E [∇g(z)] .

From Condition 2 ii), we have λ1(Cov(z)) ≥ Cinf . This yields
n∑

i,j=1
aiajRi,j ≥ Cinf

n∑
i=1

E2 [(∇g(z))i]
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= Cinf

n∑
i=1

a2
iE[F ′(zi)]2

= Cinf

( n∑
i=1

a2
i

)
E[F ′(z1)]2.

From Condition 3, the above expectation is non-zero, which concludes the proof.

Proof of Lemma 2. The fact that k satisfies Condition 2 ii) follows from Theorem 4 in
[145].

Let us now consider the case where F is defined by F (x) = x2r + u. Since we consider a
covariance function we can assume that u = 0 without loss of generality. Assume also that
k(0) = 1 without loss of generality. From Lemma 7, k′ satisfies Condition 2 i). Let us show
that Condition 2 ii) is satisfied. Let a, b ∈ Rd, let c = k(a− b) and let λ = (1− c2)1/2. With
(A1, A2) ∼ N [0, I2], we have

k′(a− b) = Cov(A2r
1 , (cA1 + λA2)2r)

= Cov
(
A2r

1 ,
2r∑
i=0

(
2r
i

)
ciλ2r−iAi1A

2r−i
2

)

=
2r∑
i=0

(
2r
i

)
ciλ2r−i Cov

(
A2r

1 , A
i
1A

2r−i
2

)
.

By independence of A1 and A2, we obtain, for i = 0, . . . , 2r,

Cov
(
A2r

1 , A
i
1A

2r−i
2

)
= E[A2r−i

2 ]
(
E[A2r+i

1 ]− E[A2r
1 ]E[Ai1]

)
. (6.22)

From Isserlis’ theorem, one can show that (6.22) is zero if i is odd and is strictly positive if i
is even. As a consequence, we have

k′(a− b) =
r∑
i=0

αik(a− b)2i

with α1, . . . , αr > 0. Hence, the Fourier transform of k′ is a linear combination of multiple
convolutions of the Fourier transform of k, with strictly positive components. Since the
Fourier transform of k is strictly positive everywhere, then also the Fourier transform of k′ is
strictly positive everywhere. Hence, from Theorem 4 in [145], k′ satisfies Condition 2 ii).

Proof of Theorem 1. Condition 1 and Lemma 6 in [140] imply that the spectral norms of
R−1 and R are bounded functions of n. Let Csup = supn λ1(R) <∞ and Cinf = infn λn(R) >
0.

We write

R−1 = 1
Csup

(
I −

(
I − R

Csup

))−1
= 1
Csup

∞∑
`=0

(
I − R

Csup

)`
. (6.23)

We remark that the above sum is well-defined because the eigenvalues of I − R/Csup are
between 0 and 1− Cinf/Csup.

We denote M = I − C−1
supR and hi,j = |si − sj|. Let 1 ≤ A < ∞ and a > 0 be fixed

such that Mi,j ≤ Ae−2ahi,j . Let δ = infi,j∈N,i 6=j |si − sj| > 0 (Condition 1). Let D < ∞ be a
constant such that D ≥ 1 and, for any L ≥ δ and i ∈ N, the set {j ∈ N; |si − sj| ≤ L} has
no more than (D/2)Ld elements.
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Let 0 < µ < ∞ be fixed. We show by induction over ` ∈ N that there exists a constant
1 ≤ ϕ <∞, depending on µ but not depending on `, i, j, such that for ` ≤ µ log(hi,j),

|(M `)i,j| ≤ A`ϕ`D`hd`−di,j e−ahi,j . (6.24)

In the case log(hi,j) < 0, there is nothing to prove in (6.24), so we consider i, j such that
log(hi,j) ≥ 0 when proving (6.24).

For ` = 1, (6.24) holds. Assume that (6.24) holds for some ` ∈ N. We have

|(M `+1)i,j| =
n∑
r=1

(M `)i,rMj,r

≤
n∑
r=1

A`ϕ`D`hd`−di,r e−ahi,rAe−2ahr,j

= A`+1ϕ`D`
n∑
r=1

hd`−di,r e−ahi,re−2ahr,j .

Let now Bi = {x ∈ Rd; |x− si| ≤ |si− sj|} and Bj = {x ∈ Rd; |x− sj| ≤ |si− sj|}. From the
triangle inequality we obtain

|(M `+1)i,j| ≤ A`+1ϕ`D`
∑

r∈N;sr∈Bi∪Bj
hd`−di,r e−ahi,re−2ahr,j

+ A`+1ϕ`D`
∑

r∈N;sr∈Bci∩B
c
j

hd`−di,r e−ahi,re−2ahr,j

≤ A`+1ϕ`D`2(D/2)hdi,jhd`−di,j e−ahi,j

+ A`+1ϕ`D`e−2ahi,j
∑

r∈N;sr∈Bci

hd`−di,r e−ahi,r

≤ A`+1ϕ`D`+1h
d(`+1)−d
i,j e−ahi,j

+ A`+1ϕ`D`e−ahi,j
(
e−ahi,j

∑
r∈N

Qrdµ log(hi,j)e−a(r−1)
)
,

where for the last inequality we let Qrd be an upper bound on the cardinality of {b ∈
N; |sb − si| ∈ [r − 1, r]} for all i ∈ N. The constant Q is finite and depends only on d and
δ from Condition 1. We also let ` ≤ µ log(hi,j) to show the last above inequality. Hence, in
order to finish the proof of (6.24), it remains to show that the term (.) in the above display
is a bounded function of hi,j, and to let ϕ/2 ≥ 1 be a bound for the term (.).

We have, for hi,j large enough, with d·e the integer ceiling,(
e−ahi,j

∑
r∈N

Qrdµ log(hi,j)e−a(r−1)
)

= Qeae−ahi,j
∑
r∈N

rddµ log(hi,j)ee−ar

= Qeae−ahi,j
(2
a

)ddµ log(hi,j)e∑
r∈N

(
ar

2

)ddµ log(hi,j)e
e−ar

≤ Qeae−ahi,j
(2
a

)ddµ log(hi,j)e
ddµ log(hi,j)e!

∑
r∈N

ear/2e−ar

= Qeae−ahi,j
(2
a

)ddµ log(hi,j)e
ddµ log(hi,j)e!

1
1− e−ar/2 .

The above function of hi,j clearly goes to 0 as hi,j goes to ∞. Thus, the above term (.) is
bounded and thus (6.24) is proved.

137



Coming back to (6.23), using (6.24) and using the triangle inequality, we obtain, letting
∆ = 1− Cinf/Csup, and for hi,j large enough,

∣∣∣(R−1)i,j
∣∣∣ ≤ ( ∑

1≤`≤µ log(hi,j)
A`ϕ`D`hd`−di,j e−ahi,j

)
+

∑
µ log(hi,j)≤`≤∞

∆`

≤ µ log(hi,j)(AϕD)µ log(hi,j)h
dµ log(hi,j)
i,j e−ahi,j + ∆µ log(hi,j)

1−∆

= µ log(hi,j)(AϕD)µ log(hi,j)h
dµ log(hi,j)
i,j e−ahi,j +

h
µ log(∆)
i,j

1−∆ . (6.25)

In the above display, for any τ < ∞ in the statement of Theorem 1, we can choose µ such
that µ log(∆) ≤ −d − τ . Then, it is clear that the first summand in (6.25) is also smaller
than a constant (depending on τ) time h−d−τi,j . This concludes the proof of Theorem 1, since
also supn∈N maxi,j=1,...,n |(R−1)i,j| is bounded by Csup.

Proof of Theorem 2. We have

nVar(Vn) = 1
n

n∑
i,j,k,l=1

Ai,jAk,l Cov(yiyj, ykyl). (6.26)

From Lemma 8, we obtain

nVar(Vn) ≤ 1
n
Csup

n∑
i,j=1
|Ai,j|

≤ Csup max
i=1,...,n

n∑
j=1

1
1 + |si − sj|d+Cinf

≤ Csup

from Lemma 4 in [140]. Hence, nVar(Vn) is bounded as n→∞.
Assume now that

dw (Ln,N [0, nVar(Vn)]) 6→ 0 (6.27)

as n→∞. Because nVar(Vn) is bounded, there exists a subsequence φ(n) such that

dw
(
Lφ(n),N

[
0, φ(n) Var(Vφ(n))

])
6→ 0 (6.28)

as n→∞ and φ(n) Var(Vφ(n))→ V ∈ [0,∞) as n→∞. It is then simple to show that this
implies

dw
(
Lφ(n),N [0, V ]

)
6→ 0 (6.29)

as n → ∞. If V = 0, then, from Chebyshev inequality, Lφ(n) converges to a Dirac mass at
zero and so (6.29) does not hold, yielding a contradiction.

Hence it remains to consider the case φ(n) Var(Vφ(n))→ V ∈ (0,∞) as n→∞ and where
(6.29) holds.

To reach a contradiction, we will show that
√
φ(n)

(
Vφ(n) − E[Vφ(n)]√

V

)
→n→∞ N [0, 1].
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To simplify notations in the sequel, without loss of generality, we will consider that
φ(n) = n and show that

√
n

(
Vn − E[Vn]√

V

)
→n→∞ N [0, 1], (6.30)

where nVar(Vn) → V ∈ (0,∞) as n → ∞. From Slutsky’s lemma it is sufficient to show
that

√
n

 Vn − E[Vn]√
nVar(Vn)

→n→∞ N [0, 1]. (6.31)

For K ≥ 0, let
V (K)
n = 1

n
y>A(K)y,

with the notation of Lemma 9. We have

sup
n∈N

E
[(
√
n

(
Vn − E[Vn]√
nVar(Vn)

)
−
√
n

(
V (K)
n − E[V (K)

n ]√
nVar(V (K)

n )

))2]

≤ 2 sup
n∈N

Var
(
√
n

(
Vn − V (K)

n )√
nVar(Vn)

))
+ 2 sup

n∈N
Var

(
√
nV (K)

n

(
1√

nVar(Vn)
− 1√

nVar(V (K)
n )

))

→n→∞ 0

from Lemma 9 and because V > 0. Hence, from Theorem 4.2 in [166] (as in [163]), it is
sufficient to show that there exists L ∈ (0,∞) such that for any fixed K ≥ L, we have

√
n

V (K)
n − E[V (K)

n ]√
nVar(V (K)

n )

→L N [0, 1]

as n→∞, in order to prove (6.31) and thus to conclude the proof. We remark that, because
of Lemma 9, we have

∣∣∣ lim infn→∞ nVar(V (K)
n )− lim infn→∞ nVar(Vn)

∣∣∣ goes to 0 as K →∞.
Hence, we may take L such that lim infn→∞ nVar(V (K)

n ) > 0 for K ≥ L. Hence, up to
extracting a subsequence, it is sufficient to show

√
n
(
V (K)
n − E[V (K)

n ]
)
→L N [0, V (K)], (6.32)

where nVar(V (K)
n )→ V (K) > 0 as n→∞. We have

√
n
(
V (K)
n − E[V (K)

n ]
)

= 1√
n

n∑
i,j=1

(yiyj − E[yiyj])Ai,j1|si−sj |≤K

= 1√
n

n∑
i=1

( ∑
j=1,...,n
|si−sj |≤K

Ai,j
(
T (Z(si))T (Z(sj))− E [T (Z(si))T (Z(sj))]

))

= 1√
n

n∑
i=1

Xn(si),

say, where Xn can be interpreted as a centered random field defined on (si)i∈N. We will now
show that the sequence of random fields (Xn)n∈N satisfies the conditions of Corollary 1 of
[167].
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We let, for k, l ∈ N and r ≥ 0

ᾱk,l(r) = sup
n∈N

sup
{
|P(A ∩B)− P(A)P(B)| ;

A ∈ σ(Xn(sI1), . . . , Xn(sIk̄)), B ∈ σ(Xn(sJ1), . . . , Xn(sJl̄)),

k̄ ≤ k, l̄ ≤ l, I1, . . . , Ik̄, J1, . . . , Jk̄ ∈ {1, . . . , n}, min
k̃=1,...,k̄,l̃=1,...,l̄

|sIk̃ − sJl̃ | ≥ r
}
.

Let NK = supn∈N maxi=1,...,n
∑n
j=1 1|sj−si|≤K . Then NK ≤ Csup, where Csup depends only on

K, d and δ from Condition 1. We remark that for i = 1, . . . , n, Xn(si) is a function of the
variables Z(sI(n,i,1)), . . . , Z(sI(n,i,γ(n,i))), with γ(n, i) ≤ NK and with |sI(n,i,γ) − si| ≤ K for
γ = 1, . . . , γ(n, i). Furthermore, for |si − sj| ≥ r we have for γi = 1, . . . , γ(n, i) and for
γj = 1, . . . , γ(n, j) that |sI(n,i,γi) − sI(n,j,γj)| ≥ r − 2K. Hence, form Lemma 10, we have, for
any k ∈ N

sup
l∈N

ᾱk,l(r) ≤ Csupe
−Cinfr,

where Csup and Cinf may depend on k and K.
We now let D = (si)i∈N, Dn = (s1, . . . , sn), Zi,n = n−1/2Xn(si) for n ∈ N and i = 1, . . . , n.

We also let ci,n = n−1/2 for n ∈ N and i = 1, . . . , n. We remark that Zi,n/ci,n can be written
as f(w) where w is a Gaussian vector of dimension less than NK , with variances 1 and where
|f(x)| ≤ Csupe

Csup|x|, where Csup does not depend on n ∈ N and i = 1, . . . , n. One can thus
show, from the Cauchy-Schwarz inequality and with the same techniques as in Lemma 6,
that for any q > 0

lim
M→+∞

sup
n∈N

max
i=1,...,n

E
[
|Zi,n/ci,n|2+q1|Zi,n/ci,n|≥M

]
= 0. (6.33)

With the previous notation and with (6.33), one can show that all the assumptions of Corol-
lary 1 in [167] are satisfied. This shows (6.32) and thus concludes the proof.

Proof of Theorem 3. Let θ ∈ Θ be fixed. We have

Var(Lθ) = 1
n
nVar

( 1
n

(
y>R−1

θ y
))

.

From Lemma 13 and Theorem 2, applied with An = R−1
θ , we obtain Var(Lθ) → 0 as

n→∞. For i = 1, . . . , p,

∂Lθ
∂θi

= 1
n

tr
(
R−1
θ

∂Rθ

∂θi

)
+ 1
n

(
y>
(
−R−1

θ

∂Rθ

∂θi
R−1
θ

)
y

)
,

which can be rewritten for convenience as
∂Lθ
∂θi

= 1
n

tr (Pθ,i) + 1
n

(
y>Qθ,iy

)
with

Pθ,i = R−1
θ

∂Rθ

∂θi
and Qθ,i = −R−1

θ

∂Rθ

∂θi
R−1
θ .

The matrices R−1
θ and ∂Rθ/∂θi are both valid choices for Aθ and Bθ in Lemma 11. From

Gerschgorin Circle Theorem (GCT) and Lemma 4 in [140], we obtain supθ∈Θ λ1(P>θ,iPθ,i) ≤
Csup and supθ∈Θ λ1(Qθ,i) ≤ Csup. This, in turn implies that supθ∈Θ ρ1(Pθ,i) ≤ Csup. It follows
that
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max
i=1,...,n

sup
θ∈Θ

∣∣∣∣∣∂Lθ∂θ

∣∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣ 1n tr (Pθ,i) + 1
n

(
y>Qθ,iy

)∣∣∣∣
≤ Csup + Csup

||y||2

n
= Op(1).

Hence, Theorem 3 can be proved by proceeding as in the proof of Proposition 3.1 in
[122].

Proof of Theorem 4. From the proof of Theorem 3, we have for i = 1, . . . , p

∂Lθ/∂θi = 1
n

tr(Pθ,i) + 1
n

(y>Qθ,iy),

where Pθ,i is a n × n matrix satisfying supθ∈Θ |(Pθ,i)a,b| ≤ Csup/(1 + |sa − sb|d+Cinf ) and Qθ,i

is a n× n symmetric matrix satisfying supθ∈Θ |(Qθ,i)a,b| ≤ Csup/(1 + |sa − sb|d+Cinf ).
One can check that ∂Lθ0/∂θi has mean zero for i = 1, . . . , p, since the mean value of

∂Lθ0/∂θi is calculated as if Y were a Gaussian process with zero-mean and covariance function
kY,θ0 . Let ∂Lθ0/∂θ be the gradient column vector of Lθ at θ0. From Theorem 2, with LΣ,θ0,n
the distribution of

√
n∂Lθ0/∂θ, as n→∞,

dw(LΣ,θ0,n,N [0,Σθ0 ])→ 0. (6.34)
In addition, for i ∈ {1, . . . , p}, the sequence (nVar(∂Lθ0/∂θi)) is bounded, which implies

that the elements of Σθ0 are bounded too.
One can check that the mean value of ∂Lθ0/∂θi∂θj is (Mθ0)i,j (also because this mean

value is calculated as if Y were a Gaussian process with zero-mean and covariance function
kY,θ0).

Also, for i, j = 1, . . . , p, we have

∂Lθ/∂θi∂θj = 1
n

tr(Cθ,i,j) + 1
n

(y>Dθ,i,jy),

where Cθ,i,j and Dθ,i,j are sums of products of the matrices R−1
θ , Rθ and the first and second

derivative matrices of Rθ (see e.g., [122]). Hence, from Condition 4 and Lemma 13 used inside
Lemma 11, we have supθ∈Θ |(Cθ,i,j)a,b| ≤ Csup/(1 + |sa − sb|d+Cinf ) and supθ∈Θ |(Dθ,i,j)a,b| ≤
Csup/(1 + |sa − sb|d+Cinf ).

Thus, the variance of ∂Lθ0/∂θi∂θj goes to zero as n→∞ from Theorem 2. Hence

∂Lθ0/∂θi∂θj →p (Mθ0)i,j (6.35)

as n→∞.
It can be shown, similarly as in the proof of Proposition 3.3 in [122] that

lim inf
n→∞

λp(Mθ0) > 0. (6.36)

Hence, (6.7) follows.
Then, for i, j, ` ∈ {1, . . . , p}, we have

∂Lθ/∂θi∂θj∂θ` = 1
n

tr(Eθ,i,j,`) + 1
n

(y>Fθ,i,j,`y),
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where Eθ,i,j,` and Fθ,i,j,` are sums of products of the matrices R−1
θ , Rθ and the first, sec-

ond and third derivative matrices of Rθ. Hence, from Condition 4 and Lemma 13 used
inside Lemma 11, we have supθ∈Θ |(Eθ,i)a,b| ≤ Csup/(1 + |sa− sb|d+Cinf ) and supθ∈Θ(Fθ,i)a,b| ≤
Csup/(1 + |sa− sb|d+Cinf ). Then, from GCT and Lemma 4 in [140], we have supθ∈Θ ρ1(Eθ,i) ≤
Csup and supθ∈Θ ρ1(Fθ,i) ≤ Csup. Hence, as in the proof of Theorem 3, we can show

sup
θ∈Θ

∣∣∣∣∣ ∂Lθ
∂θi∂θj∂θ`

∣∣∣∣∣ = Op(1). (6.37)

Also, λ1(Mθ0) is clearly bounded as n → ∞. From Theorem 2, λ1(Σθ0) is bounded as
n → ∞. Hence, by considering subsequences along which Mθ0 and Σθ0 converge, and using
(6.34), (6.35), (6.36) and (6.37), we can proceed as in the proof of Proposition D.10 in [122]
and show (6.6).

Proof of Theorem 5. Let ψ ∈ S be fixed. We have

Var(CVψ) = 1
n
nVar

( 1
n
y>C−1

ψ diag(C−1
ψ )−2C−1

ψ y
)
.

From Lemmas 11, 13 and 14 (that can be trivially adapted by replacing θ by ψ), as well
as Theorem 2, applied with An = C−1

ψ diag(C−1
ψ )−2C−1

ψ , we obtain Var(CVψ)→ 0 as n→∞.
For i = 1, . . . , p− 1,

∂CVψ
∂ψi

= 2
n
y>Aψ,iy

with

Aψ,i = C−1
ψ diag(C−1

ψ )−2
(

diag
(
C−1
ψ

∂Cψ
∂ψi

C−1
ψ

)
diag(C−1

ψ )−1 − C−1
ψ

∂Cψ
∂ψi

)
C−1
ψ .

As in the proof of Theorem 3, GCT and Lemma 4 in [140] lead us to supψ∈S λ1(A>ψ,iAψ,i) ≤
Csup, which in turn implies supψ∈S ρ1(Aψ,i) ≤ Csup. It follows that

max
i=1,...,p−1

sup
ψ∈S

∣∣∣∣∣∂CVψ∂ψi

∣∣∣∣∣ ≤ sup
ψ∈S

∣∣∣∣ 2n
(
y>Aψ,iy

)∣∣∣∣
≤ Csup

||y||2

n
= Op(1).

Hence, Theorem 5 can also be proved by proceeding as in the proof of Proposition 3.4 in
[122].

Proof of Theorem 6. From Condition 4 and Lemma 13 used inside Lemma 11, we have
for i = 1, . . . , p− 1

∂CVψ
∂ψi

= 2
n
y>Aψ,iy,

where Aψ,i is a n × n matrix satisfying supψ∈S |(Aψ,i)a,b| ≤ Csup/(1 + |sa − sb|d+Cinf ). As in
the proof of Theorem 4, one can check that ∂CVψ0/∂ψi has mean zero for i = 1, . . . , p − 1.
Let ∂CVψ0/∂ψ be the gradient column vector of CVψ at ψ0. From Theorem 2, with LΓ,ψ0,n

the distribution of
√
n∂CVψ0/∂ψ, as n→∞,

dw(LΓ,ψ0,n,N [0,Γψ0 ])→ 0. (6.38)
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In addition, for i ∈ {1, . . . , p − 1}, the sequence (nVar(∂CVψ0/∂ψi)) is bounded and thus,
the elements of Γψ0 are bounded too.

One can check that the mean value of ∂CVψ0/∂ψi∂ψj is (Nψ0)i,j. Furthermore, from
Theorem 2, the variance of ∂CVψ0/∂ψi∂ψj goes to zero as n→∞. Hence, as n→∞,

∂CVψ0/∂ψi∂ψj →p (Nψ0)i,j. (6.39)

It can be shown, similarly as in the proof of Proposition 3.7 in [122] that

lim inf
n→∞

λp−1(Nψ0) > 0. (6.40)

Hence, (6.10) follows. On the other hand, for i, j = 1, . . . , p− 1, we have

∂CVψ
∂ψi∂ψj

= 1
n
y>Dψ,i,jy,

where Dψ,i,j is computed as a sum of products of the matrices C−1
ψ , Cψ, the first and second

derivative matrices of Cψ and the diag operator (see e.g., [122]). Hence, from Condition 4
and Lemma 13 used inside Lemma 11, we have supψ∈S |(Dψ,i)a,b| ≤ Csup/(1 + |sa− sb|d+Cinf ).

Similarly, for i, j, ` ∈ {1, . . . , p− 1}, we have

∂CVψ
∂ψi∂ψj∂ψ`

= 1
n
y>Eψ,i,j,`y,

where Eψ,i,j,` is a sum of products of the matrices C−1
ψ , Cψ, the first, second and third

derivative matrices of Cψ and the diag operator. Hence, from Condition 4 and Lemma 13
used inside Lemma 11, we have supψ∈S |(Eψ,i,j,`)a,b| ≤ Csup/(1 + |sa − sb|d+Cinf ). Then, from
GCT and Lemma 4 in [140], we have supψ∈S ρ1(Eψ,i,j,`) ≤ Csup. Hence, as in the proof of
Theorem 3, we can show, for i, j, ` ∈ {1, . . . , p− 1},

sup
ψ∈S

∣∣∣∣∣ ∂CVψ
∂ψi∂ψj∂ψ`

∣∣∣∣∣ = Op(1). (6.41)

Also, λ1(Nψ0) is clearly bounded as n → ∞. From Theorem 2, λ1(Γψ0) is bounded as
n → ∞. Hence, by considering subsequences along which Nψ0 and Γψ0 converge, and using
(6.38), (6.39), (6.40) and (6.41), we can proceed as in the proof of Proposition D.10 in [122]
and show (6.9).

Proof of Lemma 4. We have, with θ = (σ2, ψ) ∈ Θ and θ0 = (σ2
0, ψ0),

1
n

n∑
i,j=1

(cY,ψ(si − sj)− cY,ψ0(si − sj))2

= 1
n

n∑
i,j=1

(
kY,θ(si − sj)
kY,θ(0) − kY,θ0(si − sj)

kY,θ0(0)

)2

≤ 2
n

n∑
i,j=1

(
kY,θ(si − sj)
kY,θ(0) − kY,θ0(si − sj)

kY,θ(0)

)2

+ 2
n

n∑
i,j=1

(
kY,θ0(si − sj)

kY,θ(0) − kY,θ0(si − sj)
kY,θ0(0)

)2

≤ Csup

n

n∑
i,j=1

(kY,θ(si − sj)− kY,θ0(si − sj))2 +
(

1
kY,θ(0) −

1
kY,θ0(0)

)2

Csup, (6.42)
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where the second Csup comes from Lemma 12 and from the classical control of the square
Frobenius norm by n times the largest square eigenvalue, for n × n symmetric matrices. If
Condition 9 holds, then for all χ > 0,

lim inf
n→∞

inf
||ψ−ψ0||≥χ

1
n

n∑
i,j=1

(cY,ψ(si − sj)− cY,ψ0(si − sj))2 > 0.

Consider a sequence θn = (σ2
n, ψn) ∈ Θ such that ||θn − θ0|| ≥ χ. If we can extract a

subsequence nm such that lim infm→∞(σ2
nm − σ0)2 > 0, then clearly

lim inf
m→∞

1
nm

nm∑
i,j=1

(
kY,θnm (si − sj)− kY,θ0(si − sj)

)2
> 0

by considering the diagonal terms in the above double sum. If we can not extract such
a subsequence, then we can extract a subsequence nm such that ||ψnm − ψ0|| ≥ χ/2 and
σ2
nm → σ2

0 as m→∞. Along this subsequence

lim inf
m→∞

1
nm

nm∑
i,j=1

(
kY,θnm (si − sj)− kY,θ0(si − sj)

)2
> 0

from (6.42). Hence, Condition 7 holds.
Let us now assume that Condition 8 does not hold. We have, with θ = (σ2, ψ) ∈ Θ, with

θ0 = (σ2
0, ψ0) and with (β1, . . . , βp) = (β1, χ1, . . . , χp−1), where β1 ∈ R is arbitrary,

1
n

n∑
i,j=1

p−1∑
`=1

χ`
∂

∂ψ`
cY,ψ0(si − sj)

2

= 1
n

n∑
i,j=1

( p∑
`=1

β`
∂

∂θ`

(
kY,θ0(si − sj)
kY,θ0(0)

))2

= 1
n

n∑
i,j=1

 p∑
`=1

β`

∂
∂θ`
kY,θ0(si − sj)
kY,θ0(0) −

p∑
`=1

β`
kY,θ0(si − sj) ∂

∂θ`
kY,θ0(0)

kY,θ0(0)2

2

≤ 2
n

n∑
i,j=1

 p∑
`=1

β`

∂
∂θ`
kY,θ0(si − sj)
kY,θ0(0)

2

+ 2
n

n∑
i,j=1

 p∑
`=1

β`
kY,θ0(si − sj) ∂

∂θ`
kY,θ0(0)

kY,θ0(0)2

2

≤ Csup

n

n∑
i,j=1

( p∑
`=1

β`
∂

∂θ`
kY,θ0(si − sj)

)2

+ Csup

( p∑
`=1

β`
∂

∂θ`
kY,θ0(0)

)2

, (6.43)

where the second Csup comes from Lemma 12 and from the classical control of the square
Frobenius norm by n times the largest square eigenvalue, for n × n symmetric matrices. If
Condition 8 does not hold, there exists (β?1 , . . . , β?p) 6= (0, . . . , 0) and a subsequence nm such
that

1
nm

nm∑
i,j=1

( p∑
`=1

β?`
∂

∂θ`
kY,θ0(si − sj)

)2

→m→∞ 0

and thus, considering the diagonal elements in the double sum above,

β?1 =
p∑
`=1

β?`
∂

∂θ`
kY,θ0(0) = 0.
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Hence, from (6.43), letting (β?1 , . . . , β?p) = (0, χ?1, . . . , χ?p−1), we have

1
nm

nm∑
i,j=1

p−1∑
`=1

χ?`
∂

∂ψ`
cY,ψ0(si − sj)

2

→ 0

and thus Condition 10 does not hold.

Proof of Theorem 7. Let λ and γ be two column vectors in Rp and Rp−1. Let also

Wn = λ>(θ̂ML − θ0) + γ>(ψ̂CV − ψ0),

for n ∈ N.
From the proofs of Theorems 4 and 6 (see also the proof of Proposition D.10 in [122] that

is referred to there), we know

√
n(θ̂ML − θ0) =

√
nM−1

θ0

∂

∂θ
Lθ0 + op(1)

and
√
n(ψ̂CV − ψ0) =

√
nN−1

ψ0

∂

∂ψ
CVψ0 + op(1).

Also, from Condition 4 and Lemma 13 used inside Lemma 11, we have for i = 1, . . . , p,

∂Lθ0/∂θi = 1
n

(y>Aθ0,iy) + cθ0 ,

where cθ0 ∈ R is deterministic and, for i = 1, . . . , p− 1,

∂CVψ0/∂ψi = 1
n

(y>Bψ0,iy),

where Aθ,i is a n×n symmetric matrix satisfying supθ∈Θ |(Aθ,i)a,b| ≤ Csup/(1 + |sa−sb|d+Cinf )
and Bψ,i is a n× n matrix satisfying supψ∈S |(Bψ,i)a,b| ≤ Csup/(1 + |sa − sb|d+Cinf ). As in the
proofs of Theorems 4 and 6, one can check that ∂Lθ0/∂θi has mean zero for i = 1, . . . , p and
∂CVψ0/∂ψi has mean zero for i = 1, . . . , p− 1. Thus, we can rewrite

Wn = Jn − E[Jn] + op(n−1/2)

with

Jn = 1
n
y>

 p∑
i=1

(λ>M−1
θ0 )i Aθ0,i +

p−1∑
i=1

(γ>N−1
ψ0 )i Bψ0,i

 y.
As the vectors λ and γ as well as the matrices M−1

θ0 and N−1
ψ0 are fixed, the bound∣∣∣∣∣∣∣

 p∑
i=1

(λ>M−1
θ0 )i Aθ0,i +

p−1∑
i=1

(γ>N−1
ψ0 )i Bψ0,i


k,l

∣∣∣∣∣∣∣ ≤
Csup

1 + |sk − sl|d+Cinf

holds for all k, l ∈ {1, . . . , n}.
Let then LJ,θ0,n be the distribution of n1/2(Jn−E[Jn]). Then, from Theorem 2, as n→∞,

dw (LJ,θ0,n,N [0, nVar(Jn)])→ 0.
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The variance can be written as

nVar(Jn) =
p∑
i=1

p∑
j=1

(λ>M−1
θ0 )i (λ>M−1

θ0 )j (Σθ0)i,j +
p−1∑
i=1

p−1∑
j=1

(γ>N−1
ψ0 )i (γ>N−1

ψ0 )j (Γψ0)i,j

+ 2
p∑
i=1

p−1∑
j=1

(λ>M−1
θ0 )i (γ>N−1

ψ0 )j (Ωθ0)i,j

with
Ωi,j = Cov

(
√
n
∂

∂θi
Lθ0 ,
√
n
∂

∂ψj
CVψ0

)
.

Hence, by applying product by blocks we get the matrix form expression

nVar(Jn) =
(
λ>, γ>

)
D−1
θ0 Ψθ0D

−1
θ0

(
λ
γ

)
.

We conclude the proof by applying the Wald Theorem.

Proof of Proposition 1. The proofs of the new versions of the theorems are direct ex-
tensions of the proofs of these theorems above. In particular, Condition 11 implies (6.17)
in Lemma 12. Furthermore, Theorem 2 can be shown to hold. For instance, one can write,
for s ∈ Rd, Y (s) = T (Z(s)) + Ť (ζ(s)) = Ṫ (Ż(s)), where Ż = (Z, ζ) is a bivariate zero-
mean Gaussian process and where Ṫ : R2 → R satisfies |Ṫ (x)| ≤ Csup exp(Csup||x||) and
|∂/∂xiṪ (x)| ≤ Csup exp(Csup||x||) for x ∈ R2 and i = 1, 2. We recall that Z and ζ are
independent and Cov(ζ(u), ζ(v)) = κ1u=v, for u, v ∈ Rd, with a constant 0 < κ <∞.

Then one can check that the proof of Theorem 2 can be repeated, almost identically, by
simply replacing Z by Ż and T by Ṫ . Finally, we remark that for (non-transformed) Gaussian
processes with a nugget effect, [168, 156] address the asymptotic properties of maximum
likelihood. They observe that the arguments for Gaussian processes without nugget effect in
[122] can be extended directly to Gaussian processes with nugget effect.

Proof of Corollary 3. When Y has constant mean ν0 and Z has constant mean µ0, then
we can apply Theorem 2 to the Gaussian process Ż = Z−µ0, to the transformation Ṫ defined
by Ṫ (x) = T (x + µ0) for x ∈ R and to the transformed process Ẏ = Ṫ (Ż)− ν0. This yields
a central limit theorem for quadratic forms based on the centered observation vector y− vν0 ,
which concludes the proof.

Note that when T satisfies Condition 3, then Ṫ also satisfies Condition 3.

146



Chapter 7

Global conclusions and perspectives

7.1 Synthesis
This thesis raised from the RISCOPE project, devoted to the study and development of
metamodels for the constitution of a quick and reliable coastal flood early warning system.
Since the beginning of the project, we bet for the optimization of the structural parameters
as a mechanism to produce high quality metamodels regardless of the application. Chapter 2
served as a proof of this concept, and resulted in our first prototype of methodology for the
calibration of structural parameters. In Chapter 3, we took this idea further by introducing
an Ant Colony based algorithm able to efficiently search in wider spaces of structural con-
figuration. Chapter 2 also gave place for a long set of computer trials which served for the
depuration and optimization of our metamodeling code scripts. In Chapter 4, those scripts
were assembled to the Ant Colony algorithm proposed in Chapter 3, giving rise to the R
package funGp [169]. Finally, in Chapter 5 we used the model factory implemented in funGp
for the construction of the metamodels required for multiple output variables of the hydro-
dynamic code studied in RISCOPE. At the time of writing this manuscript, RISCOPE still
has a year of work ahead. Based on the results obtained in Chapter 5, for now we can say
that we are on the right track.

On the other hand, in Chapter 6 we conducted a theoretical study which confirms the
suitability of the Gaussian process model as regression technique for cases of non-Gaussian
outputs. This conclusion covers multiple outputs of the RISCOPE code which present non-
Gaussian characteristics such as nonnegativity (e.g., the water height at given points in
land). This study could be extended in the future, in order to incorporate the possibility of
transforming the output data with the aim of improving learning and inference in the case
of non-Gaussian outputs.

7.2 Scientific production

Published papers

• Gaussian process metamodeling of functional-input code for coastal flood haz-
ard assessment, Reliability Engineering & System Safety, 2020.
In bibliography: [7] Online: find it here
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• Asymptotic properties of the maximum likelihood and cross validation estima-
tors for transformed Gaussian processes, Electronic Journal of Statistics.
In bibliography: [23] Online: find it here

Accepted paper

• Toward a user-based, robust and fast running method for coastal flooding fore-
cast, early warning, and risk prevention, Journal of coastal research, proceedings from
the International Coastal Symposium (ICS) 2020.
In bibliography: [104]

Software

• R package funGp, Available on CRAN and GitHub .
In bibliography: [20]

* User manual: Gaussian process regression for scalar and functional inputs
with funGp - The in-depth tour.
In bibliography: [21] Online: find it here

7.3 Research perspectives
For near future development, we propose the following research avenues.

A. On the algorithm for structural parameter optimization
The Ant Colony algorithm presented in Chapter 3 and implemented in the R package funGp,
was designed general enough to be usable in a variety of regression contexts. Hence, it would
be interesting to use the methodology for addressing some of the following scenarios.

Functional inputs in larger dimensions: in the RISCOPE application, as well as all the
other analytic cases revised in this thesis, the functional inputs are time series (functions in
dimension one). However, there is nothing at first sight that would prevent our Ant Colony
algorithm from properly managing functional inputs in larger dimension, as could be the
case of fields or images (functions in dimension two). To do so, tensorized finite dimensional
projection spaces could be considered (see e.g., [64] or [24]). For some functional input f from
T ⊂ Rd to R, the tensorized projection space has a dimension of the form p(1) × · · · × p(d).
Each projection dimension p(1), . . . , p(d) could be defined as a structural parameter of the
model. Then, the Ant Colony algorithm would work the same as for projections of functions
in dimension one (e.g., time series). If it performs well, this approach would prove the
suitability of our algorithm for a more general class of functional inputs.
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Functional output: the output of the RISCOPE case was scalar. Hence, we focused our
experiments in scalar-output black-boxes. However, most functional-output regression prob-
lems can be reduced to an aggregation of multiple scalar-output ones. Thus we think our
algorithm would still be usable in those cases.

For instance, if the original output is a time series, an individual metamodel could be used to
predict the output at each time instant. In that case, we could use our Ant Colony algorithm
for tuning the structural parameters of each required metamodel. Another approach to deal
with such an output could be to use the time index as an input, making the output scalar
(see e.g., [65]). If we do so, we would require the new artificial input variable to remain
always active in the model in order to be able to properly recover the output shape following
prediction. This could be achieved by specifying a constraint to the algorithm, a possibility
already implemented in the funGp model factory.

This research line would then consist in assessing the ability of our algorithm to find high
quality metamodels in the case of functional-output codes modeled by one of the aforemen-
tioned approaches.

More factors and levels: in this thesis, we used our Ant Colony algorithm for calibrat-
ing five structural parameters: (i) the state of each input in the model, (ii) the dimension
reduction method to use for each input, (iii) the projection dimension for each input, (iv) the
kernel function of the model, and (v) the distance to measure similarities between functional
input coordinates. We concentrated on those parameters since we found them to be the most
relevant ones for our particular application. However, other applications might merit the
analysis of other structural parameters as can be the mean structure (e.g., null, constant,
polynomial) or the type of transformation of the output (e.g., different Box-Cox functions
[170]), if relevant.

B. On the treatement of strongly skewed output
Most of the outputs in the RISCOPE application show strongly skewed distributions when
observations are taken directly from the nature. This happens because most part of the
time, the application site (Gâvres, France) is not flooded. Thus, most of the output values
indicating degree of flooding fail close to zero, and only a few ones get far away from zero.
This behavior is typical of the vast majority of populated regions in the planet. Unfortunately,
this natural bias impacts the efficiency of metamodel training, since the majority of learning
data will match mild events (leading to minor or no flooding) and the metamodel will not
learn well how to predict strong events (leading to major flooding). Below, we describe three
research avenues that could be followed in order to improve this situation.

Adaptive DoE for uniform coverage of the output range: this first line consists of
the use of sequential design techniques (e.g., [84, 83]) oriented to dynamically add events to
the learning set while keeping the bias of the output as controlled as possible. In particular,
it would be interesting to find a way to account for characteristic features of the functional
inputs such as the parabolic shape of the tidal curve. In addition, it would be desirable to
be able to model the dependency between time steps of the same input variable and also of
different input variables.

Transformation of the output: another action with a strong positive potential is the
study of transform functions that could be applied to the output data in order to reduce
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the bias (e.g., [170, 171]). The simplest approach would be to set the parameters of the
transformation beforehand and then conduct the optimization of the hyperparameters of the
metamodel. This approach could already be beneficial, but a superior method would be
to optimize the parameters of the transformation along with those of the metamodel. This
way, the transformation will be optimized either for likelihood or metamodel predictability.
Once the optimization of a single transform function has been dominated, one could go one
step further and include the type of transformation as one of the structural parameters to
calibrate with our Ant Colony algorithm.

Theoretical study of output transformation in Gaussian processes: this research
line is a direct extension of the theoretical work presented in Chapter 6 and [23]. In that work
we proved that the covariance parameters of a non-Gaussian process can be well estimated
when we model it as Gaussian. The extension would consist in assessing the case where
we perform a parametric transformation of the output and we aim at estimating jointly the
parameters of the transformation and the covariance parameters. This theoretical study
would help us to get some guarantees about the benefit in learning and inference derivated
from such an approach.
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